Designing materials that can withstand the force of nuclear power is pivotal to maintaining the integrity of nuclear reactors. However, performing manual inspections of materials is time-consuming, prone to error, inconsistent, and does not scale well. To solve the problem, researchers from the University of Wisconsin-Madison and the Oak Ridge National Laboratory in Tennessee developed a deep learning-based system that can detect and analyze microscopic radiation damage to materials with superb accuracy and at a fraction of the time.
“Irradiation damage in materials for nuclear applications greatly affects the durability of existing nuclear reactor facilities and advanced reactor designs. Understanding the effects of irradiation on materials properties and performance is critical to safe and reliable nuclear reactor operation,” the researchers stated in their paper.
Using a single NVIDIA GeForce GTX 1070 GPU with the cuDNN-accelerated MATLAB deep learning framework, the team trained a convolutional neural network, as well as a cascade object detector, on over 60,000 images. The neural network identified and classified around 86 percent of dislocation errors in the materials. For comparison, the humans found 80 percent of the defects.
“Machine learning has great potential to transform the current, human-involved approach of image analysis in microscopy,” says Wei Li, the lead researcher who earned his master’s degree in materials science and engineering this year from UW–Madison, and is now a software engineer at Google.
The work was published this week in the journal npj Computational Materials.
Read more >
Using AI To Detect Damage In Nuclear Reactors
Jul 20, 2018
Discuss (0)
Related resources
- DLI course: Deep Learning for Industrial Inspection
- DLI course: Applications of AI for Predictive Maintenance
- GTC session: How to use NVIDIA Modulus Framework to Develop Physics ML Models
- GTC session: Live from GTC: A Conversation with Ansys
- GTC session: Enabling More Resilient Grids With Physics and Data-Driven ML Virtual Sensors
- SDK: AMGX