As part of the GlaS@MICCAI2015 colon gland segmentation challenge, a team of researchers introduced a machine learning-based algorithm to segment glands in tissue of benign and malignant colorectal cancer.
The variability of glandular structures in biological tissue poses a challenge to automated analysis of histopathology slides. It has become a key requirement to quantitative morphology assessment and supporting cancer grading.
Using GPUs, CUDA, and Pylearn2 — a machine learning library built on top of Theano — the team trained their two deep convolution neural networks on a set of 125,000 images and achieved a classification accuracy of 98% and 94%, making use of the inherent capability of the system to distinguish between benign and malignant tissue.
In related news, the NVIDIA Foundation recently awarded $200,000 to a team of researchers from the University of Toronto for their GPU-accelerated cancer research by developing a “genetic interpretation engine” – a deep learning method for identifying cancer-causing mutations.
Read the research paper >>
Using CUDA and Machine Learning to Detect Colon Cancer
Dec 01, 2015
Discuss (0)
![](https://developer-blogs.nvidia.com/wp-content/uploads/2015/12/Colon-Cancer.png)
Related resources
- GTC session: Early Diagnosis of Cancer Cachexia Using Body Composition Index as the Radiographic Biomarker
- GTC session: Mastering CUDA C++: Modern Best Practices with the CUDA C++ Core Libraries
- GTC session: Demystify CUDA Debugging and Performance with Powerful Developer Tools
- NGC Containers: CUDA
- SDK: CV-CUDA
- SDK: Clara Viz