仿真在科学和工程的各个领域都很普遍,但它们往往受到计算时间长、计算资源有限、繁琐的手动设置工作以及对技术专业知识需求的限制 NVIDIA SimNet 是一个模拟工具箱,它将人工智能和物理结合起来解决这些挑战。
SimNet 应用的一个成功例子是在多孔介质中的流动和传输建模。这项努力是由斯坦福大学的博士生 Cedric Frances 领导的。
用例研究
Cedric 正在研究利用物理信息神经网络( PINNs )进行无网格油藏模拟的适用性和局限性。他对多孔介质中的流动和输运问题(质量守恒和达西流)非常感兴趣。 Cedric 的应用程序是一个基于 Python 的油藏模拟器,它可以计算多孔介质中各种流体的压力和浓度,并进行通常会影响大型工业能源项目的预测。这包括生产碳氢化合物、储存二氧化碳、水处理、空气储存、废物管理等等。
研究人员以前试图使用 PINNs 方法来捕捉一个具有非凸通量项的双曲问题( Riemann 问题)的正解,除了初始条件和边界条件之外没有其他数据。不幸的是,这些尝试是 unsuccessful 。
在试用 SimNet 之前, Cedric 使用 Python 和 TensorFlow 和 Keras 等深度学习框架开发了自己的 pinn 实现。他使用了各种网络结构,如残差、 GAN 、周期激活、 CNN 、 PDE 网络等。然而,很难实现所有这些目标,以找出哪一个效果最好或根本不起作用。 GitHub 上开源代码的出现使得测试这些实现变得很容易。每一个新的实现都涉及到很高的开销,比如环境设置、硬件配置、修改代码来测试自己的问题等等,这些都是不高效的。
Cedric 希望有一个由专业软件开发人员团队维护的良好、统一的框架来解决问题,使他能够专注于问题的物理性,并广泛测试最近发布的方法。当他偶然发现 SimNet 时,他对这样一个框架的探索就结束了。
塞德里克下载了 SimNet 并开始使用具有 tanh 激活函数和损失函数空间加权的全连接网络。他发现 SimNet 的通用框架(包含多种体系结构和文档丰富的示例)是一个很好的起点。它能够模拟具有剧烈冲击的解决方案,引入熵和速度等新的动态约束,为他节省了数周的开发时间。更重要的是,它提供了测试方法的快速转变,以确定它们的有用性。
本文提出的问题是多孔介质中两相不可压缩、不互溶的位移问题。这也被称为运输问题,多年来以各种形式加以描述。半个多世纪以来,它一直应用于油藏注水开发中的水驱油问题。最近,它被应用于 CO 驱盐水2在碳封存应用中。有关详细信息,请参阅 砂土流体驱替机理 和 注气过程理论 。
假设润湿相( w )正在取代非润湿相( n )。润湿性是一种流体与被另一种流体包围的固体接触的倾向性;例如,与空气相比,水在大多数表面是湿润的。质量守恒适用于两相。对于湿润阶段:
(1)
在这个公式中,是孔隙度,是润湿相的饱和度(或浓度),是非润湿相的饱和度。润湿相的流速可写为:
(2)
在这个公式中,是绝对渗透率,它量化了材料允许液体或气体流过的倾向性。是润湿相的相对渗透率,它是饱和度的函数,表征给定相在存在或不存在时的有效渗透率。一个阶段优先通过它已经存在的路径。想象一下,一滴水从窗户滴落下来,沿着现有的小径流下。
你可以算出润湿相的相通量作为总通量的函数使用简单的均匀化规则:
(3)
你可以把这个方程改写成总通量的函数。由此产生分流:
(4)
守恒方程现在可以写成:
(5)
对于一维情况,假设总通量等于每个时间步注入的一个孔隙体积 () ,可以得到:
(6)
在这个公式中,分数流是一个非线性方程,定义如下:
(7)
在这个公式中,and润湿和非润湿的残余(不可还原)饱和度是由捕集机制和是终点流动率,定义为两相的终点相对渗透率和粘度之比。我们使用 Corey 和 Brooks 相对渗透率关系。有关详细信息,请参阅 多孔介质的水力特性 。
这里解的偏微分方程是一阶双曲型的,分数流项是非凸的。它属于黎曼守恒问题的一类,通常用有限体积法求解。有关详细信息,请参阅 双曲守恒律组与冲击波的数学理论 。
在均匀 Dirichlet 边界条件下:
(8)
(9)
你可以应用特征线法( MOC )来建立这个方程的解析解。为了使 MOC 或任何有限体积法保持保守,必须修改图 1 所示的分数流项。
到目前为止,还没有其他已知的方法使用抽样方法来解决这样的问题,因此这仍然是一个悬而未决的问题。 Fuks 和 Tchelepi 先前的一次尝试得出结论,物理信息方法不适合所描述的问题(图 2 )。
塞德里克关于这个主题的研究已经发表了: 多孔介质流动和输运的物理基础 。
重要的理论里程碑正在简单而富有挑战性的一维例子中实现。 Cedric 计划将他的研究扩展到更大的维度( 2D 和 3D ),在这里,代码的可伸缩性和在更大阵列上的轻松部署将受到考验。他预计会遇到类似的问题,并期待着 SimNet 从 2D 到 3D 带来的好处。
塞德里克详细阐述了他在 SimNet 的经历。” SimNet 清晰的 API 、干净且易于导航的代码、使用 Docker 容器良好处理的环境和硬件配置、可扩展性、易部署性以及称职的支持团队使其易于采用,并提供了一些非常有前景的结果。到目前为止,这非常好,我们期待着在更大维度的问题上使用 SimNet 。”
要查看 GTC ‘ 21 会话,请参阅 基于物理信息的多孔介质流动与输运神经网络 。有关功能和下载工具包的更多信息,请参见 NVIDIA 模拟网络 型。