Simulation / Modeling / Design

New on the NVIDIA NGC Catalog: Riva AI, Updates to TensorFlow and PyTorch Containers, plus a New HPC Quantum Espresso Container

The NVIDIA NGC catalog is a hub for GPU-optimized deep learning, machine learning and high-performance computing (HPC) applications. With highly performant software containers, pre-trained models, industry specific SDKs and Helm Charts, the content available on the catalog helps you simplify and accelerate your end-to-end workflows. 

The NVIDIA NGC team works closely with our internal and external partners to update the content in the catalog on a regular basis. Below are some of the highlights: 

Artificial Intelligence

Riva AI Collections

NVIDIA announced the availability of Riva Beta 1.0. Riva is a fully accelerated application framework for building multimodal conversational AI services that use an end-to-end deep learning pipeline. 

You can get started with the Riva AI services for various tasks ranging from speech recognition to question answering to intent detection and more – through the collections available on the NGC catalog. 


Helm Charts

  • NVIDIA GPU Operator has been updated to version 1.6.0 with added support for Red Hat OpenShift 4.7 and support for the R460 driver for datacenter NVIDIA GPUs. GPU Operator 1.5 was released in late January which added support for NVIDIA vGPU.

High Performance Computing


  • The Quantum ESPRESSO container has also been updated to version 6.7. The latest version of our container delivers better performance with improvements related to CPU multithreading of FFTs and updated UCX settings. 
  • The NGC Pre-flight Check container is a light-weight tool that verifies that the container runtime is set up correctly for GPUs and InfiniBand. You can run this container prior to running your HPC or deep learning container on your system.

Additional Resources

  • For those who are getting started with AI or need a head start with your use-case, we have built sample Jupyter Notebooks for both Image Segmentation and Recommender System to help you get started with these use-cases. 
Discuss (0)