生成型人工智能

2025年 9月 25日
如何将计算机视觉工作流与生成式 AI 和推理集成
生成式 AI 为分析现有视频流开辟了全新可能。视频分析正从统计物体演进为将原始视频片段转化为实时理解,从而提供更具价值的可行见解。
3 MIN READ

2025年 9月 23日
使用 NVIDIA Nemotron 构建检索增强生成 (RAG) 智能体
与基于 LLM 的传统系统受限于其训练数据不同,检索增强生成 (RAG) 通过整合相关的外部信息来提升文本生成效果。
5 MIN READ

2025年 9月 23日
借助生成式 AI 通过分子合成途径进行推理
无论是制药、化学还是材料应用,分子设计中反复出现的挑战在于构建可合成的分子。合成性评估通常需要绘制分子的合成路径:
2 MIN READ

2025年 9月 23日
借助 NVIDIA NeMo 在 FP8 精度下提高训练吞吐量
在之前关于 FP8 训练的博文中,我们探讨了 FP8 精度的基础知识 并深入分析了适用于大规模深度学习的 多种扩展方法。
3 MIN READ

2025年 9月 23日
在 NVIDIA RTX AI PC上部署高性能人工智能模型到 Windows 应用中
如今,Microsoft 正在向开发者提供 Windows ML。借助 Windows ML,C#、
3 MIN READ

2025年 9月 18日
如何使用 NVIDIA Dynamo 减少 KV 缓存瓶颈
随着 AI 模型变得更大、更复杂,推理,即模型生成响应的过程,正成为一项重大挑战。像 GPT-OSS 和 DeepSeek-R1…
4 MIN READ

2025年 9月 17日
用于降低 AI 推理延迟的预测性解码简介
使用大语言模型(LLM)生成文本时,通常会面临一个基本瓶颈。尽管 GPU 能够提供强大的计算能力,但由于自回归生成本质上是顺序进行的,
2 MIN READ

2025年 9月 16日
适用于 Python GPU 加速视频处理的 PyNvVideoCodec 2.0 新增功能
Python 中的硬件加速视频处理变得更加便捷。 PyNvVideoCodec 是一个基于 NVIDIA Python 的库,
1 MIN READ

2025年 9月 16日
利用 NVIDIA Run:ai 模型流技术降低大型语言模型推理的冷启动延迟
部署大语言模型(LLM)在优化推理效率方面带来了显著挑战。其中,冷启动延迟——即模型加载到 GPU 显存所需的时间较长…
5 MIN READ

2025年 9月 15日
在 OpenRouter 上使用 NVIDIA Nemotron 构建报告生成 AI 智能体
与传统系统遵循预设路径不同,AI智能体依托大语言模型(LLM)进行决策,能够适应动态变化的需求,并执行复杂的推理任务。
6 MIN READ

2025年 9月 11日
量化感知训练如何实现低精度恢复
训练 AI 模型后,可采用多种压缩技术来优化模型的部署。其中较为常见的是后训练量化(PTQ),该方法通过数值缩放技术,
3 MIN READ

2025年 9月 11日
使用 AI 击杀链框架对 AI 驱动应用进行攻击建模
AI 赋能的应用带来了传统安全模型难以全面覆盖的新攻击面,尤其是当这些代理式系统具备自主性时。应对持续演变的攻击面,其核心原则十分明确:
2 MIN READ

2025年 9月 9日
NVIDIA Rubin CPX 加速百万级以上 token 上下文工作负载的推理性能和效率
推理正成为人工智能复杂性的前沿领域。现代模型正逐步演变为具备多步推理能力、持久化记忆和长时程上下文理解的代理式系统,使其能够胜任软件开发、
2 MIN READ

2025年 9月 8日
如何使用 Outerbound 和 DGX 云 Lepton 自行构建 AI 系统
我们往往容易低估实际生产级 AI 系统所涉及的组件复杂性。无论是构建融合内部数据与外部大语言模型的智能体,还是提供按需生成动画的服务,
3 MIN READ

2025年 9月 5日
通过 CPU-GPU 显存共享加速大规模 LLM 推理和 KV 缓存卸载
大语言模型(LLM)处于人工智能创新的前沿,但其庞大的规模往往会影响推理效率。例如,Llama 3 70B 和 Llama 4 Scout…
2 MIN READ

2025年 9月 2日
降低模型部署成本,同时通过 GPU 显存交换保持性能
大规模部署大语言模型(LLM)面临双重挑战:一方面需保障高需求时段的快速响应能力,另一方面又要有效控制 GPU 成本。组织通常面临两难选择:
2 MIN READ