AI 平台/部署

2025年 9月 23日
在 NVIDIA RTX AI PC上部署高性能人工智能模型到 Windows 应用中
如今,Microsoft 正在向开发者提供 Windows ML。借助 Windows ML,C#、
3 MIN READ

2025年 9月 16日
利用 NVIDIA Run:ai 模型流技术降低大型语言模型推理的冷启动延迟
部署大语言模型(LLM)在优化推理效率方面带来了显著挑战。其中,冷启动延迟——即模型加载到 GPU 显存所需的时间较长…
5 MIN READ

2025年 9月 15日
全新 Qwen3-Next 开源模型预览:MoE 架构在 NVIDIA 平台实现更高精度与加速并行处理速度
随着 AI 模型规模不断扩大且处理的文本序列越来越长,效率变得与规模同样重要。 为展示未来趋势,
2 MIN READ

2025年 9月 15日
在 OpenRouter 上使用 NVIDIA Nemotron 构建报告生成 AI 智能体
与传统系统遵循预设路径不同,AI智能体依托大语言模型(LLM)进行决策,能够适应动态变化的需求,并执行复杂的推理任务。
6 MIN READ

2025年 9月 10日
开发者现在可以直接从自己喜欢的第三方平台下载 CUDA
对开发者而言,构建和部署应用往往充满挑战,需要协调软件与硬件功能之间的复杂关系。确保每个基础软件组件不仅正确安装,而且版本符合要求,
1 MIN READ

2025年 9月 10日
使用 NVIDIA NIM Operator 3.0.0 部署可扩展的 AI 推理
AI 模型、推理引擎后端以及分布式推理框架在架构、复杂性和规模上持续演进。面对快速的技术变革,
3 MIN READ

2025年 9月 9日
NVIDIA Rubin CPX 加速百万级以上 token 上下文工作负载的推理性能和效率
推理正成为人工智能复杂性的前沿领域。现代模型正逐步演变为具备多步推理能力、持久化记忆和长时程上下文理解的代理式系统,使其能够胜任软件开发、
2 MIN READ

2025年 9月 9日
NVIDIA Blackwell Ultra 首次亮相 MLPerf 完成推理新纪录
随着大语言模型(LLM)规模的不断扩大,其智能水平也显著提升,领先开发者推出的开放模型已具备数千亿参数。与此同时,
3 MIN READ

2025年 9月 9日
如何利用跨区域 (Scale-Across) 网络将分布式数据中心连接成大型 AI 工厂
AI 技术日益复杂,训练与推理领域的新进展对数据中心提出了更高的要求。尽管数据中心的功能正在迅速扩展,但其基础设施受限于基本的物理条件,
1 MIN READ

2025年 9月 8日
如何使用 Outerbound 和 DGX 云 Lepton 自行构建 AI 系统
我们往往容易低估实际生产级 AI 系统所涉及的组件复杂性。无论是构建融合内部数据与外部大语言模型的智能体,还是提供按需生成动画的服务,
3 MIN READ

2025年 9月 5日
通过 CPU-GPU 显存共享加速大规模 LLM 推理和 KV 缓存卸载
大语言模型(LLM)处于人工智能创新的前沿,但其庞大的规模往往会影响推理效率。例如,Llama 3 70B 和 Llama 4 Scout…
2 MIN READ

2025年 9月 3日
南北向网络:加速企业 AI 工作负载的关键
在 AI 基础架构中,数据为计算引擎提供关键燃料。随着代理式 AI 系统的持续演进,多个模型与服务相互协作,需要获取外部上下文并实时做出决策,
2 MIN READ

2025年 9月 3日
如何运行 AI 驱动的 CAE 仿真
在现代工程领域,创新速度与执行模拟分析的效率密切相关。计算机辅助工程(CAE)在验证产品性能与安全性方面发挥着关键作用,
3 MIN READ

2025年 9月 3日
借助 NVIDIA DRIVE AGX Thor 开发者套件加速智能汽车开发
智能汽车(AV)技术是快速发展的,由于更大型、更复杂的AI模型被部署于边缘端推动。如今,现代汽车不仅需要先进的感知能力和传感器融合技术,
3 MIN READ

2025年 9月 2日
借助启发式算法和 CUTLASS 4.2 提高 NVIDIA GPU 上的 GEMM 内核自动调整效率
为特定问题和硬件选择合适的通用矩阵乘法(GEMM)核函数是一项重大挑战。GEMM 核函数的性能由一系列编译时和运行时的元参数共同决定,
2 MIN READ

2025年 9月 2日
降低模型部署成本,同时通过 GPU 显存交换保持性能
大规模部署大语言模型(LLM)面临双重挑战:一方面需保障高需求时段的快速响应能力,另一方面又要有效控制 GPU 成本。组织通常面临两难选择:
2 MIN READ