GPU Accelerated Computing with C and C++

Using the CUDA Toolkit you can accelerate your C or C++ applications by updating the computationally intensive portions of your code to run on GPUs. To accelerate your applications, you can call functions from drop-in libraries as well as develop custom applications using languages including C, C++, Fortran and Python. Below you will find some resources to help you get started using CUDA.

1
SETUP CUDA

Install the free CUDA Tookit on a Linux, Mac or Windows system with one or more CUDA-capable GPUs. Follow the instructions in the CUDA Quick Start Guide to get up and running quickly.

Or, watch the short video below and follow along.

If you do not have a GPU, you can access one of the thousands of GPUs available from cloud service providers including Amazon AWS, Microsoft Azure and IBM SoftLayer. The NVIDIA-maintained CUDA Amazon Machine Image (AMI) on AWS, for example, comes pre-installed with CUDA and is available for use today.

For more detailed installation instructions, refer to the CUDA installation guides. For help with troubleshooting, browse and participate in the CUDA Setup and Installation forum.

2
YOUR FIRST CUDA PROGRAM

You are now ready to write your first CUDA program. The article, Even Easier Introduction to CUDA, introduces key concepts through simple examples that you can follow along.

The video below walks through an example of how to write an example that adds two vectors.

The Programming Guide in the CUDA Documentation introduces key concepts covered in the video including CUDA programming model, important APIs and performance guidelines.

NVIDIA also provides hands-on training through a collection of self-paced labs. The labs guide you step-by-step through editing and execution of code, and even interaction with visual tools is all woven together into a simple immersive experience.

3
PRACTICE CUDA

Practice the techniques you learned in the materials above through more hands-on labs created for intermediate and advanced users.

The CUDA C Best Practices Guide presents established parallelization and optimization techniques and explains programming approaches that can greatly simplify programming GPU-accelerated applications.

For a more formal, instructor-led introduction to CUDA, explore the Introduction to Parallel Programming on UDACITY. The course covers a series of image processing algorithms such as you might find in Photoshop or Instagram. You'll be able to program and run your assignments on high-end GPUs, even if you don't have one yourself.

Additional Resources

CODE Samples

Availability

The CUDA Toolkit is a free download from NVIDIA and is supported on Windows, Mac, and most standard Linux distributions.

So, now you’re ready to deploy your application?
Register today for free access to NVIDIA TESLA GPUs in the cloud.

Latest News

Generating Photorealistic Images of Fake Celebrities with Artificial Intelligence

Researchers from NVIDIA recently published a paper detailing their new methodology for generative adversarial networks (GANs) that generated photorealistic pictures of fake celebrities.

High-Performance GPU Computing in the Julia Programming Language

Julia is a high-level programming language for mathematical computing that is as easy to use as Python, but as fast as C.

Build, Train and Deploy AI in the Cloud with NVIDIA GPU Cloud

NVIDIA just announced the NVIDIA GPU Cloud (NGC) — a GPU-accelerated cloud platform that makes it easy to get started with the top deep learning frameworks on-premises or on Amazon Web Services.

Programming Tensor Cores in CUDA 9

A defining feature of the new Volta GPU Architecture is its Tensor Cores, which give the Tesla V100 accelerator a peak throughput 12 times the 32-bit floating point throughput of the previous-generation Tesla P100.

Blogs: Parallel ForAll

Pro Tip: Pinpointing Runtime Errors in CUDA Fortran

We’ve all been there. Your CUDA Fortran code is humming along and suddenly you get a runtime error: copyin, copyout, usually accompanied by FAILED in all caps.

High-Performance GPU Computing in the Julia Programming Language

Julia is a high-level programming language for mathematical computing that is as easy to use as Python, but as fast as C.

DeepStream: Next-Generation Video Analytics for Smart Cities

Imagine every parent’s worst nightmare: a child lost in a crowded mall.

Programming Tensor Cores in CUDA 9

A defining feature of the new Volta GPU Architecture is its Tensor Cores, which give the Tesla V100 accelerator a peak throughput 12 times the 32-bit floating point throughput of the previous-generation Tesla P100.