GPU Accelerated Computing with C and C++

Using the CUDA Toolkit you can accelerate your C or C++ applications by updating the computationally intensive portions of your code to run on GPUs. To accelerate your applications, you can call functions from drop-in libraries as well as develop custom applications using languages including C, C++, Fortran and Python. Below you will find some resources to help you get started using CUDA.


Install the free CUDA Tookit on a Linux, Mac or Windows system with one or more CUDA-capable GPUs. Follow the instructions in the CUDA Quick Start Guide to get up and running quickly.

Or, watch the short video below and follow along.

If you do not have a GPU, you can access one of the thousands of GPUs available from cloud service providers including Amazon AWS, Microsoft Azure and IBM SoftLayer. The NVIDIA-maintained CUDA Amazon Machine Image (AMI) on AWS, for example, comes pre-installed with CUDA and is available for use today.

For more detailed installation instructions, refer to the CUDA installation guides. For help with troubleshooting, browse and participate in the CUDA Setup and Installation forum.


You are now ready to write your first CUDA program. The article, Even Easier Introduction to CUDA, introduces key concepts through simple examples that you can follow along.

The video below walks through an example of how to write an example that adds two vectors.

The Programming Guide in the CUDA Documentation introduces key concepts covered in the video including CUDA programming model, important APIs and performance guidelines.

NVIDIA also provides hands-on training through a collection of self-paced labs. The labs guide you step-by-step through editing and execution of code, and even interaction with visual tools is all woven together into a simple immersive experience.


Practice the techniques you learned in the materials above through more hands-on labs created for intermediate and advanced users.

The CUDA C Best Practices Guide presents established parallelization and optimization techniques and explains programming approaches that can greatly simplify programming GPU-accelerated applications.

For a more formal, instructor-led introduction to CUDA, explore the Introduction to Parallel Programming on UDACITY. The course covers a series of image processing algorithms such as you might find in Photoshop or Instagram. You'll be able to program and run your assignments on high-end GPUs, even if you don't have one yourself.

Additional Resources

CODE Samples


The CUDA Toolkit is a free download from NVIDIA and is supported on Windows, Mac, and most standard Linux distributions.

So, now you’re ready to deploy your application?
Register today for free access to NVIDIA TESLA GPUs in the cloud.

Latest News

PGI 17.7 Delivers OpenACC and CUDA Fortran for Volta GPUs

PGI compilers & tools are used by scientists and engineers who develop applications for high-performance computing (HPC) systems.

Gradient Boosting, Decision Trees and XGBoost with CUDA

Gradient boosting is a powerful machine learning algorithm used to achieve state-of-the-art accuracy on a variety of tasks such as regression, classification and ranking.

Building Cross-Platform CUDA Applications with CMake

Cross-platform software development poses a number of challenges to your application’s build process. How do you target multiple platforms without maintaining multiple platform-specific build scripts, projects, or makefiles?

Developer Spotlight: Creating Photorealistic CGI Environments

Get to know Rense de Boer, a technical art director from Sweden, who is not only pushing the envelope of photo-real CGI environments, but he’s doing it all in a real-time engine!

Blogs: Parallel ForAll

Gradient Boosting, Decision Trees and XGBoost with CUDA

Gradient boosting is a powerful machine learning algorithm used to achieve state-of-the-art accuracy on a variety of tasks such as regression, classification and ranking.

Pro Tip: Linking OpenGL for Server-Side Rendering

Visualization is a great tool for understanding large amounts of data, but transferring the data from an HPC system or from the cloud to a local workstation for analysis can be a painful experience.

Scaling Keras Model Training to Multiple GPUs

Keras is a powerful deep learning meta-framework which sits on top of existing frameworks such as TensorFlow and Theano. Keras is highly productive for developers; it often requires 50% less code to define a model than native APIs of deep learning

Deep Learning Hyperparameter Optimization with Competing Objectives

In this post we’ll show how to use SigOpt’s Bayesian optimization platform to jointly optimize competing objectives in deep learning pipelines on NVIDIA GPUs more than ten times faster than traditional approaches like random search.