
Booth #223 - South Hall

www.nvidia.com/GDC

Nuno Subtil, Sr. DevTech Engineer - GeForce

March 23, 2018

NVIDIA Vulkan Update

2

NVIDIA Vulkan Update

▪ NVIDIA driver stack updates

▪ Libraries

▪ Tools

3

Vulkan 1.1!

▪ Released March 7th!

o NVIDIA Vulkan 1.1 developer drivers out the same day

o https://developer.nvidia.com/vulkan-driver

▪ Big ticket items:

o Subgroups (SM6.0+)

o Explicit Multi-GPU: support for AFR/SFR, VR applications

o Multi-view

o Cross-API / Cross-process synchronization primitives

o Various “quality of life” improvements and other minor features

https://developer.nvidia.com/vulkan-driver

4

Subgroups
▪ Efficient cross-thread communication primitives

o Exchange data between invocations of a warp/subgroup

o Lower latency than shared memory

o Can be used in graphics shaders

▪ Vulkan 1.1 supports SM6+ functionality and more

h d f e a c c b g h a b c d e f c d e f g h a b c d a b g h e f

a b c d e f g h

Indexed any-to-

any

Shift right to nth

neighbour

Shift left to nth

neighbour

Butterfly (XOR)

exchange

shuffle shuffle up shuffle down shuffle

xor

5

Meanwhile, at NVIDIA…

▪ EXT_sampler_filter_minmax:

o Useful for voxelization algorithms, sparse textures.

▪ NV_fragment_coverage_to_color:

o Output sample coverage information.

▪ EXT_conservative_raster

o Cover all the pixels! Faster voxelization, raytraced shadow maps.

▪ EXT_depth_range_unrestricted

o Depth can go to infinity! (But not beyond.)

6

NVIDIA keeps busy…

▪ EXT_post_depth_coverage

o Control coverage from fragment stage.

▪ EXT_shader_viewport_index_layer (subset of NV_viewport_array2)

o Pick render target layer in vertex shader

▪ EXT_sample_locations

o Programmable sample locations.

▪ NV_fill_rectangle

o Improved UI rendering performance, reduces fragment overhead for full-screen passes

▪ …

7

Implementation Limits
▪ Developers sometimes run into our

implementation-defined limits

o Desire to have lots of descriptors

bound comes up frequently

▪ NVIDIA has so far exposed our actual

hardware limits

▪ We’re now relaxing them

o Implementation will handle spilling

transparently where needed

o Note that performance may degrade:

existing thresholds were designed to

avoid spills

maxPerStageDescriptorSamplers 4000 -> 1048576

maxPerStageDescriptorUniformBuffers 12 -> 15

maxPerStageDescriptorStorageBuffers 4096 -> 1048576

maxPerStageDescriptorSampledImages 16384 -> 1048576

maxPerStageDescriptorStorageImages 16384 -> 1048576

maxPerStageDescriptorInputAttachments 8 -> 1048576

maxPerStageResources 53268 -> 4294967295

maxDescriptorSetSamplers 4000 -> 1048576

maxDescriptorSetUniformBuffers 72 -> 90

maxDescriptorSetUniformBuffersDynamic 72 -> 15

maxDescriptorSetStorageBuffers 4096 -> 1048576

maxDescriptorSetSampledImages 98304 -> 1048576

maxDescriptorSetStorageImages 98304 -> 1048576

maxDescriptorSetStorageImages 8 -> 1048576

8

Shader Compiler Improvements
Original compiler path

SPIR-V
GLSL-

style IR

▪ Original bring-up path for driver

▪ Leveraged NVIDIA’s OpenGL shader compiler (decade+ of refinements)

NV GL

compiler

stack

9

Shader Compiler Improvements
Original compiler path

SPIR-V
GLSL-

style IR

NV GL

compiler

stack

▪ Original bring-up path for driver

▪ Leveraged NVIDIA’s OpenGL shader compiler (decade+ of refinements)

▪ However…

o SPIR-V is not GLSL, translation confused the optimizer

o Many pathological edge cases for shader performance

o Slow compile times, high memory usage

10

Shader Compiler Improvements
Brand new compiler stack!

SPIR-V

▪ Very simple translation between SPIR-V and NVVM (LLVM-based representation)

▪ Leverages modern compiler improvements in LLVM

▪ NVVM compiler stack shared across DX12 and Vulkan

NVVM

11

Shader Compiler Improvements
What to expect?

▪ Faster shader compilation --- 3x speedup on average

▪ Roughly ~50% reduction in memory footprint

▪ Stable runtime shader performance, less pathological cases

▪ Expected to ship with R396 drivers (~1 month away)

▪ VK_NV_glsl_shader being deprecated

o New compiler does not speak GLSL

o Extension will be disabled soon after compiler transition

12

Best Practices

▪ Not many anti-patterns in shipping applications

o Vulkan was designed to avoid such things --- seems to be working so far!

▪ Biggest concern: use dedicated allocations for large resources

o Improves stability when under memory pressure

o Can be faster in certain cases (and will never be slower)

o Either flavor (KHR_dedicated_allocation/NV_dedicated_allocation) will work

o Now core in Vulkan 1.1

13

14

How do I debug this?

15

Debugging GPU crashes

i. Crash detected based on error code from API (CPU)

ii. Crash happened sometime in the last N frames of GPU commands…

iii. CPU call stack is likely a red-herring

CPU Location

GPU Crash

Not useful for debugging!

∞0

Frame

16

NVIDIA Aftermath
Post-mortem GPU Crash Debugging

▪ Insert lightweight markers in the command stream

o Can stash arbitrary app-specific data behind a marker

o Designed such that performance impact is negligible, yet highly flexible

▪ After device lost, read back last marker value that the GPU executed

17

Debug Instrumentation with Aftermath

Checkpoints: Narrow in on GPU crash location WRT to command stream

Example:

i. Game inserts user-defined markers in the command stream (CPU)

ii. GPU signals each checkpoint once reached

iii. Last marker reached indicates GPU crash location

CPU Location

∞Fn

GPU Crash

18

// VK_NV_device_diagnostic_checkpoints

typedef struct VkCheckpointDataNV {
VkStructureType sType;
const void* pNext;
VkBool32 checkpointTopValid;
void* pCheckpointTop;
VkBool32 checkpointBottomValid;
void* pCheckpointBottom;

} VkCheckpointDataNV;

void vkCmdSetCheckpointNV(
VkCommandBuffer commandBuffer,
const void* pCheckpointData);

VkResult vkGetCheckpointDataNV(
VkQueue queue,
VkCheckpointDataNV* pCheckpointData);

Aftermath for Vulkan

▪ Device checkpoints available soon

o Same functionality as DX12 version

o https://developer.nvidia.com/vulkan-driver

▪ More features to come later

https://developer.nvidia.com/vulkan-driver

19

Flow

▪ Adaptive sparse voxel smoke/fire

▪ Vulkan support (in addition to DX11/DX12)

▪ New sparse framework, grid boundary

restrictions removed

▪ Linux support

▪ Release coming soon

20

WaveWorks

▪ Cinematic-quality ocean simulation for

interactive applications

▪ Rebuilt on cross-API abstraction layer

▪ Vulkan and DX11 now functional

▪ Linux support

▪ Lots of new features, release planned for later

this year

Booth #223 - South Hall

www.nvidia.com/GDC

Kyle Spagnoli

March 23rd 2018

Devtools Vulkan Update

23

Introduction

▪ Nsight Graphics 1.0

▪ Vulkan specific features

▪ Vulkan specific road map

24

Nsight Graphics 1.0

▪ New standalone profiling,

debugging, and analysis tool

▪ Builds upon technologies in Nsight

Visual Studio Edition

▪ Vulkan, D3D11/12, OpenGL

▪ Available now!

NVIDIA.com > Developers > GameWorks > Tools

https://developer.nvidia.com/nsight-graphics

More information at “Beyond Performance: Introducing
NVIDIA’s New Graphics Debugger”

25

Nsight Graphics 1.0
▪ Independent from

Visual Studio

▪ Streamlined launch

experience

▪ Targeted activities

o Frame Debugging

o Profiling

o C++ Capture Export

o Tracing

26

Frame Debugger

27

Frame Debugger - Overview

▪ Pause an application

for live “online”

analysis

▪ Multiple sub-windows

offering different tools

▪ Scrub through

important events

▪ Examine mid-frame

state

NOTE: All screenshots from WaveWorks for Vulkan

28

Frame Debugger – Getting Started

1

3

4

2

5

29

Frame Debugger – Event View
▪ Captured event stream

▪ Organize by command

buffer, thread, queue

▪ Powerful filter, sort,

and search systems

▪ Hierarchical range

markers via

VK_EXT_debug_marker

▪ Object names via

VK_EXT_debug_marker

30

Frame Debugger – Scrubber
▪ Timeline view of your scene

o Event, GPU, or CPU time scale

▪ Multi-queue and multi-thread aware

▪ Range markers via VK_EXT_debug_marker and heuristics

▪ Synchronization indicators

31

Frame Debugger – Current Target

▪ Visualize incremental per-draw

state of your render targets

▪ Color, depth, stencil

▪ Optional overlays

▪ Pixel history

o More later…

32

Frame Debugger – API Inspector

▪ Per-pipeline stage information

▪ See bound descriptor sets and

their associated data

▪ Images with thumbnails

▪ Uniform buffers with data at-a-

glance

▪ Reflection information if SPIRV

has annotations

33

Frame Debugger – Descriptor Views

▪ Listing of all

descriptors used in

scene

▪ Sort and search by

pools and layouts

▪ At a glance

contents of each

descriptor

34

Frame Debugger – Shaders

▪ Per-pipeline and

per-shader

information

▪ View shader

SPIRV source

▪ View as GLSL or

HLSL via

translation

35

Frame Debugger – Geometry

▪ 3D geometry of current draw calls

▪ Highly configurable

o Select attributes for position, color, and

normal

o Multiple shading modes

▪ Reflection information from SPIRV

annotations

36

Frame Debugger – Resources

▪ At a glance view of all images and

buffers

▪ Objects names via

VK_EXT_debug_marker extension

▪ Powerful search and filters

▪ Revision and consumption tracking

▪ Links to backing device memory

37

Frame Debugger – Device Memory

▪ At a glance view of all device

memory objects

▪ Listing of bound resources

▪ Memory of each sub-resource

▪ Object layout map

NOTE: This example is only one resource per-memory region.

38

C++ Capture

39

C++ Capture - Overview

▪ Export an application frame as a free standing executable built from C++ source

▪ Previously called “Serialization” in Nsight VSE

▪ Debug / profile / edit & experiment with source

40

C++ Capture – Code Output
▪ Great for rapid “hack and slash” changes

▪ Human readable code

41

C++ Capture – Vulkan Capabilities
▪ Respects the acquire / record / submit / present model

o Can’t naïvely loop frames

o Need to record command buffers based on results of vkAcquireNextImageKHR

▪ Best-effort to support replay on different hardware from capture

o Dynamically patch up code

o Some cases are impossible (e.g. missing major feature or extension)

42

C++ Capture – .nsight-gfxcppcap File

▪ Additional metafile

generated with C++

export

▪ Screenshot, system

information, statistics,

etc.

▪ Ability to build (#1)

and launch (#2) from

within the GUI

▪ Easily debug, profile,

etc. later

1

2

43

Vulkan Tools Roadmap

44

Vulkan Tools Roadmap

▪ 2018 – 1st Half

o Vulkan 1.1 support

o Linux support*

o Android support

o Shader statistics

o Shader editing

o C++ export improvements

▪ 2018 – 2nd Half

o Hardware profiling

o GPU trace

o Pixel history

▪ Beyond…

o Support future extensions and core

updates

*Already available in the NVIDIA Linux Graphics Debugger 2.3

45

Roadmap – Shader Statistics

▪ Low level

information about

each pipeline and

shader object

▪ Estimated cycles

▪ Register counts

▪ LMem counts

NOTE: Currently supported for D3D & OpenGL

46

Roadmap – Shader Editing

▪ Edit shader source and see

changes reflected live in

running application

▪ Quickly toggle between

shader sets

▪ Edit as SPIRV, GLSL, or

HLSL

NOTE: Currently supported for D3D & OpenGL

47

Roadmap – Hardware Profiling

▪ Low level

performance metrics

on a range and event

basis

▪ Find performance

limiting hardware

units

▪ Identify optimization

opportunities

NOTE: Currently supported for D3D & OpenGL

48

Roadmap – GPU Trace

▪ Low level GPU utilization

▪ Identify and optimize

asynchronous compute

opportunities

NOTE: Currently supported for D3D12 in preview

49

Road Map – Pixel History

▪ Trace the life of a pixel in a

render target

▪ Draws, clears, and blits that

contribute to final output pixel

value

▪ Detailed information about

failed fragments

o Back face culling, depth, etc.

NOTE: Currently supported for D3D & OpenGL

50

Thank you!
▪ Nvidia Nsight Graphics 1.0 now available

▪ Nvidia Linux Graphics Debugger 2.3 (with Vulkan support) now available

▪ Live demos @ Booth 233 in South Hall

▪ We are hiring!

NVIDIA.com > Developers > GameWorks > Tools

https://developer.nvidia.com/nsight-graphics

