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Talk Overview

VRWorks Features

Context Priority, Audio, 360 Video, VR SLI

Multi-Res Shading, Lens Matched Shading, Single Pass Stereo

UnrealEngine 4 and Unity Integrations

LMS Deep Dive

VR Tools – Nsight VSE
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How is VR rendering different?

To set the stage, first I want to mention a few ways that virtual reality rendering 

differs from the more familiar kind of GPU rendering that real-time 3D apps and 

games have been doing up to now.

3



4www.gameworks.nvidia.com

How is VR rendering different?

First, virtual reality is extremely demanding with respect to rendering performance. 

Both the Oculus Rift and HTC Vive headsets require 90 frames per second, which is 

much higher than the 60 fps that’s usually considered the gold standard for real-time 

rendering.

We also need to hit this framerate while maintaining low latency between head 

motion and display updates. Research indicates that the total motion-to-photons 

latency should be at most 20 milliseconds to ensure that the experience is 

comfortable for players. This isn’t trivial to achieve, because we have a long 

pipeline, where input has to be first processed by the CPU, then a new frame has to 

be submitted to the GPU and rendered, then finally scanned out to the display.

Traditional real-time rendering pipelines have not been optimized to minimize 

latency, so this goal requires us to change our mindset a little bit.
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NVIDIA VRWorks
COMPREHENSIVE SDK FOR VR DEVELOPERS 

GRAPHICS HEADSET

PROFESSIONAL

AUDIOPHYSICS & TOUCH

360 VIDEO

The new NVIDIA VRWorks adds graphics, audio, video, and physics simulation 

capabilities to the existing suite of HMD, graphics, and professional features.
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VRWorks Audio
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DIRECTION PROPAGATION 

Simulating Audio in VR

SYNTHESIS

Creation of Source Sounds Location of Incoming 
Sound

How Sound Moves in 
Space

Great VR graphics demands great VR audio.

Today, state of the art VR audio provides accurate 3D direction of sound in a virtual 

environment – you can hear where the sound is coming from.  However, there is more 

to sound than just location – there is also how audio propagates and reflects off the 

surrounding virtual environment – today’s VR audio doesn’t account for this.
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Models Direction and Propagation Using Ray Tracing

• 16k rays

• 12 bounces each

VRWorks Audio works by following the path of audio as it moves around an 

environment using a technique called ray tracing.  Ray tracing models the wave 

propagation as it bounces and reflects off walls until it finally reaches the listener.  

Thanks to NVIDIA’s OptiX ray tracing engine and the power of Pascal GPUs, NVIDIA 

can calculate 16,000 individual rays at 12 bounces each to get amazingly realistic 

audio in VR.
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VRWorks Audio Pipeline

Sound Source

VRWorks
Audio & OptiX

Left/Right Ear 
Convolution 
Filter:

—Occlusion of sound

—Absorption & 
Reflection

—HRTFs

—Distance-based 
attenuation

—Reverb

INPUTS PROCESSING OUTPUT

Location 
& Orientation

Environmental 
Geometry

Environmental
Material

Here is how VRWorks Audio works in detail:

- The engine takes as inputs the audio source, the location and orientation of the 

sound, the geometry of the environment (walls, etc) and objects in the scene, and 

the material properties (wood vs. cement wall, etc) of the environment.

- The VRWorks audio SDK and the OptiX ray tracing engine calculates the path of 

audio as it propagates throughout the environment

- It then outputs a convolution filter that represents the sound propagation and 

modifies the source audio stream with reverb, HRTFs, etc
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VRWorks 360 Video
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Significant computation required to deliver 
360 video

Capture Stitch Display

DecodeCalibrateEqualizeStitchEncode4k cameras Single 360 video
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Introducing 
VRWORKS 360 VIDEO
CAPTURE, STITCH, & STREAM 
360º VIDEOS IN REAL-TIME

• Real-time and offline stitching from 
4k camera rigs

• GPU-accelerated video decode, 
calibration, equalization, stitching, 
and encode

• 360 projection onto cube-map and 
equi-rectangular panorama

• Works with GPUDirect for Video for 
low latency video ingest

“Capturing and stitching 360 video is time 

consuming and computationally demanding.  

NVIDIA’s VRWorks 360 Video SDK will help 

accelerate STRIVR’s workflows, delivering 

real-time, high quality 360 video.”

— Masaki Miyanohara, CTO, STRIVR
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VR SLI
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VR SLI

Given that the two stereo views are independent of each other, it’s intuitively 

obvious that you can parallelize the rendering of them across two GPUs to get a 

massive improvement in performance.

In other words, you render one eye on each GPU, and combine both images together 

into a single frame to send out to the headset. This reduces the amount of work each 

GPU is doing, and thus improves your framerate—or alternatively, it allows you to use 

higher graphics settings while staying above the headset’s 90 FPS refresh rate, and 

without hurting latency at all.
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“Normal” SLI

N

N+1

N N+1

N N+1

Before we dig into VR SLI, as a quick interlude, let me first explain how “normal”, 

non-VR SLI works.  For years, we’ve had alternate-frame SLI, in which the GPUs trade 

off frames. In the case of two GPUs, one renders the even frames and the other the 

odd frames. The GPU start times are staggered half a frame apart to try to maintain 

regular frame delivery to the display.

This works well to increase framerate relative to a single-GPU system, but it doesn’t 

really help with latency.  So this isn’t the best model for VR.
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VR SLI

NL

N+1R

N N+1

NR

N+1L

N N+1

A better way to use two GPUs for VR rendering is to split the work of drawing a single 

frame across them—namely, by rendering each eye on one GPU.  This has the nice 

property that it improves both framerate and latency relative to a single-GPU system.
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VR SLI
UINT SetGPUMask(

[in]UINT GPUMask
);

void RenderGPUMaskNV(
[in]bitfield mask

);

I’ll touch on some of the main features of our VR SLI API. First, it enables GPU 

affinity masking: the ability to select which GPUs a set of draw calls will go to. With 

our API, you can do this with a simple API call that sets a bitmask of active GPUs. 

Then all draw calls you issue will be sent to those GPUs, until you change the mask 

again.

With this feature, if an engine already supports sequential stereo rendering, it’s very 

easy to enable dual-GPU support. All you have to do is add a few lines of code to set 

the mask to the first GPU before rendering the left eye, then set the mask to the 

second GPU before rendering the right eye. For things like shadow maps, or GPU 

physics simulations where the data will be used by both GPUs, you can set the mask 

to include both GPUs, and the draw calls will be broadcast to them. It really is that 

simple, and incredibly easy to integrate in an engine.

By the way, all of this extends to as many GPUs as you have in your machine, not just 

two.  So you can use affinity masking to explicitly control how work gets divided 

across 4 or 8 GPUs, as well.
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VR SLI

R

L

GPU affinity masking is a great way to get started adding VR SLI support to your 

engine. However, note that with affinity masking you’re still paying the CPU cost for 

rendering both eyes. After splitting the app’s rendering work across two GPUs, your 

top performance bottleneck can easily shift to the CPU.

To alleviate this, VR SLI supports a second style of use, which we call broadcasting. 

This allows you to render both eye views using a single set of draw calls, rather than 

submitting entirely separate draw calls for each eye. Thus, it cuts the number of 

draw calls per frame—and their associated CPU overhead—roughly in half.

This works because the draw calls for the two eyes are almost completely the same 

to begin with. Both eyes can see the same objects, are rendering the same geometry, 

with the same shaders, textures, and so on. So when you render them separately, 

you’re doing a lot of redundant work on the CPU.
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VR SLI

L R

R

L

NvAPI_Status VSSetConstantBuffers(
[in] ID3D11DeviceContext *pContext,
[in] UINT GPUMask,
[in] UINT StartSlot,
[in] UINT NumBuffers,

);

void MulticastBufferSubDataNV(
bitfield gpuMask, 
uint buffer, 
intptr offset, 
sizeiptr size, 
const void *data );

The only difference between the eyes is their view position—just a few numbers in a 

constant buffer. So, VR SLI lets you send different constant buffers to each GPU, so 

that each eye view is rendered from its correct position when the draw calls are 

broadcast.

So, you can prepare one constant buffer that contains the left eye view matrix, and 

another buffer with the right eye view matrix. Then, in our API we have a 

SetConstantBuffers call that takes both the left and right eye constant buffers at 

once and sends them to the respective GPUs. Similarly, you can set up the GPUs with 

different viewports and scissor rectangles.

Altogether, this allows you to render your scene only once, broadcasting those draw 

calls to both GPUs, and using a handful of per-GPU state settings. This lets you 

render both eyes with hardly any more CPU overhead then it would cost to render a 

single view.
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VR SLI

NvAPI_Status CopySubresourceRegion(
[in] ID3D11DeviceContext *pContext,
[in] ID3D11Resource *pDstResource,
[in] UINT DstSubresource, 
[in] UINT DstGPUIndex,
[in] UINT DstX,
[in] UINT DstY,
[in] UINT DstZ, 
[in] ID3D11Resource *pSrcResource,
[in] UINT SrcSubresource,
[in] UINT SrcGPUIndex,
[in] const D3D11_BOX *pSrcBox,
[in, optional] UINT ExtendedFlags = 0 );

void MulticastCopyImageSubDataNV(
uint srcGpu, 
bitfield destGpuMask, 
uint srcName, 
enum srcTarget, 
int srcLevel, 
int srcX, 
int srcY, 
int srcZ, 
uint dstName, 
enum dstTarget, 
int dstLevel, 
int dstX, 
int dstY, 
int dstZ, 
sizei srcWidth, 
sizei srcHeight, 
sizei srcDepth );

Of course, at times we need to be able to transfer data between GPUs. For instance, 

after we’ve finished rendering our two eye views, we have to get them back onto a 

single GPU to output to the display. So we have an API call that lets you copy a 

texture or a buffer between two specified GPUs, or to/from system memory, using 

the PCI Express bus.

One point worth noting here is PCI Express bus bandwidth. PCIe2.0 x16 gives you 8 

GB/sec of bandwidth, which isn’t a huge amount, and it means that transferring an 

eye view will require about a millisecond. That’s a significant fraction of your frame 

time at 90 Hz, so that’s something to keep in mind.

To help work around that problem, our API supports asynchronous copies. The copy 

can be kicked off and done in the background while the GPU does some other 

rendering work, and the GPU can later wait for the copy to finish using fences. So you 

have the opportunity to hide the PCIe latency behind some other work.
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Multi-Resolution Shading
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VR headset optics

First, the basic facts about how the optics in a VR headset work.

VR headsets have lenses to expand their field of view and enable your eyes to focus 

on the screen. However, the lenses also introduce pincushion distortion in the image, 

as seen here. Note how the straight grid lines on the background are bowed inward 

when seen through the lens.
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VR headset optics

So we have to render an image that’s distorted in the opposite way—barrel distortion, 

like what you see on the right—to cancel out the lens effects.  When viewed through 

the lens, the user perceives a geometrically correct image again.

Chromatic aberration, or the separation of red, green, and blue colors, is another 

lens artifact that we have to counter in software to give the user a faithfully 

rendered view.
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Distorted rendering

The trouble is that GPUs can’t natively render into a nonlinearly distorted view like 

this—their rasterization hardware is designed around the assumption of linear 

perspective projections. Current VR software solves this problem by first rendering a 

normal perspective projection (left), then resampling to the distorted view (right) as 

a postprocess.

You’ll notice that the original rendered image is much larger than the distorted view. 

In fact, on the Oculus Rift and HTC Vive headsets, the recommended rendered image 

size is close to double the pixel count of the final distorted image.
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Distorted rendering

The reason for this is that if you look at what happens during the distortion pass, you 

find that while the center of the image stays the same, the outskirts are getting 

squashed quite a bit.

Look at the green circles—they’re the same size, and they enclose the same region of 

the image in both the original and the distorted views. Then compare that to the red 

box. It gets mapped to a significantly smaller region in the distorted view.

This means we’re over-shading the outskirts of the image. We’re rendering and 

shading lots of pixels that are never making it out to the display—they’re just getting 

thrown away during the distortion pass.  It’s a significant inefficiency, and it slows 

you down.
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Multi-resolution shading

That brings us to multi-resolution shading. The idea is to subdivide the image into a 

set of adjoining viewports—here, a 3x3 grid of them. We keep the center viewport 

the same size, but scale down all the ones around the outside. All the left, right, top 

and bottom edges are scaled in, effectively reducing the resolution in the outskirts of 

the image, while maintaining full resolution at the center.

Now, because everything is still just a standard, rectilinear perspective projection, 

the GPU can render natively into this collection of viewports. But now we’re better 

approximating the pixel density of the distorted image that we eventually want to 

generate. Since we’re closer to the final pixel density, we’re not over-rendering and 

wasting so many pixels, and we can get a substantial performance boost for no 

perceptible reduction in image quality.

Depending on how aggressive you want to be with scaling down the outer regions, you 

can save anywhere from 20% to 50% of the pixels.
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Multi-resolution shading

The key thing that makes this technique a performance win is a hardware feature we 

have on NVIDIA’s Maxwell and later architectures.

Ordinarily, replicating all scene geometry to several viewports would be expensive. 

There are various ways you can do it, such as resubmitting draw calls, instancing, and 

geometry shader expansion—but all of those can add enough overhead to eat up any 

gains you got from reducing the pixel count.

With Maxwell and beyond, we have the ability to very efficiently broadcast the 

geometry to many viewports, of arbitrary shapes and sizes, in hardware, while only

submitting the draw calls once and running the GPU geometry pipeline once. That 

lets us render into this multi-resolution render target in a single pass, just as 

efficiently as an ordinary render target.
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Lens Matched Shading
RENDERS TO A LENS CORRECTED SURFACE

Lens Matched Shading is a new feature of VRWorks that uses Pascal’s Simultaneous 

Multi-projection capability to render directly to a surface that more closely 

approximates the final lens corrected display output.  By doing this, GTX 1080 can 

improve performance by dramatically reducing the extra pixels that get drawn and 

then later discarded in the final lens warp.
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TRADITIONAL STEREO RENDERING
REQUIRES 2 GEOMETRY PASSES

Left Eye (Pass 1) Right Eye (Pass 2)

While Lens Matched Shading provides substantial performance improvements for pixel 

shading, let’s look at how Simultaneous Multi-projection can also save geometry 

performance.  

As mentioned previously, virtual reality requires drawing an image for each eye.  

Traditional VR rendering does this in two separate geometry passes – one for the left 

eye, and one for the right eye.
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SINGLE PASS STEREO
RENDERS LEFT & RIGHT EYE IN ONE GEOMETRY PASS

Left Eye

Right Eye

Single Pass Stereo is a new feature of VRWorks that uses Pascal’s Simultaneous Multi-

projection capability to render left and right eyes in a single geometry pass.  This 

saves an entire geometry pass, effectively doubling the amount of geometry the GPU 

can process for VR!  

Lens Matched Shading improves pixel shading performance, and Single Pass Stereo 

improves geometry performance.  When combined, these features deliver major 

improvements in VR rendering performance.

Note: some game engines use a feature called Instanced Stereo that saves CPU 

overhead by issuing a single draw call to the GPU for both left and right eyes.  Unlike 

SPS, the GPU still has to render both eyes with Instanced Stereo.  SPS offers both CPU 

and major GPU performance savings.
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VRWorks API availability

Direct3D 11, 12

• Available now

OpenGL

• Available now

Vulkan

• Available now
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VRWorks in Unity
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VRWorks

VRWorks coming as a Unity plugin with 2017.1 beta

Supports Multires, SPS, LMS

Supports basic post processing, forward rendering
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VRWorks in UnrealEngine 4
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VRWorks

Full VRWorks suite now available

VRSLI, Multi-resolution Shading, Single Pass Stereo, Lens 
Matched Shading

https://github.com/NvPhysX/UnrealEngine/tree/VRWorks-
Graphics-4.13

https://github.com/NvPhysX/UnrealEngine/tree/VRWorks-
Graphics-4.14

Most post passes, instanced stereo supported
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Multi-Res Shading in UE4
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Lens Matched Shading
Deep Dive

Thank you Cem, that was a great overall introduction to the VRWorks library.

I am Edward Liu, a DevTech at NVIDIA working on graphics and rendering on the 

geforce platform.

In my part of the talk, I will be providing an in depth introduction to Lens Matched 

Shading, and also dive deep into the gritty details of putting it into a modern game 

engine.
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Ok. Let’s begin by look at lens warp. In every VR application, at the end of the 

rendering pipeline there’s lens warp. It distorts a regularly rendered image in a way 

that it can be viewed through HMD lenses. Here I have prepared two screenshots 

comparing the before and after of applying lens warp, which hopefully will provide 

you with a good intuition of what it does to an image. (click)
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This is the result of applying lens warp to the image on the previous slide. Let me 

quickly flip back and forth here, so you won’t miss any details.
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This is the result of applying lens warp to the image on the previous slide. Let me 

quickly flip back and forth here, so you won’t miss any details.
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You have probably noticed, lens warp works like a magnifying glass. It significantly 

enlarges the central part of the image, look at how the tree is enlarged for example. 

In the meantime, the periphery is squashed badly.
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So putting them side by side, applying the lens warp results in a redistributed shading 

rate as visualized on the right. Here red means the pixel is undersampled, which 

means the pixel per area retio after lens warp decreased. So as you can see most of 

the area on the lens warped image is actually severely undersampled.
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For this reason, all main stream VR vendors advise rendering at a resolution than the 

final displayed resolution. HTC Vive suggests rendering at 3024x1680, and Oculus Rift 

suggests rendering at 2664x1586, while the display resolution on both devices are 

only 2160x1200.
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If we render to a supersampled target and put things side by side again, the 

undersampling problem on the lens warped image is largely mitigated. However, the 

peripheral region is now highly supersampled, as much as 5x. In other words, lens 

warp is effectively discarding 80% of the shading work done at a significant portion of 

the  image, but the central part of the image, which is what the viewers will be 

focusing on for most of the time, is actually still slightly undersampled.

This is of course undesirable. 
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Lens Matched Shading, or LMS, is designed to address this exact problem. It can be 

roughly broken down into two main pieces which address the two effects of lens warp 

accordingly.

First , it increases the overall shading rate evenly by simply using a larger viewport 

and render target, just like advised by all HMD vendors.

Second, it reduces the periphery shading rate by applying a technique we call 

modified w, which is a hardware feature in Pascal.

Modified w works by increasing the w component in homogeneous clip space with the 

equation w’ = Ax+By+w. Here the x and y are clip space coordinates, and A and B are 

warp coefficients.

The image shown on the right is the result of applying modifled w with a single set of 

warp coefficient across the whole image. Notice that only the top left quadrant is 

warped inward and shading less pixels.

This is because clip space x and y spans from -1 to 1 domain, LMS therefore requires 

setting warp coefficients with different signs at each four clip space quadrant to 

increase the w component everywhere and to always warp the image inward. We do 

this by breaking a single view into four viewports (clickx3), each assigned different 

warp coefficients. And LMS uses the multiprojection feature to very efficiently 

broadcast geometries into those four viewports.

Notice that this will not change the shading rate at all at the very center pixel since x 
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and y are zero, and the shading rate is gradually reduced at a 1 / x rate.

49



each assigned different warp coefficients. And LMS uses the multiprojection feature 

to very efficiently broadcast geometries into those four viewports.

Notice that this will not change the shading rate at all at the very center pixel since x 

and y are zero, and the shading rate is gradually reduced at a 1 / x rate.
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each assigned different warp coefficients. And LMS uses the multiprojection feature 

to very efficiently broadcast geometries into those four viewports.

Notice that this will not change the shading rate at all at the very center pixel since x 

and y are zero, and the shading rate is gradually reduced as you move towards the 

edge of the image.
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So the transformation that LMS does makes the shading rate distribution much more 

closer to the lens warped image.

(Click)First it renders the image at a higher resolution, this increases shading rate 

everywhere.

(Click)Then it applies modified w, which in a sense keeps the center shading rate 

high, and only reduce the shading rate in peripheral region!
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Putting things side by side again, applying lens warp to a LMS transformed image 

produces a much more balanced shading rate distribution.

We can tell from the visualization that most of the region have a fairly close to 1x 

shading rate, and the undersampling that used to be in the middle is now gone.

This actually also results in a tremendously reduced shading rate, reducing the # of 

pixels shaded by 40%.
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Obviously different warp coefficients produces different shading rate distribution. In 

addition, different lens warp function should be matched with different warp 

coefficients as well. And we’ve carefully calculated three sets of configurations for 

both HTC Vive and Oculus Rift.

The first set we call Quality. Using that will make sure there’s no undersampling

across the entire image.

The second set is Conservative. It allows undersampling, but no worse than the 

vanilla rendering shading rate.

The third is aggressive, it simply reduces another 25% of the pixels rendered 

compared with Conservative. Notice the reduced pixels are from peripheral region, so 

the center is not affected.
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We’ve also provided a single scalar value that can fine tune the previously mentioned 

configurations, allowing the shading rate to get somewhere in between those 

configurations.
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So a natural question to ask is how does LMS compare with MRS.

LMS is superior in many ways. The biggest difference is that MRS tries to approximate 

the lens warped shading rate with a piecewise constant profile, while LMS uses a 1/x 

profile.

Because of this, LMS is able to achieve the same image quality with MRS with less 

shading. Or put it in another way, if they do the same amount of shading, LMS would 

look slightly better.

There’s no hard shading rate transition across the rendered image. In addition, LMS 

uses 4 viewports, which makes it possible to be combined with Single Pass Stereo, 

another VRWorks feature introduced in pascal. Working with Instanced Stereo is also 

easier.

Finally, fewer viewports also means less culling in the fast geometry shader and 

therefore performance is benefited as well.
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This is a 1D shading rate profile along screen space x axis. We’ve visualized shading 

rates for lens warp, LMS, MRS and baseline. This should give you an intuition when 

comparing the LMS shading rate profile with the piecewise constant profile provided 

by MRS.

The baseline is shown as the green line. Notice how it undersamples the central 

region compared with the lens warped shading rate shown in blue. LMS is represented 

as the red line, it actually supersamples the central region more than MRS does. But 

the total number of pixels shaded by LMS is still fewer than MRS because it shades 

much less in the peripheral region.
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This slide visualizes the shading rate of all LMS and MRS configurations across the 

entire view.

We can clearly see that across the spectrum LMS is rendering much less pixels 

compared with MRS.

In addition, MRS produces a hard shading rate transition at videport boundaries, while 

LMS has a very smooth shading rate transition across the whole image.

Another thing to notice is that LMS always has higher shading rate at the center part 

of the image, which is what the viewers look at most of the time and therefore it can 

increase the perceived image quality.
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We can estimate the comparative performance gains by computing the number of 

pixels shaded for matching LMS and MRS configurations. The lower the number of 

pixels shaded, the better the performance. While both MRS already provides a decent 

reduction in shading workloads, LMS shades even fewer pixels than MRS across the 

configuration spectrum.

60



We’ve said enough good things about LMS, and next let’s look at what does it take to 

put LMS in a modern game engine. We have put LMS into Unreal Engine 4 and 

achieved a good performance and quality bump. Hopefully our work can serve as an 

example for developers interested in using LMS in their own engines.

So, the overall idea of using LMS in any deferred renderer is very simple. (Click) 

Firstly you have to draw your basepass with w modification on. And all of your 

Gbuffer (Normal, depth, albedo etc) will all look like those cute octagons, which we 

call LMS space. (Click) Then, all the shading should also ideally be performed in LMS 

space. Since it has less amount of pixels to shade there. (Click)And similarly, post 

processing should be done in LMS space too. (Click)Finally, the octagon shaped buffer 

is resampled back to linear before submitting it to HMD runtime, which will then 

perform lens warp on it.
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Among other things, a really difficult part of integrating LMS is dealing with the LMS 

space it introduces. Existing shaders must be carefully adjusted. Because LMS 

changes the definition of the screen-space coordinate system, we have to be really 

careful with determining whether a given coordinate is in the original linear space, or 

the octagon-shaped LMS space when using them in the shaders. When LMS is 

combined with stereo rendering there is an additional layer of complexity to 

coordinate conversion since we also need to convert between view space and render 

target space.

In LMS coordinate space, the depth value of each fragment needs to be adjusted 

because the w is modified before perspective division. Whenever we need to fetch 

depth from the depth buffer for things like reconstructing world space position, we 

also need to remap the Z value fetched to linear space.
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First let’s go over some of the VRWorks utilities functions and new RHIs that we have 

added for integrating VRWorks.

We have put everything related to the configurations, viewport, scissor calculations 

and calculating the newly required constant buffer data into VRProjection.h and 

.cpp.

In addition, VRProjection.usf is the shader file where we have put all the helper 

functions for Coordinate remap. You will find them be named as MapLinearToVRProj

or the otherway around.

It also includes FastGS implementation, which is needed by the multi viewport 

projection.

On the RHI side, two new functions were added to enable modified w mode, which 

basically pass the A, B coefficients stored in Conf and calls NvAPI underneath.
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We also need RHI level support for setting up multiple viewports, scissors, and 

declare fast GS for all the geometry types in UE4.
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A macro is provided for implementing fast GS in shaders. It only takes an input and 

and output struct, and the name of the position attribute. It will expand to the fast 

GS that does multiprojection for you. They are in vertex shader files.

We also provided helpers to quickly disable and enable LMS related states.

Obviously lots of implementation details are glossed over, I don’t want to turn this 

talk into a code review, Please refer to source for details.
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Now let’s look at different render passes. Broadly speaking there are two types of 

rendering passes.

There are passes that renders geometries to the screen, including the base pass, 

depth pre-pass, deferred lighting, shadow map projection, decals and so on. For 

these, we need to bind the fast geometry shader, set multiple viewports, scissors and 

enable w modification before submitting the geometry. We have provided 

Begin/EndVRProjectionStates helper functions for these. So in practice we just call 

those helper functions before and after the draw call we are modifying.

Screen space effects is the other type of pass, common examples include SSR, SSAO 

and other post processing passes. For most screen space passes, we invoke shading 

with a full screen octagon.
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So what’s a full screen octagon. Normally UE4 draws a full screen quad covering the 

entire view to invoke most post processing passes. With LMS enabled, a full screen 

quad would cover those corner pixels outside of our octagon shaped buffer. Therefore 

we draw a full screen octagon that covers the exact same area as the octagon in the 

underlying texture instead. A full screen octagon is just a carved out octagon portion 

of the original full screen quad. So the UV still spans linearly inside the octagon.
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While the full screen octagon is responsible for culling those corner for screen space 

passes. For passes that render geometry, we instead rely on what we refer to as 

boundary mask to do the job.

Actually, applying w modification alone won’t produce the octagon shaped buffer, we 

need a way to explicitly kill shadings out of the octagon shape in order to save those 

works.

Therefore during Z pre-pass, we render a boundary mask that set the Z values out 

side of the octagons to the closest, so that all subsequent passes will only write to 

pixels within the octagon. This also means that we need to carefully bind Z buffer in 

passes that originally don’t have it bound.
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Now let’s specifically look at base pass. We’ve actually covered all the ingredients 

already, just setup an additional FastGS for every primitive rendered, set up multiple 

viewports and scissors and also enable w modification.

Another thing we need to address is that, w modification also affects the output Z in 

base pass. Z value can be used in UE4’s material graph to do arbitrary things. And 

they assume the Z value is linear. So we also modified the material graph code 

generator to output code that convert Z from LMS space to linear space when LMS is 

enabled.

However, to work with Instanced, more changes are required.
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UE4 uses a single viewports that includes both the left and right views when 

instanced stereo is enabled, and it leverage vertex shaders to shift vertices to the 

left or right half of the view based on the view index.

Doing things this way breaks modified w, since it assumes the clip space spans [-1, 1] 

in x direction. And the shifting makes the left eye view span only [-1, 0] and the right 

eye span [0, 1] in clip space.

Fortunately the walk around is simple, just setup 8 viewports and scissors, 4 for the 

left view and 4 for the right, and rely on multiprojections to send primitives to the 

correct viewports.

This is done in FastGS. Just left shift the viewport mask for 4 bits if the view index 

indicates the primitive should be rendered to the right viewport.

This way each view still span the entire [-1, 1] space so w modification still works.
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For deferred lighting, directional light support is really simple, originally UE4 draws a 

fullscreen quad, so we just draw a full screen octagon as mentioned before.

For points and spot lights, since light volume geometry is rendered, we have to call 

Begin/EndVRProjectionStates around the draw call, and set up FastGS for them as 

well.

In the scenario where the camera is inside the light volume, Z test is disabled since 

all the pixels lit will be in front of the primitives drawn. In this case, our depth 

boundary mask won’t work. However, lighting calculation is often one of the 

expensive pass in a frame, so we still have to cull. So we set the boundary mask in 

stencil buffer outside of the octagon region and use stencil test to kill redundant 

pixels instead.

For shadows, shadow map generation is not affected since it will not go through lens 

warp. Only shadow projection should be modified to use w modification.

For tiled based lighting, as well as other CS passes like Environmental reflections, we 

also kill the thread group if all threads within that group are outside of the octagon 

covered region.
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Next, for dynamic shadows. Shadow map generation is not affected at all since they 

will not go through lens warp.

Shadow projections should be modified to apply w modification to render in LMS 

space.

Any who’s familiar with UE4’s renderer would probably know that it also uses stencil 

buffer to mask pixels cover by shadow volumes. Since previously our stencil boundary 

mask was only applied to pixels outside of the octagon, it won’t interfere with UE4’s 

existing shadow volume stencil mask.

72



For passes like SSR and SSAO, things become trickier.

First, they both samples the hierarchical Z buffer multiple times per pixel. And as 

mentioned previously, Z values needs to be remapped to linear space before used for 

computation. Doing this remapping multiple times per pixels is obviously bad for 

performance, so we remap the Z to linear space during HZB creation time to avoid 

redundant work during sampling.
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In addition, they both need to offset the UV for either ray marching or neighborhood 

sampling. But our UV are in LMS space, and the offset are in linear space. So we 

transform all the coordinates to linear space and apply the offset there, before 

remapping it back to LMS space to do sampling.
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And finally, for all the passes mentioned before, and other passes that are not 

mentioned, their shaders also needs to be adjusted to work with the additional LMS 

space we’ve introduced. This can be confusing at time, so I am summarizing the rules 

here.

First, we assume that all the input from vertex shaders are in LMS space. This 

includes any input SVPosition, Uvs and ScreenVectors, from either the fullscreen

octagon or regular geometries.

When we need to fetch data from Gbuffer, or other intermediate buffers, we don’t 

need to apply any transform and should just use those coordinates out of the box, 

since the all octagon shaped buffers are already indexed in LMS space.

However, the data in Gbuffers are still in the world space. So we need to make sure 

to use linear space coordinates when doing computation with data fetched from 

Gbuffer. This means that the PS input will need to be remapped.
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I know the previous slide could be confusing. So here is an concrete example.

This is the deferred directional light pixel shader. Some of the input like 

ScreenVector is used to calculate CameraVector, which will later be passed to 

GetDynamicLighting to compute lighting intensity. InUV on the other hand is used to 

fetch data from the Gbuffer.

The inputs to this shader, InUV, ScreenVector and SVPos are all in LMS space as 

mentioned before.

So that’s why in the first if clause highlighted in red, we need to transform the SVPos

and ScreenVector to linear space, before using it to calculate CameraVector. Since 

the lighting compupation requires data to be in linear world space.

On the other hand, we use the InUV as it is in LMS space to fetch from the Gbuffer. 

The calls are high lighted in blue.

Hopefully this helps with making things a bit clearer for you. And for all other passes 

that weren’t explicitly mentioned in this talk, they follow the exact same principals 

introduced here.
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Now let’s look at some performance after using LMS and also compare them with the 

most aggressive MRS configurations.

Clearly LMS provides a bigger performance improvement compared with MRS. Even in 

a real game like Everest, developer actually reported that LMS provides both better 

performance and image quality.
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Now for image quality, both LMS and MRS should provide little visual difference when 

viewed through an real HMD, In fact LMS should even resolve thin geometries better 

because of the fact that it actually super samples the central region.
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Finally,  couple things to note about performance. You might have noticed that 

reduced frame time isn’t as much as the amount of pixels shaded. There are many 

reasons for this:

Pixel shading is only part of the frame. If your pipeline is geometry bound or even 

CPU bound, Lens Matched Shading isn’t likely to help.

The coordinate remap between linear space and LMS space definitely isn’t free, and 

we have to do it quite a few times in passes like SSR and SSAO.

The additional pass for resampling to linear space, especially when done at a much 

higher resolution in order to maintain center sharpness can impact performance too.
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82www.gameworks.nvidia.com

NVIDIA Nsight VSE
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83www.gameworks.nvidia.com

NSIGHT

Understand CPU/GPU interaction

Explore and debug your frame as it is rendered

Profile your frame to understand hotspots and bottlenecks

Save your frame for targeted analysis and experimentation

Leverage the Microsoft Visual Studio platform
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84www.gameworks.nvidia.com

NSIGHT

OpenVR Support (1.01 – 1.05)

New shaders view with perf simulation

Microsoft Hybrid Support

Coverage of recent D3D11 / D3D12 point releases
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85www.gameworks.nvidia.com

NSIGHT
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86www.gameworks.nvidia.com

NSIGHT

Explore VR debugging with

Dive into D3D12 performance in

Invoke Vulkan tooling with
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