

PPeerr ff HHUUDD 66 UUsseerr

GGuuiiddee

DU-01231-001_v09
Nov 2008

DA-01231-001_v06 2
November 2008

Table of Contents

Chapter 1. New in PerfHUD 6 5

New Features in PerfHUD 6.5 5

Frame Capture for Direct3D 10 Applications .. 5

Scissor Experiment Hotkey Change ... 5

New Features in PerfHUD 6.1 5

GPU Support .. 5

Hardware Support and Driver Changes 6

SLI Support ... 6

Unified Driver on Windows Vista .. 6

New Performance Dashboard Features 6

Signals .. 6

SLI Graphs .. 6

Save and Load Graph Layouts ... 7

New Frame Debugger Features 7

Texture and Sampler State Editing .. 7

Texture Visualization ... 7

API Call List .. 7

Dependency View .. 7

Improved D3D Perf Event View ... 7

New Frame Profiler Graphs 7

New Hotkeys 8

Global Hotkeys... 8

Performance Dashboard Hotkeys ... 8

Common Frame Debugger/Profiler Hotkeys ... 8

Advanced Frame Debugger Hotkeys ... 8

Chapter 2. Performance Dashboard 10

The Info Strip 10

Time Control 11

Real-time Experiments 11

Customizing your Graphs and Layouts 12

DA-01231-001_v09
November 2008

3

Interpreting the Default Graphs 15

The Unit Utilization Graph ... 15

The Timing Graph .. 16

Chapter 3. Debug Console 17

Chapter 4. Frame Debugger 18

Simple Mode 19

Texture View .. 19

API Call List View.. 20

Dependency View .. 20

D3D Perf Events View .. 21

Advanced Mode 21

Vertex Assembly Inspector .. 22

Vertex, Geometry and, Pixel Shader Inspectors .. 23

Raster Operations Inspector .. 25

Chapter 5. Frame Profiler 27

Simple Mode 28

State Buckets ... 30

Advanced Mode 32

Chapter 6. Troubleshooting 33

Known Issues................................ 33

Chapter 7. Appendix A. Why the Driver Waits for the GPU 34

Chapter 8. Appendix B. The NVIDIA Software Improvement Program 35

Chapter 9. Appendix C. Signals Reference 36

DA-01231-001_v09
November 2008

4

DA-01231-001_v07 5
November 2008

Chapter 1. New in PerfHUD 6

This chapter describes all the new features of PerfHUD 6, including:

Ç Support for SLI

Ç Support for the latest NVIDIA GPUs

Ç {ǳǇǇƻǊǘ ŦƻǊ ƴŜǿ ŦŜŀǘǳǊŜǎ ƛƴ 5ƛǊŜŎǘ·мл ŀƴŘ ²ƛƴŘƻǿǎ ±ƛǎǘŀΣ ƛƴŎƭǳŘƛƴƎ b±L5L!Ωǎ
Unified Instrumented Driver

Ç More signals

Ç Better and deeper display of textures

Ç Better on-the-fly editing and comparisons of in-game HLSL shaders

!ƴŘ ǘƘŀǘΩǎ Ƨǳǎǘ ǘƘŜ ǘƛǇ ƻŦ ǘƘŜ ƛŎŜōŜǊƎΦ

b±L5L!Ωǎ ǇŜǊŦƻǊƳŀƴŎŜ ŜƴƎƛƴŜŜǊǎ ƘŀǾŜ ōŜŜƴ ǿƻǊƪƛƴƎ ƘŀǊŘ ǘƻ ƳŀƪŜ ǘƘƛǎ ǘƘŜ ōŜǎǘ tŜǊŦI¦5 ǊŜƭŜŀǎŜ
ŜǾŜǊΦ ²Ŝ ƘƻǇŜ ȅƻǳ ŜƴƧƻȅ ǳǎƛƴƎ ƛǘ ŀƴŘ ǘƘŀǘ ƛǘ ǇǊƻǾŜǎ ƛǘǎŜƭŦ ǘƻ ōŜ ŀǎ άƳƛǎǎƛƻƴ ŎǊƛǘƛŎŀƭέ ǘƻ ȅƻǳǊ
development process as earlier versions have been.

We are especially interested in your opinions! As you explore and use PerfHUD, be sure to give
us your feedback at perfhud@nvidia.com.

New Features in PerfHUD 6.5

Frame Capture for Direct3D 10 Applications

PerfHUD 6.5 adds the ability to save an entire set of D3D Frames to disk for later analysis. Use
the Ctrl+S hotkey from the Frame Debugger (F7) mode to save a capture to disk. Double-clicking
the saved .nvc file will launch the PerfHUD Replayer application, and allow you to analyze the
capture using all the standard PerfHUD tools.

Scissor Experiment Hotkey

The Scissor experiment is now bound to Ctrl+X.

New Features in PerfHUD 6.1

GPU Support

PerfHUD 6.1 adds support for all GT200 based cards, including GeForce GTX 280, GTX 260 cards,
and GT200 based Quadro cards. Older model NVIDIA cards including GeForce 7, 8 and 9 series
cards continue to be supported.

mailto:perfhud@nvidia.com

 NVIDIA PerfHUD User Guide

DA-01231-001_v09
November 2008

6

Hardware Support and Driver Changes

SLI Support

Support for dual GPU SLI is now supported in the form of new Performance Dashboard signals,
and the Dependencies view in the Frame Debugger. Quad SLI is not currently supported.

Unified Driver on Windows Vista

For Windows Vista driver releases after Rev 173, a special instrumented driver is no longer
required. This should be a welcome advance to all Vista developers, especially those using
laptop displays. XP Users will still need to use the instrumented driver provided with NVIDIA
PerfKit.

New Performance Dashboard Features

Signals

PerfHUD 6 adds several new signals that you can graph on the Performance Dashboard:

Ç API Calls per Draw Call/Frame

Ç State changes per Draw Call/Frame

Ç Unique Shaders / Frame

Ç Shader Changes per Draw Call/Frame

Ç Unique Textures/Vertex Buffers/Index Buffers/Constant Buffers per Draw
Call/Frame

Ç Redundant state changes per Draw Call/Frame

Ç Locks (total and IB/VB/Texture/Constant Buffer) per Draw Call/Frame

Ç Texture/VB/IB/Constant Buffer changes per Draw Call/Frame

Ç Constant updates per Draw Call/Frame

Ç Clear Count per Frame

SLI Graphs

The Performance Dashboard now supports new SLI graphs, which allow you to view signal
values across multiple GPUs. You can view the signals individually, or choose from a variety of
methods to combine the values, including average, sum, minimum, and maximum.

Ç To create an SLI graph, right-click on an empty area in the Performance Dashboard,
ŀƴŘ ǘƘŜƴ ŎƘƻƻǎŜ ά/ǊŜŀǘŜ bŜǿ {[L DǊŀǇƘέ ŦǊƻƳ ǘƘŜ ǊŜǎǳƭǘƛƴƎ ŎƻƴǘŜȄǘ ƳŜƴǳΦ

Ç PerfHUD will automatically detect if you are running on an SLI configuration and will
only show SLI graphs if multiple GPUs are present and enabled.

 NVIDIA PerfHUD User Guide

DA-01231-001_v09
November 2008

7

Save and Load Graph Layouts

You can now save and load multiple Performance Dashboard graph layouts. See the
Performance Dashboard Customization section of this document for more information.

New Frame Debugger Features

Texture and Sampler State Editing

You can now replace textures on a per-texture with a variety of useful debug textures, including
2x2 textures, and mipmap visualization textures. See documentation on the CǊŀƳŜ 5ŜōǳƎƎŜǊΩǎ
Texture View for more information.

Sampler state can also be overridden in Vertex, Geometry, and Shader Inspectors in the Frame
5ŜōǳƎƎŜǊΩǎ !ŘǾŀƴŎŜŘ Shader Inspectors .

Texture Visualization

Textures can now be visualized in a full screen mode. See the CǊŀƳŜ 5ŜōǳƎƎŜǊΩǎ ¢ŜȄǘǳǊŜ ±ƛŜwer
for more information.

API Call List

PerfHUD 6 adds an interactive list of API Calls to the Frame Debugger. For more information,
please see the CǊŀƳŜ 5ŜōǳƎƎŜǊΩǎ !tL /ŀƭƭ [ƛǎǘ.

Dependency View

PerfHUD 6 can now graphically show you dependencies between different draw calls.
Dependencies have performance impacts on both single GPU and SLI systems. Please see the
CǊŀƳŜ 5ŜōǳƎƎŜǊΩǎ 5ŜǇŜƴŘŜƴŎȅ ±ƛŜǿ for more information.

Improved D3D Perf Event View

Direct3D Performance Events can be used to indicate specific key points in your frame, as well
as specific locaǘƛƻƴǎ ǿƘŜǊŜ ȅƻǳΩƭƭ ǿŀƴǘ ǘƻ Řƻ ŘŜōǳƎƎƛƴƎ ƻǊ ǇǊƻŦƛƭƛƴƎΦ

PerfHUD can now generate break on a user-specified Perf Event, so you can break into your
debugger only when a Perf Event is hit, or disable your state overrides for particular stretches of
API calls.

Please see the documentation on the CǊŀƳŜ 5ŜōǳƎƎŜǊΩǎ tŜǊŦ 9ǾŜƴt View for more information.

New Frame Profiler Graphs

New in the Frame Profiler is the CPU and GPU Timings Graph. See documentation on the Frame
Profiler for more information.

 NVIDIA PerfHUD User Guide

DA-01231-001_v09
November 2008

8

New Hotkeys

PerfHUD 6 sports many new hotkeys, both to support dedicated keyboard users, and to access
some of PerfHUDΩǎ ƴŜǿŜǎǘ features.

Global Hotkeys

Ç F1: Show help

Ç F2: Hide/show PerfHUD UI

Ç F4: Lƴǎǘŀƴǘ CŜŜŘōŀŎƪϰ

Ç F5: Switch to Performance Dashboard

Ç F6: Switch to Debug Console

Ç F7: Switch to Frame Debugger

Ç F8: Switch to Frame Profiler

Ç F9: Toggle edited shaders

Ç F10: Toggle edited renderstates

Ç F11: Capture screenshot

Ç Shift+F11: Capture screenshot (without HUD)

Performance Dashboard Hotkeys

Several new hotkeys for real-time experiments and for adjusting FPS computation are now
available.

Common Frame Debugger/Profiler Hotkeys

These hotkeys work in both the Frame Debugger and Frame Profiler.

Ç Alt + S: (Direct3D 10 only) Capture and save frame data to disk

Ç Ctrl + A: Toggle Advanced mode.

Ç Ctrl + H: Toggle Highlight current draw call

Ç Right/Up-arrow: Increment draw call by one

Ç Left/Down-arrow: Decrement draw call by one

Ç Home: Jump to draw call 0

Ç End: Jump to last draw call

Ç PageDown: Jump back by 10 draw calls (-10)

Ç PageUp: Jump ahead by 10 draw calls (+10)

Advanced Frame Debugger Hotkeys

All context menus support keyboard controls. Use the up/down arrow keys to move the
selection up and down, Enter to execute the currently selected option, and Escape to close the
menu. Some menus also have hotkeys.

Ç Texture View

 NVIDIA PerfHUD User Guide

DA-01231-001_v09
November 2008

9

Ç Ctrl + Up/Down: Select the previous/next texture on this draw call.

Ç Ctrl + Plus/Minus: Increase/Decrease the size of the selected texture.

Ç Ctrl + Shift + Up/Down: Select the previous/next render target.

Ç Ctrl + Shift + Plus/Minus: Increase/Decrease the size of the selected render target.

Ç Alt + T/R: Bring up the context menu of the currently selected texture or render
target respectively.

Ç Context Menu Hotkeys:

Ç 'O' for original texture

Ç '2' for 2x2 texture

Ç 'B' for black texture

Ç 'W' for white texture

Ç 'M' for color mipmap texture.

Ç Advanced Inspectors

Ç Ctrl + Tab/Ctrl + Shift + Tab: Cycle to the next/previous advanced inspector.

 NVIDIA PerfHUD User Guide

DA-01231-001_v09
November 2008

10

Chapter 2. Performance Dashboard

The Performance Dashboard allows you to monitor and tweak your application while it runs in
real-time. You can graph GPU and driver signals and performance counters, as well as tweaking
your application with real-time experiments.

Note: Use the Unit Utilization Graph instead of the manual experiments if you are using a
GeForce 6 Series or later GPU.

Crysis used with permission from Crytek. © Crytek GmbH. All Rights Reserved. Crysis and CryENGINE are trademarks or registered
trademarks of Crytek GmbH in the U.S and/or other countries.

The Info Strip

General performance metrics are displayed in a status bar across the top of the screen. Together
these numbers provide a measure of how quickly your application is accomplishing its workload.

 NVIDIA PerfHUD User Guide

DA-01231-001_v09
November 2008

11

The number of frames used to compute the frame rate shown is, by default, 20. You can adjust
this number using the following keys:

Ç [: reduce number of frames to average for FPS computation

Ç]: increase number of frames to average for FPS computation

Time Control

Notice the speed control icon in the upper left corner of the screen, just below the Info Strip.
This control allows you to determine the playback speed of your application. Controlling the
time for your application can be very useful when you are zeroing in on a specific frame. Use
the following keyboard shortcuts to slow down or speed up your application:

Ç NumPad + Increase speed

Ç NumPad - Decrease speed

Ç NumPad Enter Pause / Continue

Note: PerfHUD άŦǊŜŜȊŜǎέ ȅƻǳǊ ŀǇǇƭƛŎŀǘƛƻƴ ōȅ ǊŜǘǳǊƴƛƴƎ ǘƘŜ ǎŀƳŜ ǾŀƭǳŜ ŜǾŜǊȅ ǘƛƳŜ ȅƻǳǊ
application asks for the current time. This simulates an infinitely fast rendering loop, so
the same workload is submitted for each frame.

Note: If your application has implemented a frame rate limiter, you may need to disable this
functionality to use the time control, debugging and profiling features of PerfHUD.
Please see the FAQ section for more information.

Real-time Experiments

Real-time experiments offer a quick and easy way to quickly gather information about where
ȅƻǳǊ ŀǇǇƭƛŎŀǘƛƻƴΩǎ ǇŜǊŦƻǊƳŀƴŎŜ ƛǎǎǳŜ ƭƛŜǎΦ ²ƛǘƘ ƻƴŜ ƪŜȅǎǘǊƻƪŜΣ ȅƻǳ Ŏŀƴ ǊŜǇƭŀŎŜ ŀƭƭ ǘŜȄǘǳǊŜǎ ƛƴ
your application, or make your application ignore all draw calls. By monitoring the frame rate
differences during these experiments, you can get more insight into the bottlenecks.

Note: On GeForce 6 and later GPUs, the Frame Profiler offers more automated and accurate
performance information on a per-draw call basis.

The following experiments are available in PerfHUD 6:

Ç Ctrl + T : Isolate the texture unit

Force the GPU to use 2³2 textures, and if the frame rate increases dramatically your
application performance is limited by texture bandwidth.

Ç Ctrl + V : Isolate the vertex unit

Use a 1³1 scissor rectangle to clip all rasterization and shading work in pipeline
stages after the vertex unit. This approach approximates truncating the graphics
pipeline after the vertex unit and can be used to measure whether your application
performance is limited by vertex transforms, CPU workload and/or bus transactions.

 NVIDIA PerfHUD User Guide

DA-01231-001_v09
November 2008

12

Ç Ctrl + N : Eliminate the GPU
This feature approximates having an infinitely fast GPU by ignoring all
DrawPrimitive() and DrawIndexedPrimitives() calls. This approximates the frame
rate your application would achieve if the entire graphics pipeline had no
performance cost. Note that CPU overhead incurred by state changes is also
omitted.

Ç Ctrl + M : Eliminate geometry

This feature reduces the geometry in every draw call to a single triangle. This
reduces the amount of geometry processing your GPU is doing.

Ç Ctrl + D: Show Depth Complexity

Shows the amount of overdraw in your scene. The more overdraw you have, the
more work your GPU is doing that results in no visual improvement to the scene.

Ç Ctrl + W: Toggle Wireframe View

Shows your entire scene in wireframe with no shading.

Ç Ctrl + 1: Color fixed function pixels with Red

Ç Ctrl + 2: Color ps_1_1 in light green

Ç Ctrl + 3: Color ps_1_3 in green

Ç Ctrl + 4: Color ps_1_4 in yellow

Ç Ctrl + 5: Color ps_2_0 in light blue

Ç Ctrl + 6: Color ps_2_a in blue

Ç Ctrl + 7: Color ps_3_0 in orange

Ç Ctrl + 8: Color ps_4_0 in red

Using the Ctrl + 1..9 shortcuts both disables the specified shader type as well as coloring
those pixels in the specified color. You can use this to both visualize how and where
shaders of that version are used, as well as estimating the performance impact of each
shader version in your application.

Note: Shader visualization only works when a Direct3D device is created as a NON PURE
device. You can force the device to be created in NON PURE device mode in the
PerfHUD configuration settings.

Customizing your Graphs and Layouts

Graphs and graph layouts can be customized in a variety of ways. You can move the graphs,
customize their content and display properties, and, new in PerfHUD 6, save your own custom
layouts.

Hovering your mouse over a graph will cause several buttons to appear, which you can use to
delete, resize, and configure the graph.

 NVIDIA PerfHUD User Guide

DA-01231-001_v09
November 2008

13

You can also move a graph by left-clicking anywhere on the graph and then dragging the graph
to the desired location.

Right-clicking anywhere in the Performance will bring up a context-
menu, which you can use to add new graphs or manage your
layouts.

Ç New GPU/Driver Graph: Each graph of this type can be
configured to display up to 4 signals from the GPU or
driver, by clicking the blue button in the upper left of the
graph.

Ç New Batch Size Graph: This graph displays a histogram of the number of primitives

per draw call. In general, an application should draw fewer, larger batches. You can
configure this graph to change the scale and

Delete the Graph

Configure the Graph

Resize

 NVIDIA PerfHUD User Guide

DA-01231-001_v09
November 2008

14

New Unified Shader Graph: Create a graph showing relative usage of the unified
shader unit between vertex, geometry, and pixel shaders. (GeForce 8 and later)

Ç New Memory Request Graph: This graph shows the breakdown between AGP and

on-board video memory.

Ç New Object Creation LED: The Object Creation LED blinks each time an object is
created. Dynamic creation of resources in Direct3D is generally bad for performance
and should be avoided whenever possible.

The types of resource creation events
monitored are:

Ç 2T 2D textures created using CreateTexture()

Ç VT Volume textures created using CreateVolumeTexture()

Ç CT Cubemap textures created using CreateCubeTexture()

Ç VS Vertex shader created.

Ç GS Geometry Shader created.

Ç PS Pixel shader created.

Ç BU Buffer created.

Ç IB Index buffers created using CreateIndexBuffer()

Ç RT Render targets created using CreateRenderTarget()

Ç DSS Depth stencil surfaces created using CreateDepthStencilSurface()

Ç MSC !ƴȅ ƻōƧŜŎǘ ŎǊŜŀǘƛƻƴ ǘƘŀǘ ŘƻŜǎƴΩǘ Ŧƛǘ ƛƴǘƻ ǘƘŜ ƻǘƘŜǊ ŎŀǘŜƎƻǊƛŜǎΦ

 NVIDIA PerfHUD User Guide

DA-01231-001_v09
November 2008

15

Ç Graphs Locked: Disables the ability to move or resize the graphs.

Ç Remove All Graphs: Removes all graphs from this layout.

Ç Default Layout: Resets the current layout to the PerfHUD shipping default.

Ç Restore Layout: Click this menu item to show the list of layouts available.

Ç {ŀǾŜ [ŀȅƻǳǘΧΥ Click this menu button to save and name the current graph layout.

Ç Default Layout: Restore your current layout to the layout that ships standard with
NVIDIA PerfHUD 6.

Interpreting the Default Graphs

Note: The default layout of the Performance Dashboard contains several useful graphs. Some
of these graphs may not be available on pre-GeForce 6 hardware.

The Unit Utilization Graph

This graph is very useful to keep tabs on the high level performance characteristics of your
application. When you see a potential problem, switch to the Frame Profiler to freeze the
current frame and analyze unit utilization by draw call. Each line represents the percentage
utilization of the specified GPU unit.

Ç VA: Vertex Assembly Unit

Ç SHD: Vertex Shader Unit

Ç TEX: Pixel Shader Unit

Ç ROP: Raster Operations Unit

 NVIDIA PerfHUD User Guide

DA-01231-001_v09
November 2008

16

The Timing Graph

Ç Driver Time (ms)
Total amount of time per frame that the CPU is executing driver code, including
Driver Sleeping (ms).

Ç GPU Idle (ms)
Total amount of time per frame that the GPU was idle

Ç Driver Sleeping (ms)
Accumulated elapsed time when the driver had to wait for the GPU
(See Appendix A for more information on why this happens)

Ç Frame Time (ms)
Total elapsed time from the end of one frame to the next - you want to keep the
Frame Time line as low as possible. For your convenience, the table below lists some
common frame times and corresponding frame rates.

FRAME_TIME 17 ms 34 ms 50 ms 75 ms 100 ms
FPS 60 30 20 13 10

Note: The time gap between the Frame Time (ms) line and the Driver Time (ms) line is the
time consumed by application logic and the OS.

You may see occasional spikes in this graph. They are usually caused by an operating system
process running in the background performing a hard disk access, texture upload, or operating
system context switch.

As long as the spikes are sporadic, the situation is normal. However, if they occur regularly, your
application may be performing CPU-intensive operations inefficiently.

Ç If the Driver Time and Frame Time lines spike simultaneously it is likely because the
driver is uploading a texture from the CPU to the GPU.

Ç If the Frame Time line spikes and the Driver Time line does not, your application is
likely performing some CPU-intensive operation (like decoding audio) or accessing
the hard disk. This situation may also be caused by the operating system attending
to other processes.

Please note that the GPU Idle may spike in either case because you are not sending data to the
GPU.

DA-01231-001_v07 17
November 2008

Chapter 3.
Debug Console

The Debug Console shows all the messages reported via the DirectX Debug runtime, messages
reported by your application via the OutputDebugString() function and any additional warnings
or errors detected by PerfHUD.

Crysis used with permission from Crytek. © Crytek GmbH. All Rights Reserved. Crysis and CryENGINE are trademarks or registered
trademarks of Crytek GmbH in the U.S and/or other countries.

Please note that the maximum supported size for debug output strings is 4 KB, and only the first
80 cƘŀǊŀŎǘŜǊǎ ƻŦ ŀ ǎǘǊƛƴƎ ǿƛƭƭ ōŜ ǾƛǎƛōƭŜ ƛƴ ǘƘŜ 5ŜōǳƎ /ƻƴǎƻƭŜ ƛŦ ǘƘŜ ǎǘǊƛƴƎ ŘƻŜǎƴΩǘ Ŏƻƴǘŀƛƴ ƴŜǿƭƛƴŜ
characters. Resource creation events and warnings detected by PerfHUD are also logged in the
console window.

You can use the options below to customize how the Debug Console works:

Ç Clear Logging: This option causes the contents of the console window to be cleared
at the beginning of the frame so you only see the warnings generated by the current
frame. This is useful when your application generates more warnings per frame than
fit in the console window.

Ç Stop Logging : This option causes the console to stop displaying new messages.

You can also choose to display messages from your application or only PerfHUD in this mode.

 NVIDIA PerfHUD User Guide

DA-01231-001_v09
November 2008

18

Chapter 4. Frame Debugger

This chapter contains reference information on the PerfHUD 6 Frame Debugger and its
advanced graphics pipeline Inspectors.

When you first enter Frame Debugger Mode, the results of the first draw call are shown. Use
the slider at the bottom of the screen to scrub forward in time and see the results of each
successive draw call.

 Crysis used with permission from Crytek. © Crytek GmbH. All Rights Reserved. Crysis and CryENGINE are trademarks or registered
trademarks of Crytek GmbH in the U.S and/or other countries.

The geometry associated with the current draw call is highlighted in orange wireframe.

You can also use the left/right arrow keys to display the previous/next draw call.

The Frame Debugger has two views: Simple and Advanced, which you can toggle between by
clicking the !ŘǾŀƴŎŜŘΧ button in the lower right of the screen, or by typing Ctrl+A. Simple
mode lets you look at high-level information for the current draw call, such as Textures and
Render Targets, a complete API Call List for the frame, dependency information for the draw
call, and Direct3D markers for the frame.

Advanced mode lets you view and edit data and shaders in each part of the rendering pipeline
for the currently selected draw call.

 NVIDIA PerfHUD User Guide

DA-01231-001_v09
November 2008

19

Simple Mode

You can change the view in Simple Mode using the pull-down menu in the top-left corner of the
screen, and switch between different views of your frame.

Texture View

The textures view shows every texture and render target associated with the current draw call.
Textures are listed in the leftmost window, and render targets (if any) are listed in the rightmost
window.

Crysis used with permission from Crytek. © Crytek GmbH. All Rights Reserved. Crysis and CryENGINE are trademarks or registered
trademarks of Crytek GmbH in the U.S and/or other countries.

In PerfHUD 6, you can also replace a texture with an assortment of debug textures from this
view.

Right-click a texture to bring up a context menu with all of the available
options:

Ç 2x2 Texture: Reduces texture bandwidth usage by using the
smallest texture possible.

Ç Black, 25% Gray, 50% Gray, 75% Gray, White, Horizontal
gradient, Vertical Gradient: Each of these can be useful as
debug input to your shaders.

Ç Color Mipmap Texture: Each mip level is given a different
color so you can easily tell how well the texture is mipped at
a glance. Mipmap level 0 (the highest-resolution mip level)

