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Chapter 1.  Introduction 

PerfHUD 6 is a visual debugging and profiling tool that can help you find and fix problems in your 
graphics rendering pipeline.  

It does this by letting you explore and edit data in the graphics pipeline, all while your 
application is running. PerfHUD also offers automated performance analysis to quickly identify 
the most expensive draw calls. 

A short overview video of PerfHUD is on the PerfHUD home page: 
http://developer.nvidia.com/PerfHUD.  

PerfHUD is used by leading game developers around the worlds. Some examples are listed 
below: 

Unreal Tournament 3 
(Epic Games) 

Company of Heroes 
(Relic Entertainment) 

Crysis  
(Crytek) 

EVE Online  
(CCP Games) 

World of Warcraft 
(Blizzard Entertainment) 

Battlefield 2142  
(DICE) 

Hellgate: London  
(Flagship Studios) 

Gamebryo  
(Emergent Technologies) 

Guild Wars  
(ArenaNet) 

For screenshots and testimonials, please see the PerfHUD page on developer.nvidia.com. 

 
Crysis used courtesy of Crytek. 

http://download.nvidia.com/developer/Tools/NVPerfHUD/4.0/NVPerfHUD4.wmv
http://developer.nvidia.com/NVPerfHUD
http://developer.nvidia.com/object/nvperhud-screenshots.html
http://developer.nvidia.com/object/nvperfkit-testimonials.html
http://developer.nvidia.com/nvperfhud
http://developer.nvidia.com/NVPerfHUD
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Chapter 2.  Getting Started 

This chapter will walk you through installing and configuring PerfHUD for the first time. 

System Requirements 

 An NVIDIA GPU: GeForce 6 Series and later GPUs are supported, as well as G80, G70, 
and NV4X-based Quadro FX GPUs. Older GPUs are supported with reduced functionality. 

 Microsoft DirectX 9.0c or Microsoft DirectX 10 

 Windows XP or Windows Vista 

Installing Drivers 

 Windows Vista 

 On Windows Vista, a stock driver of version 173 or later will allow you to use all the 
capabilities of PerfHUD.  

 Windows XP 

 If you are using PerfHUD on Windows XP, you will need to replace your stock NVIDIA 
driver with the instrumented driver provided with NVIDIA PerfKit. Otherwise, 
certain portions of PerfHUD will not function properly, as they will not have the 
necessary access to the internals of the driver and GPU. 
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Configuring PerfHUD 

Launch PerfHUD by double-clicking the desktop icon, or using the Start 
Menu. PerfHUD will display a configuration dialog that will let you 
customize it for your particular application.  

The most commonly changed setting is the Activation Hotkey. This hotkey 
is what allows you switch input between PerfHUD and your application. 
Make sure to set it to something that does not conflict with other 
important keys in your application.  

PerfHUD does have several other settings which can help you tune 
PerfHUD’s methods of intercepting input and otherwise interacting with 
your application. Please see the PerfHUD 6 Reference for more 
information on these settings, or if you need help with troubleshooting. 

 

 

Modifying your Application 

Note: PerfHUD ships with two sample applications for you to analyze right out of the box 
without making any source code modificaitons. If you’d like to get working with 
PerfHUD right away, please skip to Using PerfHUD for the First Time. 

PerfHUD requires a small code change in how you create your Direct3D device in order to 
enable analysis. Since PerfHUD lets you explore an application’s rendering pipeline and 
methodology in extreme detail, we have built PerfHUD respect the application owners. 

Note: Be sure you disable PerfHUD analysis in your application before you ship.  Otherwise, 
anyone will be able use PerfHUD on your application. 

One of the first functions called when setting up your graphics pipeline is the Direct3D 
CreateDevice() function that creates your display device. In your application it probably looks 
something like this: 

HRESULT Res; 

Res = g_pD3D->CreateDevice(  

      D3DADAPTER_DEFAULT,  

      D3DDEVTYPE_HAL, 

 hWnd,  

      D3DCREATE_HARDWARE_VERTEXPROCESSING, 

 &d3dpp,  

      &g_pd3dDevice  

); 

 

When your application is launched by PerfHUD, a special NVIDIA PerfHUD adapter is 

created. Select this adapter in order to give PerfHUD permission to analyze it.  In addition, you 
must select the reference rasterizer as the device type, since some applications might select the 
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NVIDIA PerfHUD adapter ID unintentionally and expose themselves to unauthorized 

analysis.  Your application will not actually use the reference rasterizer as long as you have 
selected the PerfHUD adapter. 

Below is some sample code that will enable PerfHUD analysis for your DirectX9 application: 

// Set default settings 

UINT AdapterToUse=D3DADAPTER_DEFAULT; 

D3DDEVTYPE DeviceType=D3DDEVTYPE_HAL; 

 

#if SHIPPING_VERSION 

// When building a shipping version, disable PerfHUD (opt-out) 

#else 

// Look for 'NVIDIA PerfHUD' adapter 

// If it is present, override default settings 

for (UINT Adapter=0;Adapter<g_pD3D->GetAdapterCount();Adapter++)  

{ 

 D3DADAPTER_IDENTIFIER9  Identifier; 

      HRESULT    Res; 

 

Res = g_pD3D->GetAdapterIdentifier(Adapter,0,&Identifier); 

 if (strstr(Identifier.Description,"PerfHUD") != 0) 

 { 

  AdapterToUse=Adapter; 

  DeviceType=D3DDEVTYPE_REF; 

  break; 

 } 

} 

#endif 

 

if (FAILED(g_pD3D->CreateDevice( AdapterToUse, DeviceType, hWnd, 

  D3DCREATE_HARDWARE_VERTEXPROCESSING, 

  &d3dpp, &g_pd3dDevice) ) ) 

{ 

 return E_FAIL; 

} 

 

For DirectX10, use the following code example: 

#if SHIPPING_VERSION 

// When building a shipping version, disable PerfHUD (opt-out) 

#else 

// Look for 'NVIDIA PerfHUD' adapter 

// If it is present, override default settings 

IDXGIFactory *pDXGIFactory; 

ID3D10Device *pDevice; 

HRESULT hRes; 

 

hRes = CreateDXGIFactory(__uuidof(IDXGIFactory), (void**)&pDXGIFactory); 

 

// Search for a PerfHUD adapter.   

UINT nAdapter = 0; 

IDXGIAdapter* adapter = NULL; 

IDXGIAdapter* selectedAdapter = NULL; 

D3D10_DRIVER_TYPE driverType = D3D10_DRIVER_TYPE_HARDWARE; 

 



 

DA-01231-001_v09   
November 2007  

7 

while (pDXGIFactory->EnumAdapters(nAdapter, &adapter) != 

DXGI_ERROR_NOT_FOUND) 

{ 

if (adapter) 

{ 

DXGI_ADAPTER_DESC adaptDesc; 

if (SUCCEEDED(adapter->GetDesc(&adaptDesc))) 

{ 

const bool isPerfHUD = wcscmp(adaptDesc.Description, L"NVIDIA PerfHUD") == 0; 

 

// Select the first adapter in normal circumstances or the PerfHUD one if it 

exists. 

 

if(nAdapter == 0 || isPerfHUD) 

selectedAdapter = adapter; 

 

if(isPerfHUD) 

driverType = D3D10_DRIVER_TYPE_REFERENCE; 

 

} 

} 

++nAdapter; 

 

} 

 

#endif 

 

  if(FAILED(D3D10CreateDevice( selectedAdapter, driverType, NULL, 

0, D3D10_SDK_VERSION, &pDevice))) 

   return E_FAIL; 

 

This will enable PerfHUD analysis when you want to use it, and ensure that your application 
does not use the software reference rasterizer when run normally.  

Note: Remember to use the NVIDIA PerfHUD device whenever your application 
enumerates devices, checks for capabilities, and so on. Otherwise you may see 
rendering errors. 

Launching your Application 

To launch PerfHUD, right-click on your application, and select the 
NVIDIA PerfHUD option in the Send To menu. 

You can also drag the application’s icon onto the PerfHUD launcher on 
the desktop. 

Your application should now launch, with PerfHUD running on top of it. 
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Chapter 3.  Using PerfHUD for the First 
Time 

You’ve installed and configured PerfHUD! Congratulations, a new world of performance analysis 
is now open to you. This chapter teaches you the basics of debugging and profiling with PerfHUD 
and takes you on a step-by-step tour of PerfHUD 6.0’s most popular features. 

Overview 

PerfHUD provides four different ways to look at your application’s performance. By switching 
between them, you can identify large-scale performance problems, per-frame issues, and drill 
down all the way to a detailed analysis of the draw calls in a particular frame. The four modes 
are: 

F5 Performance Dashboard 
This mode lets you interact with your application normally, all while viewing real-
time graphs of internal GPU and Direct3D performance metrics. You can also 
speed up and slow down your application to make it easier to identify problem 
frames, and do experiments like globally replacing all textures with 2x2 dummy 
textures.  

F6 Debug Console 
Review messages from the DirectX Debug runtime, PerfHUD warnings and custom 
messages from your application.  

F7 Frame Debugger 
Freeze the current frame and step through it one draw call at a time, drilling down 
to investigate the setup for each stage of the graphics pipeline using advanced 
State Inspectors that show details for each stage in the graphics pipeline. 

F8 Frame Profiler 
Profile your application’s usage of the GPU.  This is the most powerful mode that 
PerfHUD offers, allowing you to sort all draw calls in the current frame by cost.  In 
addition, several performance graphs and analysis tools are available. 
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Using the Performance Dashboard 

1. Browse to a sample program, and launch the application with 

PerfHUD. 

PerfHUD ships with two sample applications, FogPolygonVolume for DX9 and 
Sparkles for DX10, which are already properly modified with the opt-in code. The 
program should start with PerfHUD’s Performance Dashboard as an overlay on top, 
as shown below. 

 

 

2. Activate PerfHUD by typing the Activation Hotkey. 
The hotkey is Ctrl-Z by default, but you can configure it in any way you like. You’ll 

see the status line at the bottom of the screen change to four buttons, one for each 

mode of PerfHUD:   

 

Now, any keyboard or mouse input you make will affect PerfHUD.  You can toggle 

between PerfHUD and your application at any time.  For example, you may want to 

navigate to a different part of the scene to analyze it, and then re-activate PerfHUD 

again. 
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Note: Once PerfHUD is activated using the activation hotkey, all subsequent keyboard events 
are intercepted by PerfHUD. When you are done analyzing your application and want to 
close it, you’ll have to press the activation hotkey again to disable PerfHUD so that you 
can use the keyboard and mouse to quit your application. 

3. Speed up and slow down time in your application. 

By pressing the + and – keys, you can scale the passing of time in your 

application from 6x normal speed down to 1/8 normal speed. Controlling 

time is helpful when you want to find a particularly troublesome set of 

frames. 

 

4. Perform a global experiment. Hit Ctrl-T to instantaneously switch all textures 

in your application to 2x2 dummy textures, or Ctrl-D to see a view of the depth 

complexity of your frame buffer. There are several other experiments you can run as 

well. Please see the PerfHUD 6 Reference Guide for full details. 

 

5. Customize a graph in the Performance Dashboard. Each graph is 

completely customizable. You can move the graphs by dragging them, add new 

signals to existing graphs, or create a completely new graph.  

 
Left-clicking on the blue box brings up a configuration dialog, for adding and 
removing signals. 

Left-clicking and dragging on the green box resizes the current graph. 

Left-clicking on the red box closes the current graph. 

 

6. Create a new graph in the Performance Dashboard. Right-click on the 

background and choose New Batch Size Graph from the context menu. 
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7. Customize the new graph. Click on the blue box to see the Graph 

Configuration Dialog.  Set the Maximum Batch Size to 100.  Then click OK.  The 

graph will now show more bars. Different graph types have different signals and 

options available. 
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Using the Frame Debugger 

The Performance Dashboard is most useful for finding a troublesome spot in your scene.  Once 
you’ve found that spot, you will often want to freeze the frame, debug its draw calls, and 
analyze its performance in detail.   

1. Press F7 to switch to the Frame Debugger.  The Frame Debugger will show 

you just the first draw call in the scene: 

 

2. Scrub through the frame and watch how the draw calls accumulate 

into the final frame. 

 

Click and drag the slider at the bottom of the screen from side to side.   

 
You’ll see how the frame builds up with various draw calls.  

     
The current draw call is highlighted with an orange wireframe.  

You can use the up and down arrow keys to decrement or increment the current 

draw call.  Home jumps to the first draw call, and End jumps to the last draw call.  
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Page Up and Page Down decrement or increment the current draw call by larger 

amounts. 

 

3. Switch between different views on the same draw call. 

In the upper-left corner of the frame debugger is a combo-box with 4 different 

options for viewing stuff. 

a. Textures: View and modify the textures and render targets associated with the 

current draw call. 

b. Call List: View the entire Direct3D call list. 

c. Dependencies: View both producer and consumer dependencies between draw 

calls highlighted right on the scrub bar. 

d. Perf Events: View application specific performance labels which describe portions of 

the frame. Click on any label to jump immediately to the corresponding draw call. 

 

4. View Textures and Render Targets for each draw call. 

All the textures used by the current draw call are shown in the Textures panel on 

the left of the screen.  Click on the Textures panel (to get focus) and press + twice 

to enlarge the textures.  (Pressing - will reduce the textures.)  Note that if you hover 

over a texture, a tooltip will appear showing u-v coordinates and RGBA color 

information. 

  

On the right is the list of Render Targets.  You can perform the same operations in 
that panel as in the Textures panel. 

 

5. Modify a texture by replacing it with a mipmap visualization texture. 

You can replace any texture directly in your live application by right-clicking on the 

texture and choosing from a set of debug textures. The mipmap visualization 

texture is especially useful for determining how well your textures are mipped. 
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6. Switch back to the Performance Dashboard to see your edits now 

running in your live game. 

All edits you make while in the Frame Debugger are carried back and override your 

application’s settings. Switch back to the Frame Debugger (F7) when you are ready 

to continue. 

 

7. Click the Advanced button to see and edit even more information. 

 

The Advanced button is located in the lower right corner of the screen. Once you 

click it, the advanced state inspector is shown. You can view and edit data for each 

stage of the graphics pipeline, including “edit and continue” functionality on any 

shader, or raster operations like the blend function. 
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Using the Frame Profiler 

The Frame Profiler gives you extremely detailed performance information per draw call statistics 
about performance and GPU usage.  This is one of the uniquely powerful features of PerfHUD – 
complete bottleneck analysis with just one key press. 

1. Press F8 to switch to the Frame Profiler.   

PerfHUD will quickly run a series of performance tests on the current frame, and then 
the frame profiler will open. 

2. Examine the Unit Utilization bars, and scrub the frame using the Draw 

Call Slider. 

 

The default graph is the Unit Utilization bars. This graph shows you how long each GPU 

unit was used for the selected draw call, state bucket, and the frame.  You can change 

the selected draw call by using the scrubber, just as you would in the Frame Debugger, 

and you can define state bucket groupings using the checkboxes at the top of the 

screen. 

 

 

3. Change the graph shown to see different sets of statistics. 

Click the Combo box on the middle left border of the screen. As you can see, the Unit 
Utilization Bars graph is just the tip of the iceberg! You can also graph draw call 
duration, shaded pixels, and % utilization among others. 
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Profiling Effectively with PerfHUD 

The GPU is a pipelined processor, and thus it is critically important to identify and optimize the 
largest bottlenecks first, as optimizing a non-bottleneck will lead to little or no performance 
gain. 

By using PerfHUD’s various modes effectively, you can do just that.  

1. Always check whether your application is CPU bound or GPU bound. 

If your application is CPU-bound, then no amount of GPU optimization will speed it up.  

You can use the PerfHUD’s Performance Dashboard to quickly tell if your application is 

CPU or GPU bound in two ways. 

 

The first method is to examine the graph that is displaying the Total Frame Time and 

Driver Time counters. If your application is CPU-bound, you’ll see a big gap between the 

yellow line (“Total Frame Time”) and the red line (“Driver Time”).  

 

Another easy way to check if your application is CPU-bound is to press “N” to ignore all 

draw calls. If your frame rate doesn’t increase, then even an infinitely fast GPU wouldn’t 

help your application run faster – therefore, it is definitely limited by your CPU speed. 

 

In this case, you should use a CPU performance analyzer such as Intel’s VTune or AMD’s 

CodeAnalyst to make your CPU code more efficient. 

 

2. Solve rendering errors using the Frame Debugger. 

Use your application just like you normally do in the Performance Dashboard. If you see 

any graphical errors, you can immediately switch to the Frame Debugger by typing F7, 

and then examine what geometry, textures, shaders, raster operations are used for each 

draw call. 

 

3. Solve performance issues with the Frame Profiler. 

The Frame Profiler (GeForce 6 Series or later required) provides advanced profiling 

features which can help you quickly identify your performance issue. It provides 

automated performance analysis, giving you very detailed information about your draw 

calls and time spent in the various GPU stages, as well as other useful GPU statistics. It 

also allows you to group draw calls into buckets to identify specific types of bottlenecks.  

 

If you don’t have a GeForce 6 Series or later GPU, you can use the global experiments in the 

Performance Dashboard to get a general notion of your bottleneck. 
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Recommended Links 

 [Link] PerfHUD Introductory Video  

 NVIDIA Developer Web Site 
http://developer.nvidia.com 

 [Link] Optimize your GPU with the Latest NVIDIA Performance Tools  

 [Link] NVIDIA GPU Programming Guide – all the latest tips and tricks   

 [Link] Balancing the Graphics Pipeline for Optimal Performance   

 [Link] NVShaderPerf – shader performance analysis utility   

 [Link] NVIDIA SDK – hundreds of code samples & effects   

 [Link] PerfKit User Guide    

 [Link] GPU Gems: Programming Techniques, Tips, and Tricks for Real-Time Graphics  
Several of the performance-related chapters are particularly helpful. 

 [Link] GPU Gems 2: Programming Techniques for High-Performance Graphics and 
General-Purpose Computation 

 [Link] GPU Gems 3  

 [Link] Microsoft DirectX web site   

 [Link] Microsoft Developer Network (MSDN) web site   
Search for “performance” and “optimization”  

 Microsoft DirectX SDK documentation [ in the Start menu after installation ] 

  

http://developer.download.nvidia.com/tools/NVPerfHUD/5.0/NVPerfHUD_5_720p.wmv
http://developer.nvidia.com/
http://developer.nvidia.com/
http://developer.nvidia.com/
http://developer.nvidia.com/object/gpu_programming_guide.html
http://developer.nvidia.com/attach/4093
http://developer.nvidia.com/object/nvshaderperf_home.html
http://developer.nvidia.com/object/sdk_home.html
http://developer.nvidia.com/object/nvperfkit_home.html
http://developer.nvidia.com/object/gpu_gems_home.html
http://developer.nvidia.com/object/gpu_gems_2_home.html
http://developer.nvidia.com/gpugems3l
http://www.microsoft.com/windows/directx/default.aspx
http://msdn.microsoft.com/archive/default.asp?url=/archive/en-us/directx9_c/directx/graphics/programmingguide/TutorialsAndSamplesAndToolsAndTips/tips/performanceoptimizations.asp
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Frequently Asked Questions 
 

PerfHUD says my application is not enabled for PerfHUD analysis. 

 To ensure that unauthorized third parties do not analyze your application 
without your permission, you must make a minor modification to enable 
PerfHUD analysis.  Refer to the Getting Started section of this User Guide for 
instructions. 

 

No data is reported in the Unit Utilization Graph in Performance Dashboard 
mode and/or Frame Profiler mode doesn’t seem to work. 

 Both the Unit Utilization Graph and Frame Profiler require performance signals 
from PerfKit.  Make sure PerfKit is installed and you are using a GPU that is 
supported by PerfKit. 

 

My application does not respond while PerfHUD is active. 

 When PerfHUD is enabled using the hotkey feature, it consumes all keyboard 
input and does not pass any key stroke events to the application. You can 
toggle this mode on/off using the activation hotkey you selected. 

 

My application does not respond while PerfHUD is active. 

 When PerfHUD is enabled using the hotkey feature, it consumes all keyboard 
input and does not pass any key stroke events to the application. You can 
toggle this mode on/off using the activation hotkey you selected. 

 

I can see the PerfHUD header across the top of my screen, but it doesn’t 

respond to my activation hotkey. 

 PerfHUD uses several methods of intercepting key stroke events.  If you are 
using a method that is not yet supported, please let us know so we can update 
PerfHUD. 

Note that in Win2K PerfHUD uses DirectInput to listen for your activation 
hotkey and to intercept keyboard commands while activated.  DirectInput 
supplies two types of data: buffered and immediate. Buffered data is a record 
of events that are stored until an application retrieves them. Immediate data is 
a snapshot of the current state of a device. 

What this means is that your application needs to use the 
IDirectInputDevice8::GetDeviceData interface instead of the 
IDirectInputDevice8::GetDeviceState interface if you want to access advanced 
features of PerfHUD such as bottleneck identification experiments, shader 
visualization, etc. 

 

PerfHUD messes up alpha and some rendering states. 

 PerfHUD renders the HUD at the end of the frame. It also changes the 
rendering states to draw itself, but does not restore them to their original state. 
In other words, it does not push and pop rendering states for performance 
reasons—therefore, it is assumed that your application resets the rendering 
states at the beginning of each frame. 
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The GPU_IDLE (GREEN) line is not reporting any data. 

 This information is not available for GeForce4 (NV25) and older GPUs.  You may 
also see this on newer GPUs if PerfHUD is unable to communicate properly with 
the display driver.  Verify that you are using the latest version of PerfHUD and 
running the latest NVIDIA display drivers. 

 

In the Frame Profiler’s Advanced mode, why can’t I use the RGB dropdown to 
visualize the individual channels of render targets in Raster Operations? 

 Currently the RGB dropdown only works for textures. It will be grayed out 
unless at least one texture is present. 

 

Can I use PerfHUD without an instrumented driver? 

 Yes, PerfHUD will work with a normal driver, but you will not get access to 

performance counters.  Therefore, the graphs in the Performance Dashboard 
will not work, and automated performance analysis in the Frame Profiler will 
not work either. 

However, you can still use the pipeline experiments in the Performance 
Dashboard, as well as the Debug Console and Frame Debugger. 

Please note that you must still have an NVIDIA GPU in order to use PerfHUD, 
whether you are using an instrumented driver or not. 
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I see some extra lines in the middle of my PerfHUD graphs. 

 If you are using very old drivers you may see portions of the old PerfHUD 1.0 
graphs super-imposed on top of your PerfHUD graphs.  Upgrading your drivers 
to 71.8x or later should fix the problem. 

 

Some objects in my scene continue to animate when my application is frozen. 

 The PerfHUD time control feature stops the clock for your application, allowing 
you to perform in-depth analysis of the current frame while it is frozen.  Your 
application must use and rely on the QueryPerformanceCounter() or 
timeGetTime() win32 functions.  If your application uses the rdtsc instruction it 
will not function properly with Frame Debugger Mode, Frame Profiler Mode, or 
the time control features in Performance Dashboard. 

If your application has implemented a frame rate limiter, you may need to 
disable this functionality to use the time control, debugging and profiling 
features of PerfHUD.  

If your application uses frame-based animation, freezing time will have no 
effect on animated objects. 

 

What else do I need to know about PerfHUD? 

  Multi sampled render targets at not displayed in Frame Debugger Mode. 

 PerfHUD may crash if you turn on “Break on D3D errors” in the DirectX 
Control Panel. 

 Pixel shader visualization does not work for primitives that use VS 3.0. 

 

I have discovered a problem that is not listed above 

 We want to make sure PerfHUD continues to be a useful tool for developers 
analyzing their applications.  Please let us know if you encounter any problems 
or think of additional features that would be helpful while using PerfHUD. 

PerfHUD@nvidia.com 

 

 

 

  

mailto:NVPerfHUD@nvidia.com?subject=NVPerfHUD%20Feedback
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Notice 

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, 
LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING 
PROVIDED “AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR 
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED 
WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR 
PURPOSE. 

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation 
assumes no responsibility for the consequences of use of such information or for any 
infringement of patents or other rights of third parties that may result from its use. No license is 
granted by implication or otherwise under any patent or patent rights of NVIDIA Corporation. 
Specifications mentioned in this publication are subject to change without notice. This 
publication supersedes and replaces all information previously supplied. NVIDIA Corporation 
products are not authorized for use as critical components in life support devices or systems 
without express written approval of NVIDIA Corporation. 

 

Trademarks 

NVIDIA and the NVIDIA logo are registered trademarks of NVIDIA Corporation.  
Other company and product names may be trademarks of the respective companies with which 
they are associated.  

 

Copyright 

© 2004 - 2008 NVIDIA Corporation. All rights reserved. 


