

GGeettttiinngg SSttaarrtteedd

wwiitthh

PPeerrffHHUUDD 66..00

DU-01231-001_v09
Nov 2007

NVIDIA Corporation

2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Table of Contents

Chapter 1. Introduction ... 3

Chapter 2. Getting Started ... 4

System Requirements .. 4

Installing Drivers ... 4

Configuring PerfHUD ... 5

Modifying your Application ... 5

Launching your Application .. 7

Chapter 3. Using PerfHUD for the First Time ... 8

Overview .. 8

Using the Performance Dashboard ... 9

Using the Frame Debugger .. 12

Using the Frame Profiler .. 15

Profiling Effectively with PerfHUD ... 16

Recommended Links .. 17

Frequently Asked Questions ... 18

DA-01231-001_v09
November 2007

3

Chapter 1. Introduction

PerfHUD 6 is a visual debugging and profiling tool that can help you find and fix problems in your
graphics rendering pipeline.

It does this by letting you explore and edit data in the graphics pipeline, all while your
application is running. PerfHUD also offers automated performance analysis to quickly identify
the most expensive draw calls.

A short overview video of PerfHUD is on the PerfHUD home page:
http://developer.nvidia.com/PerfHUD.

PerfHUD is used by leading game developers around the worlds. Some examples are listed
below:

Unreal Tournament 3
(Epic Games)

Company of Heroes
(Relic Entertainment)

Crysis
(Crytek)

EVE Online
(CCP Games)

World of Warcraft
(Blizzard Entertainment)

Battlefield 2142
(DICE)

Hellgate: London
(Flagship Studios)

Gamebryo
(Emergent Technologies)

Guild Wars
(ArenaNet)

For screenshots and testimonials, please see the PerfHUD page on developer.nvidia.com.

Crysis used courtesy of Crytek.

http://download.nvidia.com/developer/Tools/NVPerfHUD/4.0/NVPerfHUD4.wmv
http://developer.nvidia.com/NVPerfHUD
http://developer.nvidia.com/object/nvperhud-screenshots.html
http://developer.nvidia.com/object/nvperfkit-testimonials.html
http://developer.nvidia.com/nvperfhud
http://developer.nvidia.com/NVPerfHUD

DA-01231-001_v09
November 2007

4

Chapter 2. Getting Started

This chapter will walk you through installing and configuring PerfHUD for the first time.

System Requirements

 An NVIDIA GPU: GeForce 6 Series and later GPUs are supported, as well as G80, G70,
and NV4X-based Quadro FX GPUs. Older GPUs are supported with reduced functionality.

 Microsoft DirectX 9.0c or Microsoft DirectX 10

 Windows XP or Windows Vista

Installing Drivers

 Windows Vista

 On Windows Vista, a stock driver of version 173 or later will allow you to use all the
capabilities of PerfHUD.

 Windows XP

 If you are using PerfHUD on Windows XP, you will need to replace your stock NVIDIA
driver with the instrumented driver provided with NVIDIA PerfKit. Otherwise,
certain portions of PerfHUD will not function properly, as they will not have the
necessary access to the internals of the driver and GPU.

DA-01231-001_v09
November 2007

5

Configuring PerfHUD

Launch PerfHUD by double-clicking the desktop icon, or using the Start
Menu. PerfHUD will display a configuration dialog that will let you
customize it for your particular application.

The most commonly changed setting is the Activation Hotkey. This hotkey
is what allows you switch input between PerfHUD and your application.
Make sure to set it to something that does not conflict with other
important keys in your application.

PerfHUD does have several other settings which can help you tune
PerfHUD’s methods of intercepting input and otherwise interacting with
your application. Please see the PerfHUD 6 Reference for more
information on these settings, or if you need help with troubleshooting.

Modifying your Application

Note: PerfHUD ships with two sample applications for you to analyze right out of the box
without making any source code modificaitons. If you’d like to get working with
PerfHUD right away, please skip to Using PerfHUD for the First Time.

PerfHUD requires a small code change in how you create your Direct3D device in order to
enable analysis. Since PerfHUD lets you explore an application’s rendering pipeline and
methodology in extreme detail, we have built PerfHUD respect the application owners.

Note: Be sure you disable PerfHUD analysis in your application before you ship. Otherwise,
anyone will be able use PerfHUD on your application.

One of the first functions called when setting up your graphics pipeline is the Direct3D
CreateDevice() function that creates your display device. In your application it probably looks
something like this:

HRESULT Res;

Res = g_pD3D->CreateDevice(

 D3DADAPTER_DEFAULT,

 D3DDEVTYPE_HAL,

 hWnd,

 D3DCREATE_HARDWARE_VERTEXPROCESSING,

 &d3dpp,

 &g_pd3dDevice

);

When your application is launched by PerfHUD, a special NVIDIA PerfHUD adapter is

created. Select this adapter in order to give PerfHUD permission to analyze it. In addition, you
must select the reference rasterizer as the device type, since some applications might select the

DA-01231-001_v09
November 2007

6

NVIDIA PerfHUD adapter ID unintentionally and expose themselves to unauthorized

analysis. Your application will not actually use the reference rasterizer as long as you have
selected the PerfHUD adapter.

Below is some sample code that will enable PerfHUD analysis for your DirectX9 application:

// Set default settings

UINT AdapterToUse=D3DADAPTER_DEFAULT;

D3DDEVTYPE DeviceType=D3DDEVTYPE_HAL;

#if SHIPPING_VERSION

// When building a shipping version, disable PerfHUD (opt-out)

#else

// Look for 'NVIDIA PerfHUD' adapter

// If it is present, override default settings

for (UINT Adapter=0;Adapter<g_pD3D->GetAdapterCount();Adapter++)

{

 D3DADAPTER_IDENTIFIER9 Identifier;

 HRESULT Res;

Res = g_pD3D->GetAdapterIdentifier(Adapter,0,&Identifier);

 if (strstr(Identifier.Description,"PerfHUD") != 0)

 {

 AdapterToUse=Adapter;

 DeviceType=D3DDEVTYPE_REF;

 break;

 }

}

#endif

if (FAILED(g_pD3D->CreateDevice(AdapterToUse, DeviceType, hWnd,

 D3DCREATE_HARDWARE_VERTEXPROCESSING,

 &d3dpp, &g_pd3dDevice)))

{

 return E_FAIL;

}

For DirectX10, use the following code example:

#if SHIPPING_VERSION

// When building a shipping version, disable PerfHUD (opt-out)

#else

// Look for 'NVIDIA PerfHUD' adapter

// If it is present, override default settings

IDXGIFactory *pDXGIFactory;

ID3D10Device *pDevice;

HRESULT hRes;

hRes = CreateDXGIFactory(__uuidof(IDXGIFactory), (void**)&pDXGIFactory);

// Search for a PerfHUD adapter.

UINT nAdapter = 0;

IDXGIAdapter* adapter = NULL;

IDXGIAdapter* selectedAdapter = NULL;

D3D10_DRIVER_TYPE driverType = D3D10_DRIVER_TYPE_HARDWARE;

DA-01231-001_v09
November 2007

7

while (pDXGIFactory->EnumAdapters(nAdapter, &adapter) !=

DXGI_ERROR_NOT_FOUND)

{

if (adapter)

{

DXGI_ADAPTER_DESC adaptDesc;

if (SUCCEEDED(adapter->GetDesc(&adaptDesc)))

{

const bool isPerfHUD = wcscmp(adaptDesc.Description, L"NVIDIA PerfHUD") == 0;

// Select the first adapter in normal circumstances or the PerfHUD one if it

exists.

if(nAdapter == 0 || isPerfHUD)

selectedAdapter = adapter;

if(isPerfHUD)

driverType = D3D10_DRIVER_TYPE_REFERENCE;

}

}

++nAdapter;

}

#endif

 if(FAILED(D3D10CreateDevice(selectedAdapter, driverType, NULL,

0, D3D10_SDK_VERSION, &pDevice)))

 return E_FAIL;

This will enable PerfHUD analysis when you want to use it, and ensure that your application
does not use the software reference rasterizer when run normally.

Note: Remember to use the NVIDIA PerfHUD device whenever your application
enumerates devices, checks for capabilities, and so on. Otherwise you may see
rendering errors.

Launching your Application

To launch PerfHUD, right-click on your application, and select the
NVIDIA PerfHUD option in the Send To menu.

You can also drag the application’s icon onto the PerfHUD launcher on
the desktop.

Your application should now launch, with PerfHUD running on top of it.

DA-01231-001_v09
November 2007

8

Chapter 3. Using PerfHUD for the First
Time

You’ve installed and configured PerfHUD! Congratulations, a new world of performance analysis
is now open to you. This chapter teaches you the basics of debugging and profiling with PerfHUD
and takes you on a step-by-step tour of PerfHUD 6.0’s most popular features.

Overview

PerfHUD provides four different ways to look at your application’s performance. By switching
between them, you can identify large-scale performance problems, per-frame issues, and drill
down all the way to a detailed analysis of the draw calls in a particular frame. The four modes
are:

F5 Performance Dashboard
This mode lets you interact with your application normally, all while viewing real-
time graphs of internal GPU and Direct3D performance metrics. You can also
speed up and slow down your application to make it easier to identify problem
frames, and do experiments like globally replacing all textures with 2x2 dummy
textures.

F6 Debug Console
Review messages from the DirectX Debug runtime, PerfHUD warnings and custom
messages from your application.

F7 Frame Debugger
Freeze the current frame and step through it one draw call at a time, drilling down
to investigate the setup for each stage of the graphics pipeline using advanced
State Inspectors that show details for each stage in the graphics pipeline.

F8 Frame Profiler
Profile your application’s usage of the GPU. This is the most powerful mode that
PerfHUD offers, allowing you to sort all draw calls in the current frame by cost. In
addition, several performance graphs and analysis tools are available.

DA-01231-001_v09
November 2007

9

Using the Performance Dashboard

1. Browse to a sample program, and launch the application with

PerfHUD.

PerfHUD ships with two sample applications, FogPolygonVolume for DX9 and
Sparkles for DX10, which are already properly modified with the opt-in code. The
program should start with PerfHUD’s Performance Dashboard as an overlay on top,
as shown below.

2. Activate PerfHUD by typing the Activation Hotkey.
The hotkey is Ctrl-Z by default, but you can configure it in any way you like. You’ll

see the status line at the bottom of the screen change to four buttons, one for each

mode of PerfHUD:

Now, any keyboard or mouse input you make will affect PerfHUD. You can toggle

between PerfHUD and your application at any time. For example, you may want to

navigate to a different part of the scene to analyze it, and then re-activate PerfHUD

again.

DA-01231-001_v09
November 2007

10

Note: Once PerfHUD is activated using the activation hotkey, all subsequent keyboard events
are intercepted by PerfHUD. When you are done analyzing your application and want to
close it, you’ll have to press the activation hotkey again to disable PerfHUD so that you
can use the keyboard and mouse to quit your application.

3. Speed up and slow down time in your application.

By pressing the + and – keys, you can scale the passing of time in your

application from 6x normal speed down to 1/8 normal speed. Controlling

time is helpful when you want to find a particularly troublesome set of

frames.

4. Perform a global experiment. Hit Ctrl-T to instantaneously switch all textures

in your application to 2x2 dummy textures, or Ctrl-D to see a view of the depth

complexity of your frame buffer. There are several other experiments you can run as

well. Please see the PerfHUD 6 Reference Guide for full details.

5. Customize a graph in the Performance Dashboard. Each graph is

completely customizable. You can move the graphs by dragging them, add new

signals to existing graphs, or create a completely new graph.

Left-clicking on the blue box brings up a configuration dialog, for adding and
removing signals.

Left-clicking and dragging on the green box resizes the current graph.

Left-clicking on the red box closes the current graph.

6. Create a new graph in the Performance Dashboard. Right-click on the

background and choose New Batch Size Graph from the context menu.

DA-01231-001_v09
November 2007

11

7. Customize the new graph. Click on the blue box to see the Graph

Configuration Dialog. Set the Maximum Batch Size to 100. Then click OK. The

graph will now show more bars. Different graph types have different signals and

options available.

DA-01231-001_v09
November 2007

12

Using the Frame Debugger

The Performance Dashboard is most useful for finding a troublesome spot in your scene. Once
you’ve found that spot, you will often want to freeze the frame, debug its draw calls, and
analyze its performance in detail.

1. Press F7 to switch to the Frame Debugger. The Frame Debugger will show

you just the first draw call in the scene:

2. Scrub through the frame and watch how the draw calls accumulate

into the final frame.

Click and drag the slider at the bottom of the screen from side to side.

You’ll see how the frame builds up with various draw calls.

The current draw call is highlighted with an orange wireframe.

You can use the up and down arrow keys to decrement or increment the current

draw call. Home jumps to the first draw call, and End jumps to the last draw call.

DA-01231-001_v09
November 2007

13

Page Up and Page Down decrement or increment the current draw call by larger

amounts.

3. Switch between different views on the same draw call.

In the upper-left corner of the frame debugger is a combo-box with 4 different

options for viewing stuff.

a. Textures: View and modify the textures and render targets associated with the

current draw call.

b. Call List: View the entire Direct3D call list.

c. Dependencies: View both producer and consumer dependencies between draw

calls highlighted right on the scrub bar.

d. Perf Events: View application specific performance labels which describe portions of

the frame. Click on any label to jump immediately to the corresponding draw call.

4. View Textures and Render Targets for each draw call.

All the textures used by the current draw call are shown in the Textures panel on

the left of the screen. Click on the Textures panel (to get focus) and press + twice

to enlarge the textures. (Pressing - will reduce the textures.) Note that if you hover

over a texture, a tooltip will appear showing u-v coordinates and RGBA color

information.

On the right is the list of Render Targets. You can perform the same operations in
that panel as in the Textures panel.

5. Modify a texture by replacing it with a mipmap visualization texture.

You can replace any texture directly in your live application by right-clicking on the

texture and choosing from a set of debug textures. The mipmap visualization

texture is especially useful for determining how well your textures are mipped.

DA-01231-001_v09
November 2007

14

6. Switch back to the Performance Dashboard to see your edits now

running in your live game.

All edits you make while in the Frame Debugger are carried back and override your

application’s settings. Switch back to the Frame Debugger (F7) when you are ready

to continue.

7. Click the Advanced button to see and edit even more information.

The Advanced button is located in the lower right corner of the screen. Once you

click it, the advanced state inspector is shown. You can view and edit data for each

stage of the graphics pipeline, including “edit and continue” functionality on any

shader, or raster operations like the blend function.

DA-01231-001_v09
November 2007

15

Using the Frame Profiler

The Frame Profiler gives you extremely detailed performance information per draw call statistics
about performance and GPU usage. This is one of the uniquely powerful features of PerfHUD –
complete bottleneck analysis with just one key press.

1. Press F8 to switch to the Frame Profiler.

PerfHUD will quickly run a series of performance tests on the current frame, and then
the frame profiler will open.

2. Examine the Unit Utilization bars, and scrub the frame using the Draw

Call Slider.

The default graph is the Unit Utilization bars. This graph shows you how long each GPU

unit was used for the selected draw call, state bucket, and the frame. You can change

the selected draw call by using the scrubber, just as you would in the Frame Debugger,

and you can define state bucket groupings using the checkboxes at the top of the

screen.

3. Change the graph shown to see different sets of statistics.

Click the Combo box on the middle left border of the screen. As you can see, the Unit
Utilization Bars graph is just the tip of the iceberg! You can also graph draw call
duration, shaded pixels, and % utilization among others.

DA-01231-001_v09
November 2007

16

Profiling Effectively with PerfHUD

The GPU is a pipelined processor, and thus it is critically important to identify and optimize the
largest bottlenecks first, as optimizing a non-bottleneck will lead to little or no performance
gain.

By using PerfHUD’s various modes effectively, you can do just that.

1. Always check whether your application is CPU bound or GPU bound.

If your application is CPU-bound, then no amount of GPU optimization will speed it up.

You can use the PerfHUD’s Performance Dashboard to quickly tell if your application is

CPU or GPU bound in two ways.

The first method is to examine the graph that is displaying the Total Frame Time and

Driver Time counters. If your application is CPU-bound, you’ll see a big gap between the

yellow line (“Total Frame Time”) and the red line (“Driver Time”).

Another easy way to check if your application is CPU-bound is to press “N” to ignore all

draw calls. If your frame rate doesn’t increase, then even an infinitely fast GPU wouldn’t

help your application run faster – therefore, it is definitely limited by your CPU speed.

In this case, you should use a CPU performance analyzer such as Intel’s VTune or AMD’s

CodeAnalyst to make your CPU code more efficient.

2. Solve rendering errors using the Frame Debugger.

Use your application just like you normally do in the Performance Dashboard. If you see

any graphical errors, you can immediately switch to the Frame Debugger by typing F7,

and then examine what geometry, textures, shaders, raster operations are used for each

draw call.

3. Solve performance issues with the Frame Profiler.

The Frame Profiler (GeForce 6 Series or later required) provides advanced profiling

features which can help you quickly identify your performance issue. It provides

automated performance analysis, giving you very detailed information about your draw

calls and time spent in the various GPU stages, as well as other useful GPU statistics. It

also allows you to group draw calls into buckets to identify specific types of bottlenecks.

If you don’t have a GeForce 6 Series or later GPU, you can use the global experiments in the

Performance Dashboard to get a general notion of your bottleneck.

DA-01231-001_v09
November 2007

17

Recommended Links

 [Link] PerfHUD Introductory Video

 NVIDIA Developer Web Site
http://developer.nvidia.com

 [Link] Optimize your GPU with the Latest NVIDIA Performance Tools

 [Link] NVIDIA GPU Programming Guide – all the latest tips and tricks

 [Link] Balancing the Graphics Pipeline for Optimal Performance

 [Link] NVShaderPerf – shader performance analysis utility

 [Link] NVIDIA SDK – hundreds of code samples & effects

 [Link] PerfKit User Guide

 [Link] GPU Gems: Programming Techniques, Tips, and Tricks for Real-Time Graphics
Several of the performance-related chapters are particularly helpful.

 [Link] GPU Gems 2: Programming Techniques for High-Performance Graphics and
General-Purpose Computation

 [Link] GPU Gems 3

 [Link] Microsoft DirectX web site

 [Link] Microsoft Developer Network (MSDN) web site
Search for “performance” and “optimization”

 Microsoft DirectX SDK documentation [in the Start menu after installation]

http://developer.download.nvidia.com/tools/NVPerfHUD/5.0/NVPerfHUD_5_720p.wmv
http://developer.nvidia.com/
http://developer.nvidia.com/
http://developer.nvidia.com/
http://developer.nvidia.com/object/gpu_programming_guide.html
http://developer.nvidia.com/attach/4093
http://developer.nvidia.com/object/nvshaderperf_home.html
http://developer.nvidia.com/object/sdk_home.html
http://developer.nvidia.com/object/nvperfkit_home.html
http://developer.nvidia.com/object/gpu_gems_home.html
http://developer.nvidia.com/object/gpu_gems_2_home.html
http://developer.nvidia.com/gpugems3l
http://www.microsoft.com/windows/directx/default.aspx
http://msdn.microsoft.com/archive/default.asp?url=/archive/en-us/directx9_c/directx/graphics/programmingguide/TutorialsAndSamplesAndToolsAndTips/tips/performanceoptimizations.asp

DA-01231-001_v09
November 2007

18

Frequently Asked Questions

PerfHUD says my application is not enabled for PerfHUD analysis.

 To ensure that unauthorized third parties do not analyze your application
without your permission, you must make a minor modification to enable
PerfHUD analysis. Refer to the Getting Started section of this User Guide for
instructions.

No data is reported in the Unit Utilization Graph in Performance Dashboard
mode and/or Frame Profiler mode doesn’t seem to work.

 Both the Unit Utilization Graph and Frame Profiler require performance signals
from PerfKit. Make sure PerfKit is installed and you are using a GPU that is
supported by PerfKit.

My application does not respond while PerfHUD is active.

 When PerfHUD is enabled using the hotkey feature, it consumes all keyboard
input and does not pass any key stroke events to the application. You can
toggle this mode on/off using the activation hotkey you selected.

My application does not respond while PerfHUD is active.

 When PerfHUD is enabled using the hotkey feature, it consumes all keyboard
input and does not pass any key stroke events to the application. You can
toggle this mode on/off using the activation hotkey you selected.

I can see the PerfHUD header across the top of my screen, but it doesn’t

respond to my activation hotkey.

 PerfHUD uses several methods of intercepting key stroke events. If you are
using a method that is not yet supported, please let us know so we can update
PerfHUD.

Note that in Win2K PerfHUD uses DirectInput to listen for your activation
hotkey and to intercept keyboard commands while activated. DirectInput
supplies two types of data: buffered and immediate. Buffered data is a record
of events that are stored until an application retrieves them. Immediate data is
a snapshot of the current state of a device.

What this means is that your application needs to use the
IDirectInputDevice8::GetDeviceData interface instead of the
IDirectInputDevice8::GetDeviceState interface if you want to access advanced
features of PerfHUD such as bottleneck identification experiments, shader
visualization, etc.

PerfHUD messes up alpha and some rendering states.

 PerfHUD renders the HUD at the end of the frame. It also changes the
rendering states to draw itself, but does not restore them to their original state.
In other words, it does not push and pop rendering states for performance
reasons—therefore, it is assumed that your application resets the rendering
states at the beginning of each frame.

DA-01231-001_v09
November 2007

19

The GPU_IDLE (GREEN) line is not reporting any data.

 This information is not available for GeForce4 (NV25) and older GPUs. You may
also see this on newer GPUs if PerfHUD is unable to communicate properly with
the display driver. Verify that you are using the latest version of PerfHUD and
running the latest NVIDIA display drivers.

In the Frame Profiler’s Advanced mode, why can’t I use the RGB dropdown to
visualize the individual channels of render targets in Raster Operations?

 Currently the RGB dropdown only works for textures. It will be grayed out
unless at least one texture is present.

Can I use PerfHUD without an instrumented driver?

 Yes, PerfHUD will work with a normal driver, but you will not get access to

performance counters. Therefore, the graphs in the Performance Dashboard
will not work, and automated performance analysis in the Frame Profiler will
not work either.

However, you can still use the pipeline experiments in the Performance
Dashboard, as well as the Debug Console and Frame Debugger.

Please note that you must still have an NVIDIA GPU in order to use PerfHUD,
whether you are using an instrumented driver or not.

DA-01231-001_v09
November 2007

20

I see some extra lines in the middle of my PerfHUD graphs.

 If you are using very old drivers you may see portions of the old PerfHUD 1.0
graphs super-imposed on top of your PerfHUD graphs. Upgrading your drivers
to 71.8x or later should fix the problem.

Some objects in my scene continue to animate when my application is frozen.

 The PerfHUD time control feature stops the clock for your application, allowing
you to perform in-depth analysis of the current frame while it is frozen. Your
application must use and rely on the QueryPerformanceCounter() or
timeGetTime() win32 functions. If your application uses the rdtsc instruction it
will not function properly with Frame Debugger Mode, Frame Profiler Mode, or
the time control features in Performance Dashboard.

If your application has implemented a frame rate limiter, you may need to
disable this functionality to use the time control, debugging and profiling
features of PerfHUD.

If your application uses frame-based animation, freezing time will have no
effect on animated objects.

What else do I need to know about PerfHUD?

 Multi sampled render targets at not displayed in Frame Debugger Mode.

 PerfHUD may crash if you turn on “Break on D3D errors” in the DirectX
Control Panel.

 Pixel shader visualization does not work for primitives that use VS 3.0.

I have discovered a problem that is not listed above

 We want to make sure PerfHUD continues to be a useful tool for developers
analyzing their applications. Please let us know if you encounter any problems
or think of additional features that would be helpful while using PerfHUD.

PerfHUD@nvidia.com

mailto:NVPerfHUD@nvidia.com?subject=NVPerfHUD%20Feedback

DA-01231-001_v09
November 2007

21

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS,
LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING
PROVIDED “AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED
WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation
assumes no responsibility for the consequences of use of such information or for any
infringement of patents or other rights of third parties that may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of NVIDIA Corporation.
Specifications mentioned in this publication are subject to change without notice. This
publication supersedes and replaces all information previously supplied. NVIDIA Corporation
products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are registered trademarks of NVIDIA Corporation.
Other company and product names may be trademarks of the respective companies with which
they are associated.

Copyright

© 2004 - 2008 NVIDIA Corporation. All rights reserved.

