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Virtual reality is extremely demanding with respect to rendering performance.  Both the 
Oculus Rift and HTC Vive headsets require 90 Hz, a very high framerate compared to 
gaming on a screen.  We also need to hit this framerate while maintaining low latency 
between head motion and display updates.

Mike Abrash at Oculus has done some research on this, and his results show that the 
motion-to-photons latency should be at most 20 milliseconds to ensure that the 
experience is comfortable for players.

The problem is that we have a long pipeline, where input has to first be processed and a 
new frame submitted from the CPU, then the image has to be rendered by the GPU, and 
finally scanned out to the display.  Each of these steps adds latency.

Traditional real-time rendering pipelines have not been optimized to minimize latency, so 
this goal requires us to change how we think about rendering to some extent.
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The other thing that makes VR rendering performance a challenge is that we have to 
render the scene twice, now, to achieve the stereo eye views that give VR worlds a sense of 
depth.  Today, this tends to approximately double the amount of work that has to be done 
to render each frame, both on the CPU and the GPU, and that clearly comes with a steep 
performance cost.

However, the key fact about stereo rendering is that both eyes are looking at the same 
scene.  They see essentially the same objects, from almost the same viewpoint.  And we 
ought to be able to find ways to exploit that commonality to reduce the rendering cost of 
generating these stereo views.
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And that’s where GameWorks VR comes in. GameWorks VR refers to a package of 
hardware and software technologies NVIDIA has built to attack those two problems I just 
mentioned — to reduce latency, and accelerate stereo rendering performance -- ultimately 
to improve the VR experience.  It has a variety of components, which we’ll go through in 
this talk.
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Given that the two stereo views are independent of each other, it’s intuitively obvious that 
you can parallelize the rendering of them across two GPUs to get a massive improvement 
in performance.
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Before we dig into VR SLI, as a quick interlude, let me first explain how ordinary SLI
normally works.  For years, we’ve had alternate-frame rendering, or AFR SLI, in which the 
GPUs trade off whole frames.  In the case of two GPUs, one renders the even frames and 
the other the odd frames.  The GPU start times are staggered half a frame apart to try to 
maintain regular frame delivery to the display.

This works reasonably well to increase framerate relative to a single-GPU system, but it 
doesn’t help with latency.  So this isn’t the best model for VR.
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A better way to use two GPUs for VR rendering is to split the work of drawing a single 
frame across them — namely by rendering each eye on one GPU.  This has the nice 
property that it improves both framerate and latency relative to a single-GPU system.
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I’ll touch on some of the main features of our VR SLI API. The key idea is that the
application submits a single command stream that gets broadcast to both GPUs.  Having a 
shared command stream isn’t the only way to use the API, but it’s the most efficient.

Having a shared command stream means that all the state changes and draw calls that you 
submit are executed on both GPUs.  So you render your scene only once, including all the 
objects that are visible to both eyes, rather than submitting separate draw calls for each 
eye.
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In order to get a stereo pair out of a single command stream, in our API we have ways to 
specify a very limited set of state that can differ between the two GPUs: namely, constant 
buffer bindings, viewports, and scissors.

So, you can prepare one constant buffer that contains the left eye view matrix, and another 
buffer with the right eye view matrix.

Then, in our API we have a SetConstantBuffers call that takes both the left and right eye 
constant buffers at once and sends them to the respective GPUs.  Similarly, you can set up 
the GPUs with different viewports and scissor rectangles.
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In case broadcasting all the draws to both GPUs is a bit too restrictive, we also have 
support for GPU affinity masking.  This allows you to direct individual draw calls to one GPU 
or the other, or both.

This is a great way to start out adding VR SLI support to your engine.  In case your engine 
already renders stereo views sequentially, you can switch to parallel stereo rendering very 
easily by inserting SetGPUMask() calls at the beginning of each eye.  Set mask to the first 
GPU, render the left eye, then set mask to the other GPU and render the right eye.

The one downside there is you’re still paying for the cost of separate draw calls for each 
view.  If you convert your engine to render the scene once, using the broadcast mode, then 
you can cut your draw calls in half and therefore cut your CPU load in half.  A draw call that 
goes to both GPUs is no more costly than a draw call that goes to just one.

So, a great integration strategy is to use affinity masking to quickly bring up VR SLI in your 
engine, then incrementally convert the engine to broadcast, piece by piece, to improve CPU 
efficiency.

By the way, all of this extends to as many GPUs as you have, not just two.  So you can use 
affinity masking to explicitly control how work gets divided across 4 or 8 GPUs, as well.
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And of course we need to be able to transfer data between GPUs.  For instance, after we’ve 
rendering both halves of the stereo pair, we have to get them back onto a single GPU to 
output to the display.  So we have an API call that copies a texture or a buffer between two 
specified GPUs, using the PCI Express bus.

One point worth noting here is that the PCI Express bus is actually kind of slow.  PCIe2.0 
x16 only gives you 8 GB/sec of bandwidth, which isn’t that much, and it means that 
transferring an eye view will require about a millisecond.  That’s a significant fraction of 
your frame time at 90 Hz, so that’s something to keep in mind.

To help work around that problem, our API supports asynchronous copies.  The copy can be 
kicked off and done in the background while the GPU does some other rendering work, and 
the GPU can later wait for the copy to finish using fences.  So you have the opportunity to 
hide the PCIe latency behind some other work.
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So, VR SLI is really an API for explicit control of multiple GPUs.  It gives you the ability to 
distribute the workload however you want, over as many GPUs as you have.  However, that 
also means it’s up to the app to decide how to use the GPUs. VR SLI doesn’t work 
automatically, or even mostly automatically, like AFR SLI — it requires work on the engine 
side to integrate it.

Moreover, performance scaling is going to depend on the app.  One potential scaling issue 
is work that gets duplicated on both GPUs. For example, both GPUs will need to render the 
shadow maps for the scene.  That’s technically a bit inefficient, because the two GPUs will 
be repeating the same work, generating exactly the same shadow maps.  GPU particle 
systems and GPU physics sims are another couple of cases where you’ll probably end up 
repeating the same work on both GPUs.

The scaling we see will depend on what proportion of the frame is taken up by this kind of 
duplicated work.  If there’s very little duplicated work, you’ll get close to 2x scaling, but if 
there’s a lot you’ll get lower scaling.
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We’ve talked about how VR SLI operates at a high level, but as a game developer, what 
should you take away from this?

The most important thing is that to be ready to use VR SLI efficiently, you don’t want to
process individual views one at a time, sequentially.  Instead, you want to teach your 
engine to render both the views in a stereo pair at once.

Currently, most engines are doing something like this pseudocode snippet here at a 
high level.  They’re iterating over views as an outer loop.  For each view, they build a 
list of visible objects, then they calculate the appropriate constants for those 
objects and generate the rendering commands for them.  As mentioned earlier, this 
can work with VR SLI using GPU affinity masking, but it’s not going to be the most 
efficient approach.
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Where you want to end up to make good use of VR SLI is more like this.  First, you want to 
build a single list of visible objects that is the union of all the objects visible from both eyes.  
Then, when you calculate the constants for an object, you build both the left eye and right 
eye constants.  Those per-view constants should be stored together somehow, so they can 
be submitted together to the API.  Finally, you’ll submit the rendering commands just once 
for both views.

So, with VR SLI, rendering a stereo pair of views is really almost like rendering a single view.  
All you have to do differently is calculate and submit a few extra matrices in your constant 
buffers, to set up the appropriate transforms for the left and right eye views.
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Our next topic is multi-resolution shading.

The basic problem that we’re trying to solve is illustrated here.  The image we present on a 
VR headset has to be warped to counteract the optical effects of the lenses.

In this image, everything looks curved and distorted, but when viewed through the lenses, 
the viewer perceives an undistorted image.

The trouble is that GPUs can’t natively render into a distorted view like this – it would make 
triangle rasterization vastly more complicated.
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Current VR platforms all solve this problem by first rendering a normal image (left) and 
then doing a postprocessing pass that resamples the image to the distorted view (right).
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If you look at what happens during that distortion pass, you find that while the center of 
the image stays the same, the edges are getting squashed quite a bit.

This means we’re over-shading the edges of the image.  We’re generating lots of pixels that 
are never making it out to the display – they’re just getting thrown away during the 
distortion pass.  That’s wasted work and it slows you down.
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The idea of multi-resolution shading is to split the image up into multiple viewports – here, 
a 3x3 grid of them.

We keep the center viewport the same size, but scale down all the ones around the edges.

This better approximates the warped image that we want to eventually generate, but 
without so many wasted pixels.  And because we shade fewer pixels, we can render faster.  
Depending on how aggressive you want to be with scaling down the edges, you can save 
anywhere from 25% to 50% of the pixels.  That translates into a 1.3x to 2x pixel shading 
speedup.
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Another way to look at what’s going on here is as a graph of pixel density aross the image.

The green line represents the ideal pixel density needed for the final warped image.  With 
standard rendering, we’re taking the maximum density – which occurs near the center –
and rendering the whole image at that high density.
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Multi-resolution rendering allows us to reduce the resolution at the edges, to more closely 
approximate the ideal density while never dropping below it.  In other words, we never 
have less than one rendered pixel per display pixel, anywhere in the image.

This setting lets us save about 25% of the pixels, which is equivalent to 1.3x improvement 
in pixel shading performance.
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It’s also possible to go to a more aggressive setting, where we reduce the resolution in the 
edges of the image even further.  This requires some care, as it could visibly affect image 
quality, depending on your scene.  But in many scenes, even an aggressive setting like this 
may be almost unnoticeable – and it lets you save 50% of the pixels, which translates into a 
2x pixel shading speedup.
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The key thing that makes this technique a performance win is the multi-projection 
hardware we have on NVIDIA’s Maxwell architecture – in other words, the GeForce GTX 
900 series and Titan X.

Ordinarily, replicating all scene geometry to a number of viewports would be prohibitively 
expensive.  There are a variety of ways you can do it, such as resubmitting draw calls, 
instancing, and geometry shader expansion – but all of those will add enough overhead to 
eat up any gains you got from reducing the pixel count.

With Maxwell, we have the ability to very efficiently broadcast the geometry to many 
viewports in hardware, while only running the GPU geometry pipeline once per eye.
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Context priority is a low-level feature that NVIDIA provides to enable VR platform vendors 
to implement asynchronous timewarp.  (Note that we don’t implement async timewarp 
ourselves – we just provide the tools for the VR platform to do it.)

The way we do this is by enabling GPU preemption using a high-priority graphics context.
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Before I can explain what asynchronous timewarp is, first I have to talk about ordinary 
timewarp.

Timewarp is a feature implemented in the Oculus SDK that allows us to render an image 
and then perform a postprocess on that rendered image to adjust it for changes in head 
motion during rendering.  Suppose I’ve rendered an image, like you see here, using some 
head pose.  But by the time I’m finished rendering, my head has moved and is now looking 
a slightly different direction.  Timewarp is a way to shift the image, as a purely image-space 
operation, to compensate for that.  If my head goes to the right, it shifts the image to the 
left and so on.

Timewarp can sometimes produce minor artifacts due to the image-space warping, but 
nonetheless it’s startlingly effective at reducing the perceived latency.
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Here’s what the ordinary graphics pipeline looks like, without timewarp.  The CPU does 
some work to set up a frame to be rendered.  Ordinarily, the head pose is sampled early in 
the CPU frame and baked into the command buffer.

Then the frame is submitted to the GPU, which renders it.  At the next vsync, the display is 
flipped to the new frame just rendered, and the frame is scanned out.  Then the backlight 
on the display is flashed, at which point the user actually sees the image.  (This is assuming 
a low-persistence display with a global flash, which VR headsets are converging to.)

As you can see, there’s quite a few milliseconds of latency between when the head pose is 
sampled on the CPU, and when the user finally sees it.
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When timewarp is enabled, we can re-sample the head pose a few milliseconds before 
vsync, and warp the image that we just finished rendering to the new head pose.

This enables us to cut perceived latency down by a large factor.
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If you use timewarp and your game is rendering at a steady framerate, this is what the 
timing looks like over several frames.

The green bars represent the main game rendering, which takes variable amounts of time 
as you move around and different objects show up on the screen.  After the game 
rendering is done for each frame, we wait until just before vsync before kicking off 
timewarp, represented by the little cyan bars.  This works great as long as the game is 
running consistently within the vsync time limit.
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However, games never run 100% consistently at vsync.  PC operating systems are 
fundamentally not capable of guaranteeing that.  Every once in awhile, Windows will 
decide to start indexing files in the background or something, and your game will get held 
up, producing a hitch.

Hitches are always annoying, but in VR they’re really bad.  Having the previous frame stuck 
on the headset produces instant dizziness.
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That’s where asynchronous timewarp comes in.  The idea here is to make timewarp not 
have to wait for the app to finish rendering.  Timewarp should behave like a separate 
process running on the GPU, which wakes up and does its thing right before vsync, every 
vsync, regardless of whether the app has finished rendering or not.

If we can do that, then we can just re-warp the previous frame whenever the main 
rendering process falls behind.  So we don’t have to live with a stuck image on the headset; 
we’ll continue to have low-latency head tracking even if the app hitches or drops frames.

29



The question for NVIDIA is how can we enable VR platform vendors to implement async 
timewarp on current hardware?

We’re doing this by exposing support in our driver for a feature called a high-priority 
graphics context.  It’s a separate graphics context that takes over the entire GPU whenever 
work is submitted to it – pre-empting any other rendering that may already be taking place.

With this feature exposed, an app can submit its work to an ordinary rendering context, 
while the VR platform service can run a second, high-priority context where it can submit 
timewarp work.
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Since we’re relying on preemption, let’s talk a bit about its limitations.  All our GPUs for the 
last several years do context switches at draw call boundaries.  So when the GPU wants to 
switch contexts, it has to wait for the current draw call to finish first.  So, even with 
timewarp being on a high-priority context, it’s possible for it to get stuck behind a long-
running draw call on a normal context.  For instance, if your game submits a single draw call 
that happens to take 5 ms, then async timewarp might get stuck behind it, potentially 
causing it to miss vsync and cause a visible hitch.
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So what should developers take away from this?  First of all, I want to caution you against 
relying on async timewarp to “fix” low framerates.  It’s not a magic wand for performance 
issues; it’s a safety net in case of unpredictable hitches or performance drops.  Rendering at 
the native framerate is still going to give people a better experience for a variety of 
reasons, so you should try to ensure you hit 90 Hz as much as possible.

And, like I just mentioned, watch out for long draw calls.  If you have individual draw calls 
taking longer than 1 ms or so, there’s a danger that they could interfere with async 
timewarp.  To avoid that, you can split the draws up into smaller ones.  For example, a 
postprocessing pass where you’re running a heavy pixel shader over the whole screen 
might take several milliseconds to complete, but you can split up the screen into a few tiles 
and run the postprocessing on each tile in a separate draw call.  That way, you provide the 
opportunity for async timewarp to come in and preempt in between those draws if it needs 
to.
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Direct mode is another feature targeted at VR headset vendors.  It enables our driver to 
recognize when a display that’s plugged in is a VR headset as opposed to a screen, and hide 
it from the OS so that the OS doesn’t try to extend the desktop onto the headset (which no 
one ever wants).  Then the VR platform service can take over the display and render to it 
directly.  This just provides a better user experience in general for working with VR.
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Direct mode also enables front buffer rendering, which is normally not possible in D3D11.  
VR headset vendors can make use of this for certain low-level latency optimizations.
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And that’s where GameWorks VR comes in. GameWorks VR refers to a package of 
hardware and software technologies NVIDIA has built to attack those two problems I just 
mentioned — to reduce latency, and accelerate stereo rendering performance -- ultimately 
to improve the VR experience.  It has a variety of components, which we’ll go through in 
this talk.
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Before we leave I just want to mention which APIs, platforms, and hardware will support 
these technologies I’ve been talking about.

The APIs we’ve been talking about are currently implemented for D3D11 only.  We will be 
bringing support for these features to OpenGL, D3D12, and Vulkan in the future.

GameWorks VR will work on Windows 7 and up, and as far as hardware is concerned, most 
features will work on all GeForce GTX 500-series cards and up.  That’s the Fermi, Kepler, 
and Maxwell architectures, if you follow our internal codenames.  The only exception there 
is that multi-res shading requires a GTX 900 series card, since it depends on the fast 
geometry shader that only the Maxwell architecture has.

We have an NDA developer SDK with GameWorks VR available now, so if you’re interested 
in looking at this, get in touch with us and we’ll set you up.
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