Vulkan

Khronos Munic
Mathias Sc

Munic"CHF«PTER

https://developer.nvidia.com/vulkan

What is the issue?

https://developer.nvidia.com/vulkan

Developers Want Threading-Friendly APIs!

https://developer.nvidia.com/vulkan <ANVIDIA.

https://developer.nvidia.com/vulkan

Developers Want Threading-Friendly APIs!

https://developer.nvidia.com/vulkan <ANVIDIA.

https://developer.nvidia.com/vulkan

Vulkan Philosophy: Explicit Threadability

*Vulkan was created from the ground up to be thread-friendly
* A huge amount of the spec details the thread-safety and consequences of calls
*But all of the responsibility falls on the app - which is good!
*Threading at the app level continues to rise in popularity
* Apps want to generate rendering work from multiple threads
Spread validation and submission costs across multiple threads

* Apps can often handle object/access synchronization at a higher level than a driver

https://developer.nvidia.com/vulkan

<ANVIDIA.

https://developer.nvidia.com/vulkan

Threading use cases encouraged in Vulkan

@ * Threaded updates of resources (Buffers)
' * CPU vertex data or instance data animations (e.g. morphing)

* CPU uniform buffer data updates (e.g. transform updates)

@ - Parallel pipeline state creation

« “shader compilation” and state validation

*Threaded rendering / draw calls

U * Generation of command buffers in multiple threads

https://developer.nvidia.com/vulkan @ NVIDIA.

https://developer.nvidia.com/vulkan

Separate work specification & submission!

Draw state

)

Resource references

Work specification

[VRQueueSub. >

Resources

R
| Memory Memory

Heap(s)

Work coordination

Bind pipeline Bind vertex&index buffers Bind DescriptorSet Draw Draw

semaphores

events

fences

barriers

Work execution

https://developer.nvidia.com/vulkan

<ANVIDIA.

https://developer.nvidia.com/vulkan

Work Specification: Command Buffers

* All Vulkan rendering is through command buffers
*Can be single-use or multi-submission
*Driver can optimize the buffer accordingly

*Primary & Secondary Command buffers

* Allow static work to be reused

*IMPORTANT: No state is inherited across command buffers!

https://developer.nvidia.com/vulkan @ NVIDIA.

https://developer.nvidia.com/vulkan

Work Execution: Queues

*Makes explicit the command queue that is implicitly in a context in GL

*No need to “bind a context” in order to submit work

*Multiple threads can submit work to different queues
*Queues accept GPU work via CommandBuffer submissions

*Queues have extremely few operations: in essence, “submit work” and “wait for idle”
*Queue work submissions can include sync primitives for the queue to:

* Wait upon before processing the submitted work

«Signal when the work in this submission is completed

*Queue “families” can accept different types of work, e.g.

* One form of work in a queue (e.g. DMA/memory transfer-only queue)

https://developer.nvidia.com/vulkan @Z NVIDIA.

https://developer.nvidia.com/vulkan

Work Coordination: Synchronization

*semaphores

«used to synchronize work across queues or
across coarse-grained submissions to a
single queue

events and barriers

used to synchronize work within a

command buffer or sequence of command ; Semaphores i
buffers submitted to a single queue Queue C— Queue
fences
*used to synchronize work between the
device and the host. Fences H
C—
)

https://developer.nvidia.com/vulkan <ANVIDIA.

https://developer.nvidia.com/vulkan

Threaded Command Buffer Generation
€ € €

vpdatework || || Update work | | upcate Work_

IS 3

A
;mm 1 command
A= buffer handle

1 command 1 command‘nl
buffer handle -A\buffer handle # l\

1 command

https://developer.nvidia.com/vulkan <ANVIDIA.

Vulikan

https://developer.nvidia.com/vulkan

Command Buffer Thread Safety

*Must not recycle a CommandBuffer for rewriting until it is no longer in flight

*But we do not want to flush the queue each frame!

*VkFences can be provided with a queue submission to test when a command buffer
is ready to be recycled
GPU Consumes Queue

1 Fence A Signaled to App

App Submissions to the Queue

Rewrite command buffer

https://developer.nvidia.com/vulkan <ANVIDIA.

https://developer.nvidia.com/vulkan

Vulkan Threads: Command Pools

*VkCommandPool objects are pivotal to threaded command generation
*VkCommandBuffers are allocated from a “parent” VkCommandPool

*VkCommandBuffers written to in different threads must come from different pools

*Or else both the buffer & pool must be externally synchronized, which isn’t worth it

Thread 1
e e G Gt

Thread 2
e omwete e ot

https://developer.nvidia.com/vulkan <ANVIDIA.

https://developer.nvidia.com/vulkan

Vulkan Threads: Command Pools

*Need to have multiple command buffers per thread

« Cannot reuse a command buffer until it is no longer in flight
*And threads may have multiple, independent buffers per frame

*Faster to simply reset a pool when that thread/frame is no longer in flight:

Thread 1 CommandPool CommandPool CommandPool

CommandPool

https://developer.nvidia.com/vulkan

<ANVIDIA.

https://developer.nvidia.com/vulkan

Vulkan Threads: Descriptor Pools

*VkDescriptorPool objects may be needed for threaded object state generation
*E.g. dynamically thread-generated rendered objects
*Pools can hold multiple types of VkDescriptorSet
*E.g. sampler, uniform buffer, etc
*Max number of each type specified at pool creation
*VkDescriptorSets are allocated from a “parent” VkDescriptorPool
«descriptors allocated in different threads must come from different pools

*But VkDescriptorSets from the same pool can be written to by different threads

https://developer.nvidia.com/vulkan

<ANVIDIA.

https://developer.nvidia.com/vulkan

Vulkan Multi-Threading

https://developer.nvidia.com/vulkan

