
https://developer.nvidia.com/vulkan

Khronos Munich Chapter meeting, April 8th 2016

Mathias Schott, Senior Developer Technology Engineer, NVIDIA

Vulkan Multi-Threading

https://developer.nvidia.com/vulkan


https://developer.nvidia.com/vulkan

What is the issue?
Thread/CPU 2

(Unused)
Thread/CPU 4

(Unused)

Thread/CPU 3

(Unused)

GPU

(Bored…)

Thread/CPU 1 

(Overworked…)

Update Work

State Change

State Change

Draw Calls

State Change

Draw Calls

…

Driver Call

Driver Call

Driver Call

Driver Call

Driver Call

Driver Call

Driver Call

Driver Call

Driver Call

Driver Call

https://developer.nvidia.com/vulkan


https://developer.nvidia.com/vulkan

Developers Want Threading-Friendly APIs!

Thread/CPU 2

(Unused)
Thread/CPU 4

(Unused)

Thread/CPU 3

(Unused)

https://developer.nvidia.com/vulkan


https://developer.nvidia.com/vulkan

Developers Want Threading-Friendly APIs!

Thread/CPU 2

(Busy)
Thread/CPU 4

(Busy)

Thread/CPU 3

(Busy)

Contribute Contribute Contribute

https://developer.nvidia.com/vulkan


https://developer.nvidia.com/vulkan

Vulkan Philosophy: Explicit Threadability

•Vulkan was created from the ground up to be thread-friendly

•A huge amount of the spec details the thread-safety and consequences of calls

•But all of the responsibility falls on the app – which is good!

•Threading at the app level continues to rise in popularity

•Apps want to generate rendering work from multiple threads

•Spread validation and submission costs across multiple threads

•Apps can often handle object/access synchronization at a higher level than a driver

https://developer.nvidia.com/vulkan


https://developer.nvidia.com/vulkan

Threading use cases encouraged in Vulkan

•Threaded updates of resources (Buffers)

• CPU vertex data or instance data animations (e.g. morphing)

• CPU uniform buffer data updates (e.g. transform updates)

•Parallel pipeline state creation

• “shader compilation” and state validation

•Threaded rendering / draw calls

• Generation of command buffers in multiple threads 

https://developer.nvidia.com/vulkan


https://developer.nvidia.com/vulkan

Separate work specification & submission!

Buffer

Memory

Heap(s)

Image(s)

Memory

Resources

Pipeline

Shaders

Blending

Z-test

Draw state

DeviceQueue

Work execution

DescriptorSet

Image(s)

Sampler(s)

Buffer(s)

Resource references

CommandBuffer

Work specification

Bind DescriptorSetBind pipeline DrawBind vertex&index buffers Draw

vkQueueSubmit

Work coordination

semaphores events

fences barriers

https://developer.nvidia.com/vulkan


https://developer.nvidia.com/vulkan

Work Specification: Command Buffers

•All Vulkan rendering is through command buffers

•Can be single-use or multi-submission

•Driver can optimize the buffer accordingly

•Primary & Secondary Command buffers

•Allow static work to be reused

• IMPORTANT: No state is inherited across command buffers!

https://developer.nvidia.com/vulkan


https://developer.nvidia.com/vulkan

Work Execution: Queues

•Makes explicit the command queue that is implicitly in a context in GL

•No need to “bind a context” in order to submit work

•Multiple threads can submit work to different queues

•Queues accept GPU work via CommandBuffer submissions

•Queues have extremely few operations: in essence, “submit work” and “wait for idle”

•Queue work submissions can include sync primitives for the queue to:

•Wait upon before processing the submitted work

•Signal when the work in this submission is completed

•Queue “families” can accept different types of work, e.g.

• One form of work in a queue (e.g. DMA/memory transfer-only queue)

https://developer.nvidia.com/vulkan


https://developer.nvidia.com/vulkan

Work Coordination: Synchronization

•semaphores 

•used to synchronize work across queues or 
across coarse-grained submissions to a 
single queue

•events and barriers

•used to synchronize work within a 
command buffer or sequence of command 
buffers submitted to a single queue

•fences 

•used to synchronize work between the 
device and the host.

DeviceHost

Queue

Command

Buffer

Queue

Command

Buffer

barrier

event

Command

Buffer

event

Fences

Semaphores

https://developer.nvidia.com/vulkan


https://developer.nvidia.com/vulkan

Thread/CPU 4

(Busy)

Threaded Command Buffer Generation

Thread/CPU 1

(Busy)

Update Work

GPU

Write 

Command 

Buffers

Thread/CPU 2

(Busy)

Update Work

Write 

Command 

Buffers

Thread/CPU 3

(Busy)

Update Work

Write 

Command 

Buffers

Submit to 

Queue

Game 

Work

Thread 

Coordination
Swapping

1 command 
buffer handle

1 command 
buffer handle

1 command 
buffer handle

1 command 
buffer handle

(Busy - Good…)

https://developer.nvidia.com/vulkan


https://developer.nvidia.com/vulkan

•Must not recycle a CommandBuffer for rewriting until it is no longer in flight

•But we do not want to flush the queue each frame!

•VkFences can be provided with a queue submission to test when a command buffer 
is ready to be recycled

Command Buffer Thread Safety

App Submissions to the Queue

GPU Consumes Queue

Fence A

CommandBuffer CommandBuffer CommandBuffer

Fence B

CommandBuffer CommandBuffer

Fence A Signaled to App

Rewrite command buffer

CommandBuffer

https://developer.nvidia.com/vulkan


https://developer.nvidia.com/vulkan

Vulkan Threads: Command Pools

•VkCommandPool objects are pivotal to threaded command generation

•VkCommandBuffers are allocated from a “parent” VkCommandPool

•VkCommandBuffers written to in different threads must come from different pools

•Or else both the buffer & pool must be externally synchronized, which isn’t worth it

Thread 1 CommandPool

CommandBuffer CommandBuffer CommandBuffer CommandBuffer

Thread 2 CommandPool

CommandBuffer CommandBuffer CommandBuffer CommandBuffer

https://developer.nvidia.com/vulkan


https://developer.nvidia.com/vulkan

Frame NFrame N-1

•Need to have multiple command buffers per thread

•Cannot reuse a command buffer until it is no longer in flight

•And threads may have multiple, independent buffers per frame

•Faster to simply reset a pool when that thread/frame is no longer in flight:

Frame N-2

Vulkan Threads: Command Pools

Thread 1 CommandPool
Command

Buffer

Command

Buffer

CommandPool
Command

Buffer

Command

Buffer

CommandPool
Command

Buffer

Command

Buffer

Thread 2 CommandPool
Command

Buffer

Command

Buffer

CommandPool
Command

Buffer

Command

Buffer

CommandPool
Command

Buffer

Command

Buffer

https://developer.nvidia.com/vulkan


https://developer.nvidia.com/vulkan

Vulkan Threads: Descriptor Pools

•VkDescriptorPool objects may be needed for threaded object state generation

•E.g. dynamically thread-generated rendered objects

•Pools can hold multiple types of VkDescriptorSet

•E.g. sampler, uniform buffer, etc

•Max number of each type specified at pool creation

•VkDescriptorSets are allocated from a “parent” VkDescriptorPool

•descriptors allocated in different threads must come from different pools

•But VkDescriptorSets from the same pool can be written to by different threads

https://developer.nvidia.com/vulkan


https://developer.nvidia.com/vulkan

Vulkan Multi-Threading

QUESTIONS?

https://developer.nvidia.com/vulkan

