
Piers Daniell, January 19, 2016

VULKAN OVERVIEW



2

AGENDA

What is Vulkan?

Hello Triangle

Release plans



3

WHAT IS VULKAN?



Page 4

VULKAN REQUIREMENTS

Leading Edge 

Graphics Functionality
Equivalent to OpenGL in V1.0

General Purpose Compute
Graphics AND compute queues 

in a single API 

Multi-core Efficient
Multi-threading friendly

Low Driver Overhead
Thinner, simpler driver 

reduces CPU bottleneck

FUNCTIONALITY PORTABILITY

Precompiled Shaders
Enables language flexibility -

including C++ Programming (future)

PERFORMANCE

Same API for mobile, desktop, 

console and embedded
Defined ‘Feature Sets’ per platform

No need for ‘Vulkan ES’

Explicit API
Direct control over GPU.

Simpler driver gives less surprises 

and vendor differences

Streamlined API 
Easier to implement and test for 

cross-vendor consistency



Page 5

NEXT GENERATION GPU APIS

Only AppleOnly Windows 10

Cross Platform
Any OpenGL ES 3.1/4.X GPU



Page 6

VULKAN EXPLICIT GPU CONTROL

GPU

Traditional 

graphics

drivers include 

significant 

context, memory 

and error 

management

Application

GPU

Direct GPU 

Control

Application

responsible for

memory 

allocation and 

thread 

management to 

generate 

command buffers

Error management is 

always active

Layered architecture so validation 

and debug layers can be loaded only 

when needed

Driver compiles full 

shading language source
Run-time only has to ingest SPIR-V 

intermediate language

Complex drivers lead to driver 

overhead and cross vendor 

unpredictability

Simpler drivers for low-overhead 

efficiency and cross vendor 

consistency

D
riv

e
r

D
ri

v
e
r



Page 7

THE POWER OF A THREE LAYER ECOSYSTEM

Applications

can use Vulkan 

directly for 

maximum 

flexibility and 

control Utility libraries 

and layers

Application

Games Engines 

fully optimized 

over Vulkan

Application uses 

utility libraries to 

speed 

development

Rich Area for Innovation
• Many utilities and layers will be in open source

• Layers to ease transition from OpenGL

• Domain specific flexibility
Developers can choose at which level 

to use the Vulkan Ecosystem

The industry’s leading games and 

engine vendors are participating in 

the Vulkan working group

The same ecosystem dynamic as WebGL
A widely pervasive, powerful, flexible foundation layer enables diverse middleware tools and libraries 



Page 8

VULKAN MULTI-THREADING EFFICIENCY

GPU

Command 

Buffer

Command 

Buffer

Command 

Buffer

Command 

Buffer

Command 

Buffer

Command 

Queue

CPU 

Thread

CPU 

Thread

CPU 

Thread

CPU 

Thread

CPU 

Thread

CPU 

Thread

1. Multiple threads can construct Command Buffers in parallel

Application is responsible for thread management and synch

2. Command Buffers placed in Command 

Queue by separate submission thread

Can create graphics, compute and DMA 

command buffers with a general queue 

model that can be extended to more 

heterogeneous processing in the future



Page 9

SPIR-V Transforms the Language Ecosystem
• First multi-API, intermediate language for parallel compute and graphics

- Native representation for Vulkan shader and OpenCL kernel source languages

- https://www.khronos.org/registry/spir-v/papers/WhitePaper.pdf

• Cross vendor intermediate representation

- Language front-ends can easily access multiple hardware run-times 

- Acceleration hardware can leverage multiple language front-ends 

- Encourages tools for program analysis and optimization in SPIR form

Diverse Languages 

and Frameworks

Hardware 

runtimes on

multiple architectures

Tools for

analysis and 

optimization

Standard 

Portable

Intermediate

Representation

Multiple Developer Advantages
Same front-end compiler for multiple platforms

Reduces runtime kernel compilation time

Don’t have to ship shader/kernel source code

Drivers are simpler and more reliable

https://www.khronos.org/registry/spir-v/papers/WhitePaper.pdf


Page 10

VULKAN WORKING GROUP 
• Participants come from all segments of the graphics industry

- Including an unprecedented level of participation from game engine ISVs

Working Group Participants

http://www.amd.com/
http://www.amd.com/


11

HELLO TRIANGLE



12

HELLO TRIANGLE

Launch driver and create display

Set up resources

Set up the 3D pipe

Shaders

State

Record commands

Submit commands

Quick tour of the API



13

VULKAN LOADER

Khronos provided open-source loader

Finds driver and dispatches API calls

Supports injectable layers

Validation, debug, tracing, capture, etc.

Part of the Vulkan ecosystem

Goals: cross-platform, extensible

Vulkan application

Vulkan loader

Vulkan driver

Validation layer

Debug layer Debugger

Trace/Capture



14

VULKAN WINDOW SYSTEM INTEGRATION

Khronos defined Vulkan extensions

Creates presentation surfaces for window or display

Acquires presentable images

Application renders to presentable image and enqueues the presentation

Supported across wide variety of windowing systems

Wayland, X, Windows, etc.

WSI for short

Goals: cross-platform



15

HELLO TRIANGLE

Launch driver and create display

Set up resources

Set up the 3D pipe

Shaders

State

Record commands

Submit commands

Quick tour of the API



16

Vulkan exposes several physical memory pools – device memory, host visible, etc.

Application binds buffer and image virtual memory to physical memory

Application is responsible for sub-allocation

LOW-LEVEL MEMORY CONTROL
Console-like access to memory

Goals: explicit API, predictable performance

Physical pages

Bound objects
2 objects of compatible types aliasing 

memory

Meets implementation alignment 
requirements

Has GPU virtual address



17

SPARSE MEMORY

Not all virtual memory has to be backed

Several feature levels of sparse memory supported

ARB_sparse_texture, EXT_sparse_texture2, etc.

More control over memory usage

Goals: explicit API

Physical pages

Bound object

Defined behavior if GPU accesses here



18

RESOURCE MANAGEMENT

Vulkan allows some resources to live in CPU-visible memory

Some resources can only live in high-bandwidth device-only memory

Like specially formatted images for optimal access

Data must be copied between buffers

Copy can take place in 3D queue or transfer queue

Copies can be done asynchronously with other operations

Streaming resources without hitching

Populating buffers and images

Goals: explicit API, predictable performance



19

POPULATING VIDMEM

Allocate CPU-visible staging buffers

These can be reused

Get a pointer with vkMapMemory

Memory can remain mapped while in use

Copy from staging buffer to device memory

Copy command is queued and runs async

Use vkFence for application to know when xfer is done

Use vkSemaphore for dependencies between command buffers

Using staging buffers

CPU-visible buffer

App image data

memcpy to pointer returned by vkMapMemory

Device only memory

vkCmdCopyBufferToImage

Goals: explicit API



20

DESCRIPTOR SETS

Shader resources declared with binding slot number

layout(set = 1, binding = 3) uniform image2D myImage;

layout(set = 1, binding = 4) uniform sampler mySampler;

Descriptor sets allocated from a descriptor pool

Descriptor sets updated at any time when not in use

Binds buffer, image and sampler resources to slots

Descriptor set bound to command buffer for use

Activates the descriptor set for use by the next draw

Binding resources to shaders

Goals: explicit API



21

MULTIPLE DESCRIPTOR SETS

Shader code

layout(set=0,binding=0) uniform { ... } sceneData;

layout(set=1,binding=0) uniform { ... } modelData;

layout(set=2,binding=0) uniform { ... } drawData;

void main() { }

Partitioning resources by frequency of update

Application can modify just the set of 
resources that are changing

Keep amount of resource binding 
changes as small as possible

Application code

foreach (scene) {

vkCmdBindDescriptorSet(0, 3, {sceneResources,modelResources,drawResources});

foreach (model) {

vkCmdBindDescriptorSet(1, 2, {modelResources,drawResources});

foreach (draw) {

vkCmdBindDescriptorSet(2, 1, {drawResources});

vkDraw();

}

}

}



22

HELLO TRIANGLE

Launch driver and create display

Set up resources

Set up the 3D pipe

Shaders

State

Record commands

Submit commands

Quick tour of the API



23

SPIR-V

Khronos supported open-source GLSL->SPIR-V compiler - glslang

ISVs can easily incorporate into their content pipeline

And use their own high-level language

For your content pipeline

g
ls

la
n
g

GLSL

Some other 

language



24

VULKAN SHADER OBJECT

SPIR-V passed into the driver

Driver can compile everything except things that depend on pipeline state

Shader object can contain an uber-shader with multiple entry points

Specific entry point used for pipeline instance

Compiling the SPIR-V

Single Shader 

Object

Used by pipeline Amain() 

Used by pipeline BdrawSomeStuff() 

Used by pipeline csomethingElse() 

Bunch of common shader code



25

PIPELINE STATE OBJECT

Represents all static state for entire 3D pipeline

Shaders, vertex input, rasterization, color blend, depth stencil, etc.

Created outside of the performance critical paths

Complete set of state for validation and final GPU shader instructions

All state-based compilation done here – not at draw time

Can be cached for reuse

Even across application instantiations

Say goodbye to draw-time validation

Goals: explicit API, predictable performance



26

PIPELINE CACHE

Application can allocate and manage pipeline cache objects

Pipeline cache objects used with pipeline creation

If the pipeline state already exists in the cache it is reused

Application can save cache to disk for reuse on next run

Using the Vulkan device UUID – can even stash in the cloud

Reusing previous work



27

PIPELINE LAYOUT

Pipeline layout defines what kind of resource is in each binding slot

Images, Samplers, Buffers (UBO, SSBO)

Different pipeline state objects can use the same layout

Which means shaders need to use the same layout

Changing between compatible pipelines avoids having to rebind all descriptions

Or use lots of different descriptor sets

Using compatible pipelines



28

DYNAMIC STATE

Dynamic state changes don’t affect the pipeline state

Does not cause shader recompilation

Viewport, scissor, color blend constants, polygon offset, stencil masks and refs

Dynamic state changes are relatively lightweight

All other state has the potential to cause a shader recompile on some hardware

So it belongs in the pipeline state object with the shaders

State that can change easily



29

PUSH CONSTANTS

Small shader-accessible high-speed uniform buffer

Up to 256 bytes in size

Can be updated at high-frequency – per draw for example

Use for per-draw indices or transform matrices, etc.

For high-frequency updates



30

HELLO TRIANGLE

Launch driver and create display

Set up resources

Set up the 3D pipe

Shaders

State

Record commands

Submit commands

Quick tour of the API



31

Consider a deferred renderer

• z-fill pass

• gBuffer pass

• Lighting pass

How would this work in GL on a tiled renderer

RENDERING
Multi-pass rendering

NVIDIA/KHRONOS CONFIDENTIAL



32

How would this work in GL on a tiled renderer

Lots of bandwidth to and from the framebuffer!!

Of course it’s possible to do this in Vulkan as well. It’s just not a good idea.

MULTI-PASS RENDERING
Tiled rendering

Pass 1

Bind depth attachment
Load each tile from FBO
Z-fill each tile
Store each tile to FBO
Repeat until done

Pass 2

Bind float attachment
Load each tile from FBO
Store geometry to tiles
Store each tile to FBO
Repeat until done

Pass 3

Bind gBuffer texture
Bind color attachment
Load each tile from FBO
Render scene to tiles
Store each tile to FBO
Repeat until done

NVIDIA/KHRONOS CONFIDENTIAL



33

Vulkan uses a RenderPass object

MULTI-PASS RENDERING
Tiled Rendering

For each tile

Load tiles for depth, gBuffer and color
Start subpass
Render z-fill
Start subpass
Store geometry in gBuffer
Specify gBuffer as input to final subpass
Start subpass
Render scene
Store depth,gBuffer and color back to FBO

All that slow and power hungry 
bandwidth is eliminated!

A render pass object can also handle a 
final multisample resolve

NVIDIA/KHRONOS CONFIDENTIAL



34

MULTI-PASS RENDERING
Tiled Rendering

CommandBuffer

SubPass A
SubPass B

(can depend on A)

Binds, Draws.. Also Secondary CmdBuffers

Binds Draws... ...
Bound Pipelines must be 
associated with specific 
RenderPass config (A,B) and 
sub-pass at creation

Resolve...

Attachment Image(s) Attachment Image(s)

Make RenderTargets 
available to other 
CommandBuffer passes

Attachment Image(s)

NVIDIA/KHRONOS CONFIDENTIAL



35

MULTI-PASS RENDERING
Dependencies

Z-Fill gBuffer Scene

RenderPass

Subpass Subpass Subpass

Synchronization points

Dependencies exist 
between these subpasses

But these are on a per tile basis

Define these dependencies with
the renderpass

Any tile who’s dependencies are 
satisfied can continue

NVIDIA/KHRONOS CONFIDENTIAL



36

COMMAND BUFFERS AND POOLS

A command buffer is an opaque container of GPU commands

Command buffers are submitted to a queue for the GPU to schedule execution

Commands are adding when the command buffer is recorded

Memory for the command buffer is allocated from the command pool

Multiple command buffers can allocate from a command pool

A place for the GPU commands



37

Device

Queue

CommandBuffer

RenderPass 

Begin

RenderPass 

End

Bind 

Pipeline

Bind 

DescriptorSet

Bind

Vertex/Index
Draw

Bind

DynamicState

CmdPool

DescriptorPool

Buffer

Memory

Heap

Image(s)

DescriptorSetPipelineRenderPass

Framebuffer

DynamicState

State,

Shaders,

Render 

Pass ...

Buffer(s)

Image(s)

Sampler(s)



38

COMMAND BUFFER PERFORMANCE

Recording command buffers is the most performance critical part

But we have no idea how big command buffer will end up

Can record multiple command buffers simultaneously from multiple threads

Command pools ensure there is no lock contention

True parallelism provides multi-core scalability

Command buffer can be reused, re-recorded or recycled after use

Reuse previous allocations by the command pool

Command buffer recording needs to scale well

Goals: multi-CPU scalable



39

MULTI-THREADING

Vulkan is designed so all performance critical functions don’t take locks

Application is responsible for avoiding hazards

Use different command buffer pools to allow multi-CPU command buffer recording

Use different descriptor pools to allow multi-CPU descriptor set allocations

Most resource creation functions take locks

But these are not on the performance path

Maximizing parallel multi-CPU execution

Goals: multi-CPU scalable



40

COMPUTE

Uses a special compute pipeline

Uses the same descriptor set mechanism as 3D

And has access to all the same resources

Can be dispatched interleaved with render-passes

Or to own queue to execute in parallel

For all your general-purpose computational needs



41

RESOURCE HAZARDS

Resource use from different parts of the GPU may have read/write dependencies

For example, will writes to framebuffer be seen later by image sampling

Application uses explicit barriers to resolve dependencies

GPU may flush/invalidate caches so latest data is written/seen

Platform needs vary substantially

Application expresses all resource dependencies for full cross-platform support

Application also manages resource lifetime

Can’t destroy a resource until all uses of it have completed

Application managed

Goals: explicit API, predictable performance



42

AVOIDING HAZARDS

Update an image with shader imageStore() calls

vkBindPipeline(cmd, pipelineUsesImageStore);

vkDraw(cmd);

Flush imageStore() cache and invalidate image sampling cache

vkPipelineBarrier(cmd, image, SHADER_WRITE, SHADER_READ);

Can now sample from the updated image

vkBindPipeline(cmd, pipelineSamplesFromImage);

vkDraw(cmd);

An example – sampling from modified image

Goals: explicit API



43

HELLO TRIANGLE

Launch driver and create display

Set up resources

Set up the 3D pipe

Shaders

State

Record commands

Submit commands

Quick tour of the API



44

QUEUE SUBMISSION

Implementation can expose multiple queues

3D, compute, transfer or universal

Queue submission should be cheap

Queue execution is asynchronous

App uses VkFence to know when work is done

App can use VkSemaphore to synchronize dependencies between queues

Scheduling the commands in the GPU

Goals: explicit API



45

PRESENTATION

The final presentable image is queued for presentation

Presentation happens asynchronously

After present is queued application picks up next available image to render to

Using the WSI extension

Goals: explicit API

Time
Present

Display

Image0

Next

Image1

Render Present

Image1

Next

Image0

Image0 displayed, image1 ready for reuse



46

GOOD PRACTICES

Perform your own sub-allocation from larger VkDeviceMemory allocations

Reduces allocation overhead and “hitching”

Use optimal image tiling whenever possible

Linear tiling is very limited on NVIDIA GPUs – 2D-only, no mipmaps, no arrays

Using dynamic UBOs and SSBOs to reduce descriptor set updates

On NVIDIA GPUs image layouts are irrelevant

Just leave images in the VK_IMAGE_LAYOUT_GENERAL layout

Use Vulkan well on NVIDIA GPUs



47

PERFORMANCE

From csfthreaded sample app with 44k drawcalls and high-frequency UBO and vertex buffer binding updates

Putting it all together

MODE GPU TIME CPU TIME

gl uncached 4.1 7.8

vk uncached cmd 1 thread 1.7 1.5

vk uncached cmd 2 threads 1.7 0.8



48

NVIDIA VULKAN RELEASE PLANS



49

WHY IS IT IMPORTANT TO NVIDIA?

API is designed to be extensible

We can easily expose new GPU features

No single vendor or platform owner controls the API

Scales from low-power mobile to high-performance desktop

Can be used on any platform

It’s fast!

It’s open



50

WHAT ABOUT OPENGL?

OpenGL and OpenGL ES will remain vital

Together have largest 3D API market share

Applications – games, design, medical, science, education, film-production, etc.

OpenGL improvements just last year

OpenGL ES 3.2

13+ New ARB extensions: ARB_post_depth_coverage, ARB_fragment_shader_interlock, 
ARB_texture_filter_minmax, ARB_sample_locations, ARB_shader_viewport_layer_array, 
ARB_sparse_texture2, ARB_sparse_texture_clamp, ARB_gpu_shader_int64, 
ARB_shader_clock, ARB_shader_ballot, ARB_ES3_2_compatibility, 
ARB_parallel_shader_compile, ARB_shader_atomic_counter_ops

OpenGL is also very important to NVIDIA



51

OPENGL VS VULKAN

OpenGL higher-level API, easier to teach and prototype with

Many things handled automatically

OpenGL can be used efficiently and obtain great single-threaded performance

Use multi-draw, bindless, persistently mapped buffers, PBO, etc.

Vulkan’s ace is its ability to scale across multiple CPU threads

Can be used with almost no lock contention on the performance critical path

Solving 3D in different ways



52

VULKAN ON NVIDIA GPUS

Vulkan is one API for all GPUs

Vulkan API supports optional features and extensions

Supports multiple vendors and hardware

From ES 3.1 level hardware to GL 4.5 and beyond

NVIDIA implementation fully featured

From Tegra K1 through GeForce GTX TITAN X

Write once run everywhere

Fully featured



53

VULKAN RELEASE DAY

Exact release date still Khronos confidential – but it’s real soon

NVIDIA will release public developer drivers for Windows and Linux

Shield Tablet and Shield Android TV OTA updates will support Vulkan

Vulkan to be included in Windows and Linux r364 UDA consumer drivers by April

Coming real soon now



54

VULKAN GPU SUPPORT

ARCHITECTURE GPUS

Kepler
GeForce 600 and 700 series

Quadro Kxxx series

Tegra K1

Maxwell
GeForce 900 series and TITAN X

Quadro Mxxx series

Tegra X1

Pascal TBD



55

VULKAN FEATURE SUPPORT

FEATURE KEPLER MAXWELL

OpenGL ES 3.1 level features Yes Yes

OpenGL 4.5 level features Yes Yes

Sparse memory Partial Yes

ETC2, ASTC texture compression Tegra Tegra



56

RELEASE PLANS

Fully conformant Vulkan implementation

All basic optimizations implemented

Basic GL interop and GLSL support

To help ease porting existing code and shaders

cfsthreaded sample app – source code and documentation

NVIDIA Dev-tech material

Blog posts, samples, frameworks, wrappers, talks, conference sessions, support, etc.

What’s in our first release?



57

GLSL IN VULKAN

Use GLSL directly when creating Vulkan shader modules

Implements KHR_vulkan_glsl extension

Developer convenience

Not intended to “replace” SPIR-V for shipping apps

To help with rapid development



58

OPENGL INTEROP

OpenGL and Vulkan can be used together

OpenGL extension to draw Vulkan image to GL framebuffer

glDrawVulkanImageNV

Synchronize OpenGL and Vulkan

cfsthreaded sample app demonstrates this

Sample app made available at release

To ease porting existing apps



59

CSFTHREADED

Renders CAD models

Uses OpenGL and Vulkan together

Demonstrates several rendering techniques

Simple GL

NV_command_list

Single-threaded Vulkan

Multi-threaded Vulkan

Various buffer updating techniques

Sample app



60

ERROR CHECKING

Vulkan spec requires minimal error checking in driver

Results are undefined with bad inputs or usage

May cause VK_ERROR_DEVICE_LOST

NVIDIA Vulkan driver retains some “cheap” error checking

Mostly on vkCreate calls

Checks bad parameters

Reports invalid shaders

Last safety net



61

VALIDATION LAYER TODOS

The Vulkan API is not easy to use for first-timers

There are no safety nets provided by base implementations

Validation layer is vital to Vulkan’s success

Current validation layer is far from complete

All our responsibility to improve the validation layer

Report bugs (to LunarG and soon via GitHub issues)

Fix and improve implementation directly

Vital for Vulkan success



62

MISSING API FEATURES

Transform feedback

Conditional rendering

Multi-GPU

Specifying the instanced array divisor

Shader subroutines

Stuff in OpenGL that didn’t make version 1.0



63

MULTI-GPU

Ability to synchronize GPUs with shared semaphores

Ability to share memory

Ability to do peer-peer transfers

Khronos goal to support both homogeneous and heterogeneous multi-GPU

Working together to do more



64

VULKAN API IMPROVEMENTS

State inheritance

More dynamic state

Remove PSO-framebuffer dependency for better PSO reuse

Remove secondary command buffer-framebuffer dependency

So command buffers can be used with different framebuffers

We can do better



65

DYNAMIC STATE

Primitive topology – point, lines, triangles, etc

Polygon mode – fill, line, point

Cull mode – none, front, back, front+back

Front face – ccw, cw

Depth stencil state – depthWrite, depthCompareOp, etc.

Blend state – color and alpha blend factor and ops

Things we can easily make dynamic



66

VULKAN INTEROP

OpenGL interop – beyond the basic

CUDA interop

DirectX interop

Playing nice with other APIs



67

GAMEWORKS FRAMEWORK
Build, deploy and debug Android code right from Visual Studio



68

CONCLUSION

We’re super-excited about Vulkan

Can’t wait to see what you do with it!

GO

Over to you




