PhysX & APEX Programming and Optimization
Purpose of this Presentation

• Understand the story behind the Scene
• Tips on how to create similar effect in a Game engine
• Tips on Optimization
PhysX SDK Workflow

• PhysX Workflow
 – Asynchronous Simulation
 – PhysX SDK natively is multi-threaded

• PhysX-related Game State
 – Position
 – Velocity
 – Normal
 – ……

[Diagram]

Update PhysX State

Start Simulation

Do Other Stuff(Rendering AI etc)

Fetch Results

Update Game State

[gameworks.nvidia.com]
PhysX Fluid/Particle

- From 《P.L.A》 Benchmark
PhysX Particle Creation

• Creation of Particles
 – Directly calculate states(pos, vel) of particles
 • Create All particles upfront
 • Insert/Delete Particles each frame
 – Use NxFluidEmitter to emit particles automatically

• Main Properties
 – Collision radius and collision response
 – Velocity control of particles
 – SPH(fluids) only properties, e.g., viscosity and surfaceTension
Hardware Acceleration

• To increase the number of Particles
 – GPU PhysX particle (NX_FF_HARDWARE)
 – Adopt Instancing
 • UE3 material setting ➔
Share PhysX Particle SDK Sample

UserData Fluid Sample (hardware) www.fraps.com
F1 for help
GpuHeapUsageTotal = 3072, max = 6894 kB
GpuHeapUsageFluid = 1024, max = 4712 kB
GpuHeapUsageUtils = 0, max = 134 kB
GpuMeshCacheUsage = 0, max = 0 kB
Share PhysX Particle

• Max Particles
 – Maximum Number of Particles in a Particles system

• Particle Reserve
 – Old Particles in the FIFO will be deleted
 – Maximum Number of Particles to emit in a frame after the Maximum Particle number is reached
PhysX Cloth

- 《P.L.A》Cloth Sample
PhysX Cloth

• 《P.L.A》Cloth Sample，Explosion Interaction
Deformables

• Cloth & Softbody
• Particles + Constraints + Meshes
 – Cloth: triangle mesh
 – Softbody: Tetrahedral mesh
• Special features
 – Tearing
 – Self-collision
 – Pressure

[Diagram of cloth and softbody particles with constraints and pinned particles]
Deformables Creation Process

1. Export model from Max/Maya
2. Using NxCookingLib to cook cloth/softbody mesh for simulation
3. With cooked Mesh, fill in descriptors with other parameters
4. Last step, call NxScene’s API to create the cloth/softbody object
Cloth Optimization

• FreezeWhenNotRendered(pseudo-code)
 if (Cloth out of view frustrum)
 {
 Cloth->setFlag(NX_CLF_STATIC)
 }
• Cloth stops at the last position.
• Simulation stops to increase performance
Optimization for Tearable Cloth

- ValidBound Setting and Sample
ValidBound Opt Setting

• Cloth Flags
 • \texttt{NX_CLF_TEARABLE}
 • \texttt{NX_CLF_VALIDBOUNDS}

• \texttt{setValidBounds}(\texttt{const NxBounds3} & validBounds)
 • A World space cube
 • Cloth verts outside this cube will be deleted
 • Note: to remove the rendering triangles as well
APEX Destructible

- 《P.L.A》 Destructible Scene
APEX Destructible

- 《P.L.A》Destructible Scene
APEX vs PhysX Workflow

• PhysX
 – Simulate/fetchResults
 – Update Game State
 • Position, Rotation, Velocity, Normal, etc.

• APEX
 – Load Assets
 – Simulate/fetchResults
 – Update Game State
 • Vertex Buffer, Index Buffer, Bone Buffer, etc
Rigid Skinning Rendering

• Single VertexBuffer
Callback on Fracturing

• Callback function
 – Sample:

    ```
    void physx::apex::NxUserChunkReport::onDamageNotify ( const NxApexDamageEventReportData & damageEvent )
    {
      for each DamageEvent
      {
        Emit Fracturing Particles at the hit Location;
        Playback Fracturing Sound;
      }
    }
    ```

• NxApexDamageEventReportData
 – Destructible Actor
 – HitLocation, HitNormal
 – Fracturing Chunk index
 –
Jitter

• Problem:
 – Sometimes a pile of PhysX convexes can bounce around unnaturally for a long time.

• Possible Solution
 – Increase damping
 • Increase angular damping parameter to a value of 10-15
 – Lose energy
 • Increase friction and lower restitution
 – Equalize masses
 • If there is a large mass difference the body with the smaller mass can move quite a lot and keep the whole pile moving.
 – Put them to sleep
 • Increase the sleep energy threshold value will cause destructible chunks to fall asleep more easily.
Authoring Optimization

• Debris Timeout
Authoring Optimization

• Debris Setting with Code
 – setParamBool(*params,"destructibleParameters.flags.DEBRIS_TIMEOUT", true);
 – setParamI32(*params,"destructibleParameters.debrisDepth", 1);
 – setParamF32(*params,"destructibleParameters.debrisLifetimeMin", 0.0f);
 – setParamF32(*params,"destructibleParameters.debrisLifetimeMax", 0.0f);

• Similar for Debris Max Separation
Simulation Optimization

• Avoiding too many chunks on screen
 – setMaxDynamicChunkIslandCount
 • Maximum number of dynamic chunks island in the scene.
 – setMaxChunkCount
 • Maximum number of dynamic chunks in the scene. No less than maxDynamicChunkIslandCount
 – setLODResourceBudget
 • Overall LOD resource setting for an APEX scene(including destructible)
 – setMaxActorCreatesPerFrame
 • Cap the maximum number of Destructible actors in a frame
Hardware Acceleration

- Simulate Rigid body on GPU--GRB
Q & A?