GOC

D3D11 Deferred Contexts

Primer & Best Practices

Bryan Dudash
Developer Technology, NVIDIA

GAME DEVELOPERS CONFERENCE"

SAN FRANCISCO, CA
MARCH 25-29, 2013
EXPO DATES: MARCH 27-28

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GDCONF.COM

e Discussions on bottlenecks

e What are these “deferred contexts”?
o Best Practices

e Anecdotes

e Final Thoughts

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GDCONF.COM

Bottlenecks

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GDCONF.COM

Game Engines are Complex

o« Many possible bottlenecks
« CPU

e Game code bottleneck
e D3D11 Runtime bottleneck
e Driver code bottleneck

« GPU

e Shading, Texture, etc etc
« Blending

o Bandwidth
o Texture and Buffer updates

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GDCONF.COM

e This talk is about CPU bottlenecks
o Specifically code around rendering

o Other bottlenecks well covered by previous talks
e 'DirectX11 Performance Reloaded”
e Nick Thibieroz, AMD
o Holger Gruen, NVIDIA

MARCH 25-29, 2013 GDCONF.COM

Our target case

Application producer thread

Driver

| —— —
O
D m=

. . D3D API command
* Not feeding draw commands to driver fast enough _ Draw command, state setting etc.

« Not ideal way to drive performance
Mapped buffer uploads

- Buffer updates

Non-D3D workloads
- Anything else

* Cool diagram blatantly borrowed from
“DirectX11 Performance Reloaded Talk”

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GDCONF.COM

What is a "Deferred Context”

o« ID3D11DeviceContext that does not immediately issue commands invoked on it
o Called a “deferred context” or “*DC”
e« All commands are deferred until later

e “Finished" into a ID3D11CommandList
o« ID3D11CommandList is executed later on immediate context (*IC")

e Supported on all D3D11 hardware
e Possibly through emulation in D3D11 runtime

e Check direct driver support with:

struct D3Dll_FEATURE_DATA_THREADING {
BOOL DriverConcurrentCreates;

BOOL DriverCommandLists;
} D3D1 l_FEATURE_DATA_THREADING

GAME DEVELOPERS CONFERENCE" 2013

MARCH 25-29, 2013 GDCONF.COM

Simple Pseudo code example*

IC Render Thread

ID3D11Device* pd3dDevice;
ID3D11DeviceContext* pd3dImmediateContext;
ID3D11DeviceContext* pd3dDeferredContext = NULL;
ID3D11CommandList* pd3dCommandList = NULL;
// Make ourselves a shiny new DC
pd3dDevice->CreateDeferredContext

(0 , &pd3dDeferredContext);
loop { // our frame loop

// Some IC rendering or other setup

// Indicate to other thread to start rendering to DC
// with Event or other threading construct

// Possibly do some unrelated IC work
// Wait for completion of DC thread(s)
// Execute all deferred commands
pd3dImmediateContext->ExecuteCommandList
(pd3dCommandList , FALSE);

// More IC rendering and back buffer swap

}

//,/”’——_+7/ render some stuff to deferred context

——

Some Worker Thread

// Traverse scene graph and

// Create a command list with
// all commands since previous finish call
pd3dDeferredContext->FinishCommandList

(FALSE, &pd3dCommandList);

* Don’t write an implementation that
looks like this. This is just meant to
show you the D3D11 interfaces used.

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GDCONF.COM

Another Simple Example - Jobs

DC Pool
Allocate DC Allocate DC
to Group “A” to Group “B”
Dependency,
Traverse Scene L L Traverse _Scene
Rendering to Render Object to “A” u Render Object to “B” Renderlng‘ tc,)’
Group “A” Group "B
Finalize Finalize
Command List Command List
\\AII \\BII

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GDCONF.COM

What does using a DC enable?

o Lower CPU bottleneck*
o By de-serializing app render,d3d runtime and driver work

e Thread out runtime D3D calls onto as many threads as you like.
o Can simplify a jobs solution
o Reduced app/driver sync time

o« The Good/Bad
o +Facilitates parallelization of scene traversal
o +Parallelizes runtime API calls
o +Parallelizes buffer updates

-Redundant state overhead
«Avoidable depending on grouping

* There are tons of caveats we’ll cover in the Best Practices section

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GDCONF.COM

What can’t I do with DCs?

You knew this was coming, right?

DCs are a “fire & forget” model .
o Deferred Contexts cannot get any feedback from the GPU e-
o Query data cannot be retrieved.

No device state inheritance or transmission
o Always starts with default device state
o Always leaves with default device state

« However global state (textures, buffers, etc) persists
e Across IC/Execute

Only addresses CPU bottlenecks

Inherited Object State

e Global state of
objects is inherited
between contexts

o Texture data,
constant data,
queries

e Display lists

o Fill once, use multiple
times

MARCH 25-29, 2013

IC: write(A) A
CL execute (next 4 operations) A
-- CL Map(discard) - write (B) B
-- CL Map(discard) - write(C) C
-- CL Draw C
-- CL Map(discard) - write (D) D
IC Draw D
IC Map (discard) - write(E) E

GDCONF.COM

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GDCONF.COM

Manual Command Lists

e Application custom threaded command lists
e« Manually capture all data required to issue D3D11 calls
. Replay on IC

o« Token+Replay is what D3D11 emulation does
. If driver doesn’t support command lists directly

. Be careful of I$ thrashing from branchy replays
«Branch mispredicts

e The good/bad
. +Allows you to parallelize scene traversal
. +Allows more efficient render state reuse
. +Can be lock-free and guarantee no allocations/deallocations during replay
. - Does not parallelize runtime API calls

- Does not parallelize buffer updates on app thread
« Driver still able to parallelize these

. - Watch out for thread sync issues

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GDCONF.COM

@%@ Some Numbers

All numbers run on:
- In house DC test application

- Notebook Core i7 2670QM @ 2.2GHz
- 16GB RAM,

- GeForce GTX560M

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GDCONF.COM

Batched DC versus IC
* Run with custom DC test application

25

20

=
(S,]

Frame Time(ms)
=
o

SN O O S O »
S L (O L7 (O L (O L (O OO L (O O ¥ O (O L7 (O L (O L (O OO O
R A R S R s R R R R I

N
O
N

O O O O
O (O L (O
Q7AD" 507 59
NZEINIEINCIEN:

O O O O O O O O »
S” L (O L (O O (O L (O
97 Q7 907 N KT L7 KT O &

Draw Call Count

Batched DC IC

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GDCONF.COM

Scene vs Per-Draw vs Batched DC performance

* Run with custom DC test application

Too many thread events
causing efficiency issues

= = = =
o N » [e)}

Frame Time(ms)
(o]

6
4
2
0

— o

o o

wn o N o LN o LN o n o wn o wn o N o LN o LN o LN o wn o wn o wn o wn o N o LN o n o n o wn o

i i o o o™ o < < n wn (o] (Vo] ~ M~ [ee] o0 (o)} (o)} o o — — N o m o < < [Fp] LN (Y] (o] ™~ ~ ©0 (o] [e)] (e)] o

— i — — — - L — i i — — — L — i i - — — (9]

Draw Call Count

Scene Per-Draw Batched

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GDCONF.COM

Best Practices C&

GAME DEVELOPERS CONFERENCE" 2013

Test Test Test

o Always test using the latest drivers

e Remember to test on equivalent systems
«Or the same system for best results

o« Two complete render paths
o Initial render path (non-DC)
e DC command lists threaded path
At least during internal dev to make sure you are gaining perf
. Try to test on different:
e CPUs - clock speed and cores affect CPU perf and bottlenecks
e GPUS
« Multiple generations
« Multiple IHVs - different drivers have different implementations
e« Motherboards - PCIE bandwidth may affect CPU waiting

MARCH 25-29, 2013 GDCONF.COM

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GDCONF.COM

Be a Good Buffer Management Citizen™

e John McDonald’s “ Efficient Buffer Management”
e GDC2012 talk

e NEVER readback from the GPU
o« I.e. Never use staging resource on a DC
o Will result in the map being forced onto IC
ewhen command list is executed
e And thus serialized
e« And anything dependent on that will also be serialized

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GDCONF.COM

NEVER set Restore Context State

e 2"l parameter to ExecuteCommandList

o If set to TRUE
e Will save and restore ALL d3d state

e Set *tons* of redundant state
e Added CPU overhead

o If set to FALSE
o Application is responsible to set what state it needs

o Likely you are already setting proper state

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GDCONF.COM

Load Balance List Size

e« Don’t make a new DC/Commandlist for every draw call
e Really, just don't
e Don’t make your command lists too short

e Should have at least a few hundred API calls
o At least dozen draws or so
o A “standard” mix of buffer updates, state setting and draws.

o Don’t make your command lists too long
o Execute of long lists may interfere with other IC calls
e Chop into multiple as some tweak-able limit
o« Dependent on engine implementation
o State per call, etc
e See “"TEST TEST TEST"” best practice

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GDCONF.COM

Operations to Avoid

o Doing these inside a DC will affect performance adversely

e Queries
o Subsequent getData() on IC will (potentially) stall until DC exec
reaches endQuery

o Readbacks/blit to staging resources

o Subsequent map() on IC will potentially stall until DC exec
reaches the blit

o Any really large one time updates
e Do these on IC

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GDCONF.COM

Don’t hog the CPU

e I know you want to get to 100% utilization but...

o If the driver has no headroom to process commands then your worker
threads will just be waiting...

e Driver cannot fully transform to hardware commands on DC
e Some work remains to be done on IC during command list execute
o If all cores are dominated by application, driver is starved.
e Try 2*(N-1) as well as (2*N)-1 application threads
e i.e. 6-7 on a quad core. For *all* game threads.

« Driver may or may not need a full physical core
e Test test test

Don’t muck with CPU affinity

o Will almost never offer a speedup

o Will interfere with driver’s efficiency
o Can quickly become bottleneck

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GDCONF.COM

Don't pre-clear state

o DCs provide a default state context for you!

o Clearing state is just extra busy work
o But may happen as a result of your engine’s state
management code

e Examples
o Setting shaders to NULL
o Setting SRVs to NULL

e Etc...

Manage Redundant State

e A general best practice

e Spend time on threads to determine
which state can be reused

o May not be true for single threaded IC

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GDCONF.COM

Maintain a DC pool

o Initialize DCs pool with threads
e Reuse these
e DC state resets after finalize

e DCs hold memory while commands lists are “in flight”
e Or longer if you don't release the command list!

e ~10-30MB/list/frame assuming balanced lists
o Constant buffers, state, etc

o Plus dynamic buffer updates sizes

o 32bit applications may run into address space issues for large
command lists

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GDCONF.COM

UpdateSubResource bug

e On drivers that don't support command lists

If your application calls UpdateSubresource on a deferred
context with a destination box—to which pDstBox points—that
has a non-(0,0,0) offset, where the driver does not support
command lists, UpdateSubresource inappropriately applies
that destination-box offset to the pSrcData parameter.

e There is workaround code listed in the MC D3D11
documentation for UpdateSubResource

MARCH 25-29, 2013 GDCONF.COM

Anecdotes

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GDCONF.COM

Civilization V

o« Watch Dan Baker’'s GDC2010 presentation.
“Firaxis’ Civilization V : A Case Study in Scalable Performance”

o Large multi-threaded engine

e Sometimes >10k draws per frame (w/ lots of state)
e« “n wide” render buffers

e Threaded out to # of cores

o Cognizant of command list sizes

eLoad balance to homogenize # of calls

o DCs versus serialized execution of render commands initially gained ~50%
performance

o Later non-DC path optimizations closed that gap a bit

o Saw major benefits from parallel buffer updates

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GDCONF.COM

Other Anecdotes

e Assassin's Creed 3
o Conservatively ~24% gain from using DCs in CPU bottleneck situations
e« >> in some situations
e i.e. 37 FPS -> 46 FPS
¢ 2.93GHZ Nehalem, GTX680, 720p

o Other engines*
e DC command lists quicker to implement than manual threading with IC
« Simpler than rolling your own token+replay
o Be careful with too many command lists
« Extra state require to set up draws

« Lint on your state calls to avoid redundant sets
« Important in non-DC case as well

o Watch out for over utilizing CPU in game code
« Driver needs some time too

* Covers common cases on various engines, so just call ‘em general anecdotes

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GDCONF.COM

Final Thoughts

o Threading your engine == good
o Jobs/Work system == better

e Driver DC command lists
o Parallelize API calls and buffer updates
o« May add overhead from extra state sets
« Amortize by grouping and state change filters
o Always test performance continuously
e« To make sure you have the right solution for your game

e Test on both AMD and NVIDIA

Final Thoughts(2)

o« Work with your IHV

e Only you can prevent CPU bottlenecks™
o Constantly tuning driver performance for game engine
workloads
o Improved directly as a result from working with Civ5 and AC3
o« DC use may(should) shift bottleneck
e GPU may become bottleneck
o Driver may become bottleneck

GAME DEVELOPERS CONFERENCE" 2013 MARCH 25-29, 2013 GDCONF.COM

Questions?

Bdudash at nvidia com 3

