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Agenda

Introduction to Ray Tracing for Games

RTX, DXR and GameWorks

Real-time Ray Tracing and Denoising

Path Tracing and Light Baking

Integrating Ray Tracing into your engine
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Introduction to Ray Tracing for Games
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Ray Tracing 101

▪ Ray Tracing: a primitive to query the intersections of rays against some geometry 

What is Ray Tracing

Ray Origin

Hit ‘t’ = ~1.8
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Ray Tracing 101

▪ Higher quality in-game rendering

o Reflections 

o Ambient Occlusion

o Shadows

Applications in Games

▪ Content Creation Workflows

o Light baking

o Cinematic rendering

o Path traced reference

▪ Non-rendering applications

o Audio simulation in VR (VRWorks Audio)

o Physics / Collision detection

o AI



6

Ray Tracing 101

▪ Higher quality in-game rendering

o Reflections 

o Ambient Occlusion

o Shadows

Applications in Games

▪ Content Creation Workflows

o Light baking

o Cinematic rendering

o Path traced reference

▪ Non-rendering applications

o Audio simulation in VR (VRWorks Audio)

o Physics / Collision detection

o AI



7

Ray Tracing 101

▪ Commonly used to solve the rendering equation with Monte Carlo sampling

𝐿 𝜔𝑜 = 𝐿𝑒 𝜔𝑜 +න
𝛿

𝐿 𝜔𝑖 𝑓 𝜔𝑜, 𝜔𝑖 |𝜔𝑖 ∙ 𝑛|𝑑𝜔𝑖

▪ Natural solution for Shadows, AO, Reflections, Light Baking, Film Rendering

Rendering
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Ray Tracing 101

▪ Similar primitives used today in games in real-time in various forms:

o Screen space ray tracing, distance field ray tracing, voxel cone tracing

▪ In this talk: ray tracing against full scene geometry (mostly triangles)

▪ Rendering with Ray Tracing usually requires many samples for high quality results

o From a few hundred to a few thousand

o Depending on the complexity of the integrand (scene)

Ray Tracing in Rendering Today
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Ray Traced Shadows
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Ray Traced Ambient Occlusion
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Ray Traced Reflections
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Ray Tracing 101

▪ 100s of samples per pixel are not practical in real time

▪ Small number of rays per pixel possible on current HW

▪ Is that useful enough?
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Ray Tracing 101

▪ 100s of samples per pixel are not practical in real time

▪ Small number of rays per pixel possible on current HW

▪ Is that useful enough?

▪ Previous images generated with 1-2 samples per pixel + real-time denoising

▪ Yes: high quality results possible with few samples per pixel + denoising
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RTX, DXR and GameWorks



15

NVIDIA RTX & DirectX Raytracing (DXR)

▪ NVIDIA® RTX™: ray-tracing technology for Volta GPUs

▪ The result of a decade of GPU ray tracing R&D at NVIDIA

▪ Exposed via Microsoft’s new DirectX Raytracing API (DXR) for DirectX 12

▪ New pipeline: the Ray Tracing Pipeline

Context
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RTX & DXR

▪ Powerful and flexible programming model, similar to NVIDIA OptiX

▪ Easy to write efficient ray tracing algorithms

▪ DXR makes it easy to integrate into engines that already use DirectX 12

▪ DXR provides IHV-agnostic abstraction

▪ RTX provides an efficient implementation on NVIDIA Volta GPUs

▪ RTX on Volta delivers performance needed for real-time ray tracing

▪ For more DXR details see Matt Sandy’s talk at 3:30 pm, http://aka.ms/DXR

and NVIDIA blog

Benefits

http://aka.ms/DXR
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GameWorks Ray Tracing

▪ GameWorks: tools, simulation and rendering technology for developers

▪ Announcing GameWorks Ray Tracing Denoising modules

▪ Ray Traced Shadows, Ambient Occlusion and Reflections Denoising

▪ Available soon

More context
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Related Work at GDC

▪ Advanced Graphics Day (Monday): Microsoft, Futuremark and Remedy

▪ Epic-NVIDIA-ILMxLAB Reflections demo earlier today

▪ Additional talks later today in this room: NV Research, EA SEED, EA Frostbite

▪ Talk by Microsoft + EA about future of DirectX (DXR)

Be sure to check these out too
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This Talk

▪ A showcase of possibilities enabled by real-time ray tracing with RTX

▪ Details about NVIDIA’s new GameWorks Ray Tracing Denoising modules

▪ Our goal: inspire you to start experimenting with real-time ray tracing

What to expect
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Real-Time Ray Tracing and Denoising
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Source of Noise in Ray Tracing

▪ The rendering equation is solved with Monte Carlo sampling

𝐿 𝜔𝑜 = න
𝛿

𝐿 𝜔𝑖 𝑓 𝜔𝑜,𝜔𝑖 |𝜔𝑖 ∙ 𝑛|𝑑𝜔𝑖 =෍

𝑖=0

𝑛

𝐿 𝜔𝑖 𝑓 𝜔𝑜, 𝜔𝑖 𝜔𝑖 ∙ 𝑛 /𝑝(𝜔𝑖)

▪ Every term in the estimator is a complicated function over the hemisphere

o Incoming radiance, visibility, BRDF, and sampling Pdf

▪ Insufficient sampling leads to high variance in the estimator
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Previous Denoising Work

▪ Very active area of research

• Spatiotemporal Variance-Guided Filtering: Real-Time Reconstruction for Path-Traced Global 

Illumination [Schied, et al. 17]

• Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising 

Autoencoder [CHAITANYA, el al. 17]

• Multiple Axis-Aligned Filters for Rendering of Combined Distribution Effects [Wu, et al. 17]

• Kernel-predicting Convolutional Networks for Denoising Monte Carlo Renderings [Bako, et al. 

17]

• … And many others

▪ Also products like NVIDIA OptiX 5.0 AI Denoiser
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Previous Denoising Work

▪ Input often contains 10s or hundreds of samples

o Or rely on temporal reprojection(ghosting issue without correct motion vectors)

▪ Denoising cost from ~100ms to minutes

▪ Noisy primary visibility samples (DoF, Motion blur)

▪ Results often really close to ground truth, measured in rMSE
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Real-Time Denoising Requirement

▪ Input image with extremely low sample count

o We target 1 sample per pixel

▪ Ghosting free, temporally stable

▪ Denoising budget of ~1 ms for 1080p target resolution on gaming class GPU

▪ Perceptually close to ground truth, able to preserve:

o physically correct contact hardening

o Elongation and anisotropy

▪ Smooth G-Buffer (i.e.: no DOF, or motion blur, as common in film rendering)
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Denoiser Design Choices

▪ Image space vs. Lightmap space vs. Path space vs. Light field space

▪ Temporal / history data vs. single-frame

▪ Image data vs. Scene data: ray hit distance, surface roughness, normal, light 

position, size etc.

▪ Denoising of individual terms separately vs. denoising all the lighting at once

▪ AI based vs. hand-crafted

Many options
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State of the Art Real-Time Denoising

▪ Exciting results with glossy reflections, area light soft shadows, and AO

▪ Effect-specific denoising, using scene information to estimate optimal filter foot 

print

▪ State of the art quality at extremely low sample count

o Works well with even 1spp

o No temporal reprojection involved  ghosting/lagging free

“One sample per pixel can achieve a lot!”
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Ray Traced Shadows, 1spp Denoised
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Ray Traced Ambient Occlusion, 2spp Denoised
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Ray Traced Reflections, 1spp Denoised
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RTX Demo Video for slides 31-70:
https://www.youtube.com/watch?v=tjf-1BxpR9c

https://www.youtube.com/watch?v=tjf-1BxpR9c
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Ray Traced Area Light Shadows and Denoising



32

Ray Traced Area Light Soft Shadow

▪ More physically correct soft shadow visuals

o Higher quality contact hardening even for really large light source

• Not possible with shadow mapping based algorithms

o More accurate geometry than character capsule shadows

o Supports non-rigid motion (skinning, etc) unlike Distance Field Shadows

o Can be combined with analytical area lighting

▪ Eliminate common shadow mapping artifacts:

o Sampling rate mismatch, shadow acne, peter panning, CSM seams, etc

Why Ray Traced Shadows?



34

Soft Shadows with 1spp
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Soft Shadows 1spp Denoised
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Soft Shadows Ground Truth
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Shadow Mapping
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Area Light Soft Shadow Denoising

▪ Denoising only applied to visibility term (split sum approximation)

o 𝐿 𝜔𝑜 = 𝛿׬ 𝑓 𝜔𝑜,𝜔𝑖 𝐿𝑑 𝜔𝑖 V(𝜔𝑖)|𝜔𝑖 ∙ 𝑛|𝑑𝜔𝑖 𝛿׬≈ V(𝜔𝑖)𝑑𝜔𝑖 𝛿׬ 𝑓 𝜔𝑜, 𝜔𝑖 𝐿𝑑 𝜔𝑖 |𝜔𝑖 ∙ 𝑛|𝑑𝜔𝑖

▪ Per light source denoising

▪ Inputs: Hit distance, Scene depth, Normal, Light size and direction

▪ Separated cross bilateral filter with variable filter radius and weights

▪ Different denoisers for radial lights, directional lights and rectangular lights

▪ Output: filtered visibility term

Denoiser Overview

Denoised! Analytical Approx.
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Ray Traced Ambient Occlusion and Denoising
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Ray Traced Ambient Occlusion

▪ Higher quality results compared with existing techniques

o Physically correct ambient occlusion

o SSAO leaves ‘dark halo’ around depth discontinuities

o Screen Space techniques miss occlusion from geometry that is not visible:

• Off screen boundaries

• Behind the camera

• Surfaces close to parallel to the view vector (e.g.: tables, chairs, very common)

Why Ray Tracing? 
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Screen Space AO



42

Ambient Occlusion 2spp Denoised
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Ambient Occlusion Ground Truth
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Ambient Occlusion with 2spp
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Denoising Ray Traced Ambient Occlusion

▪ Separated cross bilateral filter

o Estimate filter kernel size in world space based on hit T

▪ Using ideas from ‘Axis-Aligned Filtering for Interactive Physically-Based Diffuse 

Indirect Lighting’ [Mehta, el al. 13]

▪ Larger kernel size in open region, smaller in contact region

o Visibility changes slower in open region, thus can share more spatially

o Preserve contact darkening

▪ At 1spp, achieved smooth far field occlusion

▪ With 2-4 spp, can recover detailed occlusion in contact region

Denoiser Overview



46

Ray Traced Reflections and Denoising
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Ray Traced Reflections + Denoising

▪ Screen Space Ray Traced Reflections

o Missing data due to off screen ray hits

o Incorrect specular on reflections

• Specular of primary shading point being reused was computed with view direction 
instead of reflected ray direction

vs. Screen Space Reflections
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Screen Space Reflections
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Ray Traced Reflections
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Ray Traced Reflections + Denoising

▪ Pre-integrated light probes / environment maps

o Usually static. Dynamic is rarely practical

o Can be very wrong if not placed correctly

o Roughness range discretized into fixed number of levels

o Pre-integration with view vector perpendicular to receiver plane misses NDF 

anisotropy

vs. pre-integrated light probes
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Ray Traced Reflections + Denoising

▪ Planar reflections

o Only works for planar surfaces

o Does not scale to many of these

o No correct glossy reflections

vs. Planar Reflections
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Glossy Reflections with 1spp. Roughness = 0.18
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Glossy Reflections 1spp Denoised
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Glossy Reflections Ground Truth
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Stochastic Screen Space Reflections + Probe
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Glossy Reflections Denoising

▪ Denoising applied only to the incoming radiance

o 𝐿 𝜔𝑜 = ׬
𝛿
𝐿 𝜔𝑖 𝑓 𝜔𝑜, 𝜔𝑖 |𝜔𝑖 ∙ 𝑛|𝑑𝜔𝑖 𝛿׬≈ 𝐿 𝜔𝑖 𝑑𝜔𝑖׬𝛿 𝑓 𝜔𝑜, 𝜔𝑖 |𝜔𝑖 ∙ 𝑛|𝑑𝜔𝑖

▪ Specular albedo included in pre-integration term so won’t be overblurred

▪ Denoising only the radiance term, no noise from BRDF sampling

▪ Cross bilateral filter with aniso kernel footprint estimated based on projecting the 

BRDF lobe foot print back to screen space

Denoiser overview

Denoised! Pre-Integrated
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Limitations

▪ Shadows denoiser results can be of lower quality for overlapping penumbra from 

two occluders with very different distances from the receiver

▪ Reflections denoiser is further from ground truth as roughness increases 

(e.g.: squared roughness > 0.4)

▪ AO denoiser may need at 2 or more rays to capture finer details

▪ Expect to continue improving over time to match more closely ground truth with 

better performance

of current denoising technology
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Future Work

▪ Deep learning based denoisers

o Using same input as these hand-crafted denoisers

o Expect this could be the best solution

▪ Denoising all lighting component together to save time and memory

▪ Hybrid approaches combining screen space with world space tracing
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Reference In-Engine Path Tracer
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Path Traced Reference Image

▪ Powerful tool to improve content creation pipeline

o Render path traced image as target for tuning real-time rendering techniques

o Material tuning, light probe placement, lighting setup, overall brightness…

▪ Extremely useful for rendering programmers too

o Tuning and validating the look of real-time rendering algorithms

o Adjusting shading of area lights

o Tuning denoisers

o Know what you are missing in your hacks

Next Gen Rendering Work Flow
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In-Engine Path Tracing

▪ Powerful programming model in DXR abstracts all the complexity, making it easy 

to write light transport algorithms. 

▪ RTX provides optimized implementations of Acceleration Structure build/update, 

as well as traversal and scheduling of ray tracing and shading

▪ Ability to use HLSL means you can reuse much of your existing shading code

▪ Physically based shading commonly used in game engines today makes building 

path tracer in game engine easier than it used to be

Easier today than it has ever been
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In-Engine Path Tracing

▪ Experimental Path Tracer written by us as soon as DXR was integrated and 

working with ray traced reflections. 

▪ Not production quality at this point

▪ Separate ray generation shader runs path tracing loop

▪ Simplified Pixel Shader that only evaluates the material graph, but no lighting

o Output returned to path tracing ray gen shader via payload

o Engine-generated material shaders can be used directly (except where using ddx/ddy)

What we did in UE4
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In-Engine Path Tracing

▪ BRDF importance sampling on top of UE4’s shading model

▪ Light source sampling for all light types to do NEE

▪ Analytical ray-light intersection to support MIS initially

▪ Importance-sampled SkyLight cubemap

▪ Light culling when sampling from many light sources

What we did in UE4
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DL Based Path Tracing Denoising

▪ Integrated NVIDIA OptiX AI Denoiser, recently released in 5.0

▪ Improves quality of the rendered image from 0.8 ssim to 0.99 ssim

(with respect to target reference image)

▪ Fast on Volta GPUs thanks to Tensor Cores

▪ Blend smoothly between noisy image and denoised image starting at some set 

number of iterations (depending on scene)

NVIDIA OptiX 5.0 AI Denoiser
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In-Engine Path Tracing + AI Denoising
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Light Baking
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In-Engine Light Baking

▪ Leverages a lot of the same code written for a reference path tracer

▪ Different types of light baking

o 2D Lightmaps 

o volumetric lightmaps

o environment capture cubemaps)

▪ Different modes of baking

o Preview mode

o Batch mode
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Lightmap Baking Preview Mode

▪ Focus on updating only the lightmap texels contributing to the current image.

▪ Enables quick iteration for artists & lighters. 

o Adjust lights, move objects and see results instantly.

▪ Our experience:

o Tried approach that launches path tracing work in lightmap space

o In the end found it easier to get good results by path tracing in screen space 
while accumulating output into lightmap texels using NvInterlockedAddFp32 (via NVAPI)

o Progressive lightmap computation, combined with smart temporal reuse and lightmap 
space denoising allows near real-time updates
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Lightmap Baking Batch Mode

▪ Utilize one or more GPUs to bake all the lightmaps in a level until converged

▪ Can dispatch a ray generation shader 2D grid per lightmap texture, or per 

lightmap atlas

▪ Two ways to get to object space data at a lightmap texel:

o Traditional: conservative rasterization of interpolated vertex attributes in lightmap 
space

o New: ray tracing an Acceleration Structure built over the 2D lightmap UVs

▪ Each has pros and cons. New approach is convenient but loses benefits of 

conservative raster
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Instant Lightmap Baking Preview
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Game Engine Ray Tracing Integration
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Game Engine Integration

▪ Extend Graphics API abstraction with RT shader types and RT commands

▪ Build and Update Acceleration Structures

▪ Create shaders and create the Ray Tracing Pipeline State Object

▪ Update Shader Parameters

▪ Start experimenting with ray tracing techniques

High Level Plan
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Game Engine Integration

▪ Build Acceleration Structure for static geometry once

▪ Rebuild Top Level Acceleration Structure every frame

▪ Update Bottom Level Acceleration Structure for deforming geometry every frame

▪ Use Compute shader to process deformable geometry into a temporary buffer to 

use as input to Acceleration Structure Update and shaders

Build and Update Acceleration Structures
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Game Engine Integration

▪ Use dxcompiler utility function to convert VS+PS pair to Hit shaders 

o Supports generation of both Closest Hit and Any Hit shader (alpha-test only)

▪ Register shaders and create the Ray Tracing Pipeline State Object

▪ Update shader parameters:

o Naïve approach: update shader parameters every frame for every object

o Optimal: update only the shader parameters that changed

Shaders and Shader Parameters
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Game Engine Integration

▪ Replace existing deferred passes for shadows, AO and reflections with ray 

generation shaders + denoising

▪ Add new techniques such as path tracing and lightmap baking

▪ Some optimization tips:

o Allow artists to create simplified materials for reflection shading

o Build a single bottom level Acceleration Structure for an object with multiple sub-
objects with different materials overlapping spatially

o Use RAY_FLAG_ACCEPT_FIRST_HIT_AND_END_SEARCH for shadow and AO rays even if 
you need the hit distance for denoising purposes

Start Experimenting, then Optimize
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Game Engine Integration

▪ Decals: early prototype outside engine showed promise

▪ Tessellation: start by disabling it if possible, otherwise limit update rate, output 

tessellated geometry to buffers and provide as input to AS builder

▪ Texture LOD: tried approaches such as replicating part of the Pixel Shader code to 

compute UVs at two auxiliary points to be able to compute derivatives

o Does not seem worth it in most scenes, unless tracing primary rays or flat mirror rays 
and texture has high frequencies

o TAA can eliminate a lot of the aliasing

Challenges and solutions
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Wrapping Up
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Takeways

▪ Biggest change in Graphics APIs since programmable shaders

▪ A few rays per pixel practical today for lighter weight effects

▪ More expensive ones (path tracing) can provide useful workflow improvements

▪ We showed a few examples of what’s possible

▪ Expect you to come up with bright new ideas

▪ Hope this was inspiring and exciting

RTX and DXR brings real-time ray tracing to developers
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Thank you!
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Ray Tracing Gems

▪ A new book series with focus on real-time and

interactive ray tracing for game development

using the DXR API.

▪ We invite articles on the following topics:
Basic ray tracing algorithms, effects (shadows, reflections, etc), non-graphics applications, 

reconstruction, denoising, & filtering, efficiency and best practices, baking & preprocessing, ray 

tracing API & design, rasterization and ray tracing, global Illumination, BRDFs, VR, deep learning, etc.

▪ Important dates

o 15th of October 2018: submission deadline for full papers

o GDC 2019: publication of Ray Tracing Gems (paper version + e-book)

▪ Eric Haines and Tomas Akenine-Möller will lead the editorial team

http://developer.nvidia.com/raytracinggems/

Call for Papers
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