
NVIDIA® OptiX™ Ray Tracing SDK

Release Notes

Version 7.5.0 June 2022

Welcome to the 7.5.0 release of the NVIDIA OptiX SDK. This release adds sphere primitives, support for

upscaling while denoising, and a preview of device code debugging features.

Upgrading to 7.5.0 may require source code changes, though they should be minimal. Applications

compiled with the 7.5.0 SDK headers will require driver version 515 or later. Applications compiled with

earlier SDK headers will continue to work, but recompiling with 7.5.0 will expose new features and may

also improve performance.

System Requirements (for running binaries referencing NVIDIA OptiX)

Graphics Hardware:

● All NVIDIA GPUs of Compute Capability 5.0 (Maxwell) or higher are supported.

Graphics Driver:

● NVIDIA OptiX 7.5.0 requires that you install an R515+ driver.

● Windows 8.1/10 64-bit; Linux RHEL 4.8+ or Ubuntu 10.10+ 64-bit

CUDA Toolkit

● It is not required to have any CUDA toolkit installed to run NVIDIA OptiX-based applications.

Development Environment Requirements (for compiling with NVIDIA OptiX)

● CUDA Toolkit 11.7

This release has been tested with PTX generated from CUDA Toolkit 11.7. Other toolkit versions should

also work, but 11.7 is recommended.

Version 11.7 of the CUDA toolkit introduces the OptiX IR target with --optix-ir (see debugging,

below).

Version 11.1 of the CUDA toolkit introduces CUDA sparse textures, which are used in the NVIDIA OptiX

Demand Loading library. This library is built only when the NVIDIA OptiX SDK is compiled with CUDA

11.1 or later.

● C/C++ Compiler

A compiler compatible with the used CUDA Toolkit is required. Please see the CUDA Toolkit

documentation for more information on supported compilers.

What's new in this version
● OptiX IR input for OptiX module creation

○ CUDA version 11.7 and above support generation of a proprietary binary format that conveys more

information from NVCC to OptiX, including information required for debugging.

○ Invoke NVCC with --optix-ir to target this new format. Replacing --ptx with --optix-ir should

be sufficient for most applications.

○ optixModuleCreateFromPTX will take this as input, similar to PTX input.

○ Inline PTX is still supported when using OptiX IR.

● Device code debugging preview

○ NSight Visual Studio Edition can show the value of variables inside of OptiX programs. In this preview

version, some variables may not be present or have a value.

○ Only supported with OptiX IR input as described above.

○ Be sure to use -G -O0 when compiling with NVCC to get debugging symbol information and use

OPTIX_COMPILE_DEBUG_LEVEL_FULL and OPTIX_COMPILE_OPTIMIZATION_LEVEL_0 in

OptixCompileOptions.
○ A backtrace with only function name is still available with PTX input, similar to previous versions.

● New built-in sphere primitive

○ A geometry acceleration structure can now contain lists of spheres. Each sphere is specified by its center

and radius.

○ On the host side, use the new build input type OptixBuildInputSphereArray. Similarly to curves,

sphere intersection needs to be enabled by setting OPTIX_PRIMITIVE_TYPE_FLAGS_SPHERE in

OptixPipelineCompileOptions::usesPrimitiveTypeFlags.

○ On the device side, sphere intersection returns one attribute. When the ray hits the sphere twice, the hit

returned is the front face hit (entering the sphere), and the attribute contains the t value of the back face

hit (exiting the sphere). Otherwise the attribute is 0. Note optixIsFrontFaceHit can be used to

determine whether the hit is front face or back face.

○ The new device function optixGetSphereData can fetch any sphere’s center and radius. Similarly to

other get-data functions, it requires OPTIX_BUILD_FLAG_ALLOW_RANDOM_VERTEX_ACCESS to be

set in OptixAccelBuildOptions::buildFlags before the acceleration structure is built. Setting

this flag uses more memory.

○ See the SDK sample optixSphere.

● New error code OPTIX_ERROR_DEVICE_OUT_OF_MEMORY
○ Can be returned from previous asynchronous errors, or from optixLaunch when growing the stack

memory required to support the launch.

○ In previous driver versions, an OPTIX_ERROR_UNKNOWN would be returned under these circumstances.

○ Memory allocation for stacks can be substantial when using large stacks; see

optixPipelineSetStackSize to control this allocation.

● New OptixGeometryFlags enum

○ OPTIX_GEOMETRY_FLAG_DISABLE_TRIANGLE_FACE_CULLING
● Denoiser

○ A new mode combines 2X upscaling with denoising in a single operation. Use

OPTIX_DENOISER_MODEL_KIND_UPSCALE2X or

OPTIX_DENOISER_MODEL_KIND_TEMPORAL_UPSCALE2X.

○ Denoiser scratch memory requirements are now lower in some cases. The required scratch memory sizes

for the API functions optixDenoiserComputeIntensity and

optixDenoiserComputeAverageColor should now be queried with

optixDenoiserComputeMemoryResources instead of relying on the equations that were

previously provided in the function header documentation. For optixDenoiserComputeIntensity
and optixDenoiserComputeAverageColor, the scratch memory requirements are significantly

lower. The scratch memory size for these functions is stored in OptixDenoiserSizes::
computeAverageColorSizeInBytes and

OptixDenoiserSizes::internalGuideLayerPixelSizeInBytes.

○ Temporal denoising now relies on an internal guide layer to carry information from the previous denoising

pass, specified with previousOutputInternalGuideLayer and outputInternalGuideLayer
in the OptixDenoiserGuideLayer struct. A set of guide layers must be provided to the denoising

pass as both input and output. These layers have the format

OPTIX_PIXEL_FORMAT_INTERNAL_GUIDE_LAYER and should be sized according to the field

internalGuideLayerPixelSizeInBytes returned by

optixDenoiserComputeMemoryResources. See the programming guide for more information.

○ OptixDenoiserGuideLayer::previousOutputInternalGuideLayer and

OptixDenoiserGuideLayer::outputInternalGuideLayer must refer to two separate buffers,

it is not possible to share memory between these buffers. After denoising a frame, these two buffers must

be exchanged, so that outputInternalGuideLayer becomes

prevousOutputInternalGuideLayer for the next frame. Instead of copying data into the previous

guide layer, it is recommended to use a double-buffering strategy by swapping the content of the two

OptixImage2D structs. Also use double-buffering for OptixDenoiserLayer::output and

OptixDenoiserLayer::previousOutput.

○ OptixDenoiserParams::temporalModeUsePreviousLayers
■ In temporal mode setting to 1 indicates the denoiser should read the values of the previous

frame. Set to 0 for initial frames or when you want to reset the temporal sequence. In the first

frame, when using temporal denoising modes, OptixDenoiserGuideLayer::flow must

either contain valid motion vectors if available, otherwise the xy vectors must be set to zero (no

motion). In temporal upscaling mode OptixDenoiserLayer::previousOutput is not

accessed when OptixDenoiserParams::temporalModeUsePreviousLayers is not

set.

○ OptixDenoiserSizes struct has new fields

■ computeAverageColorSizeInBytes
■ computeIntensitySizeInBytes
■ internalGuideLayerPixelSizeInBytes

○ OptixDenoiserParams::denoiseAlpha changed from a boolean flag to an enumerated type

called OptixDenoiserAlphaMode which now has three possible values. These can be used for all

denoiser models.

■ OPTIX_DENOISER_ALPHA_MODE_COPY: This is the default, alpha is copied from input to

output and not denoised.

■ OPTIX_DENOISER_ALPHA_MODE_ALPHA_AS_AOV: This will apply the denoiser weights to

the alpha channel treating it similarly to other AOV channels. This is the most efficient method to

get a denoised alpha channel.

■ OPTIX_DENOISER_ALPHA_MODE_FULL_DENOISE_PASS: A new denoising mode that is

useful where the alpha channel has a substantially different noise profile than the RGB image. If

artifacts appear, such as extra halo areas around alpha, this mode may yield better denoised

alpha channels. However, this will execute a separate inference pass on alpha, meaning that

denoise execution will take twice as long.

https://raytracing-docs.nvidia.com/optix7/guide/index.html#ai_denoiser#nvidia-ai-denoiser

● When debug exceptions are enabled, invalid ray exceptions are thrown for rays with zero length direction (with

denorm values are treated as zero) and when tmin is negative.

● The many overloads of optixTrace have been replaced with a single templated function that can accommodate

any number of payload values.

● Corrected documentation on the number of SBT records supported by a single GAS. The correct limit is 2^24.

Improved the error message when this limit is exceeded.

● Compile time improvements

○ Improved concurrency when creating modules from PTX input in parallel. Improves compile times, and is

especially noticeable when compiling many small modules.

● Fixed a bug where optixAccelComputeMemoryUsage and optixAccelBuild would change the current

CUDA context.

○ Applications compiled against older versions of the NVIDIA OptiX SDK will see the context remain the

same after the calls.

○ Applications compiled against 7.5 are required to have the current CUDA context be the context

associated with the OptixDeviceContext when calling optixAccelBuild or any other OptiX

function that invokes work on the GPU. For performance, the application should minimize the number of

CUDA context changes around OptiX calls.

○ Validation mode will now catch when the CUDA context is incorrect. Undefined behavior or errors may

result otherwise.

● Fixed a bug that sometimes led to a multiply defined symbol error when linking a pipeline with multiple built-in IS

modules.

What's new in 7.4.0
● New compiler backend

○ Supports parallel compilation and other new features

○ This change should be invisible to applications, but if you have performance regressions,

unexpected bugs or error messages that look like "New backend is missing implementation for

PTX intrinsic <XYZ>", please contact us.

● Parallel compilation within a module exposed through new API

○ Exposes parallelism within a single module and between modules

○ Flexible threading model that can be used within existing application work queues

○ New API functions

■ optixModuleCreateFromPTXWithTasks
■ optixModuleGetCompilationState
■ optixTaskExecute

○ The following functions can now return

OPTIX_ERROR_ILLEGAL_DURING_TASK_EXECUTE
■ optixTaskExecute if the task is already being executed on another thread

■ optixModuleDestroy if a task associated with the module is currently being

executed

○ Added sample optixCompileWithTasks and SDK header CompileWithTasks.h that demonstrate

this feature

● Payload types

○ To reduce register consumption in complex pipelines, OptiX 7.4 has introduced a mechanism to

annotate the usage of each payload register. OptiX will analyze the lifetimes and reuse registers

where possible.

○ The maximum number of payload registers has been increased from 8 to 32

○ These two features allow more workloads to improve performance by passing payload values in

registers instead of local memory

○ Instead of supplying the number of payload registers in

OptixPipelineCompileOptions, payload utilization information is now passed through

OptixModuleCompileOptions. This contains an array of OptixPayloadType objects

that annotate each payload value with their READ or WRITE usage.

■ The original mechanism of passing the number of payload registers in

OptixPipelineCompileOptions will continue to work, though all modules in

the pipeline must use the same mechanism

○ Refer to the programming guide for additional information

● Catmull-Rom round curve primitive type added

○ Same data layout as round quadratic b-splines

○ Access with new primitive enum values

■ OptixPrimitiveType::OPTIX_PRIMITIVE_TYPE_ROUND_CATMULLROM
■ OptixPrimitiveTypeFlags::OPTIX_PRIMITIVE_TYPE_FLAGS_ROUND_

CATMULLROM
○ Control points can be retrieved on the device using optixGetCatmullRomVertexData

● Selectable endcap behavior for quadratic and cubic curves added, including the new Catmull-Rom curve

○ OptixCurveEndcapFlags used in

OptixBuildInputCurveArray::endcapFlags and

OptixBuiltinISOptions::curveEndcapFlags
○ Default is endcaps OFF. Previously the endcap behavior was ON.

● OptixBuiltinISOptions now has a buildFlags parameter that should match the ones

supplied to OptixAccelBuildOptions when building the AS containing the built-in primitives

● When building acceleration structures containing curves with default build flags, an average of 7%

reduction in memory was observed across a suite of datasets

● Demand Loading

○ An eviction mechanism now allows texture tiles to be reused when device memory is limited,

allowing larger scenes to be rendered

○ Texture lookup can be skipped when texture gradients are large, using an optional base color

that can be specified when the texture is initialized (either from metadata or from the coarsest

miplevel)

○ Small textures (32x32 or less) no longer employ CUDA sparse textures, which saves memory and

improves performance

○ UDIM UV mapping is now supported. A texture atlas can be constructed from a collection of

sparse textures, each of which can leverage the small texture and base color optimizations.

○ API changes:

■ The EXRReader class has moved to a separate ImageReader library, with its own

namespace

■ createDemandLoader no longer requires a vector of active device ordinals

● Denoiser

○ Added OptixDenoiserModelKind::OPTIX_DENOISER_MODEL_KIND_TEMPORAL_AOV

○ When tiling the denoiser the overlap is returned in the API, but you may notice the value has

increased from 64 to 128

● OptixCompileDebugLevel

○ Removed OPTIX_COMPILE_DEBUG_LEVEL_LINEINFO
○ Added

■ OPTIX_COMPILE_DEBUG_LEVEL_MINIMAL - generate information that does not

impact performance (currently generates line information useful for profiling)

■ OPTIX_COMPILE_DEBUG_LEVEL_MODERATE - generate some debug information

with slight performance costs (currently generates a debug frame necessary to show a

backtrace)

● Removed OptixInstanceFlags::OPTIX_INSTANCE_FLAG_DISABLE_TRANSFORM. This

flag did not operate as intended, and users were already required to provide an identity instance

transform.

● New Samples

○ optixOpticalFlow: demonstrates the use of the NVIDIA Optical Flow SDK to provide motion

vectors for temporal denoising in lieu of application-provided motion vectors.

○ optixCompileWithTasks: demonstrates the use of the new parallel compile interface and contains

a simple interface that can be adapted to many applications.

● Improved compile caching behavior with many concurrent accesses. If the database was locked, it would

previously disable the cache.

● Name of the compilation database file has been changed to "optix7cache.db". The directory location has

not changed.

● New warning issued when creating an OptixDeviceContext when the device memory size exceeds

the host memory size

● PTX input that calls __assertfail no longer causes linking errors

● Launch parameter specialization now allows for single byte specialization regardless of whether the byte

is part of a larger element such as int or float. This should reduce false errors when using specialization.

● Note: For OptiX 6 applications

○ Setting RT_GLOBAL_ATTRIBUTE_ENABLE_RTX to 0 via rtGlobalSetAttribute will

result in an error as RTX is now the only supported mode for OptiX 6. The legacy megakernel

execution strategy is no longer supported.

○ Name of the compilation database file has been changed to "optixcache.db", but the directory

location has not.

Known Issues

1. Not all PTX instructions may be supported.

2. Enhanced line information for inlined functions available in CUDA 11.2+ may not always produce
accurate results.

3. Pixel formats OPTIX_PIXEL_FORMAT_UCHAR3 and OPTIX_PIXEL_FORMAT_UCHAR4 are not
supported by the Denoiser.

4. Concurrent launches from the same pipeline will serialize automatically on the device.

5. OPTIX_COMPILE_DEBUG_LEVEL_FULL does not currently generate debug information necessary
for cuda-gdb or Nsight Compute VSE.

6. The demand loading samples trigger a run-time compilation error ('identifier "__hisnan" is
undefined') when CUDA_NVRTC_ENABLED is set. This can be solved by setting
CUDA_MIN_SM_TARGET to sm_60 in when configuring with CMake.

What's new in 7.3.0
● Denoiser for temporal images and API simplifications

o Temporal denoising is now supported with a new built-in model kind. In this mode a sequence of
images can be denoised. The AI network was trained to reduce flickering for camera or geometry
animations. It requires the denoised beauty image from the previous frame as input as well as
flow (motion) vectors. Currently temporal denoising is not supported for AOVs.

● Enable by using the new OPTIX_DENOISER_MODEL_KIND_TEMPORAL enum value
from OptixDenoiserModelKind.

o optixDenoiserCreate and optixDenoiserSetModel have been merged.
optixDenoiserCreate now uses an enum to select the built-in model kind and
optixDenoiserCreateWithUserModel that takes a user model.

o optixDenoiserInvoke's input has changed to specify guide layers specified explicitly in
OptixDenoiserGuideLayer (e.g. albedo, normal or pixel flow layers) and separately from
beauty layers which are now specified in OptixDenoiserLayer.
optixUtilDenoiserInvokeTiled has similarly been updated to the new interface.

o OptixDenoiserOptions changed to specify whether albedo and normal guide layers will
be provided during optixDenoiserInvoke

o New OptixPixelFormat

● OPTIX_PIXEL_FORMAT_HALF2

● OPTIX_PIXEL_FORMAT_FLOAT2

● Demand Loading

o The launchPrepare and processRequests methods are now asynchronous, taking a

CUDA stream argument on which operations are enqueued.

o Requests for sparse texture tiles are now processed in the background by multiple CPU threads.

This greatly improves concurrency, keeping the CPU busy with I/O and texture decompression

while OptiX kernels perform rendering work on GPU.

o Multiple streams are now supported. A degree of latency hiding can be accomplished by

rendering a framebuffer as multiple tiles in round-robin fashion: while the texture data for one

framebuffer tile is loading, work can proceed on subsequent tiles, returning to the first when its

data is ready.

o NVIDIA OptiX now provides the following texture footprint functions, which are used by the

NVIDIA OptiX Demand Loading library to quickly determine which sparse texture tiles are

required. These functions are hardware-accelerated on Turing and Ampere GPUs, with software

emulation on older architectures.

● optixTexFootprint2D
● optixTexFootprint2DLod
● optixTexFootprint2DGrad

● Improved curve intersectors

o There is a new faster intersector for cubic and quadratic curves (based on Reshetov’s Phantom

intersector).

o There is a new intersector for piecewise linear curves that is slightly faster and higher precision.

o The new curve intersectors cull backfaces, treating the swept curve primitives as hollow. Rays

originating inside the primitive will now exit the primitive.

o Caveat: Internal rays can still hit internal end caps (invisible end caps between segments of a

strand).

o A bug in compaction of acceleration structures with curves has been fixed.

● New SDK samples:

o optixDemandLoadSimple - Demonstrates a simple use of the Demand Loading library.

o optixModuleCreateAbort - Compiles modules in separate processes, which can be interrupted.

o optixMotionGeometry - Demonstrates motion blur for vertex positions, SRT transforms, matrix

transforms, and combined motion.

o optixVolumeViewer - Demonstrates incorporating OpenVDB volumes in an OptiX render, by

using the open source NanoVDB library.

● Improved SDK samples:

o optixDenoiser

● New mode for temporal denoising

● Tiling operation now supported.

o optixDemandTexture - Now demonstrates the use of multiple streams for demand loading.

● OptixPipelineCompileOptions struct has changed. Please make sure to zero initialize this

struct to avoid compilation errors.

o OptixPipelineCompileOptions pipelineCompileOptions = {};
● Validation mode now checks the stream state before executing API functions that take a stream.

● New device function optixGetInstanceTraversableFromIAS
o Return the traversable handle of a given instance in an Instance Acceleration Structure (IAS). This

handle is not directly traversable, but can be used to query instance transforms and other

information.

● New OptixBuildFlag OPTIX_BUILD_FLAG_ALLOW_RANDOM_INSTANCE_ACCESS. This flag is
required to call optixGetInstanceTraversableFromIAS.

● New device function optixGetInstanceChildFromHandle
○ Returns child traversable handle from an OptixInstance traversable

● New exception codes that can be triggered by optixGetTriangleVertexData and

optixGetInstanceTraversableFromIAS when exceptions are enabled.

o OPTIX_EXCEPTION_CODE_INVALID_VALUE_ARGUMENT_0

● The value passed in ias to optixGetInstanceTraversableFromIAS is not a
valid Instance AS.

● The value passed in gas to optixGetTriangleVertexData is not a valid
Geometry AS.

o OPTIX_EXCEPTION_CODE_INVALID_VALUE_ARGUMENT_1

● The index passed is out of range.

o OPTIX_EXCEPTION_CODE_INVALID_VALUE_ARGUMENT_2

● The sbtGASIndex passed to optixGetTriangleVertexData is out of range.

https://research.nvidia.com/publication/2018-08_Phantom-Ray-Hair-Intersector
https://research.nvidia.com/publication/2018-08_Phantom-Ray-Hair-Intersector
https://developer.nvidia.com/blog/accelerating-openvdb-on-gpus-with-nanovdb/

o OPTIX_EXCEPTION_CODE_UNSUPPORTED_DATA_ACCESS

● optixGetTriangleVertexData was called on an acceleration structure that was
built without OPTIX_BUILD_FLAG_ALLOW_RANDOM_VERTEX_ACCESS set.

● optixGetInstanceTraversableFromIAS was called on an acceleration
structure built without
OPTIX_BUILD_FLAG_ALLOW_RANDOM_INSTANCE_ACCESS set.

● An acceleration structure built with motion was used in a pipeline without motion
enabled.

● If the OptiX compile cache is corrupted, OptiX will now attempt to delete and reinitialize the cache.

● Added OPTIX_CACHE_MAXSIZE environment variable to control the size of the disk cache.

● AS builds have been optimized for faster trace times.

● PTX must be recompiled with the new SDK headers if the host uses the new SDK.

● NVRTC is no longer enabled by default when compiling the SDK samples. It can be enabled by setting the
CMake variable CUDA_NVRTC_ENABLED.

● Bug fixes:

○ Fixed bug to allow optix_stack_size.h to be able to be included in more than one compilation

unit.

○ Fixed bug with surf2Dwrite calls having no effect.

○ Fixed bug with some denormal floats being treated as zero.

○ Fixed some bugs that would prevent correct line information from being used in profiling and

debugging.

What's New in 7.2.0
● Specialization is a powerful new feature that allows renderers to maintain generality while increasing

performance on specific use cases. A single version of the PTX can be supplied to OptiX and specialized
to toggle specific features on and off. The OptiX compiler is leveraged to fold constant values and elide
complex code that is not required by a particular scene setup. Specialized values are supplied during
module creation with OptixModuleCompileOptions::boundValues. See the Programming
Guide section 6.3.1, “Parameter specialization”, and the optixBoundValues sample.

● Demand loading source library

o Enables textures to be loaded on demand, which greatly reduces memory requirements, start-up

time, and disk I/O compared to preloading textures.

o Requires the CUDA 11.1 toolkit.

o See section 14 "Demand-loaded sparse textures" of the NVIDIA OptiX Programming Guide for a

detailed technical introduction.

o The optixDemandTexture sample demonstrates how to use this library.

o This library supersedes the lower-level optixPaging library. The optixDemandPaging
sample shows how to use optixPaging directly.

o Known issue: wrap mode and mirror mode are not yet supported for CUDA sparse textures.

● There is a new mode in the denoiser that uses a neural network to predict a filter kernel instead of the
final image. The filter weights can be applied to multiple layers or AOVs with just an incremental cost.

o To select this mode, use
OptixDenoiserModelKind::OPTIX_DENOISER_MODEL_KIND_AOV

o Additional quality may be achieved by computing the average color using a new API function
optixDenoiserComputeAverageColor and supplying the value to the denoiser using
OptixDenoiserParams::hdrAverageColor

● To aid in debugging there is a new validation mode that runs additional checks during runtime and
enables all debug exceptions.

o Enable validation mode with: OptixDeviceContextOptions::validationMode

o New error code when validation catches an error: OPTIX_ERROR_VALIDATION_FAILURE

o APIs that take CUstream arguments are synchronized on the stream to check for errors before
proceeding.

o optixLaunch will synchronize after the launch and report errors

o If any OptiX debug exceptions were thrown during launch, a CUDA launch error is triggered to
prevent proceeding.

o Validation mode reduces performance. Remember to turn it off.

● New debug exceptions

o OPTIX_EXCEPTION_CODE_CALLABLE_INVALID_SBT

● The callable program SBT record index was out of bounds

o OPTIX_EXCEPTION_CODE_CALLABLE_NO_DC_SBT_RECORD

● The callable program SBT record does not contain a direct callable program

o OPTIX_EXCEPTION_CODE_CALLABLE_NO_CC_SBT_RECORD

● The callable program SBT record does not contain a continuation callable program

● When linking, unresolved and multiply defined symbols will produce detailed error messages in the logs.

● Instance bounds are now computed automatically, even with motion and motion transforms. Instance
acceleration structure build inputs no longer have the optional
OptixBuildInputInstanceArray::aabbs.

o Note OptiX will compute AABBs for all applications running against driver 455+ regardless of the
version of the SDK it was built against. OptiX will ignore the AABBs supplied by applications
compiled with earlier SDKs.

● You can now unload the NVIDIA OptiX driver DLL or DSO. See optixUninitWithHandle() in the
optix_stubs.h header file.

o If other threads in the process have a handle to the DLL it will continue to be loaded until the last
handle is released.

o There is a new error code when optixUninitWithHandle fails:
OPTIX_ERROR_LIBRARY_UNLOAD_FAILURE

● Fixed a bug where PTX compiled with -lineinfo in CUDA 11 could cause errors when loading into OptiX.

● Fixed bugs related to large numbers of curves.

● Optimized traversal when only triangle geometry is enabled with single level instancing, that is,
OptixPipelineCompileOptions::usesPrimitiveTypeFlags equals exactly
OPTIX_PRIMITIVE_TYPE_FLAGS_TRIANGLE and

OptixPipelineCompileOptions::traversableGraphFlags equals exactly
OPTIX_TRAVERSABLE_GRAPH_FLAG_ALLOW_SINGLE_LEVEL_INSTANCING

● SDK

o By default the SDK will target PTX compilation for SM 60 (Volta+). Set CMake variables
CUDA_NVCC_FLAGS and CUDA_NVRTC_FLAGS to use an older SM version if desired.

o New samples

● optixBoundValues

● optixDemandTexture

● optixDenoiser

● optixDynamicGeometry

What's New in 7.1.0
● Added curves as a new type of geometric primitive. Curves are swept surfaces used to represent long

thin strands, such as for hair, fur, or cloth fibers. Linear, quadratic, and cubic B-spline bases are
supported. Motion blur is supported.

o Added new GAS build input type for curves. See the NVIDIA OptiX Programming Guide section
5.2, “Curve build inputs”.

o Hit programs can access the curve parameter value at the hit point, and the curve’s geometric
data which is stored in the acceleration structure (GAS). Utility code is provided in the SDK
(cuda/curve.h) to compute the curve surface position, tangent, and normal.

o Each SBT program group for curves requires a built-in curves intersection program, returned by
the new host function optixBuiltinISModuleGet. Motion blur for curves is enabled
here.

o PIpelines can now indicate which primitive types they support via
OptixPipelineCompileOptions::usesPrimitiveTypeFlags. If your scene
contains curves, they must be enabled here. If your scene geometry is all triangles (no curves
and no custom primitives), set these flags to enable only triangles, for optimal performance.

o In hit programs, the recommended method to discriminate among hit types is to use the new
methods optixGetPrimitiveType, optixIsFrontFaceHit, and
optixIsBackFaceHit. The old methods, e.g. optixIsTriangleFrontFaceHit, still
work.

o See the NVIDIA OptiX Programming Guide section 8, “Curves”, for additional information.

● The denoiser has several improvements for quality and performance in addition to some API changes.

o Added support for
OptixDenoiserInputKind::OPTIX_DENOISER_INPUT_RGB_ALBEDO_NORMAL.

o Added support for tiling. See optix_denoiser_tiling.h in the SDK for helpers to use tiling.

o OptixDenoiserOptions::pixelFormat has been removed, because it is no longer
needed.

o OptixDenoiserSizes::minimumScratchSizeInBytes and
recommendedScratchSizeInBytes have been removed and replaced with

withOverlapScratchSizeInBytes and
withoutOverlapScratchSizeInBytes.

● Increase instancing limits. Query limit with
OPTIX_DEVICE_PROPERTY_LIMIT_MAX_INSTANCES_PER_IAS. The limit has been increased
to 2^28 instead of 2^24. OptixInstance::sbtOffset now also supports values up to 2^28.

● Removed OptixPipelineLinkOptions::overrideUsesMotionBlur. This option is no
longer needed.

● Added OptixTransformFormat used in OptixBuildInputTriangleArray::transformFormat. Allows to
specify the format of OptixBuildInputTriangleArray::preTransform. Value should be
OPTIX_TRANSFORM_FORMAT_MATRIX_FLOAT12 when preTransform will be supplied to the build
and OPTIX_TRANSFORM_FORMAT_NONE when preTransform is unused. A nullptr can now be used
for optixAccelComputeMemoryUsage instead of supplying a valid or dummy pointer.

● Several new device exceptions were added to catch common errors. They are active when debug
exceptions are enabled in OptixPipelineCompileOptions::exceptionFlags.

o Invalid ray exception

● Checks for NaN and Inf in the ray parameters passed optixTrace

● New exception code: OPTIX_EXCEPTION_CODE_INVALID_RAY

● optixGetExceptionInvalidRay returns details of the exception in a struct
called OptixInvalidRayExceptionDetails

o Callable program parameter mismatch

● Currently only checks the number of parameters and not the types, since PTX can lose
type information.

● New exception code: OPTIX_EXCEPTION_CODE_CALLABLE_PARAMETER_MISMATCH

● optixGetExceptionParameterMismatch returns details of the exception in a struct called
OptixParameterMismatchExceptionDetails

o Ensure that the built-in intersection program assigned to the SBT matches the GAS

● New exception code: OPTIX_EXCEPTION_CODE_BUILTIN_IS_MISMATCH

o Ensure that when optixTrace is called with a single level GAS as the trace target that
OptixPipelineCompileOptions::traversableGraphFlags is set to either
OPTIX_TRAVERSABLE_GRAPH_FLAG_ALLOW_SINGLE_GAS or
OPTIX_TRAVERSABLE_GRAPH_FLAG_ALLOW_ANY.

● new exception code:
OPTIX_EXCEPTION_CODE_UNSUPPORTED_SINGLE_LEVEL_GAS

o The shader encountered an unsupported primitive type when calling
optixGetLinearCurveVertexData,
optixGetQuadraticBSplineVertexData,
optixGetCubicBSplineVertexData, or optixGetPrimitiveType. Supported
primitive types are set with
OptixPipelineCompileOptions::usesPrimitiveTypeFlags.

● New exception code: OPTIX_EXCEPTION_CODE_UNSUPPORTED_PRIMITIVE_TYPE

● When OPTIX_EXCEPTION_CODE_TRAVERSAL_INVALID_HIT_SBT is thrown,
optixGetPrimitiveIndex is no longer supported. optixGetSbtGASIndex should be used
instead. See optixDumpExceptionDetails for details.

● optixThrowException is now elided when user exceptions are disabled instead of producing an
error.

● Added optixGetExceptionLineInfo device function accessible in exception programs.

o Returns a string that includes information about the source location that caused the current
exception. Only supported for certain exceptions, and requires line information in the PTX
(--lineinfo) and a debug level that supports line info
(OPTIX_COMPILE_DEBUG_LEVEL_LINEINFO and
OPTIX_COMPILE_DEBUG_LEVEL_FULL).

● Change OptixCompileOptimizationLevel and OptixCompileDebugLevel enum values.

o Added a DEFAULT value of 0 (used when zero initializing the structs).

o OptixCompileOptimizationLevel::OPTIX_COMPILE_OPTIMIZATION_DEFAU
LT continues to mean OPTIMIZATION_LEVEL_3.

o OptixCompileDebugLevel::OPTIX_COMPILE_DEBUG_LEVEL_DEFAULT (new)
adds lineinfo (same as OPTIX_COMPILE_DEBUG_LEVEL_LINEINFO).

● Fixed support in optix headers for cuda runtime compilation using nvrtc.

● Enable compaction support for acceleration structures on non-RTX GPUs.

● OptiX will attempt to reset a corrupted compile disk cache.

● Added OptixIndicesFormat::OPTIX_INDICES_FORMAT_NONE which must be used when
vertex indices are not present (e.g. triangle soup).

● Added OptixVertexFormat::OPTIX_VERTEX_FORMAT_NONE for use when initializing
OptixBuildInputTriangleArray::vertexFormat. The value, vertexFormat, must be
set to something other than OPTIX_VERTEX_FORMAT_NONE before
OptixBuildInputTriangleArray can be used.

● Additional checks are now in place when calling optixPipelineSetStackSize. If the
maxTraversableGraphDepth is greater than maximum supported by the device an error is
generated. maxTraversableGraphDepth also must be greater than zero.
maxTraversableGraphDepth must also be compatible with
OptixPipelineCompileOptions::traversableGraphFlags.

● When used with Nsight Compute, optixLaunch and optixAccelBuild are now marked in the
timeline.

● Very large AABBs are now clamped to +/- 2^40 for non-motion acceleration structures.

● optixGetTriangleVertexData support has been extended to all supported GPUs.

● optixGetTriangleVertexData support has been fixed for large meshes.

● Fixed a crash on non-RTX GPUs when rendering with a refit IAS.

● New SDK samples.

o optixCallablePrograms - Demonstration of callable program usage and SBT setup.

o optixCurves - Minimal curve API usage example.

o optixDenoiser - Demonstration of NVIDIA OptiX AI Denoiser usage.

o optixDynamicGeometry - Shows typical setup for changing geometry between frames.

o optixHair - More complicated curve API example.

o optixNVLink - Demonstrates NVLink usage within an OptiX application.

What’s New in 7.0
● 7.0 introduced the NVIDIA OptiX 7 API, a new low-level CUDA-centric API giving application developers

direct control of memory, compilation, and launches while maintaining the programming model and
shader types from previous versions of OptiX.

● Minimal host state is maintained. Scene graphs, materials, etc., are managed by the application rather
than by OptiX.

● GPU memory is managed by the application using CUDA. (No OptiX buffers or variables)

● GPU launches are explicit and asynchronous using CUDA streams.

● Shader compilation is explicit. (Similar to DXR or Vulkan)

● All host functions are thread-safe.

● Source code for demand loading library is included and designed for direct inclusion in production
applications.

● Multi-GPU operation is managed by the application.

