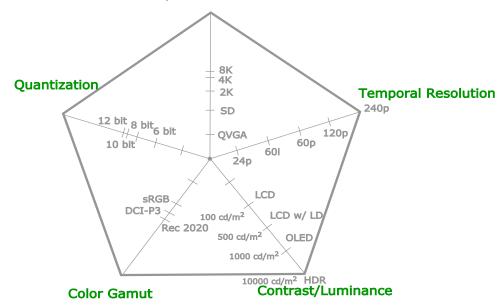


What is HDR and why do we care?

- HDR has existed in games since ~2005
 - Half Life 2: Lost Coast
- High percentage of titles render in HDR
 - Necessary for proper simulation of lighting interactions
- Rendering HDR is pretty well understood
- Displaying HDR is still in it's infancy
- HDR displays are one of the biggest advances in the past 20 years

What Makes Good HDR?


- HDR is High Dynamic Range
- Brighter doesn't give you HDR
- Ultimately requires, brightness, contrast, and precision
- Good HDR will
 - Make highlights brighter
 - Maintain or improve darkness of shadows
 - Preserve more detail at both the top and bottom of the range
 - Allow more vivid, and potentially brighter mid-tones
- Ultimately, the experience is about a deeper image

Why haven't we been doing this?

Display Technology Somewhat Stagnant for 20 years

- CRT -> LCD
 - Lighter/thinner
 - Many visual qualities didn't improve
 - Potentially brighter
- Overall progress has been slow
 - sRGB & Rec 709 are the standards
 - Resolution has been no better
- HDR looks to change most of this

HDR Display Hardware

- Understanding the strengths and limits of the devices is important
- Display devices and their interfaces have physical limitations
 - Transfer bandwidth of HDMI and DisplayPort
 - Power consumption and heat dissipation
- Knowing the HW helps you understand the results
 - Also helps you pick the right HW for your development purposes

LCD vs OLED

- Over 1000 nit peak luminance
- Local dimming matrix is best
- Wide color gamut via quantum dots
- Can suffer backlight bleed
- Well suited for bright environment
- Well suited for monitors today

- Typically limited to ~600 nits
- All pixels are independent
- Good color saturation
 - Can suffer at peak luminance RGBW
- Excellent black levels
- Best suited for dark environment
- More suited to TVs
- Has some phosphor lifetime concerns

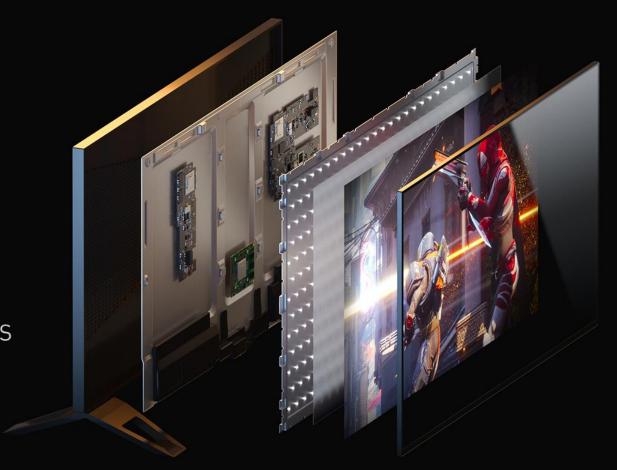
TV vs Monitor

- Designed for a living room/den
- Designed for dim viewing environment
- Designed for limited duty cycle
 - Couple hours a day
- Typically lots of image processing
 - Lag, distortion
- HDMI only
 - Limited refresh rate
 - Maybe only YCbCr
- TVs often obfuscate information

- Designed for an office
- Handles brighter environment
- Low latency experience
- Display Port for more bandwidth
 - Higher refresh rates
- Minimizes image processing
 - Faithful display of content

G-SYNC HDR

NVIDIA® G-SYNC™


4K 120 HZ

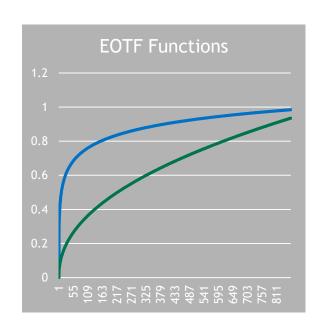
HDR - 1000 NITS

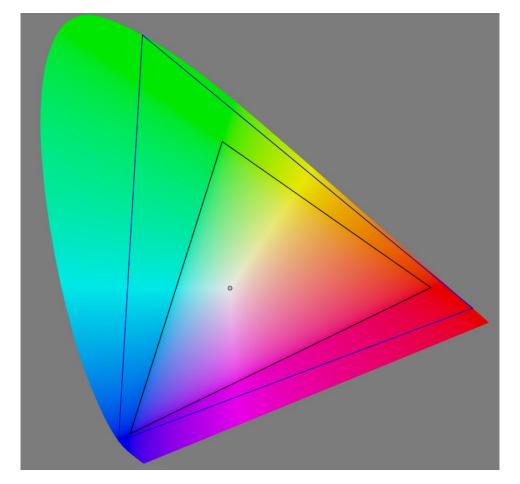
ULTRA-LOW LATENCY

DCI-P3 COLOR GAMUT WITH QUANTUM DOTS

NVIDIA® SHIELD™ BUILT-IN

HDR Display Standards


- Large number of overlapping standards in the space
- Many are related to or derivations of others
- Lots of organizations involved
 - VESA
 - SMPTE
 - International Telecommunications Union
 - Consumer Technology Association
 - HDMI


HDR₁₀

- Common term for the popular HDR encoding standards tied to SMPTE/others
 - Original term referred to a 'media profile'
 - Today, BT 2100 might be the better term for the generic usage

- For PCs it essentially means
 - SMPTE 2084 transfer function
 - BT 2020 color primaries
 - Generally 10 or 12 bits per component
 - RGB, YCbCr 4:2:2, and/or YCbCr 4:2:0 wire transfer
 - These are invisible to the developer

What does this mean?

How else does it differ?

- HDR10 signal is a container format
 - Game is stating explicitly how it wants something displayed
 - Absolute nit level
 - Precise color
 - Not expected to fill the 10,000 nit + BT 2020 color volume
 - No practical display can handle this today
 - Generally, the target should be roughly P3 & ~1000 nits
- HDR10 operates best by knowing the portion of the container the game uses
 - This information is provided as metadata

Metadata

- Virtually all HDR standards use metadata to express the intent of the signal
- Two essential types
 - Static and dynamic
- Static rarely changes, just information about the stream in general
- Dynamic typically constantly changes, likely frame to frame
 - Provides more information
 - Often gets referred to as HDR10+

SMPTE 2086/CEA Static Metadata

- Reference primaries
- Reference white point
- Reference peak luminance
- Reference min luminance
- Max Content Light Level
 - Most luminous color channel for any frame
- Max Frame Average Light Level
 - Average luminance per pixel for the most luminous fame

Dynamic Metadata

- Provides more information about what is being rendered
- Allows a display to adjust how it handles things on a continuous basis
- Primary advantage is to make a lesser display produce it's best image
 - 400 or 600 nit display attempting to display a 1000 nit signal
 - Many scenes are dim, shouldn't adjust
 - Need to adjust bright scenes

- SMPTE 2094 defines 4(!) different flavors
 - Makes things a bit of a mess for developers today
 - Windows supports none of these

Why Games care less about dynamic

- Dynamic metadata is most useful for pre-baked content
 - Movies need to select a target max luminance when encoded
- Games are fully dynamic content
 - Post processing can use a target maximum luminance at runtime
 - Games can't have the level of color grading video may have
 - User can do anything
- No need to hope for the display doing 'The Right Thing'
 - Choose a level appropriate for the display and do it
 - Set the metadata to represent what you chose

Dolby Vision

- Dolby Vision is a proprietary technology/brand
- Much of the technology is strongly related to other standards
- Stream uses a special encoding
- Technology supports dynamic metadata
- Special signal encoding in the PC ecosystem is problematic

- Need to be committed to testing for the long term
- Almost every device supporting Dolby Vision supports HDR10

Win 10 Creators Update and Beyond

- Introduces native HDR on the desktop
 - Enables HDR in a window
 - May need to enable it in the displays control panel
- Natively supported via DXGI
 - Extended output desc queries providing display information
 - SetColorspace1 on swap chain to control interpretation
 - Metadata set function
- Requires 'Flip' mode swap chain
 - Non-flip will work full-screen, but truncates if composited

Interpreting DXGI Colorspaces

- DXGI Color Space enum is overloaded for multiple purposes
 - What the display is receiving
 - What the swap chain is operating in
- Enum essentially has 5 fields
 - Color space type (RGB or YCBCR)
 - Transfer/Gamma function (G22, G10, G2084)
 - Encoding range (Full or Studio)
 - Siting or where chroma subsampling is aligned (only video relevant)
 - Color primaries (P709 or P2020)

Detecting HDR

- Obtain IDXGIOutput6
- Use GetDesc1
- HDR color space will be
 - RGB_FULL_G2084_NONE_P2020
- SDR color space will be
 - RGB_FULL_G22_NONE_P709

```
IDXGIOutput6 *output6 = nullptr;
output->QueryInterface(&output6)

DXGI_OUTPUT_DESC1 oDesc;
output6->GetDesc1(&oDesc);

supportsHDR = oDesc.ColorSpace ==
DXGI COLOR SPACE RGB FULL G2084 NONE P2020;
```

Additional New Display Information

- Red, green, and blue primaries
 - xy chromaticity coordinates for the display's primaries
- Minimum and maximum luminance levels
- Maximum full-frame luminance
 - Highest level that the display will produce for all pixels at once
- White point for the display

DXGI Color Spaces and Formats

DXGI Color Space	Format	Default	HDR
RGB_FULL_G22_NONE_P709	R8G8B8A8_UNORM	Yes	No
	R10G10B10A2_UNORM	Yes	No
RGB_FULL_G10_NONE_P709	R16G16B16A16_FLOAT	Yes	Yes
RGB_FULL_G2084_NONE_P2020	R8G8B8A8_UNORM	No	Yes*
	R10G10B10A2_UNORM	No	Yes*

Setting the Color Space

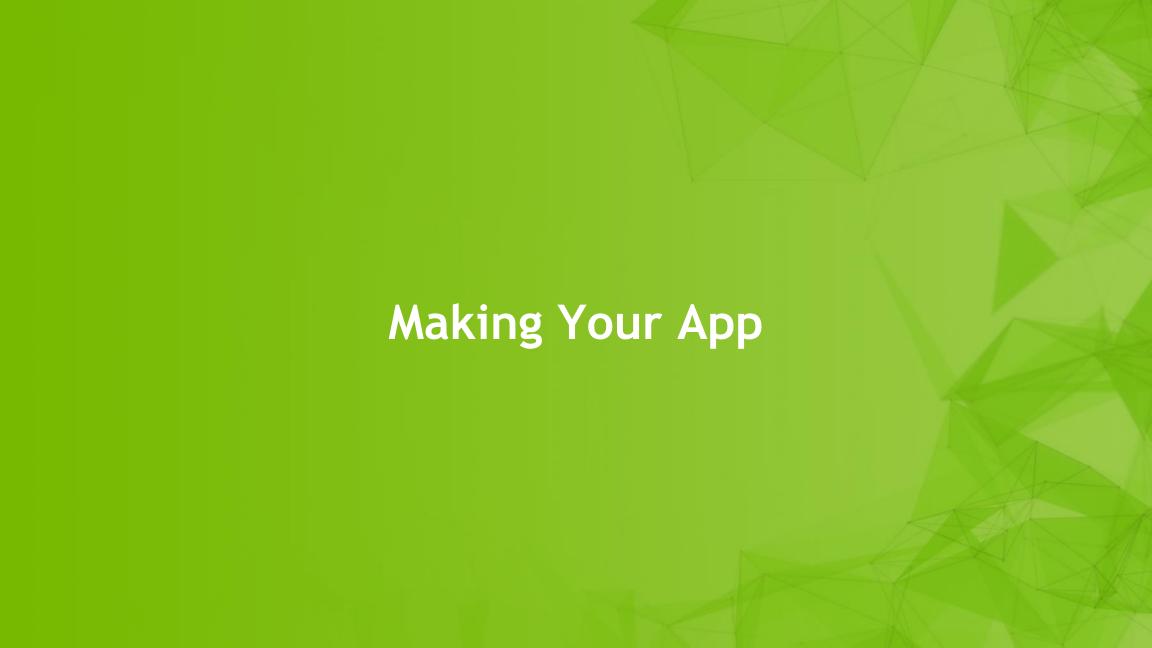
- IDXGISwapChain3 provides methods for color space management
- CheckColorSpaceSupport
 - Allows the app to determine if a particular color space is supported
 - Have to enumerate the list you care about and enquire
- SetColorSpace1
 - Applies the requested color space to the swap chain

Which format to use?

- Best advice is DXGI_FORMAT_R16G16B16A16_FLOAT
- Uses DXGI_COLOR_SPACE_RGB_FULL_G10_NONE_P709
- Works in HDR by default
- This color space is known as scRGB or CCCS
 - It is what the OS uses for compositing
 - Luminance is 80 nits for (1,1,1), so 1000 nits white is 12.5
 - Color primaries are Rec 709 / sRGB
 - Wide gamut supported via negative colors

Why not RGB10?

- Unfortunately doesn't deliver on all its promises
 - Often touted as "conversion free"
 - This is not reliably true
 - May end up with a double conversion
 - Memory savings aren't that fantastic
 - < 3% in a really aggressive case</p>
- Sacrifices precision
 - Outputs can be 12 bits
 - May suffer requantization
- Non-default status introduces compatibility challenges


Setting the MetaData

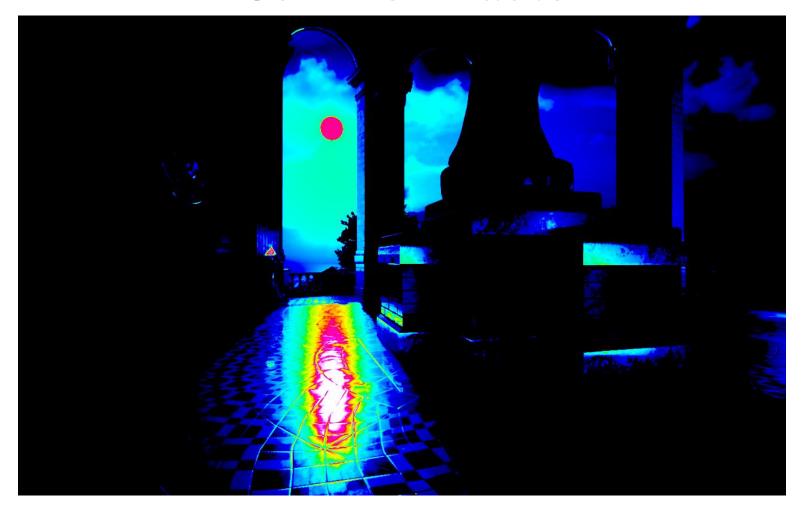
- IDXGISwapChain4::SetHDRMetaData
 - Accepts enum, void*, and struct size
 - Today only choices are None and HDR10
- HDR10 Metadata structure has somewhat odd scaling
 - All colors are specified in xy scaled by 50,000 to produce an integer
 - Min/Max are scaled by 10,000

Earlier Versions

- NVAPI supports HDR displays back to Win7
- Restricted to full-screen exclusive mode
 - Requires driver to have full control of the display of the swap chain
 - o D3D12 lacks true full-screen exclusive

- Importantly, NVAPI is still useful in latest Win10
 - Can detect HDR screens present, but not in HDR mode
 - Allows game to enable HDR and have it deactivate on exit

Overall Goals


- Produce a good HDR scene-referred image
 - Properly exposed image
 - Intense highlights and deep shadows where applicable
 - Not all scenes are HDR
- Preserve precision through post-processing
- Perform color grading in the expanded high-precision space
- Tone map into the monitor's capabilities
- Apply a legible UI
- Build in tools for analysis

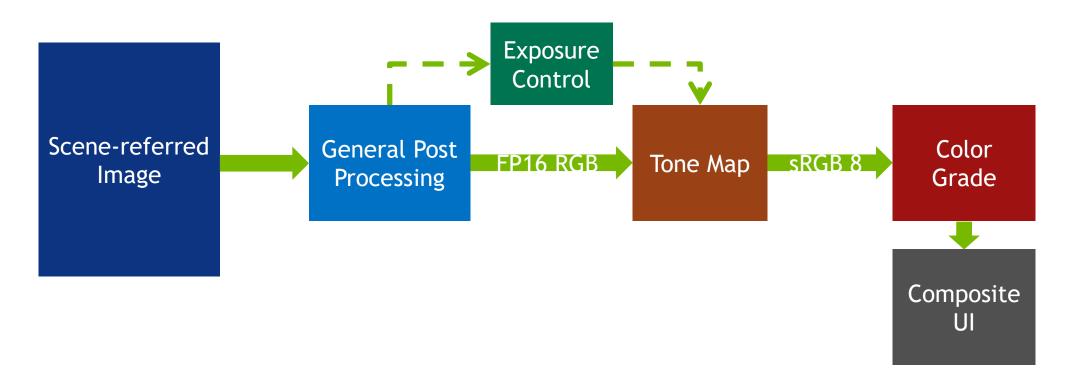
Physically Based Rendering

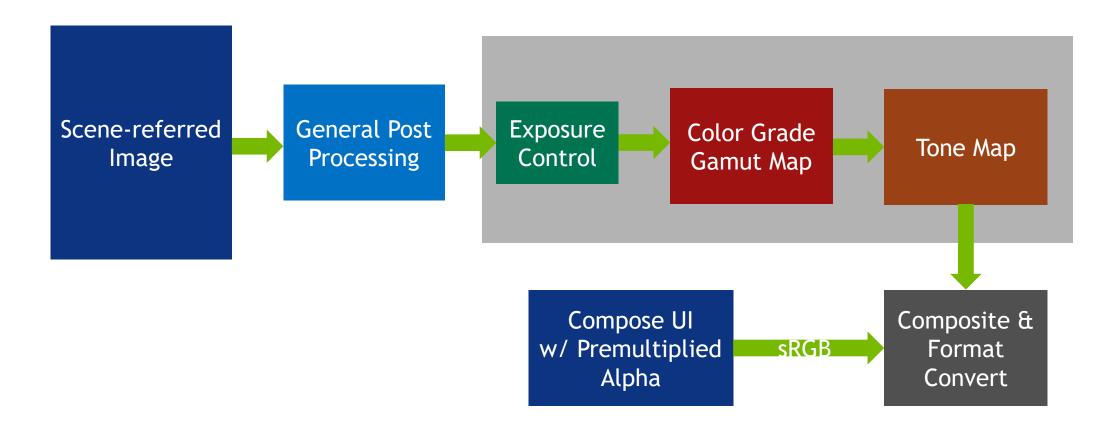
- Important for generating good, plausible values
 - Will naturally generate good, detailed highlights
- Requires the artists to set things up properly
- Naturally generates the range you want

- HDR is an excellent detector for cheating in the art work
 - Emissive geometry mismatched with light values
 - Particle systems and effects can be calibrated incorrectly

Common Fault

Rendering Primaries


- All color rendering is done within a specific subspace
- Rarely thought about today
 - sRGB/Rec 709 are the standard
- Altering the primaries has serious ramifications on rendering results

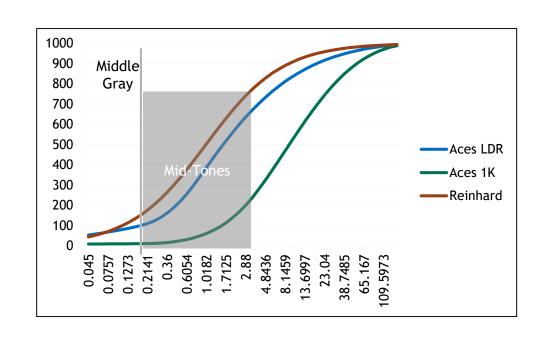

Best Practices on Primaries

- Use a consistent set
 - Always use the same set no matter the destination primaries
- Wider primaries would be nice
 - Allows the production of a wider gamut
 - Appears to produce more correct color interactions
 - Will generate colors outside Rec 709/sRGB
- Conservative choice: Stick to Rec 709
 - Guarantees compatibility with SDR
- Consider gamut mapping to enable better use of the wider gamut

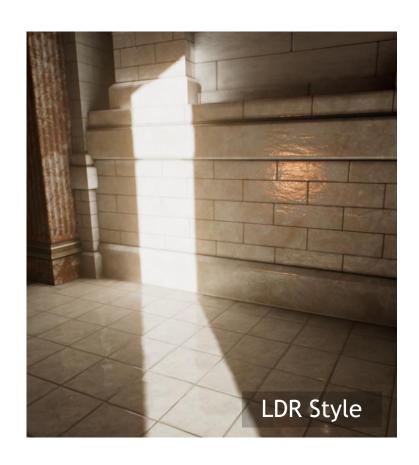
Classic Post Processing Pipeline

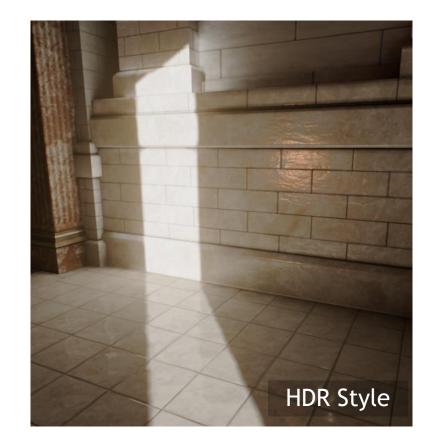
HDR-Aware Post Processing Pipeline

Color Grading


- One of the tougher challenges we face with HDR
- Many games today perform image referred color grading
 - Edit image in Photoshop and extract LUT
 - Often even performed in gamma space
 - This is operating in the wrong space/range for HDR
- Ideally move grading to scene-referred space before tone map
 - Now grade applies to all targets
 - Can be either pure math or LUT baked in the appropriate space

Gamut Mapping


- Gamut mapping is the process of adapting one color space to fit in another
- Allows consistent rendering primaries, with
- Simplest forms are linear stretch/squash or clip
 - Results in undesirable hue shifts
 - Colors can get too intense
 - Skin tones can get overly red
- Three solutions
 - Don't expand, keep colors within sRGB gamut
 - Use soft expansion (desaturated colors are preserved)
 - Artist generated


Tone Mapping

- HDR displays do not remove the need for tone mapping
 - Simulations can produce 100,000 or 1,000,000 nits
 - HDR standards restrict to 10,000 nits
 - Practical displays are ~1,000 nits
- Tone map operator is still required
 - One that is adapted to higher luminance

Preserving Detail

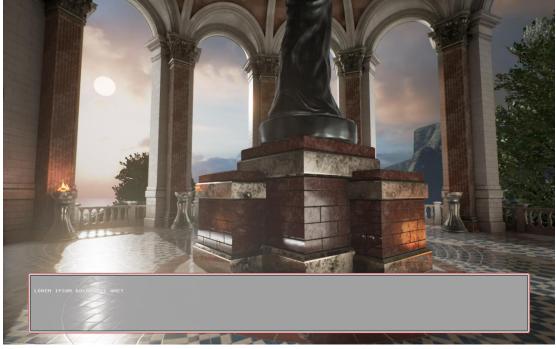
Choice of Tone Map Operator

- Ultimately, there are many choices
- Personally, local operators seem less relevant
 - Local operators are attempting to make up for what SDR lacks
- Filmic operators generally a recommended choice
 - 100+ years of science and art behind the physical basis
 - Sigmoid-like curve is similar to cone response curves
 - Natural desaturation at extremes fits well with human experience
- ACES is a good choice and has adaptable luminance ranges

ACES Pipeline

- Film-production driven pipeline for managing color
 - Includes color grade
 - Includes concept of output device transform including different display targets
 - Output transform includes tone mappers for different luminance levels
- Provides a great foundation to build from
 - A game could do much worse than using an implementation of ACES
 - Many optimizations such as baking to a LUT are possible
- Not the only solution
 - It is at least a great place to start
 - Why reinvent the wheel?

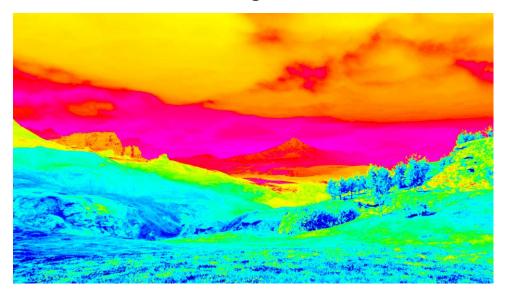
User Interface


- UI requires special care in HDR
- Traditional UI development has always been image referred
- Typically, painter's algorithm straight onto the framebuffer
- Often at least some alpha blending, and possible transparency

- For HDR
 - Need to set appropriate luminance level
 - Need to possibly adjust contrast

UI Transparency

Glow through is problem for normal transparency


LDR HDR

A Solution for UI Composition

- Render UI offscreen as sRGB
 - Pre-multiplied alpha is probably most convenient
 - Ensure to preserve a meaningful alpha channel
- Run fullscreen pass to composite UI inside a shader
 - Detect over operations and apply simple tone map to dim HDR
 - x/(x+1) for luminance only
 - HDR should be remapped in a color space with no negative values
 - Apply scale and contrast to UI values
- Optionally, provide an additional curve on the alpha
 - Useful for fade-in alpha effects

Build in Good Tools

- Add visualizations for pre/post tone mapped range
- Allow artists to visualize things
- Makes debugging easy
- HDR helps you fix things you never quite knew were wrong
- SDR will improve too

Thanks

Booth #223 - South Hall www.nvidia.com/GDC

