
 

DA_09421-001  |  June 12, 2020 
Advance Information  |  Subject to Change 
NVIDIA 

Application Note 

 

JETSON VIRTUAL CHANNEL 
WITH GMSL CAMERA 
FRAMEWORK GUIDE 

 

 

 

 

  



NVIDIA  
Jetson Virtual Channel with GMSL Camera Framework Guide DA_09421-001  |  ii 

DOCUMENT CHANGE HISTORY 

 

Version Date Authors Description of Change 

v0.1 March 5, 2019 svyas 
sgollapudi 

Initial release 

v0.2 April 10, 2019 svyas Update release 

v1.0 June 21, 2019 sgollapudi Update release 

 

  



NVIDIA  
Jetson Virtual Channel with GMSL Camera Framework Guide DA_09421-001  |  iii 

TABLE OF CONTENTS 

Description ................................................................................ 5 

Platforms .................................................................................. 6 

GMSL Protocol ........................................................................... 7 

GMSL Camera ............................................................................ 8 

CSI Connectivity ....................................................................... 10 
Aggregator and Virtual Channels ............................................................. 10 

Jetson TX2.................................................................................... 10 
Jetson AGX Xavier ........................................................................... 11 

Hardware Module Connectivity ................................................... 13 

Software Framework and Programming ....................................... 15 
Driver Framework .............................................................................. 15 

Driver Programming ......................................................................... 16 
SerDes Driver API .............................................................................. 20 

MAX9296 Deserializer Driver ............................................................ 20 
MAX9295 Serializer Driver .............................................................. 23 

Device Tree Programming..................................................................... 24 
Platform Device Tree ........................................................................ 24 
Module Device Tree ......................................................................... 27 
Plugin Manager Device Tree ............................................................... 31 
Camera Modules Device Tree .............................................................. 31 

Constraints .............................................................................. 32 

Validation ............................................................................... 33 

Known Issues .......................................................................... 34 
General Issues ............................................................................... 34 
Xavier Specific ............................................................................... 34 
Plugin Manager Board ID ................................................................... 34 



NVIDIA  
Jetson Virtual Channel with GMSL Camera Framework Guide DA_09421-001  |  iv 

 

TABLE OF FIGURES 

Figure 1: GMSL protocol .......................................................................... 7 

Figure 2: Reference GMSL setup with 2x aggregator ......................................... 8 

Figure 3: Proposed GMSL setup with 4x aggregator .......................................... 9 

Figure 4: Jetson TX2: 12 cameras with virtual channels ..................................... 11 

Figure 5: Jetson AGX Xavier 16 cameras with virtual channels ............................. 11 

Figure 6: Jetson AGX Xavier: 24 cameras with virtual channels ............................ 12 

Figure 7: Reference GMSL hardware connectivity ............................................ 14 

Figure 8: Top level view: kernel drivers and devices ......................................... 15 

Figure 9: GMSL camera: device boot sequence ............................................... 18 

Figure 10:GMSL camera: stream_on and stream_off sequence ............................ 19 

TABLE OF TABLES 

Table 1: Maximum Possible Sensor Connections ............................................. 10 

Table 2: I2C address assignment for reference GMSL setup ................................ 24 

 



 

NVIDIA 
Jetson Virtual Channel with GMSL Camera Framework Guide DA_09421-001|  5 

DESCRIPTION 

This document provides the details on: 

 The Gigabit Multimedia Serial Link (GMSL) protocol 
 Hardware connectivity for the serializer/deserializer in the reference module (see 

Platforms) 
 The software framework 
 Configuration, including virtual channel programming 

NVIDIA validates the reference module on NVIDIA® Jetson™ TX2 and NVIDIA® 
Jetson AGX Xavier™ platforms with Sony IMX390 sensors as source. 

However, it can be used as reference guide for any other GMSL module bring up on 
Jetson TX2 and Jetson AGX Xavier. 

In addition, the software framework described in this document can also work as 
reference for other SerDes (Serializer-Deserializer) links apart from GMSL. 

Note: The reference GMSL module described here, uses CSI interface. No other 
interface is validated. 

 

 



 

NVIDIA 
Jetson Virtual Channel with GMSL Camera Framework Guide DA_09421-001|  6 

PLATFORMS 

GMSL and other aggregators are not supported on NVIDIA® Jetson Nano™ and 
NVIDIA® Jetson™ TX1 platforms, as they do not support virtual channels. This 
document applies to Jetson TX2 and Jetson AGX Xavier platforms only. 

The reference GMSL setup is: 

 Sensor: Sony’s dual IMX390, RAW12/1080p/30fps, CSI port A, x2 lanes 
 Serializer: Maxim’s MAX9295 
 Deserializer: Maxim’s MAX9296 

 



 

NVIDIA 
Jetson Virtual Channel with GMSL Camera Framework Guide DA_09421-001|  7 

GMSL PROTOCOL 

Maxim Integrated released GMSL as a communication link for video applications in the 
automotive industry. GMSL is based on SerDes (Serializer-Deserializer) technology, 
which means that it uses a serializer on the transmitting side and a deserializer on the 
receiving side. It is specifically designed for use in Advanced Driver Assistance Systems 
(ADAS) and Camera Monitoring Systems (CMS). It can provide video transfer speeds 
up to 6 GB/second. It uses STP or coaxial cables, which are both inexpensive and very 
robust for EMC disturbances. 

 

Figure 1: GMSL protocol 

 

 

 Serializer 
 Deserializer 

 GMSL-2 Core 
 Serializer 

Input 
Interface 

 

GMSL-2 Phy 
 

GMSL-2 channel 
 

GMSL-2 Phy 
 Deserializer 

Output 
Interface 



 

NVIDIA 
Jetson Virtual Channel with GMSL Camera Framework Guide DA_09421-001|  8 

GMSL CAMERA 

The diagram in the following Figure 2 shows the control, data, and clock connections for 
the reference GMSL module validated on Jetson TX2 and Jetson AGX Xavier. 

 

Figure 2: Reference GMSL setup with 2x aggregator 

 In this GMSL setup, two sensors are paired with their respective serializers, each 
streaming 1080p/30fps RAW12 pixels over x2 CSI MIPI lanes. 

 The serializers are connected to a GMSL deserializer device through different GMLS 
ports (ports A and B) and GMSL links using coaxial cables. 

 On the output port side, the deserializer is connected to a Jetson TX2 or Jetson AGX 
Xavier on the desired CSI port (CSI port A in this example). 

 To transmit two different pixel streams from two sensors to a receiver at a shared 
CSI port, the deserializer assigns a unique virtual channel ID to each stream. The 



 

NVIDIA  
Jetson Virtual Channel with GMSL Camera Framework Guide DA_09421-001  |  9 

virtual channel ID is software configurable via the device tree. It must match the 
stream’s virtual channel ID programmed at receiver side in the NVIDIA SoC. 

This reference GMSL setup uses a 2x (x2/x4/x1) CSI deserializer. It can host up to two 
sensors via serializers. 

To host four sensors over single shared CSI port, you must use a 4x aggregator, as 
shown in the following Figure 3: 

 

Figure 3: Proposed GMSL setup with 4x aggregator 

 

Proposed GMSL setup with 4x aggregator 
 

 

 

 

 

 

Sensor1 Maxim 
Serializer1 

Maxim 4x 
Deserializer 

 

 

NVIDIA SoC 

 

CSI 

  

GMSL link A 

GMSL link B 

 

 

x4/
x2/
x1 

I2C 

I2C Control transmit rate – 187.5Mbps 

CSI data receive rate – 6 Gbps per 4 lanes 

 

CLK 

CSI Port X 

 

 

Port X 

 

 

Sensor3 
Maxim 

Serializer3 

x4/x2/1 

Sensor4 
Maxim 

Serializer4 

  

Sensor2 Maxim 
Serializer2 

  

x4/x2/1 

x4/x2/1 

x4/x2/1 

I2C 

I2C 

I2C 

I2C 

CLK 

CLK 

CLK 

CLK 

GMSL link C 

 

 GMSL link D 

 

 

GMSL coax cables connection 

Bidirectional data and control 

Unidirectional clock 

 

 VC0 

VC1

  

VC2 

VC3 



 

NVIDIA 
Jetson Virtual Channel with GMSL Camera Framework Guide DA_09421-001|  10 

CSI CONNECTIVITY 

The table below shows the maximum sensor connections possible on each of the Jetson 
platforms. 

Table 1: Maximum Possible Sensor Connections 

 
Jetson TX1 Jetson TX2 Jetson AGX 

Xavier 

No aggregator 6 6 6 

Aggregator + ISP N/A 12 16 

Aggregator w/o ISP N/A 12 24 

AGGREGATOR AND VIRTUAL CHANNELS 

Jetson TX2 
The maximum number of virtual channels supported on Jetson TX2 is 12 via three 4x 
aggregators connected to each of CSI bricks in x4, x2, or x1 lane configuration (or any 
valid combination of them). 



 

NVIDIA  
Jetson Virtual Channel with GMSL Camera Framework Guide DA_09421-001  |  11 

 

Figure 4: Jetson TX2: 12 cameras with virtual channels 

Figure 4 shows Jetson TX2 connections for 12 cameras with virtual channels. 

Jetson AGX Xavier 
Jetson AGX Xavier supports a maximum of 16 virtual channels with ISP or 24 virtual 
channels without ISP. 

 

Figure 5: Jetson AGX Xavier 16 cameras with virtual channels 

 



 

NVIDIA  
Jetson Virtual Channel with GMSL Camera Framework Guide DA_09421-001  |  12 

Figure 5 shows sensor connections to each of Xavier CSI bricks (total 4 CSI bricks in 
Xavier), in x4 or /x2 or /x1 possible lane configuration. 

 

 

Figure 6: Jetson AGX Xavier: 24 cameras with virtual channels 

Figure 6 shows 4 sensors connected to each port of CSI bricks AB and CD in x2 or x1 
lane configuration and 4 sensors connected to each of remaining CSI bricks EF and GH, 
in x4 or x2 or x1 lane configuration. 

 The CSI aggregator uses Virtual Channels to connect to four cameras over one CSI 
connection. 

 The Jetson TX2 or Jetson AGX Xavier VI sends each camera frame to a different 
location in memory. 

 In software, each camera appears as a separate V4L2 device. 

 

 



 

NVIDIA 
Jetson Virtual Channel with GMSL Camera Framework Guide DA_09421-001|  13 

HARDWARE MODULE CONNECTIVITY 

Figure 7 shows how two sensors are connected to Jetson AGX Xavier platform using a 
GMSL reference module and MAX9295/MAX9296 SerDes. A setup using Jetson TX2 is 
connected the same way. 

The GMSL MAX9296 deserializer is connected to the Jetson platform via MIPI adaptor 
using MIPI white cables, which are plugged in to the platform’s camera connector 
socket. This is one of several ways the aggregator hardware module can be connected to 
the Jetson platform. 

 



 

NVIDIA  
Jetson Virtual Channel with GMSL Camera Framework Guide DA_09421-001  |  14 

 

Figure 7: Reference GMSL hardware connectivity 

 

 IMX390 Sensor 
+ MAX9295 
Serializer Pair 
Module 

 GMSL port 

 GMSL port 

 MAX9296 Deserializer Board 

 CSI port 

NVIDIA Jetson 
Xavier

MIPI White Cable

MIPI Adapter Board

GMSL Coax cable

External Power Supply



 

NVIDIA 
Jetson Virtual Channel with GMSL Camera Framework Guide DA_09421-001|  15 

SOFTWARE FRAMEWORK AND 
PROGRAMMING 

This section describes the kernel drivers and device tree programming required for 
GMSL and virtual channel. 

 

Figure 8: Top level view: kernel drivers and devices 

DRIVER FRAMEWORK 
As shown in Figure 8 above, there are separate kernel drivers for serializer and 
deserializer devices apart from the sensor driver. In the reference module, they are 
MAX9295 serializer and MAX9296 deserializer drivers. 

 

Drivers  Devices 

 

  

 

 

 

 

IMX390 driver 

Max9295 
driver 

Max9296 
driver 

V4l2 kernel framework 

               1                                        
IMX390 device 0 

1 
Max9295 device 0 

Max9296 
device 0 

V4l2 subdev register/unregister 
Device & stream control ops 

Device & stream control ops Device & stream control ops 



 

NVIDIA  
Jetson Virtual Channel with GMSL Camera Framework Guide DA_09421-001  |  16 

In this framework, the sensor driver is exposed to the rest of the system the same as any 
other generic V4L2 sensor driver without external aggregator. All the SerDes 
programming happens “under the hood” through sensor driver. 

The SerDes kernel drivers are not registered with as client programmable and isolated 
devices V4L2 or any other sensor framework. 

The reason for this design is that a certain fixed sequence of operations must be 
performed in SerDes, and it does not quite fit the generic V4L2 framework sequence for 
sensors. 

SerDes drivers are separate, though, and can be statically linked to any sensors in the 
device tree depending on hardware connectivity, but they are controlled by the sensor 
driver only. They do not expose any direct programmable functionality to user clients. 

A sensor driver internally links to the SerDes drivers to perform device and stream 
control operations such as power on/off, control setup/release, stream setup/release, 
stream start/stop, and more, based on device tree configuration. 

Driver Programming  
The GMSL link structure below is the core entity which defines the entire link 
configuration from sensor to serializer to deserializer link for each sensor 
source. 
 
struct gmsl_link_ctx { 
    __u32 st_vc;           // default sensor virtual channel 
    __u32 dst_vc;          // Destination virtual channel, user defined 
    __u32 src_csi_port;    // Sensor to serializer CSI port connection 
    __u32 dst_csi_port;    // Deserializer to Tegra CSI port connection 
    __u32 serdes_csi_link; // GMSL link between Serializer and 
Deserializer 
                           //  device 
    __u32 num_streams;     // Number of active streams from sensor to 
be 
                           //  mapped 
    __u32 num_csi_lanes;   // Sensor’s CSI lane configuration 
    __u32 csi_mode;        // Deserializer CSI mode 
    __u32 ser_reg;         // Serializer slave address 
    __u32 sdev_reg;        // Sensor proxy slave address 
    __u32 sdev_def;        // Sensor default slave address 
    struct gmsl_stream streams[GMSL_DEV_MAX_NUM_DATA_STREAMS]; 
                           // Array of active streams to be mapped 
    struct device *s_dev;  // Sensor device handle 
} 
 



 

NVIDIA  
Jetson Virtual Channel with GMSL Camera Framework Guide DA_09421-001  |  17 

Most of the structure fields are populated by the sensor driver from sensor’s device 
tree’s gmsl-link node during device boot (see the next section for node details). Some of 
the fields are populated by the serializer and deserializer drivers. 

The sensor driver populates this struct instance and passes it to the serializer and 
deserializer drivers, which make use of the configuration details found in the structure 
context during power-on, control pipeline setup, and data streaming pipeline setup 
calls. 

As defined in this structure, the sensor and its corresponding serializer device have two 
different I2C slave addresses; one is the physical (default) assigned according to the 
device data sheet and the other, called the proxy, is user-defined. 

The reason for this is that all the devices sharing the same hardware connection in the 
GMSL setup must be identified to the I2C bus with unique slave addresses. The physical 
slave address of each device is fixed and is the same for similar types of devices, such as 
all sensor devices of a single model and make that are assigned to same slave. This 
causes an address conflict. To resolve the conflict the driver needs proxy slave addresses 
for such devices. Proxy addresses are statically set in the device tree and are assigned 
during device boot. 

Figure 9 shows the call flow between GMSL kernel drivers during device boot. 



 

NVIDIA  
Jetson Virtual Channel with GMSL Camera Framework Guide DA_09421-001  |  18 

 

Figure 9: GMSL camera: device boot sequence 

Power management is handled by the shared deserializer driver instead of the sensor 
driver because the deserializer device is common among all the sensors connected to it, 
and each sensor device is unaware of other sensor devices in the GMSL module setup. 

The stream-on and stream-off calls are mapped directly to the serializer and deserializer 
drivers. 

Stream setup is required for the SerDes drivers, whereas stream-on and stream-off are 
controlled by the deserializer driver only.  

Figure 10 shows the stream-on and stream-off call flow. 



 

NVIDIA  
Jetson Virtual Channel with GMSL Camera Framework Guide DA_09421-001  |  19 

 

Figure 10: GMSL camera: stream_on and stream_off sequence 



 

NVIDIA  
Jetson Virtual Channel with GMSL Camera Framework Guide DA_09421-001  |  20 

SERDES DRIVER API 
The SerDes Driver API is described below. 

MAX9296 Deserializer Driver 

 

void max9296_power_off (struct device * dev ) 

Powers off the max9296 deserializer module.  

De-asserts the shared reset GPIO and powers off the regulator based on ref count. 

Parameters 
 [in] dev Reference to deserializer device handle 
  
Returns 

None 

 

int max9296_power_on (struct device * dev) 

Powers on the max9296 deserializer module.  

Asserts shared reset GPIO and powers on the regulator, maintains the ref count internally 
for source devices. 

Parameters 
 [in] dev Reference to deserializer device handle 
  
Returns 

0 for success, -1 otherwise. 

 

int max9296_reset_control (struct device * dev, struct device * s_dev ) 

Resets the link control pipeline, deserializer driver internally decrements the ref count 
and resets the deserializer device if all the source sensor devices are powered off, which 
means all the control and streaming configuration is wiped off. 

Parameters 
 [in] dev Reference to deserializer device handle 
  
Returns 

0 for success, -1 otherwise. 

 

int max9296_sdev_register (struct device * dev, struct gmsl_link_ctx * g_ctx)  



 

NVIDIA  
Jetson Virtual Channel with GMSL Camera Framework Guide DA_09421-001  |  21 

Registers the source sensor device with the deserializer device.  

Internally deserializer driver checks all the perquisites and compatibility and finally if 
valid, stores the source’s gmsl_link_ctx context handle is stored in source list maintained 
by deserializer driver instance. 

Parameters 
 [in]  dev Reference to deserializer device handle  

[in]  g_ctx Reference to gmsl_link_ctx structure handle 
  
Returns 

0 for success, -1 otherwise. 

 

int max9296_sdev_unregister (struct device * dev, struct device * s_dev ) 

Unregisters the source sensor device with the deserializer device.  

Parameters 
 [in] dev Reference to deserializer device handle  

[in] s_dev Reference to sensor device handle 
  
Returns 

0 for success, -1 otherwise. 

 

int max9296_setup_control (struct device * dev) 

Sets up the deserializer link’s control pipeline.  

This gets called during device boot to put deserializer in dual splitter mode. This must be 
called after max9296_setup_link(). 

Parameters 
 [in] dev Reference to deserializer device handle 
  
Returns 

0 for success, -1 otherwise. 

 

int max9296_setup_link (struct device * dev, struct device * s_dev ) 

Puts deserializer device in single exclusive link mode, so link specific i2c overrides can 
be performed for sensor and serializer devices.  

Parameters 

 [in] dev Reference to deserializer device handle  

[in] s_dev Reference to sensor device handle 



 

NVIDIA  
Jetson Virtual Channel with GMSL Camera Framework Guide DA_09421-001  |  22 

Returns 

0 for success, -1 otherwise. 

 

int max9296_setup_streaming (struct device * dev, struct device * s_dev) 

Performs the internal pipeline configuration for the link in context to setup streaming and 
puts the deserializer link in ready to stream state.  

Parameters 

 [in] dev Reference to deserializer device handle  

[in] s_dev Reference to sensor device handle 

Returns 

0 for success, -1 otherwise. 

 

int max9296_start_streaming (struct device * dev, struct device * s_dev ) 

Sensor client driver calls it to enable the streaming.  

Parameters 

 [in] dev Reference to deserializer device handle  

[in] s_dev Reference to sensor device handle 

Returns 

0 for success, -1 otherwise. 

 

int max9296_stop_streaming (struct device * dev, struct device * s_dev ) 

Sensor client driver calls it to disable streaming.  

Parameters 

 [in]  dev Reference to deserializer device handle 

 [in] s_dev Reference to sensor device handle 

Returns 

0 for success, -1 otherwise. 

 

Both max9296_start_streaming and max9296_stop_streaming are mainly added to 
enable and disable sensor streaming on the fly while other sensor(s) are active. 



 

NVIDIA  
Jetson Virtual Channel with GMSL Camera Framework Guide DA_09421-001  |  23 

MAX9295 Serializer Driver 

int max9295_reset_control (struct device * dev) 

It reverts the i2c overrides and resets the SER serializer device.  

Parameters 
 [in] dev Reference to serializer device handle 
  
Returns 

0 for success, -1 otherwise.  

 

int max9295_sdev_pair  (struct device *  dev, struct gmsl_link_ctx *  g_ctx ) 

When called by sensor client driver, it pairs sensor device with serializer device.  

Parameters 
 [in] dev Reference to deserializer device handle  

[in] g_ctx Reference to gmsl_link_ctx structure handle 
 

Returns 
0 for success, -1 otherwise. 

 

int max9295_sdev_unpair (struct device * dev, struct device * s_dev) 

When called by sensor client driver, it unpairs sensor device with serializer device.  

Parameters 
 [in] dev Reference to serializer device handle  

[in] s_dev Reference to sensor device handle 
 

Returns 
0 for success, -1 otherwise. 

 

int max9295_setup_control (struct device * dev) 

Powers on the serializer device and does perform the i2c overrides for sensor and serializer 
devices which includes setting proxy i2c slave addresses for these devices.  

Client must make sure the deserializer device is in link_ex exclusive link mode by calling 
deserializer driver’s max9296_setup_link() function API, before calling this function. 

Parameters 
 [in] dev Reference to serializer device handle 
  
Returns 



 

NVIDIA  
Jetson Virtual Channel with GMSL Camera Framework Guide DA_09421-001  |  24 

0 for success, -1 otherwise. 

 

int max9295_setup_streaming (struct device * dev) 

Sets up the internal pipeline of serializer device for a given pair module of sensor and 
serializer pair. 

Parameters 
 [in]  dev Reference to serializer device handle 
  
Returns 

0 for success, -1 otherwise. 

 

DEVICE TREE PROGRAMMING 
The device tree describes the hardware connections to the system as well as the static 
device properties of the drivers. 

Platform Device Tree 
Hardware connections and device addressing are configured in the platform device tree. 

As explained in the preceding section, sensor and serializer devices have two addresses 
each: one a physical address and the other a proxy address. Both are defined in the 
platform device tree. 

In the reference GMSL module, both sensors have the physical slave address 0x1a, but 
must be assigned distinct proxy addresses (user configurable, by default 0x1b and 
0x1c). 

Similarly, for serializer devices the physical address is 0x62, and the proxy addresses 
are user configurable, by default 0x40 and 0x60. 

Below table shows the address assignments for given reference GMSL setup: 

Table 2: I2C address assignment for reference GMSL setup 

 Sensor1 Sensor2 Ser1 Ser2 Des 

Physical slave address 0x1a 0x1a 0x62 0x62 0x48 

Proxy slave address 0x1b 0x1c 0x40 0x60 NA 

Each sensor device initiates power_on request to deserializer driver in order to perform 
the GMSL link configuration and power on the shared deserializer device. In this power-



 

NVIDIA  
Jetson Virtual Channel with GMSL Camera Framework Guide DA_09421-001  |  25 

on call, the deserializer driver only enables the GMSL link on which the caller sensor 
device is connected to, and keeps other one disabled, so that there will be no address 
conflicts between the two links. It then updates all devices’ slave addresses on the active 
link to the proxy addresses defined in the device tree. Same procedure is followed for 
other GMSL link when deserializer driver gets power_on request from sensor device 
connected to other GMSL link. In this way, deserializer driver updates all the addresses 
of all the devices hosted by the deserializer device. 

For example, in the reference GMSL setup, when the deserializer gets a power-on 
request from the sensor device connected to link A, it enables GMSL link A and disables 
GMSL link B. It first communicates to serializer and the sensor devices on link A at their 
respective physical addresses (0x1a for sensor1 and 0x62 for Ser1), and then updates 
those physical addresses to proxy addresses (0x1b for sensor1 and 0x40 for Ser1). Then 
it performs the same steps for GMSL link B when sensor device on GMSL link B requests 
power_on to deserializer driver. Finally, it sets up GMSL link in dual mode. Thus, each 
device is identified uniquely over the I2C bus. All further device communication takes 
place on the proxy addresses until reboot. 

At present the GMSL link address are programmed at boot time, during probing, due to 
control configuration timing constraints. In a future release the process may be moved to 
power-on/power-off. 

The following code section is an example of platform device configuration of the GMSL 
setup shown in diagrams above. For full details, see the platform device tree file 
tegra186-quill-camera-imx390-a00.dtsi (for Jetson TX2) and tegra194-
p2822-0000-camera-imx390-a00.dtsi (for Jetson AGX Xavier). 
 
tca9546@70 { 
    /* The deserializer is connected to Tegra Jetson camera connector 
port via MIPI adapter over pca9546 i2c expander, so all the GMSL device 
nodes go under here. */ 
    compatible = "nxp,pca9546";  
    i2c@0 {  
        /* As in above setup, deserializer (which hosts all the 
serializers and sensors) is connected to adaptor onto port A, so on i2c 
expander all the GMSL devices go under i2c@0, the expander assigns 0x30 
unique address to port 0.*/ 
        reg = <0>; 
        dser: max9296@48 { 
            /* single common deserializer at 0x48 */ 
            compatible = "nvidia,max9296"; 
            reg = <0x48>; 
            csi-mode = "2x4";  /* this tells max CSI lane configuration 
*/ 
            max-src = <2>; /* max sources */ 
            /* As deserializer is common among sensor devices, the 
reset and power rails are controlled via deserializer */ 



 

NVIDIA  
Jetson Virtual Channel with GMSL Camera Framework Guide DA_09421-001  |  26 

            reset-gpios = <&tegra_main_gpio CAM0_RST_L 
GPIO_ACTIVE_HIGH>; 
            vdd_cam_1v2-supply = <&en_vdd_cam_1v2>; 
        }; 
 
        ser_prim: max9295_prim@62 { /* Default serializer device */ 
            compatible = "nvidia,max9295"; 
            reg = <0x62>; 
            is-prim-ser; /* primary ser device */ 
        }; 
 
        ser_a: max9295_a@40 {  
            /* serializer device connected at link A at proxy address 
0x40 (the proxy address are assigned runtime) */ 
            compatible = "nvidia,max9295"; 
            reg = <0x40>; 
            nvidia,gmsl-dser-device = <&dser>; /* link to its 
deserializer device */ 
        }; 
 
        ser_b: max9295_b@60 { 
            /* serializer device connected at link A at proxy address 
0x60 (the proxy address is assigned runtime) */ 
            compatible = "nvidia,max9295"; 
            reg = <0x60>; 
            nvidia,gmsl-dser-device = <&dser>; /* link to its 
deserializer device */ 
        }; 
 
        imx390_a@1b { 
            /* sensor device connected at link A at proxy address 0x1b 
(the proxy address is assigned runtime). */ 
            def-addr = <0x1a>; /* default slave address is 0x1a */ 
            nvidia,gmsl-ser-device = <&ser_a>; /* link to its 
serializer device. */ 
            nvidia,gmsl-dser-device = <&dser>; /* link to its 
deserializer device. */ 
        }; 
 
        imx390_b@1c { 
            /* sensor device connected at link A at proxy address 0x1b 
(the proxy address are assigned runtime). */ 
            def-addr = <0x1a>; /* Default slave address is 0x1a. */ 
            /* Define clocks, io pins, power sources */ 
            nvidia,gmsl-ser-device = <&ser_b>; /* Link to its 
serializer device. */ 
            nvidia,gmsl-dser-device = <&dser>; /* Link to its 
deserializer device. */ 
        }; 
    }; /* i2c@0 closing */ 
};   /* tca9546@70 closing */ 
 



 

NVIDIA  
Jetson Virtual Channel with GMSL Camera Framework Guide DA_09421-001  |  27 

Module Device Tree 
After platform device configuration, the device module configuration must be added to 
the module device tree. For full details, see tegra186-camera-imx390-a00.dtsi 
for Jetson TX2 and tegra194-camera-imx390-a00.dtsi for Jetson AGX Xavier. A 
few snippets are shown here to illustrate the configuration. The virtual channels are set 
in the module device tree. 

The sensor device acts as master device in the GMSL software framework, so in the 
module device tree each sensor device node contains a gmsl-link device node which 
describes the properties of the GMSL link to which the sensor is connected. In the 
example below, the gmsl-link node describes the sensor connected at GMSL link A. 
 
gmsl-link { 
    src-csi-port = "b";     /* Port at which sensor is connected to 
 its serializer device. */ 
    dst-csi-port = "a";     /* Destination CSI port on the Jetson 
 side, connected at deserializer. */ 
    serdes-csi-link = "a"; /* GMSL link sensor/serializer connected */ 
    csi-mode = "1x4";      /*  to sensor CSI mode. */ 
    st-vc = <0>;           /* Sensor source default VC ID: 0 unless 
 overridden by sensor. */ 
    vc-id = <0>;           /* Destination VC ID, assigned to sensor 
 stream by deserializer. */ 
    num-lanes = <2>;       /* Number of CSI lanes used. */ 
    streams = "ued-u1", "raw12";  
/* Types of streams sensor is streaming. */ 
}; 
 

For any GMSL module configuration, all the fields shown above must be set as per 
connectivity. 

Virtual Channel Programming in the Module Device Tree 

You must add the same vc-id property value to the respective CSI and VI channel 
nodes in the same module device tree file. This property is used for vi-mode use cases. 

You must set the vc-id property in the gmsl-link node for each sensor to match the 
vc_id property in the sensor mode device node. 

This mode vc_id property is used for vi bypass mode use cases. It is read and set by 
PCL in user space. For example: 
 
mode0 { /*mode IMX390_MODE_1920X1080_CROP_30FPS*/ 
 mclk_khz = "24000"; 
 num_lanes = "2"; 
 tegra_sinterface = "serial_a"; 
 vc_id = "0"; 



 

NVIDIA  
Jetson Virtual Channel with GMSL Camera Framework Guide DA_09421-001  |  28 

 

VI and CSI Channel Nodes in the Module Device Tree 

The port binding to VI and CSI is also done in module device tree for given reference 
GMSL setup. The number of VI and CSI channels would be 2  just like any other dual 
sensor setup, but the “port-index” field would be set as per the hardware 
connectivity. 
 
vi@15700000 { 
 num-channels = <2>; 
 ports { 
  #address-cells = <1>; 
  #size-cells = <0>; 
  port@0 { 
   reg = <0>; 
   imx390_vi_in0: endpoint { 
    vc-id = <0>; 
    port-index = <0>; 
    bus-width = <2>; 
    remote-endpoint = <&imx390_csi_out0>; 
   }; 
  }; 
  port@1 { 
   reg = <1>; 
   imx390_vi_in1: endpoint { 
    vc-id = <1>; 
    port-index = <0>; 
    bus-width = <2>; 
    remote-endpoint = <&imx390_csi_out1>; 
   }; 
  }; 
 }; 
}; 
 
nvcsi@150c0000 { 
 num-channels = <2>; 
 #address-cells = <1>; 
 #size-cells = <0>; 
 channel@0 { 
  reg = <0>; 
  ports { 
   #address-cells = <1>; 
   #size-cells = <0>; 
   port@0 { 
    reg = <0>; 
    imx390_csi_in0: endpoint@0 { 
     port-index = <0>; 
     bus-width = <2>; 
    remote-endpoint = <&imx390_imx390_out0>; 
    }; 



 

NVIDIA  
Jetson Virtual Channel with GMSL Camera Framework Guide DA_09421-001  |  29 

   }; 
   port@1 { 
    reg = <1>; 
    imx390_csi_out0: endpoint@1 { 
    remote-endpoint = <&imx390_vi_in0>; 
    };       
 }; 
  }; 
 }; 
 channel@1 { 
  reg = <1>; 
  ports { 
   #address-cells = <1>; 
   #size-cells = <0>; 
   port@0 { 
    reg = <0>; 
    imx390_csi_in1: endpoint@2 { 
     port-index = <0>; 
     bus-width = <2>; 
    remote-endpoint = <&imx390_imx390_out1>; 
    }; 
   }; 
   port@1 { 
    reg = <1>; 
    imx390_csi_out1: endpoint@3 { 
    remote-endpoint = <&imx390_vi_in1>; 
    }; 
   }; 
  }; 
 }; 
}; 
 

In this configuration, for VI channel 0 and channel 1 nodes both, the “port-index” 
property is set to 0, means both the sensors using VI in0 stream or PP0 stream. 

For CSI channel 0 and channel 1 nodes, same the “port-index” property is set to 0, 
means in both the channels, the sensors are connected to CSI port A. 

Also, both VI and CSI channel nodes, contain new property “vc-id” used in vi mode 
use cases as mentioned above, it must match with “gmsl-link” device node’s “vc-id” 
property. 

The “bus-width” property tells the num of CSI lanes used.  

Tegra-camera-platform node configuration in module device tree 

Tegra-camera-platform device node contains the sensor modules details. Below 
configuration is for reference GMSL module: 
tegra-camera-platform { 
 compatible = "nvidia, tegra-camera-platform"; 



 

NVIDIA  
Jetson Virtual Channel with GMSL Camera Framework Guide DA_09421-001  |  30 

 num_csi_lanes = <2>; 
 max_lane_speed = <4000000>; 
 min_bits_per_pixel = <10>; 
 vi_peak_byte_per_pixel = <2>; 
 vi_bw_margin_pct = <25>; 
 isp_peak_byte_per_pixel = <5>; 
 isp_bw_margin_pct = <25>; 
 
 modules { 
  module0 { 
   badge = "imx390_rear"; 
   position = "rear"; 
   orientation = "1"; 
   drivernode0 { 
    pcl_id = "v4l2_sensor"; 
    /* Driver v4l2 device name */ 
    devname = "imx390 30-001b"; 
    proc-device-tree = "/proc/device-
tree/i2c@3180000/tca9546@70/i2c@0/imx390_a@1b"; 
   }; 
  }; 
  module1 { 
   badge = "imx390_front"; 
   position = "front"; 
   orientation = "1"; 
   drivernode0 { 
    pcl_id = "v4l2_sensor"; 
    /* Driver v4l2 device name */ 
    devname = "imx390 30-001c"; 
    proc-device-tree = "/proc/device-
tree/i2c@3180000/tca9546@70/i2c@0/imx390_b@1c"; 
   }; 
  }; 
 }; 
 }; 
 

 num_csi_lanes is set to 2, as both the sensors are connected to single CSI port A in 
x2 lane fashion. This is unlike of other dual sensors where num_csi_lanes is set to 
total number of CSI lanes used by both the sensors, because they both use different 
CSI ports. 

 max_lane_speed is set considering 2 sensors are streaming through single shared 
port. 

 The sensor device nodes are defined using sensor proxy addresses instead of the 
physical address, and their paths are set in proc-device-tree property, and 
similar naming is used for devname property. 

For rest of configuration, follow the same guidelines as for other sensors. 

Refer to the following module device tree files: 



 

NVIDIA  
Jetson Virtual Channel with GMSL Camera Framework Guide DA_09421-001  |  31 

For Jetson TX2, <tegra186-camera-imx390-a00.dtsi> 

For Jetson AGX Xavier, <tegra194-camera-imx390-a00.dtsi> 

Plugin Manager Device Tree 
The device tree additions for Plugin Manager are the same as for any other sensor 
module. 

See node fragment-imx390@0 in tegra186-quill-camera-plugin-manager.dtsi 
(TX2) or tegra194-camera-plugin-manager.dtsi(Xavier) for reference GMSL 
setup plugin manager support. 

Camera Modules Device Tree 
All the device nodes in the I2C node of the platform’s camera module device tree, 
tegra186-quill-camera-modules.dtsi(TX2) or tegra194-p2822-camera-
modules.dtsi(Xavier), are defined in the same way as in the platform device tree. As 
in the reference GMSL setup, they all go to i2c@0. 

Note: The default “vc-id” is set to 0 for all VI ports in modules device tree file, so 
you must assign/override correct “vc-id” in plugin-manager and sensor specific 
module device tree file. 

 

 



 

NVIDIA 
Jetson Virtual Channel with GMSL Camera Framework Guide DA_09421-001|  32 

CONSTRAINTS 

Sensor streams connected to same CSI aggregator and sharing a CSI port must use the 
same lane configuration. The deserializer driver fails to register a stream if its lane 
configuration does not match other streams that share the same deserializer device. 

Apart from that, CSI aggregators generally support multiple identical cameras running 
with the same frame rate and sensor mode. Review your aggregator data sheet for 
additional restrictions if you are using a more complicated configuration. 

 



 

NVIDIA 
Jetson Virtual Channel with GMSL Camera Framework Guide DA_09421-001|  33 

VALIDATION 

Dual GMSL sensor streaming (preview/capture) sharing CSI port A is validated using an 
Argus camera and the V4L2 application.  

The 2x CSI deserializer/aggregator is validated. The 4x CSI aggregator is not validated, 
as its hardware module is not available at this time. 

 



 

NVIDIA 
Jetson Virtual Channel with GMSL Camera Framework Guide DA_09421-001|  34 

KNOWN ISSUES 

This section summarizes known issues in the GMSL camera framework. 

General Issues 
 Preview flickers on scene change. 
 Sensor tuning and image quality are substandard. 

Xavier Specific 
Note: This limitation and rework only applies to older GMSL kits which do not draw 

the on-board(DESER) 1.2V supply. 

The 1.2v power supply needs rework. The MAX9296 deserializer board used in the 
reference setup does not draw the required on-board 1.2v power, and Jetson AGX 
Xavier developer kit carrier board has dropped support for supplying 1.2v to the camera 
connector (Jetson TX2 does have this support). 

The following rework is required on Jetson AGX Xavier for vendor modules that expect 
1.2v from Jetson AGX Xavier: 

 Use spare LDO for the SATA controller, which can take max 1.21v. The Vmin 
requirement from the IMX390 reference sensor is 1.14v, and the range is 1.14 to 
1.26v, so this LDO supply is enough to supply 1.2v to the Jetson AGX Xavier carrier  
board’s camera connector. 

Plugin Manager Board ID 
The reference GMSL module currently does not have a unique board ID. Use the MIPI 
adapter’s board ID, LPRD-001. This ID is used by other sensor modules which use 
similar MIPI adapters, such as IMX274 and IMX185. To work around this issue until it is 



 

NVIDIA  
Jetson Virtual Channel with GMSL Camera Framework Guide DA_09421-001  |  35 

resolved, the IMX390 module is disabled in these sensor modules; see tegra186-
quill-camera-plugin-manager.dtsi. 

 



 

www.nvidia.com 

Notice 
ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER 
DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO 
WARRANTIES, EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND ALL 
EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY 
OR CONDITION OF TITLE, MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A PARTICULAR PURPOSE 
AND NON-INFRINGEMENT, ARE HEREBY EXCLUDED TO THE MAXIMUM EXTENT PERMITTED BY LAW. 

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no 
responsibility for the consequences of use of such information or for any infringement of patents or other rights 
of third parties that may result from its use. No license is granted by implication or otherwise under any patent 
or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change 
without notice. This publication supersedes and replaces all information previously supplied. NVIDIA 
Corporation products are not authorized for use as critical components in life support devices or systems 
without express written approval of NVIDIA Corporation. 

Trademarks 
NVIDIA, the NVIDIA logo, DRIVE AGX Xavier, DRIVE AGX System, and DRIVE OS QNX are trademarks or registered 
trademarks of NVIDIA Corporation in the United States and other countries. Other company and product names 
may be trademarks of the respective companies with which they are associated. 

Copyright 
© 2016-2020 NVIDIA Corporation. All rights reserved. 


	DESCRIPTION
	PLATFORMS
	GMSL PROTOCOL
	GMSL CAMERA
	CSI CONNECTIVITY
	AGGREGATOR AND VIRTUAL CHANNELS
	Jetson TX2
	Jetson AGX Xavier


	HARDWARE MODULE CONNECTIVITY
	SOFTWARE FRAMEWORK AND PROGRAMMING
	DRIVER FRAMEWORK
	Driver Programming 

	SERDES DRIVER API
	MAX9296 Deserializer Driver
	MAX9295 Serializer Driver

	DEVICE TREE PROGRAMMING
	Platform Device Tree
	Module Device Tree
	Virtual Channel Programming in the Module Device Tree
	VI and CSI Channel Nodes in the Module Device Tree
	Tegra-camera-platform node configuration in module device tree

	Plugin Manager Device Tree
	Camera Modules Device Tree


	CONSTRAINTS
	VALIDATION
	KNOWN ISSUES
	General Issues
	Xavier Specific
	Plugin Manager Board ID


