Argus 0.96 API Specification

September 29, 2016

Contents

1__Introductionl 1
2__Fundamentals| 2
2.1 DES| . . e e e e e 2
2.1.1 FEnumerationsl 2
EI27SEucts - . v o 2
[2.1.3 Support Classes|. 2

2.2 Objects and Intertaces| 3
2.3 Versioning| Lo 3
2.4 Object Litetimes| 4
RS Extensions.o 4
2.6 Capture Dessions|o e e e e 4
[2.6.1 Capture Methods|. 4
[2.6.2 Capture Timing and Interactions| 6

2.7 BEGLStreams| e e 6
2.71 BEGLStream Producer] o 6
.72 FBEGLStream Consumerl e 7
2.7.3 EGLStream Buffer Formats oo oL 7

B8 Events 8
2.9 Multiple Clients and Multiple Threads| 9
[3 Argus Objects and Interfaces| 9
B.I CameraProvider] 9
B2 SensorModel 9
B.3 CameraDevicel. oL e 10
[3.4 CaptureSession| e e e 11
Request| e e e 12

.0 ettings| 14
[3.6.1 Source Settings| 14
[3.6.2 Autocontrol Settings| Lo 14
[3.6.3 Stream Settings|.o 16
[3.6.4 Denoise Settings| 16
[3.6.5 Edge Enhance Settings|. o oo 16
[3.6.6 Video Stabilization Settings| L 17
[3.6.7 Output Stream Settings| 17

[3.7 CaptureMetadatal. 18
20

21

21

21

21

22

List of Tables

[ISensorModel e 10
12 ICameraProperties| 11
13 ISourceSettings| 14
|4 TAutocontrolSettings| 15
15 IStreamSettings|. 16
|6 IDenoiseSettings| L. 16
7 IEdgeEnhanceSettings| 17
8 IVideoStabilizationSettings| Lo 17
19 IOQutputStreamSettings] 17
10 ICaptureMetadatal 19
I TDenoiseMetadatal 20
12 TEdgeEnhanceMetadata] o o 20
(13 [VideoStabilizationMetadatal o000 20

ii

1

Introduction

Argus is an API for acquiring images and associated metadata from cameras. The fundamental
operation is a capture: acquiring an image from a sensor and processing it into a final output image.

Currently, Argus is supported on Android and L4T on NVIDIA Tegra TX1-based platforms.

Argus is designed to address a number of fundamental requirements:

Support for a wide variety of use cases (traditional photography, computational photography,
video, computer vision, and other application areas.) To this end, Argus is a frame-based
API; every capture is triggered by an explicit request that specifies exactly how the capture
is to be performed.

Support for multiple platforms, including L4T and Android.

Efficient and simple integration into applications and larger frameworks. In support of this,
Argus delivers images with EGLStreams, which are directly supported by other system com-
ponents such as OpenGL and Cuda, and which require no buffer copies during delivery to the
consuimer.

Expansive metadata along with each output image.

Support for multiple sensors, including both separate control over independent sensors and
access to synchronized multi-sensor configurations. (The latter are unsupported in the current
release, and will be available on only some platforms.)

Version stability and extensibility, which are provided by unchanging virtual interfaces and
the ability for vendors to add specialized extension interfaces.

Argus provides functionality in a number of different areas:

Captures with a wide variety of settings.
Optional autocontrol (such as auto-exposure and auto-white-balance.)

Libraries that consume EGLStream outputs in different ways; for example, jpeg encoding or
direct application access to the images.

Metadata delivery via both Argus events and EGLStream metadata.
Image post-processing such as noise reduction and edge sharpening.

Notification of errors, image acquisition start, and other events via synchronous event queues.

Functionality not provided by Argus:

Auto-focus. (Will be added in a later release.)
Reprocessing of YUV images (such as that required by Androids Zero Shutter Lag feature.)
Reprocessing of Bayer (raw) images. (Will be added in a later release.)

Output of Bayer (raw) images. (Will be added in a later release.)

2 Fundamentals

2.1 Types

Argus/Types.h defines fundamental data types, enumerations, and classes used in the API.

2.1.1 Enumerations

Status

Reports the result of an Argus operation. STATUS_OK signifies a success-
fully completed operation. All other return values are errors and should be
handled appropriately.

Types.h also declares a variety of enumerations used for settings and metadata; see individual
include files for definitions and specific uses.

2.1.2 Structs

UUID

PixelFormat

Range

Rectangle
Size

ClipRect

AcRegion

A 128-bit unique identifier used to define interfaces and pixel formats in
Argus. There is also a NamedUUID subclass (which includes a string
value along with the identifier) and a number of further subclasses (such as
PixelFormat) that provide type safety.

Defines the pixel format used in an output stream.

Specifies an operational range. When passed to Argus components the com-
ponents will try to keep their values between min and max.

Specifies a rectangle in pixel dimensions.
Defines a width and height in integer units.

Specifies a bounding box in normalized coordinates where top left is (0.0,
0.0) and bottom right is (1.0, 1.0).

Specifies an autocontrol region of interest, defined by the left and top coor-
dinates with a width and height (all defined in pixel space.) Additionally a
scalar weighting factor can be defined for each region.

BayerTuple<T >Specifies a set of values of type T, one for each Bayer channel (red, green-

even, green-odd, and blue).

2.1.3 Support Classes

NonCopyable

A utility class in Argus that many objects inherit; this class overrides the
standard copy operator and disables the inheriting class from being copied.

2.2 Objects and Interfaces

Argus makes a distinction between objects and interfaces:

e An object is an independent API entity with a well-defined lifetime but no methods specific
to its type.

e An interface is a pure virtual class that the client acquires from an object, and uses to perform
specific operations on the object that provided it.

Each interface has an associated UUID — a 128-bit unique identifier that is assigned to that interface.
These UUIDs will never change. These UUIDs are defined with the InterfacelID type, a subclass
of NamedUUID. They are used to acquire interfaces from objects (see getInterface() below).
As a convenience, each interface also defines a static id() method that returns the UUID for that
interface.

Every interface inherits from the Interface base class, which defines no public methods but ensures
that subclasses are not copyable or assignable.

Every object inherits from the InterfaceProvider virtual base class, which defines the getInterface()
method:

virtual Interfacex getlnterface(const InterfacelD& id) = 0;

The client acquires interfaces using this method. If the object supports the requested interface,
this method will return a pointer to an instance of that interface; otherwise it returns NULL. An
example using the Event object and its IEvent interface:
uint64_t getEventTime(Event*x evt) {
Interfacex if = evt—>getInterface (IEvent::id ());
IEvent* ievt = static_cast<IEvent*>(if);
return ievt ? ievt—>getTime() : OULL;

}

The convenience function interface_cast<>() calls getInterface() on the object provided and
returns a pointer to the interface type specified as the template argument (or NULL if the object is
NULL, or the interface cannot be acquired). This example illustrates its use:

uint64_t getEventTime (Eventx evt) {

IEvent* ievt = interface_cast <IEvent>(evt);
return ievt ? ievt—>getTime() : OULL;

2.3 Versioning

Argus version compatibility is managed with one simple rule: Once an interface has been released,
it will never change. It may eventually become deprecated, and no longer be available at runtime,
but the signatures in the interface will not change.

Important note: Interface immutability is not guaranteed for beta versions of Argus. Beta version
numbers begin with zero; for example, Release 0.91.

2.4 Object Lifetimes

The lifetime of any Argus interface is the same as the lifetime of the object providing that interface.
The client takes no explicit action to release or destroy an interface.

The lifetime of an Argus object depends on whether or not the object inherits from the Destructable
base class, which declares the destroy() method:

virtual void destroy () = 0;

If an Argus object inherits from Destructable, the client must call destroy() when it is finished
using the object. After that call, the object (and all interfaces acquired from it) are no longer
valid. The implementation is free to immediately destroy the object, or to defer destruction. For
some objects (in particular, CaptureSession), destroy() may block until associated operations
are complete.

Argus objects that do not inherit from Destructable have lifetimes defined by the API. The rules
for each such object are in the object descriptions below.

2.5 Extensions

Due to the exclusive use of Interfaces, Argus is inherently extensible by nature: new interfaces can
be defined and exposed by an Argus implementation as needed while maintaining backwards com-
patibility with applications that do not use the extension. While extensions will often introduce new
objects or interfaces, it is not required. An extension may simply relax previous restrictions on the
API and allow behavior that was previously disallowed. All extensions added to Argus must include
an ExtensionName identifier which is used by the ICameraProvider::supportsExtension()
method to query the existence of an extension in an Argus implementation. This allows a client
to check for required extension support before creating any CaptureSessions. Note that support
for an extension does not imply that the hardware or resources used by the extension are avail-
able; standard interface checking and other extension-specific runtime checks, as described by the
extension documentation, should always be performed before any extension is used.

2.6 Capture Sessions

Argus is a capture-based API, meaning that a client must make explicit capture requests to receive
output from the sensor(s). The client uses CaptureSession objects to make these requests. A
capture session is bound to one or more sensors, and each sensor can be bound to only one capture
session.

2.6.1 Capture Methods

The ICaptureSession interface defines four capture methods:

capture() A standard single capture call; it produces one output on each of the streams
enabled in the request.

captureBurst() Like capture(), this will create a single output for the streams enabled in
each request, but multiple independent requests can be specified as a vector
to this call. (See further explanation below.)

repeat() Equivalent to calling capture() repeatedly until stopRepeat() is called.

repeatBurst() Equivalent to calling captureBurst() repeatedly until stopRepeat() is
called.

All four of these calls require one or more capture requests, which must be configured prior to issuing
the captures. The client creates a Request by calling ICaptureSession::createRequest(), and
configures it via the available interfaces. (The client can change or delete a Request without
affecting any earlier captures that used it.)

Fach Request object exports an IRequest interface which is used to set capture settings: output
streams, stream settings, autocontrol settings, and source settings. Likewise the client must cre-
ate an output Stream object(s) with ICaptureSession::create EGLStreamProducer(). More
than one output stream can be created and used with the Session.

The signature for capture() looks like this:

uint32_t capture(const Request*x request,
uint64_t timeout = TIMEOUT_INFINITE,
Status* status = NULL);

A single call to capture() will capture a single frame, using the settings and output stream(s)
specified in the request. If too many captures are pending, Argus will block until enough there is
space for the new capture, or set *status to STATUS_TIMEQUT if the timeout period is exceeded.
The return value from capture() is a capture id, unique within the session, which will will be
included with all events and other output from this capture. The capture id will be incremented
by one from each capture to the next. If the call fails for any reason, the return value will be zero.

Burst captures take a list of Requests instead of just one. Each call to captureBurst() will
result in N captures, where N is the number of Requests in the requests parameter:
uint32_t captureBurst (const vector<const Requestx>& requests,

uint64_t timeout = TIMEOUT._INFINITE,
Status* status = NULL);

The first capture will be performed using the first item in requests, the second capture using the
second item in requests, and so on. The return value from captureBurst() is the capture id of
the first capture. The second capture will be assigned a capture id of (return value + 1), and so
on.

The number of requests in a burst can be no more than the value returned by
ICaptureSession::maxBurstRequests().

The requests used in a burst can have any properties, but best results may be achieved by following
a few guidelines:

e Use the same sensor mode for every request. Otherwise, there may be large performance
delays every time the sensor mode changes, resulting in dropped frames and lower overall
frame rate.

e Use the same high-level autocontrol settings (for example, whether auto-exposure is enabled)
for all requests.

e Use requests that were created with the same Capturelntent if possible.

Calls to repeat() and repeatBurst() return the capture id of the first capture submitted. Both of
these methods will continually capture frames until stopRepeat() is called. Even after stopRepeat()
has been called, captures that have already been submitted will continue to be processed, so the
application should still expect events and output frames to be delivered from those captures.

2.6.2 Capture Timing and Interactions

All of the capture methods are blocking calls, returning as soon as the capture request is accepted
by the underlying driver. Call durations will vary based on the number of captures in the system
and camera pipeline state.

When a repeating capture is in effect, the client may still call another capture method. If the
new method is one of the repeating capture methods, it will replace the current repeating capture
method, but captures already being processed from the earlier method will still be completed. If
the new method is not a repeating capture method, it will be inserted into the stream of repeating
captures. The timing of that inserted capture is not guaranteed; for example, other captures from
the repeating sequence may be submitted before the new call completes. However, capture bursts
will never be interrupted by other capture calls. Once a burst request begins processing, all the
requests in that burst will be handled before any other captures occur.

2.7 EGLStreams

All Argus image input and output is done exclusively by connecting Argus to an EGLStream as
either a producer or consumer endpoint. EGLStreams facilitate simple and efficient transfer of
image buffers between EGLStream-enabled APIs, and have been extended by numerous extensions
to further enhance their utility beyond the basic stream features. The majority of the EGLStream
API and documentation is maintained by Khronos registry and is outside the scope of this document
[see https://www.khronos.org/registry/egl/|

2.7.1 EGLStream Producer

Image output from Argus is performed by connecting a Stream object to the producer endpoint of
an EGLStream using ICaptureSession::createEGLStreamProducer(). This Stream object
is then enabled as an output stream in a Request to have the capture result written to a new
frame in the EGLStream upon completion. These frames can then be acquired by one of the many
EGLStream consumer endpoints that can be attached to the stream, including those outside the
Argus namespace. These may include endpoint APIs such as OpenGL, CUDA, and GStreamer.
How these consumers acquire and release frames from the stream are documented by their respective
specifications.

https://www.khronos.org/registry/egl/

2.7.2 EGLStream Consumer

In addition to the EGLStream consumer endpoints that already exist within the Khronos registry,
Argus introduces an EGLStream namespace and Consumer class which provides various interfaces
to acquire and read frames and image data directly from an EGLStream. Consumer objects are
created using the static Consumer::create() method, which allows the EGLStream namespace
and Consumer objects to be used without a CameraProvider . It is also not a requirement that
the producer endpoint be connected to Argus; the Consumer object can be used in conjunction
with any EGLStream producer. The core interfaces supported by a Consumer object are:

IStreamConnection
Provides controls to connect/disconnect from the stream.

IFrameConsumer
Provides methods to acquire/release frames and Frame objects.

The IFrameConsumer::acquireFrame() method returns Frame objects corresponding to frames
acquired from the EGLStream. These Frames are valid until they are released, either explicitly
or implicitly, and contain the frame metadata and image buffer. The interfaces exposed by a
classnameFrame include:

IFrame
Exposes the core metadata (frame number and timestamp) and Image contained in the
frame.

IFrameCaptureMetadata
When connected to an Argus producer, classnameFrames may expose this interface to
provide access to the frames corresponding CaptureMetadata

Finally, the IFrame::getImage() method returns an Image object corresponding to the image
buffer(s) included with an EGLStream frame. The format of the data contained in an Image is
identified with a unique ImageFormatID and is described, accessed, and read using the following
interfaces:

IImageBuffers Allows mapping of the image buffers for CPU read access.
IImage2D Provides the dimensions of a 2D image

IImageYUV Describes the plane/channel layout/size of YUV formats.
IImageRGBA Describes the channel layout/size of RGBA formats.
ITmageBayer Describes the channel layout/size of Bayer formats.

IImageJPEG Encodes and writes the image to disk as a JPEG file.

2.7.3 EGLStream Buffer Formats

According to the EGL_KHR _stream! specification,

https://www.khronos.org/registry/egl/extensions/KHR/EGL_KHR_stream.txt

“It is the responsibility of the producer to convert the images to a form that the con-
sumer can consume. The producer may negotiate with the consumer as to what formats
and sizes the consumer is able to consumer, but this negotiation (whether it occurs and
how it works) is an implementation details.”

There is currently no automatic format negotiation between Argus and any consumers, and it’s up
to the application to select an Argus pixel format that is compatible with the consumer. At this
point in time, however, there is also no mechanism within Argus for an application to query format
compatibility with a Consumer before connection. This will be added sometime before Argus leaves
the Beta state, but until then please refer to the implementation release notes for details on buffer
format compatibility.

2.8 Events

Argus uses events as the mechanism to notify applications of driver state changes. Applications
use events by creating and waiting on Argus event queues.

Events are available from any object that exposes an IEventProvider interface. This interface
provides methods to:

e List the supported events with getAvailableEventTypes().
e Create event queues with createEventQueue().
e Wait for the events with waitForEvents().
In this release of Argus, capture sessions are the only event providers.

When creating event queues, applications can request a specific event, or they can provide a list of
events that the queue will contain. Multiple queues can be created for a single object. For example,
an application can create one event queue that will wait for error messages and another that will
wait for capture complete events.

In order to wait for an event, the application calls waitForEvents(). This can be done with one or
more event queues. waitForEvents() will block until at least one event is available; once available,
the corresponding queue will have the event(s) copied to it and waitForEvents() will return. If
there are any outstanding events at the time the application calls waitForEvents(), they will be
copied immediately and the method will return. In the case of multiple queues registered for the
same event, the queue with the lowest index will receive the event.

Once waitForEvents() returns, the application can look at the event objects via getEvent().
The event objects and any data they possess are valid until the event queue is destroyed or the
event queue is again passed to waitForEvents(), at which point the queue is cleared and the
objects invalidated. Event objects expose the IEvent interface, which allows the application to:

e Get the event type with getEventType().
e Get the time of the event in nanoseconds with getTime().

e Get the frame id this event is associated with getFrame().

To get data for a specific event, the client should query the Event object for that events type
interface using getInterface(). This will allow the application to get event-specific data such as
the metadata in a capture complete event, or the specific error status in an error event.

2.9 Multiple Clients and Multiple Threads

In the current L4T release, Argus can be used by multiple processes simultaneously. Each sensor
can be bound to a session in only one process at a time; that is, no sensor can be simultaneously
used by more than one process.

In the current Android release, Argus can be used by only one process at a time. Future Android
releases will allow multiple simultaneous Argus applications.

Within an Argus application, all captures on a single session must be performed by a single thread,
and waitForIdle() calls must also be made on this thread. (See the CaptureSession section
below for more information on waitForIdle().) Captures on different sessions can be performed
by separate threads, and other threads can be used for non-capture operations such as querying
event queues and setting up new Request objects.

Additional application threads are expected to service events. Since
IEventProvider::waitForEvents() calls are blocking, an application should usually pro-
vide one or more additional threads to wait for events. It is recommended that these event threads
only handle event /metadata logic and that, as mentioned above, a single thread be used to control
captures.

3 Argus Objects and Interfaces

3.1 CameraProvider

The CameraProvider object is the core Argus object which provides access to the cameras in
the system along with capture session creation methods. It is the first Argus object that should
be created. The Argus entry point is thus the static method CameraProvider::create() , which
creates and returns the single instance of the CameraProvider object. (A second call to create()
will fail.)

Supported Interfaces:

ICameraProvider
Provides methods to query the CameraDevices available in the system and methods to
create CaptureSession objects utilizing these CameraDevices.

3.2 SensorMode

The SensorMode object provides information about a single mode supported by the sensor.
There are two types of valid SensorModes. The first type called basic SensorMode is a

SensorMode that does not have an associated extension. Basic SensorMode types include
Depth, RGB, YUV and Bayer types. The list of valid basic SensorModes is available from
ICameraProperties::getBasicSensorModes(). The second type called extended SensorMode

is a SensorMode that has extensions associated with it. The extended SensorMode supports

some form of Wide Dynamic Range (WDR) technology. The extensions provided by this type of
SensorMode give access to the features of the concerned WDR technology. The full list of valid
SensorModes, both basic and extended, is available from ICameraProperties::get AllSensorModes().
Every SensorMode object, whether basic or extended, exposes the ISensorMode interface, which
provides the following information:

Table 1: ISensorMode

Name Type Description

Resolution Size Width and height of sensor mode

ExposureTimeRange | Range<uint64_t> | Valid range for exposure time in this mode (in
nanoseconds)

FrameDurationRange | Range<uint64_t> | Valid range for frame duration in this mode (in
nanoseconds)

AnalogGainRange Range<float> Valid range for analog gain in this mode

InputBitDepth uint32_t The bit depth of the image captured by the image

sensor in the current mode. For example, a wide
dynamic range image sensor capturing 16 bits per
pixel would have an input bit depth of 16.
OutputBitDepth uint32_t The bit depth of the image returned from the im-
age sensor in the current mode. For example, a
wide dynamic range image sensor capturing 16 bits
per pixel might be connected through a Camera Se-
rial Interface (CSI-3) which is limited to 12 bits per
pixel. The sensor would have to compress the im-
age internally and would have an output bit depth
not exceeding 12.

SensorModeType SensorModeType | Describes the type of the sensor (Bayer, YUV, etc.)
(Not all sensor mode types are supported in the
current release.)

Supported Interfaces:

ISensorMode
Provides methods to query the properties of a particular sensor mode.

3.3 CameraDevice

The CameraDevice object represents a camera in the system. A CameraDevice object can be a
one-to-one mapping to a physical camera device, or it can be a virtual device that maps to multiple

10

physical devices that produce a single image.

All of the CameraDevice objects present in the system are enumerated using
ICameraProvider::getCameraDevices(). CameraDevice objects can be used to query
the capabilities of that particular device, and are used to create CaptureSessions which will
issue captures using the device. A CameraDevice can be used by only one CaptureSession at
any point in time, and attempting to create a new session using a device that is already in use
by another session will fail. Every CameraDevice object supports the ICameraProperties
interface, which describes the capabilities of that device:

Table 2: ICameraProperties

Name Type Description

MaxAeRegions uint32_t Maximum number of AeRegions supported
MaxAwbRegions uint32_t Maximum number of AwbRegions supported
SensorModes vector<SensorMode> | Sensor modes supported by this device
FocusPositionRange | Range<int32_t> Range of valid focuser positions
LensApertureRange | Range<float> Range of supported lens apertures

Supported Interfaces:

ICameraProperties
Provides methods to query the properties and capabilities of a CameraDevice. These
include but are not limited to: available sensor modes, focal range, aperture range, and
autocontrol region limits.

3.4 CaptureSession

The CaptureSession object maintains an active connection to one or more CameraDevices, and
controls the entire capture pipeline from input capture requests to output image streams. Heres
an example of using a CameraDevice to create a CaptureSession:

// Create a capture session from the first reported device

CaptureSession* createSession (ICameraProviderx provider) {

vector<CameraDevicex> devices;
provider —>getCameraDevices(&devices);

if (devices.size() = 0) // (only if no sensors present)
return NULL;
CameraDevicex dev = devices [0];

Status status;
CaptureSession* result =
provider—>createCaptureSession (dev, &status);
if (status = STATUS_UNAVAILABLE)
printf(” First device not available\n”);
return result ;

11

All capture requests start as a Request object and terminate at one or more Stream objects.
All of these objects are created by a CaptureSession, and these objects can only be used by the
session that creates them.

As an IEventProvider, a CaptureSession can also create EventQueues and generate various
state, pipeline, or capture-related Events.

Capture requests may be submitted to a CaptureSession by the client on an individual, on-
demand basis. Alternatively, a repeat capture request can be issued such that the CaptureSession
will automatically repeat one or more requests automatically until the client cancels the request.
Repeat captures are controlled by an internal CaptureSession thread, and may result in more
than one capture being active in the pipeline at any point in time — this allows the implementation
to maximize parallelization and resource utilization to increase framerate and overall throughput.

The waitForldle() call will block until all captures have been completed. Once this call returns,
no more events will be reported in this CaptureSession until new capture requests have been
issued. The caller can specify an optional timeout value for the call; if the underlying camera
pipeline does not become idle within that period of time, the call will return STATUS_TIMEOUT.

Before a CaptureSession can be fully destroyed — and the CameraDevice(s) resources it holds be
released — the capture pipeline must be idle. Thus, CaptureSession::destroy() is a synchronous
call that will block until the capture pipeline is idle, and returning from this call implies that the
CameraDevice(s) the session had used are now available for use by another CaptureSession.
Any overhead related to shutting down the camera device hardware will also be realized before
returning from this call, so its not guaranteed that destroy() will return quickly, even if the
pipeline is idle.

Supported Interfaces:

ICaptureSession
Provides methods to create Requests, output Streams, and submit capture Requests
to the pipeline.

IEventProvider
See Event Provider

3.5 Request

A Request specifies exactly how a capture should be performed. The major controls are:

o FEnabled output streams. Each enabled output stream will receive an output image from the
capture. This image will be scaled as needed to fill the output buffer (which may include
changing the images aspect ratio.)

o Per-stream settings. Each output stream has its own settings, including post-processing
controls (such as amount of noise reduction) and a source clip rectangle.

e Source settings. These control the sensor(s) being used for the capture, and include the sensor
mode (primarily the resolution) as well as min/max limits for exposure time, gain, and frame
duration.

12

o Autocontrol settings. These control the Argus autocontrol algorithms — primarily auto-
exposure (AE) and auto-white-balance (AWB) — and related settings such as the color cor-
rection matrix.

Details of these settings are in the Settings section below.

Requests are created via ICaptureSession::createRequest(). The client can create any number
of Requests, and use any of them with each call to ICaptureSession::capture() or any of the
other capture methods. Although Request implements the Destructable interface, and therefore
has an independent lifespan, each Request can be used only with the CaptureSession that
created it.

When creating a Request, the client can specify one parameter: the intent of captures to be done
with this request (of type Capturelntent) — for example, preview, still, or video. This intent may
change the initial values in the Request.

Heres a simple example of creating and configuring a Request:

// Create request with one stream and +1 EV
Requestx createRequest (ICaptureSession* sess, Streams stream) {
const Capturelntent intent = CAPTUREINTENT PREVIEW;

Request* result = sess—>createRequest(intent);
IRequest* ireq = interface_cast<IRequest>(result);
if (lireq)

return NULL;

ireq —>enableOutputStream (stream);

IAutocontrolSettings* as = ireq—>getAutocontrolSettings ();
as—>setExposureCompensation (1.0f);

return result ;

}

Every time a Request is used in a capture, Argus effectively makes a copy of it, so that the client
can change or delete a Request at any time without affecting any previous captures that used it.

Supported Interfaces:

TRequest
Provides controls for output streams and methods to obtain the remaining interfaces in
this list. Also allows the client to set a uint32_t ClientData value. This value will
be found in the ClientData field of all metadata results for captures made with this
Request, and is intended to help clients keep track of the request used for each block of
metadata reported (especially when using burst captures).

ISourceSettings
(obtained via IRequest::getSourceSettings() Allows the client to read and write sensor
settings, including the sensor resolution and exposure time limits.

TAutocontrolSettings
(obtained via IRequest::get AutocontrolSettings()) Provides access to settings for
auto-exposure and auto-white-balance.

IDenoiseSettings
Provides controls for denoise algorithms.

13

IEdgeEnhanceSettings
Provides controls for edge enhancement algorithms.

IVideoStabilizationSettings
Provides controls for video stabilization.

3.6 Settings
3.6.1 Source Settings

These settings are available through the ISourceSettings interface:

Table 3: ISourceSettings

Name Type Description

ExposureTimeRange | Range<uint64_t> | Minimum and maximum exposure time (in nanosec-
onds.) The AE algorithm will strive to keep expo-
sure time within this range.

FocusPosition int32_t Focuser position in focuser units.
(Min and max values are provided by
ICameraProperties::getFocuserPositionRange

FrameDurationRange | Range<uint64_t> | Minimum and maximum frame duration (in
nanoseconds.) Note that the current SensorMode
may make this range impossible to obey.

GainRange Range<float> Minimum and maximum gain values to be used by
the AE algorithm.
SensorMode SensorMode Sensor mode used for the current capture(s).

This must match one of the modes reported by
ICameraProperties::get AllSensorModes().
Note that changing this from one capture to the
next may incur a significant delay before the second
capture completes.

The minimum and maximum legal values for the ranges above can be found in the SensorMode
object that is being used for this capture. Values outside of the legal ranges will be clamped.

3.6.2 Autocontrol Settings

These settings are available through the IAutocontrolSettings interface:

14

Table 4: TAutocontrolSettings

Name

Type

Description

AeAntibandingMode

AeAntibandingMode

Adjustment of exposure duration to
avoid banding caused by flickering of flu-
orescent light source (off, 50 Hz, 60 Hz,
or auto).

AeLock

bool

If true, AE will maintain the current ex-
posure value.

AeRegions

vector<AcRegion>

Image regions considered by the AE al-
gorithm. An empty list (the default)
means to consider the entire image.

AwbLock

bool

If true, AWB will maintain the current
white balance gains.

AwbMode

AwbMode

Auto white balance mode (disabled, au-
tomatic, or any of a number of preset
lighting modes).

AwbRegions

vector<AcRegion>

Image regions considered by the AWB
algorithm. An empty list (the default)
means to consider the entire image.

WbGains

BayerTuple<float>

Manual white balance gains.

ColorCorrectionMatrixSize

Size

Dimensions of the ColorCorrectionMa-
trix (read-only).

ColorCorrectionMatrix

vector<float>

Matrix that maps sensor RGB to
linear sRGB. The matrix is stored
in row-major order, and must have
the size width * height, where
width and height are the members of
ColorCorrectionMatrixSize.

ColorCorrectionMatrixEnable

bool

If true, the ColorCorrectionMatrix
will be used.

ColorSaturation

float

User-specified absolute color saturation,
in the range [0.0, 2.0]. Will be ignored
if ColorSaturationEnable is false.

ColorSaturationEnable

bool

If true, ColorSaturation will be used.

ColorSaturationBias

float

A multiplier for color saturation, in the
range [0.0, 2.0], that will be applied
to either the automatically-generated
value, or the user-specified value in
ColorSaturation.

ExposureCompensation

float

Exposure compensation, in (EV) stops.

ToneMapCurveSize

uint32_t

Number of elements in the

ToneMapCurve (read-only).

15

Table 4: TAutocontrolSettings — continued from previous page

ToneMapCurve vector<float> Tone map curve for one chan-
nel (R, G, or B). Must have size
ToneMapCurveSize.

ToneMapCurveEnable bool If true, wuse the client-supplied
ToneMapCurve.

3.6.3 Stream Settings

These settings are available through the IStreamSettings interface:

Table 5: IStreamSettings

SourceClipRect

ClipRect

Rectangular portion of the sensor image (in normalized co-
ordinates) that should appear in this output stream. Con-
tents of this region will be scaled as needed to fill the output
buffer, which may change the aspect ratio.

PostProcessingEnable | bool

If true, enable post-processing for this stream. Post-
processing includes denoising and video stabilization, and
possibly other operations.

3.6.4 Denoise Settings

These settings are available through the IDenoiseSettings interface:

Table 6: IDenoiseSettings

DenoiseMode DenoiseMode | Noise reduction mode (none, fast, or high quality).
DenoiseStrength | float Amount of denoising to be performed; 0.0 is none, 1.0 is max-
imum.

3.6.5 Edge Enhance Settings

These settings are available through the IEdgeEnhanceSettings interface:

Table 7: IEdgeEnhanceSettings — continued from previous page

Table 7: TEdgeEnhanceSettings

EdgeEnhanceMode EdgeEnhanceMode | Edge enhancement mode (none, fast, or high qual-
ity).

EdgeEnhanceStrength | float Amount of edge enhancement to be performed;
0.0 is none, 1.0 is maximum.

3.6.6 Video Stabilization Settings

These settings are available through the I'VideoStabilizationSettings interface:

Table 8: IVideoStabilizationSettings

VideoStabilizationMode

VideoStabilizationMode

Video stabilization mode (disabled or en-
abled).

3.6.7 Output Stream Settings

These settings are available through the IOutputStreamSettings interface, which is exposed on
the settings object passed to ICaptureSession::createOutputStream():

Table 9: IOutputStreamSettings

PixelFormat PixelFormat Pixel format for the buffers in this stream.

Resolution Size Width and height of the buffers in this stream.

CameraDevice | CameraDevice | Camera source for this stream.

EGLDisplay EGLDisplay EGL display that the created stream must belong to.

Mode StreamMode Selects Mailbox or FIFO mode for this stream. In Mailbox
mode, the most recently-acquired frame is always returned.
In FIFO mode, frames are placed into a queue, and the head
of the queue is returned.

FifoLength uint32_t Length of the frame FIFO for this stream. (Ignored for streams
created in Mailbox mode.)

For more information on Mailbox and FIFO modes, please refer to the EGL_KHR _stream| specifi-

cation.

17

https://www.khronos.org/registry/egl/extensions/KHR/EGL_KHR_stream.txt

3.7 CaptureMetadata

A CaptureMetadata object contains the metadata associated with a single capture. This meta-
data includes:

e Many of the settings that were used to generate this capture.
e Current states associated with autocontrol algorithms; for example, AE convergence state.

e Information about the conditions of the capture; for example, total capture time, scene bright-
ness, and gain values.

The client retrieves this information primarily through the ICaptureMetadata interface, which
consists entirely of methods that return individual pieces of metadata. CaptureMetadata objects
are delivered via CAPTURE_COMPLETE events (see the Event section). When a CAPTURE_COMPLETE
event arrives, the client can obtain the IEventCaptureComplete interface from it, and retrieve
the metadata via getMetadata(), as in this example:
float getSceneLux (IEvent* ievt) {
IEventCaptureCompletex ccevt =
interface_cast <IEventCaptureComplete >(ievt);
if (lccevt)
return 0; // mot a CaptureComplete event!
CaptureMetadata* cm = ccevt—>getMetadata ();
ICaptureMetadatax icm = interface_cast <ICaptureMetadata)(cm);
return icm—>getSceneLux ();

}

The metadata object will be valid as long as the CAPTURE_COMPLETE event is valid. See the
EventQueue section for details on the lifespan of an Event object.

Metadata can also be acquired from the IArgusCaptureMetadata interface, which can be ex-
posed from both EGLStream::Frame objects and MetadataContainer objects created directly
from the metadata embedded in an EGLStream frame.

Supported interfaces:

ICaptureMetadata
Provides read-only access to general metadata items.

IDenoiseMetadata
Provides read-only access to metadata related to denoising.

IEdgeEnhanceMetadata
Provides read-only access to metadata related to edge enhancement.

IVideoStabilizationMetadata
Provides read-only access to metadata related to video stabilization.

18

Table 10: ICaptureMetadata

Name Type Description

Captureld uint32_t Unique id for this capture (return value
from capture() methods).

ClientData uint32_t ClientData field from the Request that
was used for this capture.

StreamMetadata InterfaceProvider The per-stream metadata provider for the
specified stream.

BayerHistogram InterfaceProvider Histogram of pixel values coming off
the sensor. This object supports the
IBayerHistogram interface.

RGBHistogram InterfaceProvider Histogram of pixel values after conversion
to RGB space. This object supports the
IRGBHistogram interface.

AeLocked bool Was the AE algorithm locked?

AeRegions vector<AcRegion> | Regions of interest used by the AE algo-
rithm.

AeState AeState State of AE at the time of the capture (in-
active, searching, converged, or locked).

FocuserPosition int32_t The position of the focuser in focuser
units.

AwbCect uint32_t Correlated color temperature (in degrees
Kelvin) calculated by the AWB algo-
rithm.

AwbGains BayerTuple<float> | Per-color-channel gains calculated by the
AWRB algorithm.

AwbMode AwbMode AWB mode used (disabled, automatic, or
any of a number of preset lighting modes).

AwbRegions vector<AcRegion> | Regions of interest used by the AWB al-
gorithm.

AwbState AwbState State of AWB at the time of the cap-
ture (inactive, searching, converged, or
locked).

AwbWbEstimate vector<float> The camera neutral color point estimate
in native sensor color space.

ColorCorrectionMatrixEnable | bool Was the client-supplied ColorCorrection-
Matrix used?

ColorCorrectionMatrix vector<float> The 3x3 color correction matrix.

ColorSaturation float Color saturation used (including biasing).

FrameDuration uint64_t Time from start of frame exposure to
start of the next frame exposure (in
nanoseconds).

IspDigitalGain float Digital gain used.

19

Table 10: ICaptureMetadata — continued from previous page

FrameReadoutTime uint64_t Sensor frame readout time, in nanosec-
onds — the time between the beginning of
the first line and the beginning of the last
line.

SceneLux float The estimated brightness of the target
scene (in lux).

SensorAnalogGain float Sensor analog gain used.

SensorExposureTime uint64_t Total sensor exposure time (in nanosec-
onds)

SensorSensitivity uint32_t ISO value used.

SensorTimestamp uint64_t Start timestamp for the sensor capture,
in nanoseconds.

ToneMapCurveEnabled bool Was client-supplied = ToneMapCurve
used?

ToneMapCurve vector<float> Tone map curve for one channel (R, G, or
B).

Table 11: IDenoiseMetadata

DenoiseMode DenoiseMode | Denoise mode used.
DenoiseStrength | float Denoise strength used.

Table 12: IEdgeEnhanceMetadata

EdgeEnhanceMode EdgeEnhanceMode | Edge enhancement mode used.

EdgeEnhanceStrength | float Edge enhancement strength used.

Table 13: IVideoStabilizationMetadata

VideoStabilizationMode | VideoStabilizationMode | Video stabilization mode used.

3.8 Event

Each event implements an IEvent interface but depending on type it may also expose additional
interfaces in order to provide additional data.

Supported interfaces:

20

IEvent
Provides access to the events associated frame, time, and type.

An event can have one of the following types:

3.8.1 EVENT_TYPE ERROR

Event to report errors encountered during the processing of a capture request. Some errors may
cause the capture to fail to produce valid output; in those cases, a CAPTURE_COMPLETE event will
still be generated, but the status reported through IEventCaptureComplete will indicate an
error.

Supported interfaces:

IEventError
Provides access to the error status.

3.8.2 EVENT_TYPE_CAPTURE_STARTED

Event signifying the start of capture of a given frame. This event exposes only the IEvent interface.

For this event, IEvent::getTime() returns the frame timestamp in nanoseconds. This timestamp
specifies the arrival of the start of the frame into the SoC in the SoCs time domain.

3.8.3 EVENT.TYPE CAPTURE_COMPLETE

Event signalling the completion of a frame capture including any post-processing. When this event
is generated, all outputs from the capture have already been pushed to their respective consumers.

Supported interfaces:

IEventCaptureComplete
Provides access to the CaptureMetadata and ths status of the capture.

3.9 EventQueue

An event queue is a container for Argus events. A queue is created via
IEventProvider::createEventQueue(). The queue is populated with pending events
with a call to IEventProvider::waitForEvents(). The user can then access the events with
IEventQueue::getNextEvent(), and IEventQueue::getEvent(). An event object is valid
until the next time IEventProvider::waitForEvents() is called on the EventQueue that
provided the event, or until the EventQueue is destroyed, whichever comes first.

Every event queue has an upper bound on the number of events it can contain. That limit is
currently 1,024. Once the event queue contains that number of events, new events will be dropped

21

until the queue has been emptied. Applications should avoid this by regularly pulling events from
all queues with waitForEvents().

Supported interfaces:

IEventQueue
Provides access to the individual events.

3.10 EventProvider

An event provider is any object that generates events. (There is no dedicated EventProvider
class.) Currently, the only event provider is a CaptureSession.

Event providers support the IEventProvider interface, which is used to create and populate
EventQueues. Any object that implements this interface has to provide at least one event.
The objects available event types can be seen by calling get AvailableEventTypes(). Once the
event types are known, a EventQueue can be created to listen for those event types by calling
createEventQueue(). EventQueues can be created to listen for any subset of the available
event types. Note that each EventQueue belongs to a single event provider and contains events
from only that provider.

To wait for events, the client calls waitForEvents(). If an EventQueue contains events and
it is passed to waitForEvents(), those events are no longer valid and will be cleared from the
EventQueue. Likewise any Events read from that queue will not be valid after the call to
waitForEvents().

Supported interfaces:

IEventProvider
Allows creation of EventQueues and waiting on/retreiving those queues for new events.

22

	Introduction
	Fundamentals
	Types
	Enumerations
	Structs
	Support Classes

	Objects and Interfaces
	Versioning
	Object Lifetimes
	Extensions
	Capture Sessions
	Capture Methods
	Capture Timing and Interactions

	EGLStreams
	EGLStream Producer
	EGLStream Consumer
	EGLStream Buffer Formats

	Events
	Multiple Clients and Multiple Threads

	Argus Objects and Interfaces
	CameraProvider
	SensorMode
	CameraDevice
	CaptureSession
	Request
	Settings
	Source Settings
	Autocontrol Settings
	Stream Settings
	Denoise Settings
	Edge Enhance Settings
	Video Stabilization Settings
	Output Stream Settings

	CaptureMetadata
	Event
	EVENT_TYPE_ERROR
	EVENT_TYPE_CAPTURE_STARTED
	EVENT_TYPE_CAPTURE_COMPLETE

	EventQueue
	EventProvider

