

DA_09361-002 | July 2, 2019

L4T Driver Package

JETSON NANO PLATFORM
ADAPTATION AND BRING-UP
GUIDE

Platform Adaptation and Bring-Up

Jetson Nano Platform Adaptation and Bring-Up Guide DA_09361-002 | ii

Document Change History

DA_09361-002

Version Date Authors Description of Change

v1.0 18 Mar 2019 jsachs Initial release

v1.1 2 Jul 2019 jsachs Corrected initial release

Platform Adaptation and Bring-Up

Jetson Nano Platform Adaptation and Bring-Up Guide DA_09361-002 | iii

Table of Contents

Platform Adaptation and Bring-Up ... 1
Board Configuration ... 1
Board Naming .. 2
Placeholders in the Porting Instructions .. 2
Root Filesystem Configuration ... 3
Pinmux Changes ... 3
Exporting Pinmux for U-Boot .. 4
Accessing GPIOs via “gpio” Device Labels ... 6
Exporting Pinmux for the L4T Linux Kernel .. 6
Porting U-Boot ... 6
Porting the Linux Kernel .. 7
Porting USB .. 9

USB Structure ... 9
UPHY Lane Assignment .. 9
Required Device Tree Changes .. 12

For a Host-Only Port ... 12
For an OTG (On-The-Go) Port .. 16

Fan speed control mapping table .. 25
Other Considerations When Porting ... 26
Boot Time Reduction ... 26

Root Filesystem .. 26
Kernel ... 27

Hardware Bring-Up Checklist ... 27
Before Power-On .. 28
Initial Power-On ... 28
Initial Software Flashing .. 28
Power ... 29
Power Optimization ... 29
USB 2.0 PHY ... 29
USB 3.0 ... 30
HDMI .. 30
Audio .. 30
UART .. 30
SD Card (SDMMC1) ... 31
Fan .. 31
Sensors I2C: General ... 31
Sensors I2C: Touch Screen (Optional) .. 31

Platform Adaptation and Bring-Up

Jetson Nano Platform Adaptation and Bring-Up Guide DA_09361-002 | iv

PEX (Optional) ... 31
Embedded Display(s) (Optional) ... 32
Imager(s) (Optional) .. 32

Software Bring-Up Checklist .. 33
Preparation ... 33
Bring-up Hardware Validation .. 33
U-Boot Port and Boot Validation ... 33
Kernel and Peripherals, Port and Validation .. 33
System Power and Clocks .. 34

List of Figures

Figure 1. An OTG port connector ... 16

Figure 2. Example of an OTG port's general design .. 18

List of Tables

Table 1. Available outputs for the P3449 carrier board 10

Table 2. UPHY lane assignment use cases .. 10

Table 3. GPIO states and corresponding output cable states 19

Jetson Nano Platform Adaptation and Bring-Up Guide DA_09361-002| 1

Platform Adaptation and Bring-Up

This document is for software developers whose target is the NVIDIA® Jetson Nano™
module. It describes how to port the NVIDIA® Tegra® Linux Driver Package (L4T) and
the U-Boot boot loader from NVIDIA® Jetson Nano™ Developer Kit to other hardware
platforms.

For all of the procedures in this document, the L4T release includes code for the Jetson
Nano Developer Kit (P3450) that can serve as an example.

Board Configuration
The Jetson Nano Developer Kit consists of a P3448 System on Module (SOM) connected
to a P3449 carrier board. The number P3450 designates the complete Jetson Nano
Developer Kit. The SOM and carrier board each has an EEPROM where the board ID is
saved.

The SOM sold for incorporation into customer products is designated P3448-00201. It
differs from the SOM included with the developer kit, which is designated P3448-0000.
It offers 16GB eMMC storage instead of a microSD card slot, has a five year operating
lifetime, and is qualified for deployment in a commercial environment. P3448-0020 can
be used with the P3449 carrier board.2

Before you use a P3448 SOM with a carrier board other than P3449, change the kernel
device tree, bootloader configuration, ODM data, and flashing configuration to
configure for the new carrier board instead of P3449. An EEPROM ID for your custom
board is not required.

1 900-13448-0020-000 is the full SOM part number.
2 Version A02 of the P3449 carrier board is not compatible with the P3448-0020 SOM.

Platform Adaptation and Bring-Up

Jetson Nano Platform Adaptation and Bring-Up Guide DA_09361-002 | 2

Board Naming
To support a Jetson Nano module together with your carrier board in L4T, you must
choose a simple lower-case, alphanumeric name for your board, possibly including
dashes (-) or underscores (_), but no spaces. Following are some examples of valid board
names:

jetson-nano
jetson-tx1
p3450

The name you choose will appear in file names and path names in U-Boot and Linux
kernel source code and in user-visible device tree file names, and will be exposed to the
user via the U-Boot command prompt and various Linux kernel /proc files.

You must also choose a similarly constructed vendor name. The same character set rules
apply, as in this example:

nvidia

In this document:

• <board> represents your board name.
• <vendor> represents your vendor name.

Note: Do not simply re-use and modify the existing Jetson Nano Developer
Kit code without choosing and using your own board name. If you do
not use your own board name it will not be obvious to Jetson Nano
users whether modified source code supports your board or the
original Jetson Nano Developer Kit carrier board.

Placeholders in the Porting Instructions
The sections below refer to filenames and pathnames that contain the following
placeholders. Substitute an appropriate value for each placeholder when you enter the
commands.

• <function> is a functional module name, such as power-tree, pinmux, sdmmc-
drv, keys, comm (Wi-Fi/Bluetooth®), camera, etc.

• <board> is a name you have chosen to represent your carrier board with Jetson
Nano module. For example, p3450 could represent the carrier board from a Jetson
Nano Developer Kit with a Jetson Nano module. Note that NVIDIA <board> names
use lower case letters only.

• <som> is a System on a Module (SOM) board name, such as p3448.

Platform Adaptation and Bring-Up

Jetson Nano Platform Adaptation and Bring-Up Guide DA_09361-002 | 3

• <version> is a board version number, such as a00. Files for NVIDIA reference
boards include a version number. Files for customer platforms need not include one.

• <vendor> is your organization’s name, or the name of your board’s vendor.
• <root> is the device that holds the platform’s root file system. At present the only

supported value is emmc/sdcard.

Root Filesystem Configuration
Tegra Linux platforms can use any standard or customized Linux root filesystem (rootfs)
that is appropriate for their targeted embedded applications.

However, certain settings must be configured in the rootfs’s boot-up framework to set
default configuration after boot, or some of the core functionalities will not run as
expected.

For example:

1. The system must be configured to execute the nv.sh, nvfb-early.sh, and
nvfb.sh scripts in etc at boot-up because they perform some basic default board
initialization in the kernel. It is advisable to add to the etc folder but never delete
anything from it.

2. The Xorg and X libraries must be correctly configured for the target device.
3. In the target device’s nvpmodel, the number of cores, clock, and frequency must be

configured.

These rootfs configurations and customizations are provided in this driver package in
the directory and its subdirectories:

Linux_for_Tegra/nv_tegra/

You must incorporate the relevant customization for your target rootfs from this
location.

Note: For the sample Ubuntu root filesystem provided by NVIDIA, this customization
is applied using the script Linux_for_Tegra/apply_binaries.sh.

Pinmux Changes
If your board schematic differs from that for Jetson Nano Developer Kit carrier board,
you must change the pinmux configuration applied by the software.

To define your board’s pinmux configuration, you must obtain
Jetson_Nano_customer_pinmux_release.xlsm from NVIDIA and customize it
for the configuration of your board using the following procedures.

Platform Adaptation and Bring-Up

Jetson Nano Platform Adaptation and Bring-Up Guide DA_09361-002 | 4

To customize the pinmux spreadsheet

1. Create a copy of the file with a name based on your board name, e.g.
<board>_pinmux.xlsm.

2. Ensure that the new file is writable.
3. On a Windows PC, open the new file in Microsoft Excel.
4. If Microsoft Excel displays any warnings such as “PROTECTED VIEW” or

“SECURITY WARNING,” click Enable Editing or Enable Content, so that you can
save your changes to the new file.

5. Rename the Jetson Nano Configuration tab based on the name of your board:

1. Right click the Jetson Nano Configuration tab at the bottom of the window.
2. Click the Rename menu option.
3. Type your board name into the tab, then press ENTER.

6. Modify columns AE through AO of the spreadsheet as required by the pinmux
configuration for your board, based on the schematic.

Once the spreadsheet reflects the configuration you want, export the configuration data
in a format that U-Boot and the Linux kernel can use.

Exporting Pinmux for U-Boot
U-Boot uses a header file to define the pinmux configuration. You can generate this
header file using the tegra-pinmux-scripts tool.

To customize tegra-pinmux-scripts for your board

1. Obtain tegra-pinmux-scripts by running the following commands on your
Linux system:

$ git clone https://github.com/NVIDIA/tegra-pinmux-scripts.git
$ cd tegra-pinmux-scripts

2. In the tegra-pinmux-scripts directory, open csv-to-board.py in a text
editor.

3. Locate the definition of the supported_boards data structure, at approximately
line 50.

4. Add an entry for your board to the supported_boards data structure as in this
example, substituting the board’s name for <board>:

 '<board>': {
 # <board>_pinmux.xlsm worksheet <board>
 'filename': 'csv/<board>.csv',

Platform Adaptation and Bring-Up

Jetson Nano Platform Adaptation and Bring-Up Guide DA_09361-002 | 5

 'rsvd_based': 0,
 'soc': 'tegra210',
 },

Copy any other T210 board entry, replacing the reference to <board>.csv with
your CSV file’s name, e.g. csv/my-new-board.csv.

5. Save the file and exit the editor.
6. Commit the change to your local Git repository:

$ git add csv-to-board.py
$ git commit –a –m "Add support for <board>" –s

csv-to-board.py reads a CSV (Comma Separated Values) version of the pinmux
spreadsheet as input. This script (like other pinmux scripts) is customarily stored in the
directory tegra-pinmux-scripts.

To save the spreadsheet in CSV format

1. In Microsoft Excel, click the File tab.
2. On the File tab, click Save As.
3. From Save as type, choose CSV (MS-DOC) (*.csv).
4. Verify that the file name ends in .csv, but otherwise matches the file name in your

changes to csv-to-board.py. (See Pinmux Changes.)
5. Click Save.
6. Copy the CSV file to the csv/ directory of tegra-pinmux-scripts on your Linux

system.

To generate the U-Boot pinmux header file

1. Enter the following command in the tegra-pinmux-scripts directory to import
the data into the tegra-pinmux-script internal format:

$./csv-to-board.py <board>

Optionally, use the --csv <csv_file_name> command line option to specify the
CSV file to import. This allows you to copy the CSV file to an arbitrary location on
your Linux system.

2. Enter the following command to generate the U-Boot pinmux header file:

$./board-to-uboot.py <board> > pinmux-config-<board>.h

Later you will copy pinmux-config-<board>.h into the U-Boot source tree.

Platform Adaptation and Bring-Up

Jetson Nano Platform Adaptation and Bring-Up Guide DA_09361-002 | 6

Accessing GPIOs via “gpio” Device Labels
You can access GPIOs (routed to the 40-pin GPIO expansion header) via device labels
that begin with gpio. The file /sys/kernel/debug/gpio lists these labels.

For example, to access gpio-19, enter this command:

$ gpiofind SPI0_CS0

This command displays output like:

gpiochip0 19

Exporting Pinmux for the L4T Linux Kernel
The Linux kernel uses device tree files to define the pinmux configuration. You can
generate these files directly from the Excel spreadsheet.

To generate device tree files for your pinmux configuration

1. In the spreadsheet, click Generate DT.
2. Answer “yes” to the prompt that asks whether you wish to generate the DT files.
3. Provide the name of your board when prompted.

The device tree files are saved in the same location as the Excel spreadsheet. After the
file is generated, make sure that the file name matches the one you use in your kernel
code. Correct the file name if there is a mismatch. Later, you will copy the device tree
files into the Linux kernel source tree.

Porting U-Boot
Perform the following actions in the U-Boot source code to add support for your board.

1. Copy include/configs/ p3450-porg.h to include/configs/<board>.h.
2. Edit the set of enabled devices and features in <board>.h as appropriate for your

board. For example, you must change the following:

#define CONFIG_TEGRA_BOARD_STRING "NVIDIA P3450-Porg"

3. Copy arch/arm/dts/tegra210-p3450-porg.dts to
arch/arm/dts/tegra210-<board>.dts.

4. Edit the set of enabled devices and their parameters (e.g. GPIO and IRQ IDs) in
tegra210-<board>.dts as appropriate for your board.

Platform Adaptation and Bring-Up

Jetson Nano Platform Adaptation and Bring-Up Guide DA_09361-002 | 7

You may have to add, remove, or edit nodes and properties.

Note: U-Boot and the Linux kernel do not always use exactly the same device
tree schema (bindings) to represent the same data. Follow examples from
U-Boot rather than from the Linux kernel.

5. Add tegra210-<board>.dtb to arch/arm/dts/Makefile.
6. Copy configs/p3450-porg_defconfig to configs/<board>_defconfig.
7. Edit <board>_defconfig to refer to your board name.
8. Edit arch/arm/mach-tegra/tegra210/Kconfig to add target config and

Kconfig.
9. Copy the board/nvidia/p3450-porg/ directory to

board/<vendor>/<board>/.
10. Edit all of the files in board/<vendor>/<board>/ to refer to your board name

rather than to P3450-Porg. The files in this directory contain many instances of the
P3450-Porg board name.

11. Edit board/<vendor>/<board>/MAINTAINERS to provide the correct maintainer
contact information for your board.

12. Edit board/<vendor>/<board>/<board>.c to provide the correct PMIC
programming for your board, if required.

13. Copy the pinmux header you generated (pinmux-config-<board>.h) to the
board/<vendor>/<board>/ directory.

Porting the Linux Kernel
If you replace the standard P3449 carrier board with your own board, or you
enable/disable any feature from the P3449 device tree, you must review the .dts file in
hardware/nvidia/platform/t210/porg.

1. To see the complete device tree node, run these commands to convert the final
provided .dtb file:

dtc -I dtb -O dts tegra210-porg-p3448-0000-a00.dtb > ~/tegra210-
porg-p3448-0000-a00.dts
dtc -I dts -O dtb ~/tegra210-porg-p3448-0000-a00.dts > tegra210-
porg-p3448-0000-a00.dtb

You can then make any necessary changes to the nodes defined in the folder and
regenerate the DTB. You can also add your board specific DTSI file and include it in
the main .dts file.

If you are replacing the P3449 with your own carrier board, look out for "P3449"
strings in the DTB and make sure you understand them and replace them according
on your needs.

2. Copy the generated DTB to the following directory for flashing:

Platform Adaptation and Bring-Up

Jetson Nano Platform Adaptation and Bring-Up Guide DA_09361-002 | 8

Linux_for_Tegra/kernel/dtb/

To provide plugin manager support, the kernel DTB is not included in the file
system along with the kernel image in the boot directory. Instead, the kernel DTB is
selected from the DTB partition and modified by CBoot. CBoot passes it on to
U-Boot, which in turn passes it to the kernel without changing any of the data.

● To flash the Linux kernel DTB, copy the image to the
Linux_for_Tegra/kernel folder, then execute this command:

sudo ./flash.sh -k DTB <config> mmcblk0p1

Where <config> is the basename of the flash configuration file:

• jetson-nano-sd for a SKU 0000 device
• jetson-nano-qspi for a SKU 0020 device

Optionally, you can perform a secure copy to copy the kernel image to the boot
partition of the target system and reboot. To update the kernel DTB, though, you
must flash again.

3. Copy Linux_for_Tegra/jetson-nano.conf to
Linux_for_Tegra/<config>.conf.

4. Edit SYSBOOTFILE in <config>.conf to refer to your board.

For the detailed information about .dts files, refer to the documentation at
Documentation/devicetree/bindings in the NVIDIA released Linux kernel
source package.

Platform Adaptation and Bring-Up

Jetson Nano Platform Adaptation and Bring-Up Guide DA_09361-002 | 9

Porting USB
Jetson Nano can support up to three SuperSpeed USB ports. In some implementations
not all of these ports can be used because of UPHY lane sharing among PCIE and XUSB.

The Jetson P3449 carrier board is designed and verified for one USB 3.0 port. If you
design your own carrier board, consult Jetson Nano Product Design Guide to verify that
your board’s UPHY lane mapping is functionally compatible with that of P3449.

USB Structure
A SuperSpeed USB port has nine pins:

• VBUS
• GND
• D+/D−
• SSTX+/SSTX− (SuperSpeed data transmit)
• SSRX+/SSRX− (SuperSpeed data receive)
• GND_DRAIN for drain wire termination and managing EMI, RFI, and signal

integrity

The D+/D− signal pins connect to UTMI pads. The SSTX/SSRX signal pins connect to
UPHY and are handled by a single UPHY lane. As UPHY lanes are shared between
PCIE and XUSB, UPHY lanes must be assigned according to the custom carrier board’s
requirements.

UPHY Lane Assignment
Universal Physical Layer (UPHY) is a physical I/O interface layer that can serve multiple
types of interfaces, e.g. USB and PCIe. A single UPHY lane can support multiple types of
interfaces.

https://developer.nvidia.com/embedded/downloads#?search=jetson%20nano%20product%20design%20guide

Platform Adaptation and Bring-Up

Jetson Nano Platform Adaptation and Bring-Up Guide DA_09361-002 | 10

The Jetson P3449 carrier board is designed and verified for one USB 3.0 port. The
verified use cases and their UPHY lane assignments are shown in Table 1 and Table 2.

Table 1. Available outputs for the P3449 carrier board

Output
Type

Number of
Outputs

USB 3.0 1

PCIe 1 x4

Table 2. UPHY lane assignment use cases

Lane Pin Names Functions

0 N/A
PCIe x1

C1

1
PEX_TX1
PEX_RX1

PCIe x4
C0

(L3/L2/L1/L0)

2
PEX_TX2
PEX_RX2

3
PEX_TX3
PEX_RX3

4
PEX_TX4
PEX_RX4

5 N/A N/A

6
PEX_TX6
PEX_RX6

USB3.0
P0

Jetson Nano and the supporting software are designed to support the configurations in
these tables. See Tegra X1 (SoC) Technical Reference Manual (TRM) and consult Jetson
Nano Product Design Guide for further information before you design your custom
board. (Note that Tegra X1 Technical Reference Manual applies to Jetson Nano as well as
Jetson TX1.)

Lane assignment can be defined by the PCIe subnode under xusb_padctl in the
corresponding device tree file. The device tree’s xusb_padctl node follows the
conventions of the document:

kernel/kernel-4.9/Documentation/devicetree/bindings/pinctrl/pinctrl-
bindings.txt

The PCIe subnode lists the functions assigned to UPHY lanes.

• nvidia,function

https://developer.nvidia.com/embedded/downloads#?search=Tegra%20X1%20(SoC)
https://developer.nvidia.com/embedded/downloads#?search=jetson%20nano%20product%20design%20guide
https://developer.nvidia.com/embedded/downloads#?search=jetson%20nano%20product%20design%20guide

Platform Adaptation and Bring-Up

Jetson Nano Platform Adaptation and Bring-Up Guide DA_09361-002 | 11

A string containing the name of the function to mux to the pin or group. It must be
one of these values:
● xusb
● pcie-x1
● pcie-x4

Take Table 2, for example. Create a PCIe subnode and property under xusb_padctl
based on the device tree structure described above:

xusb_padctl@7009f000 {
 ...
 pcie {
 status = "okay"
 lanes {
 pcie-0 {
 status = "okay"
 nvidia,function = "pcie-x1";
 };
 pcie-1 {
 status = "okay"
 nvidia,function = "pcie-x4";
 };
 pcie-2 {
 status = "okay"
 nvidia,function = "pcie-x4";
 };
 pcie-3 {
 status = "okay"
 nvidia,function = "pcie-x4";
 };
 pcie-4 {
 status = "okay"
 nvidia,function = "pcie-x4";
 };
 pcie-5 {
 status = "okay"
 nvidia,function = "xusb";
 };
 pcie-6 {
 status = "okay"
 nvidia,function = "xusb";
 };
 };
 ...
};

Note: UPHY lane 0 and UPHY lane 5 are not exposed, and can only be assigned to the
pcie-x1 and xusb functions.

Platform Adaptation and Bring-Up

Jetson Nano Platform Adaptation and Bring-Up Guide DA_09361-002 | 12

Required Device Tree Changes
This section gives step-by-step guidance for checking schematics and configuring USB
ports in the device tree. All of the examples are based on the design of the Jetson Nano
P3449 carrier board.

For a Host-Only Port

This section uses U27, a USB 3.0 Realtek SuperSpeed on-board hub, as an example of a
host-only port.

Go Through the Schematics

Note: The P3449 carrier board’s schematic file,
P3449_B01_Concept_schematics.pdf, is included in Jetson Nano
Developer Kit Carrier Board Design Files. Consult your NVIDIA representative
for further information.

Check the USB 3.0 Realtek SuperSpeed hub on the P3449 carrier board and find the pin
names of the wired socket to the P3448.

• USB 2.0 signal pins D+/D- (USB_DP/USB_DM) wire out from U27 and lead to CVM
socket pins 115 (USB1_DN) and 116 (USB1_DP).

• USB 3.0 differential signal pairs (USP_SSTX* and USP_SSRX*) wire out from U27

and lead to CVM socket pins 161 (SBSS_RX_N), 163 (USBSS_RX_P), 166
(USBSS_TX_N), and 168 (USBSS_TX_P).

Platform Adaptation and Bring-Up

Jetson Nano Platform Adaptation and Bring-Up Guide DA_09361-002 | 13

Through the schematic, you can conclude that for U27:

• The USB 2.0 signal pair is wired to UTMI pad 1 (USB2 port 1).
• The USB 3.0 signal pairs are wired to UPHY lane 6 (USB 3.0 port 0 according to

UPHY lane mapping).

The xusb_padctl Node

The device tree’s xusb_padctl node follows the conventions of pinctrl-
bindings.txt. It contains two groups of named pads and ports which describe USB2
and USB3 signals along with parameters and port numbers. The name of each parameter
description subnode in pads and ports must be in the form <type>-
<port_number>, where <type> is usb2 or usb3, and <port_number> is the
associated port number.

The pads Subnode

The properties of the pads subnode are:

• nvidia,function

A string containing the name of the function to mux to the pin or group. Must be
xusb.

The ports Subnode

• mode

A string that describes USB port capability. A port for USB2 must have this property.
It must be one of these values:

Platform Adaptation and Bring-Up

Jetson Nano Platform Adaptation and Bring-Up Guide DA_09361-002 | 14

● host
● device
● otg

• nvidia,usb2-companion

The USB2 port (0, 1, or 2) to which the port is mapped. A port for USB3 must have
this property.

• nvidia,oc-pin

The overcurrent VBUS pin the port is using. The value must be positive or zero.

Note: Overcurrent detection and handling for U27, the Realtek SuperSpeed hub on
the P3499 carrier board, are controlled by the hub itself. Therefore, you need
not set this property.

• vbus-supply

VBUS regulator for the corresponding UTMI pad. Set to &battery_reg for a
dummy regulator.

Note: As the Realtek SuperSpeed hub is always connected to the root hub port on a
P3449, You need not control hub power, just enable it with VDD_HUB_3V3.
Therefore, you must set dummy regulators for U27 on the P3449 carrier
board.

For the detailed information about xusb_padctl, refer to the documentation at:

kernel/kernel-
4.9/Documentation/devicetree/bindings/pinctrl/nvidia,tegra210-
padctl.txt

As an example consider U27, the Realtek SuperSpeed hub, which is always connected to
USB2 port 1 and USB3 port 0 on the root hub. Create a pad/port node and property list
for U27 based on the device tree structure described above:

xusb_padctl: xusb_padctl@7009f000 {
 ...
 pads {
 usb2 {
 status = "okay";
 lanes {
 ...
 usb2-1 {
 nvidia,function = "xusb";
 status = "okay";
 };
 ...
 };
 };

Platform Adaptation and Bring-Up

Jetson Nano Platform Adaptation and Bring-Up Guide DA_09361-002 | 15

 pcie {
 status = "okay";
 lanes { ...//UPHY lane assignment
 };
 };
 };
 ports {
 usb2-1 {
 mode = "host";
 vbus-supply = <&battery_reg>;
 status = "okay";
 };
 ...
 usb3-0 {
 nvidia,usb2-companion = <1>;
 status = "okay";
 };
 ...
 };
};

Under the xusb Node

The Jetson Nano xHCI controller complies with xHCI specifications, which support both
USB 2.0 HighSpeed/FullSpeed/LowSpeed and USB 3.0 SuperSpeed protocols.

• phys

Must contain an entry for each entry in phy-names.

• phy-names

Must include an entry for each PHY used by the controller. Names must be of the
form <type>-<port_number>, where <type> is "usb2" or "usb3".

• nvidia,boost_cpu_freq

Set the value to which CPU frequency will be boosted. This is only the minimum
frequency, DVFS can scale up CPU frequency further based on need and CPU
loading. CPU boost frequency through PMQOS is enabled for the xHCI controller
only when this field’s is greater than zero. The boost is applicable only for bulk and
ISOC transfers; other endpoints do not need to be boosted.

• nvidia,boost_cpu_trigger

Minimum buffer length of the bulk or ISOC transfers beyond which to boost
frequency.

• nvidia,xusb-padctl

A pointer to the xusb-padctl node.

For the detailed information about xHCI, see the documentation at:

Platform Adaptation and Bring-Up

Jetson Nano Platform Adaptation and Bring-Up Guide DA_09361-002 | 16

kernel/kernel-
4.9/Documentation/devicetree/bindings/pinctrl/nvidia,tegra210-xusb.txt

Consider U27, the Realtek SuperSpeed hub, as an example. Create an xHCI node and
property list for U27 based on the device tree structure described above:

xusb@70090000 {
 ...
 phys = <&{/xusb_padctl@7009f000/pads/usb2/lanes/usb2-1}>,
 <&{/xusb_padctl@7009f000/pads/pcie/lanes/pcie-6}>;
 phy-names = "usb2-1", "usb3-0";
 nvidia,xusb-padctl = <&xusb_padctl>;
 status = "okay";
 ...
};

For an OTG (On-The-Go) Port

USB On-The-Go, often abbreviated USB OTG or just OTG, is a specification that allows
USB to act as a host or a device on the same port. A USB OTG port can switch back and
forth between the roles of host and device.

This section uses J28, a USB 2.0 Micro B connector, as an example of an OTG port.

An OTG port adds a fifth pin, called the ID pin, to the standard USB connector. An OTG
cable has a USB Type A plug on one end and a Type B plug on the other end. The
Type A plug’s ID pin is grounded, while the Type B plug’s ID pin is floating. A device
with a Type A plug inserted becomes and OTG A-device (host), and a device with a
Type B plug inserted becomes a B-device (device).

Figure 1. An OTG port connector

Note: Because its ID pin is floating, J28 is fixed in the device role in the Jetson Nano
Developer Kit. It cannot function as a host, e.g. to connect a flash drive,
keyboard, or mouse.

Platform Adaptation and Bring-Up

Jetson Nano Platform Adaptation and Bring-Up Guide DA_09361-002 | 17

Go Through the Schematics

Refer to the P3449 carrier board’s schematic file,
P3449_B01_Concept_schematics.pdf, which is in Jetson Nano Developer Kit Carrier
Board Design Files. Contact your NVIDIA representative for further information.

Check the USB connectors on the P3449 carrier board and find the wired socket location
to P3448.

• USB 2.0 signal pins D+/D− (DP and DN) wire out from J28 and lead to 111
(USB0_DP) and 109 (USB0_DN) on the CVM socket.

The USB 2.0 Micro B connector, J28, supports only HighSpeed mode, and does not have
USB 3.0 signal pairs. See the Tegra X1 (SoC) Technical Reference Manual (TRM) and
consult Jetson Nano Product Design Guide for further information before you design
your custom board.

From the schematic, you can see that for J28:

• The USB 2.0 signal pair is wired to UTMI pad 0 (USB2 port 0).

The External Connector Class (extcon)

External connectors, which may have different types of cables attached (USB, TA,
HDMI, Analog A/V, and others), often have device drivers that detect state changes at
the port, and separate device drivers that do something according to the state changes.

The External Connector Class, extcon, supports the use of a notifier for passing
information such as state changes between device drivers.

Port switching between the roles of an OTG port is generally controlled by the host
driver (xHCI) and device driver (xUDC), and can be defined by the state of the ID pin
and the VBUS_DETECT pin.

Note: Because its ID pin is floating, J28 is fixed in the device role in the Jetson Nano
Developer Kit. It cannot function as a host, e.g. to connect a flash drive,
keyboard, or mouse.

https://developer.nvidia.com/embedded/downloads#?search=Tegra%20X1%20(SoC)
https://developer.nvidia.com/embedded/downloads#?search=jetson%20nano%20product%20design%20guide

Platform Adaptation and Bring-Up

Jetson Nano Platform Adaptation and Bring-Up Guide DA_09361-002 | 18

For example, suppose GPIO_PCC4 is the VBUS_DETECT pin and GPIO_PZ1 is the ID
pin. To complete the device tree node:

1. Find the corresponding GPIO states on the VBUS_DETECT pin and ID pin.

Generally, the ID pin is designed as internal pull high (logical high). With a Type A
plug connected the ID pin is pulled to ground (logical low), while with a Type B
plug connected or no cable connected it remains logical high.

The operation of the VBUS_DETECT pin depends on the device’s design. Consider
the schematic in Figure 2, for example:

Figure 2. Example of an OTG port's general design

With a Type B plug connected VBUS_DETECT is logical low because VBUS is
provided from an external power supply. When no cable is connected it is logical
high.

Note: VBUS_DETECT is initially logical high, then logical low because VBUS is
provided by the host controller. Therefore the state of the VBUS_DETECT
pin does not matter when the OTG port is operating in the host role.

2. Create a table of GPIO states and their corresponding output cable states like the one
in Table 3.

Platform Adaptation and Bring-Up

Jetson Nano Platform Adaptation and Bring-Up Guide DA_09361-002 | 19

Table 3. GPIO states and corresponding output cable states

GPIO_PZ1
(ID)

GPIO_PCC4
(VBUS_DETECT) EXTCON_STATE

1 1 0x0 (EXCON_NONE)

0 0 0x2 (EXTCON_USB_HOST)

0 1 0x2 (EXTCON_USB_HOST)

1 0 0x1 (EXTCON_USB)

Under the extcon Node

Port switching between the roles of an OTG port is defined by the state of the ID pin and
the VBUS_DETECT pin and the settings of the external connector class.

Create an extcon device node and property list using the properties listed below and
the table of GPIO states and cable states (Figure 2).

• compatible

Value must be extcon-gpio-states.

• extcon-gpio,name

Name of the extcon device.

• gpios

List of the GPIOs.

• extcon-gpio,irq-flags

IRQ flags for GPIO.

• extcon-gpio,debounce

Debounce time in milliseconds.

• extcon-gpio,wait-for-gpio-scan

Wait timeout in milliseconds for scanning all GPIOs’ states after a GPIO state change
is detected and debounce time has passed.

• extcon-gpio,out-cable-names

Output cable names.

• extcon-gpio,cable-states

GPIO states and their corresponding output cable states. The value is an array of
byte values. Each even-numbered byte is a GPIO state, and the following odd-
numbered byte is the corresponding output cable state.

• cable-connected-on-boot

Platform Adaptation and Bring-Up

Jetson Nano Platform Adaptation and Bring-Up Guide DA_09361-002 | 20

Name of the output cable connected on boot, expressed as an index into extcon-
gpio,out-cable-names. The first element is index 0, and so on. If not specified,
the system assumes that no cable is to be connected. This property is valid if no
GPIOs are provided for cable states.

• wakeup-source

A Boolean; true if the device can wake up the system.

For the detailed information about extcon, refer to the documentation at:

kernel/kernel-4.9/Documentation/devicetree/bindings/extcon/extcon-gpio-
states.txt

• Create an extcon device node and property list based on the device tree structure
described above and the table of GPIO states and cable states in Table 3. This
example shows a node definition which assumes GPIO_PCC4 is the VBUS_DTECT
pin and GPIO_PZ1 is the ID pin.

vbus_id_extcon: usb_otg {
 compatible = "extcon-gpio-states";
 extcon-gpio,name = "VBUS_ID";
 extcon-gpio,wait-for-gpio-scan = <0>;
 extcon-gpio,cable-states = <0x3 0x0
 0x0 0x2
 0x1 0x2
 0x2 0x1>;
 gpios = <&gpio TEGRA_GPIO(CC, 4) 0
 &gpio TEGRA_GPIO(Z, 1) 0>;
 extcon-gpio,out-cable-names =
 <EXTCON_USB EXTCON_USB_HOST EXTCON_NONE>;
 #extcon-cells = <1>;
};

The USB 2.0 Micro B connector, J28, has the connector’s ID pin floating and the
VBUS_DETECT pin of the connector wired out to GPIO00, which corresponds to
GPIO_PCC4. Hence J28 can only function in the device role.

Platform Adaptation and Bring-Up

Jetson Nano Platform Adaptation and Bring-Up Guide DA_09361-002 | 21

This is the table of GPIO states on J28 and their corresponding output cable states:

GPIO_PCC4
(VBUS_DETECT) EXTCON_STATE

1 0x0 (EXCON_NONE)

0 0x1 (EXTCON_USB)

This is the extcon device node and property list based on the device tree structure
described above and the table of GPIO states and corresponding output cable states for
GPIO_PCC4, customized for Jetson Nano, where the ID pin is floating the port is fixed in
the device role:

vbus_id_gpio_extcon: usb_otg {
 compatible = "extcon-gpio-states";
 extcon-gpio,name = "VBUS";
 extcon-gpio,wait-for-gpio-scan = <0>;
 extcon-gpio,cable-states = <0x0 0x1
 0x1 0x0>;
 gpios = <&gpio TEGRA_GPIO(CC, 4) 0>;
 extcon-gpio,out-cable-names =
 <EXTCON_USB EXTCON_USB_HOST EXTCON_NONE>;
 #extcon-cells = <1>;
};

Note: Check the pinmux table for the GPIO that corresponds to the ID pin and
VBUS_DETECT pin.

Platform Adaptation and Bring-Up

Jetson Nano Platform Adaptation and Bring-Up Guide DA_09361-002 | 22

Under the xusb_padctl Node

xusb_padctl settings for an OTG port are the same as for a host-only port except that
the mode must be otg.

For the example of J28, the USB 2.0 Micro B connector, create a pad/port node and
property list:

xusb_padctl: xusb_padctl@7009f000 {
 ...
 pads {
 usb2 {
 lanes {
 usb2-0 {
 nvidia,function = "xusb";
 status = "okay";
 };
 ...
 };
 };
 pcie {
 lanes {
 ...
 };
 };
 };
 ports {
 usb2-0 {
 mode = "otg";
 vbus-supply = <&p3449_vdd_usb_vbus>;
 status = "okay";
 };
 ...
 };
};

Under the xHCI Node

The xHCI settings for an OTG port are the same as for a host-only port except for these
additional extcon settings:

• extcon-cables

OTG support. Must contain a pointer to the extcon-cable entry for the USB ID
pin. When the extcon cable state is 0, the OTG port transitions to the host role.

• extcon-cable-names

Must be id.

• #extcon-cells

Platform Adaptation and Bring-Up

Jetson Nano Platform Adaptation and Bring-Up Guide DA_09361-002 | 23

Number of cells in the extcon specifier. Must be 1.

For the example of J28, the USB2.0 Micro B connector, create an xHCI node and property
list based on the device tree structure described in Under the extcon Node for a host-
only port, plus the additional settings above:

xusb@70090000 {
 ...
 extcon-cables = <&vbus_id_gpio_extcon 1>;
 extcon-cable-names = "id";
 #extcon-cells = <1>;
 phys = <&{/xusb_padctl@7009f000/pads/usb2/lanes/usb2-0}>;
 phy-names = "usb2-0";
 nvidia,xusb-padctl = <&xusb_padctl>;
 status = "okay";
 ...
};

Under the xUDC Node

The Jetson Nano xUDC controller supports both USB 2.0 HighSpeed/FullSpeed and USB
3.0 SuperSpeed protocols.

These are the device tree node properties that apply to the xUDC node:

• extcon-cables

OTG support. Must contains an extcon-cable entry that detects the USB VBUS
pin. When the extcon cable state is 1, OTG port transitions to the device role.

• extcon-cable-names

Must be vbus.

• charger-detector

USB charger detection support. Must be the phandle of the USB charger detection
driver DT node.

• phys

An array; must contain pointers to the nodes that define each PHY in phy-names.

• phy-names

An array; must contain an entry for each PHY used by the controller. Names must be
in the form <type>-<port_number>, where <type> is usb2 or usb3.

• nvidia,boost_cpu_freq

The value to which CPU frequency is to be boosted. This is only the minimum
frequency; DVFS can scale up CPU frequency further based on need and CPU load.
CPU boost frequency through PMQOS is enabled for the xUDC controller only when

Platform Adaptation and Bring-Up

Jetson Nano Platform Adaptation and Bring-Up Guide DA_09361-002 | 24

this field’s value is greater than zero. The boost is applicable only to large bulk
transfers on bulk endpoints; other endpoints do not need to be boosted.

• nvidia,xusb-padctl

A pointer to the xusb-padctl node.

For the detailed information about xUDC, refer to the documentation at:

kernel/kernel-
4.9/Documentation/devicetree/bindings/pinctrl/nvidia,tegra210-xudc.txt

For the example of J28, the USB2.0 Micro B connector, create an xUDC node and
property list for J28 based on the device tree structure described above:

xudc@700d0000 {
 extcon-cables = <&vbus_id_gpio_extcon 0>;
 extcon-cable-names = "vbus";
 #extcon-cells = <1>;
 phys = <&{/xusb_padctl@7009f000/pads/usb2/lanes/usb2-0}>,
 phy-names = "usb2";
 nvidia,xusb-padctl = <&xusb_padctl>;
 status = "okay";
};

To resolve possible UPHY lane mapping issues

If you suspect a UPHY lane mapping issue, enter this command to check the lane
assignments:

./devmem 0x7009f028

(The hexadecimal number is the register address of the UPHY lane mux. It may be
considered a constant.)

Bits Reset Description

25-24 0x01 UPHY_LANE6
Each lane’s bits identify the
function that owns the lane.
Recognized values are:

• 0: PCIE_X1
• 1: USB3_SS
• 3: PCIE_X4

23-22 0x01 UPHY_LANE5

21-20 0x03 UPHY_LANE4

19-18 0x03 UPHY_LANE3

17-16 0x03 UPHY_LANE2

15-14 0x03 UPHY_LANE1

13-0 — Reserved

Platform Adaptation and Bring-Up

Jetson Nano Platform Adaptation and Bring-Up Guide DA_09361-002 | 25

If a target UPHY Lane is not owned by the correct function, check the values of the PCIe
subnode and properties under xusb_padctl to be sure that the target lane is assigned
correctly.

Note: Before you design your custom board, verify the lane mapping by consulting
Jetson Nano Product Design Guide.

Fan speed control mapping table
The temperature to fan speed mapping table can be modified with device tree
properties.

The fan’s thermal zone temperature is approximated by the average of the CPU and
GPU SOC thermal sensor readings. Fan speed is controlled by the PWM signal; its pulse
width range is 0-255 units.

The mapping between temperature and fan speed is defined by thermal trips and fan
cooling states. The thermal trips refer to the fan thermal zone’s temperature in degrees
Celsius, and the fan cooling state are the PWM signal’s corresponding pulse widths. You
can define trip temperatures and the corresponding cooling states by creating a custom
fan mapping table.

The fan trip temperatures are defined by the active_trip_temps property in the file:

hardware/nvidia/platform/t210/porg/kernel-dts/porg-platforms/tegra210-
porg-thermal-fan-est.dtsi

This example defines a set of fan thermal zone trip points:

 thermal-fan-est {
 name = "thermal-fan-est";
 compatible = "thermal-fan-est";
 status = "okay";
 num_resources = <0>;
 shared_data = <&thermal_fan_est_shared_data>;
 trip_length = <10>;
 active_trip_temps = <0 51000 61000 71000 82000
 140000 150000 160000 170000 180000>;
 active_hysteresis = <0 15000 9000 9000 10000
 0 0 0 0 0>;
 };

The fan cooling states are defined by the active_pwm property in the file:

hardware/nvidia/platform/t210/porg/kernel-dts/porg-platforms/tegra210-
porg-pwm-fan.dtsi

https://developer.nvidia.com/embedded/downloads#?search=jetson%20nano%20product%20design%20guide

Platform Adaptation and Bring-Up

Jetson Nano Platform Adaptation and Bring-Up Guide DA_09361-002 | 26

This example defines a corresponding set of cooling states:

 pwm-fan {
 compatible = "pwm-fan";
 status = "okay";
 pwms = <&tegra_pwm 3 45334>;
 shared_data = <&pwm_fan_shared_data>;
 active_pwm = <0 80 120 160 255 255 255 255 255 255>;
 };

Other Considerations When Porting
This section discusses some other considerations and recommendations to keep in mind
when porting.

Boot Time Reduction
GNOME shell is the default display and window manager for Ubuntu 18.04. Although it
brings a new look to the user experience it comes with performance and memory
overhead problems. Many GDM3 and GNOME shell issues are known, with fixes under
development. However, considering the Ubuntu release timelines and the trivial nature
of the fixes, these fixes may not be backported to Ubuntu 18.04.

Therefore, below are some suggestions for reduce boot time by tweaking rootfs and
kernel.

Root Filesystem
These changes to the root filesystem may reduce boot time.

• Enable autologin for GDM3 (saves about 14 to 19 seconds of boot time).
• Set power mode to MAXN (saves about 8 to 10 seconds of boot time).
• Use a lightweight display manager like LightDM. The LightDM service takes about

3 to 5 seconds to start.

To install and configure lightdm display manager, enter the commands:

sudo apt-get update
sudo apt-get install lightdm
sudo dpkg-reconfigure lightdm

• Use a lightweight window manager like LXDE. LXDE takes 3 to 4 seconds to bring
up the desktop after login.

Platform Adaptation and Bring-Up

Jetson Nano Platform Adaptation and Bring-Up Guide DA_09361-002 | 27

To install and enable LXDE and Compton, enter the commands:

sudo apt-get update
sudo apt-get install lxde compton

Create the configuration file /etc/xdg/autostart/lxde-compton.desktop,
containing these commands:

[Desktop Entry]
Type=Application
Name=Compton (X Compositor)
GenericName=X compositor
Comment=A X compositor
TryExec=compton
Exec=compton --backend glx -b
OnlyShowIn=LXDE

Kernel
Pass the “quiet” option to the kernel reduces kernel boot time by about 10 seconds.

In /boot/extlinux/extlinux.conf in the target rootfs, set the APPEND parameter
to quiet (or add quiet to the parameter if it is already defined:

APPEND ${cbootargs} quiet

Hardware Bring-Up Checklist
This section provides a checklist for the platform hardware bring-up process.

• To change your project’s name, rename the flash configuration file:

● jetson-nano-sd.conf for a SKU 0000 device
● jetson-nano-qspi.conf for a SKU 0020 device)

• You need not specify an EEPROM board ID for your carrier board.
• If you are changing DDR in the CVM P3448, be sure to get the DDR memory training

parameters generated and update them in the emc_memory section of the kernel
DTB.

• If you don’t want to use the Dynamic Freq and Voltage Scaling feature, you can
disable it from Kernel Config.

• If you want to change secondary boot storage to EMMC, you must specify the size of
the EMMC in the appropriate configuration file:

Platform Adaptation and Bring-Up

Jetson Nano Platform Adaptation and Bring-Up Guide DA_09361-002 | 28

● To flash QSPI only on a SKU 0000 device, jetson-nano-qspi.conf.
● To flash QSPI and SD card on a SKU 0000 device, jetson-nano-sd.conf.
● To flash eMMC on a SKU 0020 device, jetson-nano-emmc.conf.

You also must specify eMMC size in p3448-0000.conf.common.

Below are the parameters in the file which you must review.

ODMDATA=0x94000;
CHIPID=0x21;
EMMC_BCT=P3448_A00_4GB_Micron_4GB_lpddr4_204Mhz_P987.cfg;
EMMC_CFG=flash_l4t_t210_spi_p3448.xml;
EMMCSIZE=4194304; # Size of primary boot device
ITS_FILE=;
SYSBOOTFILE=p3450-porg/extlinux.conf;
DTB_FILE=tegra210-porg-p3448-0000-a00.dtb;
To configure whether to use U-Boot,
do either of the following before running flash.sh:
1) Set environment variable USE_UBOOT to 0 or 1.
2) Edit the line below to set USE_UBOOT to 0 or 1.
if [-z "${USE_UBOOT}"]; then
 USE_UBOOT=1; # you can disable uboot
fi;
ROOTFSSIZE=14GiB; # System.img size
CMDLINE_ADD="console=ttyS0,115200n8 console=tty0 fbcon=map:0
net.ifnames=0";  you can add delete kernel command line here

Before Power-On

Make sure that the Jetson Nano board is connected to the BTB connector correctly and
securely.



Verify that power supplies are not shorted to ground or to other power supplies. 

Initial Power-On

Verify that VDD_IN from carrier board is 5 V. 

Verify that POWER_EN goes to HIGH when power is turned on. 

Verify that system can enter force recovery. 

Initial Software Flashing

Verify that system can be flashed with TegraFlash. 

Verify that TegraBoot and U-Boot run to completion by checking log output. 

Verify that OS runs to desktop. 

Platform Adaptation and Bring-Up

Jetson Nano Platform Adaptation and Bring-Up Guide DA_09361-002 | 29

Verify that any UARTs intended for debugging are enabled and functional. 

Power

Verify that all supplies required on at power-on are enabled appropriately. 

Verify that all supplies required off at power-on are not enabled initially. 

Verify that you can enable and disable each controllable supply, and you can set
different voltage levels if applicable.



Verify that carrier board power-on sequence starts after POWER_EN signal is asserted. 

Power Optimization

Capture CPU PWR Request entering and exiting Deep Sleep (LP0). Ensure that CPU
PWR Request and associated power rail sequence meets Tegra Data Sheet
requirements.



Verify that all rails that must be off in Deep Sleep (LP0) are off. 

Verify that all rails that must be on in Deep Sleep (LP0) are on. 

Verify that required rails are back and at correct voltage upon hardware control
exiting Deep Sleep (LP0).



USB 2.0 PHY

Verify that USB0 supports USB recovery (device mode). 

Verify that USB0 device mode works with intended peripheral types, if supported. 

Verify USB0, USB1 and or USB2 host mode, if implemented. 

Verify USB0 Device/Host detection, if supported. 

Verify that USB PHYs go to lowest power mode when not used or when the system is
in low power mode.



Verify that AVDD_USB and AVDD_PLL_UTMIP are off during Deep Sleep (LP0). 

Capture USB0_D+/D- signals at both ends of link (connector and test points near
Jetson Nano).



Capture USB2_D+/D- signals at both ends of link (connector and test points near
Jetson Nano).



Using USB-IF procedures, verify that signals meet requirements (correct EYE
height/width, etc).



If USB signals do not meet requirements, use the Tegra USB Tuning Guide to adjust
settings until requirements are met.



Platform Adaptation and Bring-Up

Jetson Nano Platform Adaptation and Bring-Up Guide DA_09361-002 | 30

USB 3.0

Verify USB 3.0 host mode. 

Verify USB 3.0 device mode, if enabled. 

Verify that the USB 3.0 interface goes to the lowest power mode when not used or
when the system is in low power mode.



HDMI

Verify that HDMI™ compatible display works at 1080p. 

Verify that display is detected properly (HPD). 

Verify that HDMI reads and writes to the display using DDC interface. 

Verify that HDMI related rails are powered off when not used or system is in Deep
Sleep (LP0) or Suspend (LP1).



Capture HDMI signals at the connector (using appropriate test fixture and
termination).



Verify that signal quality is acceptable (meets EYE diagram, etc.). Consult Tegra
HDMI Tuning Guide for details.



If HDMI signals do not meet requirements, use the Tegra HDMI Tuning Guide to adjust
settings until requirements are met.



Audio

Verify reads and writes on I2C interface used for audio codec. 

Verify that playback works properly on speakers, headphones, and headset. 

Verify that capture works properly: Sound is recorded from microphone/headset if
supported.



Verify that tones, voice, etc. can be heard from speakers or headphones/headset. 

Verify that audio codec goes to lowest power mode when not in use or system enters
low power mode.



Capture signals at receiver end of link, if accessible, for each I2S I/FT used. 

Verify that signal quality is acceptable. Look for excessive over/undershoot and
glitches on signal edges.



UART

Verify that the processor’s TX/RX/CTS/RTS lines connect to the device’s
RX/TX/RTS/CTS lines for each UART used.



Verify that signal quality is acceptable. Look for excessive over/undershoot and
glitches on signal edges.



Platform Adaptation and Bring-Up

Jetson Nano Platform Adaptation and Bring-Up Guide DA_09361-002 | 31

SD Card (SDMMC1)

Verify proper connectivity by setting processor pins to GPIOs, if necessary, to debug. 

Verify that basic SD commands operate properly. 

Verify reads and writes for a variety of SD cards. 

Verify that SD card insertion detection works and wakes system, if supported. 

Verify that SD card write protect works, if implemented. 

Verify that SD card goes to low power mode or rails are powered off when not used or
in low power system state.



Verify that signal quality is acceptable when probed at receiver end (socket or test
points near BTB connector or both for bidirectional signals). Look for excessive over/-
undershoot and glitches on signal edges and abnormal clock duty cycle.



Fan

Verify that CVM’s PWM and TACH lines connected to fan’s PWM and TACH lines. 

Verify that fan speed is changed based on PWM signal pulse width. 

Verify that fan’s RPM can be measured using TACH pin. 

Sensors I2C: General

Verify that addresses of all I2C devices appear correctly, and no unknown ghost
devices appear.



Verify that signal quality is acceptable, including rise times of signals, when probed
at BTB connector and devices.



Sensors I2C: Touch Screen (Optional)

Verify that reads and writes on I2C or SPI to touch screen controller are functional
(reading device ID or a similar register is successful).



Verify that interrupts are generated properly. 

Verify functionality of touch screen. 

Verify that touch screen controller goes to lowest power mode when not used, or
system is in low power state.



PEX (Optional)

Verify proper connectivity by checking lanes. 

Verify that any implemented PEX interfaces transition to the lowest power state in
Deep Sleep (LP0) and Suspend (LP1).



Platform Adaptation and Bring-Up

Jetson Nano Platform Adaptation and Bring-Up Guide DA_09361-002 | 32

Verify that signal quality is acceptable when probed at receiver end of link near
processor and device. Look for excessive over/undershoot and glitches on signal
edges.



Embedded Display(s) (Optional)

Verify that I2C or other control interface is able to perform writes and reads to
display.



Verify that each embedded display shows correct colors. 

Verify that each embedded display’s backlight is enabled when in normal display
mode.



Verify that each embedded display’s backlight brightness can be adjusted properly. 

Verify that each embedded display’s backlight is disabled when in a low power mode. 

Verify that each embedded display (and any display bridge) transitions to the lowest
power state in Suspend (LP0).



Verify that power on/off sequencing of rails associated with each display meets
manufacturer's requirements.



Verify DSI or eDP timing (see Tegra DC and DSI Debugging Guide for details on how
and what to verify).



Probe DSI or eDP signals near panel driver, or at connector/test points if access to
driver is not possible, and verify that signal quality is acceptable. Look for excessive
over/undershoot and glitches on signal edges.



Imager(s) (Optional)

Verify that I2C interface writes and reads work for all cameras. 

Verify that preview displays properly for all cameras. 

Verify that still capture works for all cameras. 

Verify that video capture works for all cameras. 

Verify that all flashes operate properly. 

Verify that any available autofocus mechanism functions properly. 

Verify that privacy LED operates properly, if implemented. 

Verify that cameras and related circuitry enter lowest power mode when not used or
system is in a low power mode.



Verify that power on/off sequencing of rails associated with imager module meets
manufacturer's requirements.



Probe MCLK output at recommended test points and verify that signal quality is
acceptable. Look for excessive over/undershoot and glitches on signal edges.



Look for excessive over/undershoot and glitches on signal edges. 

Platform Adaptation and Bring-Up

Jetson Nano Platform Adaptation and Bring-Up Guide DA_09361-002 | 33

Software Bring-Up Checklist
This section provides a checklist for the software bring-up process.

Preparation

Verify board BCT. 

Verify operation eMMC with the NVIDIA Diagnostic Tool. 

Obtain board schematics and component data sheets. 

Verify power tree. 

Review board pinmux. 

Bring-up Hardware Validation

Power and Reset Sequence, Power Rail Check 

Recovery Mode 

NvTest (Tegra MODS) DDR, eMMC, CPU 

JTAG connection check 

U-Boot Port and Boot Validation

Verify TegraFlash 

Verify UART output 

Verify KBD connection 

Verify board config/PMIC regulator config/Pinmux/Review device tree 

Verify FS support/Config boot scripts (bootcmd) 

Boot to U-Boot 

Boot to kernel 

Boot to kernel command line or custom desktop 

Kernel and Peripherals, Port and Validation

Device tree review, Pinmux, GPIO, Wake pins 

PMU and regulator drivers 

Display/HDMI 

Audio codec 

Microphone and speaker 

Platform Adaptation and Bring-Up

Jetson Nano Platform Adaptation and Bring-Up Guide DA_09361-002 | 34

USB 

SD card 

Ethernet 

PCIe 

System Power and Clocks

CPU/CORE/GPU DVFS 

EMC DFS table 

CPU/CORE EDP 

GPU EDP 

System EDP (containing current monitor and voltage comparator) 

Power off 

LP0 (optional) 

CPU power down (LP2) 

BCT, full-speed 

www.nvidia.com

Notice
ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO
WARRANTIES, EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND ALL
EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY
OR CONDITION OF TITLE, MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A PARTICULAR PURPOSE
AND NON-INFRINGEMENT, ARE HEREBY EXCLUDED TO THE MAXIMUM EXTENT PERMITTED BY LAW.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other rights
of third parties that may result from its use. No license is granted by implication or otherwise under any patent
or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change
without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks
NVIDIA, the NVIDIA logo, Tegra, Jetson, and Jetson Nano are trademarks or registered trademarks of NVIDIA
Corporation in the United States and other countries. Other company and product names may be trademarks
of the respective companies with which they are associated.

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of
HDMI Licensing LLC.

The Bluetooth® word mark and logos are registered trademarks owned by the Bluetooth SIG, Inc. and any use
of such marks by NVIDIA is under license.

Copyright
© 2019 NVIDIA Corporation. All rights reserved.

	Platform Adaptation and Bring-Up
	Board Configuration
	Board Naming
	Placeholders in the Porting Instructions
	Root Filesystem Configuration
	Pinmux Changes
	To customize the pinmux spreadsheet

	Exporting Pinmux for U-Boot
	To customize tegra-pinmux-scripts for your board
	To save the spreadsheet in CSV format
	To generate the U-Boot pinmux header file

	Accessing GPIOs via “gpio” Device Labels
	Exporting Pinmux for the L4T Linux Kernel
	To generate device tree files for your pinmux configuration

	Porting U-Boot
	Porting the Linux Kernel
	Porting USB
	USB Structure
	UPHY Lane Assignment
	Required Device Tree Changes
	For a Host-Only Port
	Go Through the Schematics
	The xusb_padctl Node
	Under the xusb Node

	For an OTG (On-The-Go) Port
	Go Through the Schematics
	The External Connector Class (extcon)
	Under the extcon Node
	Under the xusb_padctl Node
	Under the xHCI Node
	Under the xUDC Node
	To resolve possible UPHY lane mapping issues

	Fan speed control mapping table
	Other Considerations When Porting
	Boot Time Reduction
	Root Filesystem
	Kernel

	Hardware Bring-Up Checklist
	Before Power-On
	Initial Power-On
	Initial Software Flashing
	Power
	Power Optimization
	USB 2.0 PHY
	USB 3.0
	HDMI
	Audio
	UART
	SD Card (SDMMC1)
	Fan
	Sensors I2C: General
	Sensors I2C: Touch Screen (Optional)
	PEX (Optional)
	Embedded Display(s) (Optional)
	Imager(s) (Optional)

	Software Bring-Up Checklist
	Preparation
	Bring-up Hardware Validation
	U-Boot Port and Boot Validation
	Kernel and Peripherals, Port and Validation
	System Power and Clocks

