Real-Time 3D Traffic Cone Detection for Autonomous Driving

Considerable progress has been made in semantic scene understanding of road scenes with monocular cameras [although, it generally focuses] on certain specific classes such as cars, bicyclists and pedestrians. This work investigates traffic cones, an object category crucial for traffic control in the context of autonomous vehicles. 3D object detection using images from a monocular camera is intrinsically an ill-posed problem. [We] propose a pipelined approach, [...] method [...] [which] runs efficiently on the low-power Jetson TX2, providing accurate 3D position estimates, allowing a race-car to map and drive autonomously on an unseen track indicated by traffic cones. With the help of robust and accurate perception, our race-car won both Formula Student Competitions held in Italy and Germany in 2018, cruising at a top speed of 54 km/h on our driverless platform "gotthard driverless".

Authors

A Dhall, D Dai, L Van Gool, AMZFormulaStudent

Share

Buy Jetson to Get Started

Bring your edge AI, computer vision or robotics ideas to life with a Jetson developer kit.

Explore Products