
NVIDIA DRIVE OS Linux SDK Developer
Guide

PR-10720-6.0 _v6.0.7 | release-month release-year

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 2

Chapter 1. Overview

The NVIDIA DRIVE® OS 6.0 Linux Software Development Kit enables application
development with NVIDIA DRIVE Orin™ SoC for Automotive. At a high level, the SDK
consists of:

‣ DRIVE OS foundation components including bootloaders, a Type 1 hypervisor, and
virtualization.

‣ GuestOS virtual machines including Linux operating systems for system software and
application development.

The DRIVE OS Software Development Kit (SDK) provides industry standard APIs including
NvMedia, CUDA and TensorRT. The CUDA and TensorRT modules included in DRIVE OS 6.0
software releases are compatible only with the Automotive DRIVE AGX Orin Platform. As
such, they must only be used with DRIVE OS. These modules must not be used standalone
as they are not compatible with other NVIDIA devices.

What is NVIDIA DRIVE OS 6.0?

NVIDIA DRIVE® OS 6.0 is the reference operating system and associated software stack
designed specically for developing and deploying autonomous vehicle applications
on DRIVE Orin-based hardware. DRIVE OS 6.0 delivers a safe and secure execution
environment for safety-critical applications, providing services such as secure boot,
security services, rewall, and over-the-air updates.

The included foundational software stack consists of NVIDIA® CUDA® libraries, NVIDIA
TensorRT™, NvMedia, and other components optimized to provide direct access to DRIVE
AGX Orin hardware acceleration engines.

What is NVIDIA DRIVE OS 6.0 SDK?

DRIVE OS 6.0 SDK consists of DRIVE Orin software, libraries, and tools to build, debug,
prole, and deploy applications for autonomous vehicles and self-driving cars across the
CPU, GPU and other DRIVE AGX Orin hardware acceleration engines. These development
tools provide optimized workows for parallel computing and deep learning development.

In order to maximize productivity, DRIVE OS 6.0 SDK leverages industry standard
tools, technologies, and APIs to provide a familiar and comfortable high-productivity
development environment.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 1

Overview

Getting Started with NVIDIA DRIVE OS SDK

Topic Where to Learn More

Installation See Installation for information on installing or upgrading a
DRIVE OS SDK installation on a host machine.

Flashing See Flashing DRIVE AGX Orin for information on updating the
system image and associated rmware on a DRIVE AGX Orin
system.

Architecture See DRIVE OS Architectural Overview for an architectural
overview of the DRIVE OS stack.

What is NVIDIA DRIVE OS 6.0 PDK?

NVIDIA DRIVE® OS 6.0 Platform Development Kit (PDK) is used to modify DRIVE OS 6.0
to run on non-reference DRIVE AGX Orin-based hardware platforms. The NVIDIA DRIVE
OS PDK requires specic agreements with NVIDIA. Consult with your NVIDIA Customer
Support Engineer for more information.

Additional Platform Components

In addition to the Foundation services components and the DRIVE OS-specic
components, additional components are available. These components are provided
separately for customizing the platform development and include:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 2

Overview

Components Description

CUDA
CUDA® is a parallel computing platform and
programming model developed by NVIDIA for
general computing on graphical processing
units (GPUs). With CUDA, developers are able to
dramatically speed up computing applications
by harnessing the power of GPUs.

Consult the CUDA Samples provided as an
educational resource.

Consult the CUDA Computing Platform
Development Guide for general purpose
computing development.

cuDNN
The NVIDIA CUDA® Deep Neural Network
library (cuDNN) is a GPU-accelerated library of
primitives for deep neural networks. cuDNN
provides highly tuned implementations for
standard routines such as forward and backward
convolution, pooling, normalization, and
activation layers. cuDNN is part of the NVIDIA
Deep Learning SDK.

Consult the cuDNN Deep Neural Network
Library of primitives for deep neural network
development.

TensorRT
NVIDIA TensorRT™ is a high-performance deep
learning inference optimizer and runtime that
delivers low latency, high-throughput inference
for deep learning applications.

Consult the TensorRT Documentation for deep
learning development.

1.1 Platform Software Stacks
This section describes the platform component software stacks.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 3

https://developer.nvidia.com/cuda-zone
https://docs.nvidia.com/cuda/cuda-samples/index.html
https://docs.nvidia.com/cuda/
https://docs.nvidia.com/cuda/
https://developer.nvidia.com/cudnn
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html
https://developer.nvidia.com/tensorrt
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html

Overview

Use the DRIVE OS software stack to build your autonomous vehicle applications.

1.1.1 Foundation Services Stack
The NVIDIA DRIVE AGX™ platform Foundation services runtime software stack provides
the infrastructure for all the components of the platform. With this infrastructure, guest
OS systems can run on the hardware, with the Hypervisor managing use of hardware
resources.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 4

Overview

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 5

Overview

Foundation Components

Component Description

Hypervisor
Trusted Software server that separates the
system into partitions. Each partition can
contain an operating system or a bare-metal
application. The Hypervisor manages:

‣ Guest OS partitions and the isolation
between them.

Note: Multiple Guest OSs are not
supported. In addition, you can run
QNX or Linux, but not both.

‣ Partitions' virtual views of the CPU and
memory resources.

‣ Hardware interactions
‣ Run-lists
‣ Channel recovery

Hypervisor is optimized to run on the ARMv8.2
Architecture.

guest OS
Allocates peripherals that Guest OS needs to
control.

Services
Services for DRIVE Update.

Bootloader
Firmware that runs during boot to load rmware
components, such as boot images, partition
images, and other rmware.

Orin SoC
System on a Chip hardware resources.

Virtualized Servers

The virtualized congurable servers are as follows.

Component Description

Boot and Power Manager Processor (BPMP)
Server Facilitates communication between Guest

Virtual Machines (VM) and BPMP rmware.

VM Server
host1X virtualizes NvHost.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 6

Overview

Component Description

Security Engine (SE) Server
Para-virtualizes and allows multiple Guest
Virtual Machines access to the security engine
cryptographic hardware accelerator.

Trusted Applications (TA)
Through Trusted Applications, Trusted OS
exposes a set of core services that use managed
security assets in cryptographic operations
without exposing them to non-secure guest
software.

GPU
Runs on top of the virtualization core and
handles sharing of GPU between multiple client
Guest Virtual Machines. The GPU virtualization
also includes the para-virtualized GPU client
driver running inside of each Guest Virtual
Machine.

Storage Server
Para-virtualizes storage access to enable
sharing physical storage devices among multiple
Guest Virtual Machines.

Debug Server Provides support for kernel-level debugging of
Guest Virtual Machines (VM).

1.1.2 NvMedia Architecture
NvMedia provides powerful processing of multimedia data for true hardware acceleration
across NVIDIA DRIVE® Orin™ devices. With the NvMedia and Orin rmware components,
multimedia applications support multiple simultaneous camera feeds for simultaneous
processing. The NvMedia features include:

‣ Robust image processing and sensor control blocks for use by applications.

‣ Hardware surface to handle all types of image formats such as RGB, YUV and RAW.

‣ Functional components for image capture, processing, acceleration, encoding, and
interoperating with other libraries.

Applications leverage the NvMedia Application Programming Interface (API) to process
image and video data. Additionally, NvMedia can route image data to/from other
components, such as OpenGL ES and NVIDIA® CUDA®.

1.1.2.1 NvMedia Stack
The NvMedia software stack supports these types of interactions:

‣ Applications call the NvMedia Framework components to string together a sequence of
processing steps for images.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 7

Overview

‣ The NvMedia Framework calls low-level hardware drivers to interact with the SoC
components on the SoC chip.

Consult building and running NvMedia sample applications to build an NvMedia sample
application.

Each component functionality is as follows. The drivers expose a subset of the
functionality available.

Tegra Hardware Description

Video Input (VI) Receives CSI data from the camera.

Image Signal
Processor

(ISP)

Produces a processed image from image data captured
from an image sensor. For example, it can make pixel-level
changes such as inverting pixel bits, auto exposure, and
white balance correction.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 8

Overview

Tegra Hardware Description

NVIDIA Encoder
(NVENC)

Converts raw image data into one of the supported image
formats.

NVIDIA Decoder
(NVDEC)

Converts encoded image data into raw image data.

Video Interlace
Compositor (VIC)

Converts video data for deinterlacing, composition, and
format conversion.

Optical Flow
Accelerator (OFA)

Accelerate optical ow and stereo disparity computation
between the frames.

1.1.2.2 NvMedia Components
The NvMedia components are as follows:

Image Component Description

SIPL The SIPL framework processes incoming image data with
AE, AWB controls and includes the ISP processing capability.
It supports camera tuning tools.

2D Image 2D provides the ability to perform manipulation
of image data; such as cropping, scaling, copying, and
converting the format.

IEP Image Encode Processing provides the ability to encode
processed YCRCb surface inputs to H.264 and H.265.

IJE Image JPEG Encoding provides the ability to encode YUV
surfaces to JPEG format.

IJD Image JPEG Decoding provides the ability to decode images
compressed in JPEG format to raw YUV surfaces.

LDC Image LDC provides the ability to perform lens distortion
correction and temporal noise reduction on image data.

1.1.2.3 NvMedia APIs and Thread Safety
NvMedia APIs are not designed to be thread safe. It is the responsibility of the application
to maintain thread safety. To ensure thread safety:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 9

Overview

‣ NvMedia components can be created and used in any thread but the APIs cannot be
used from dierent threads concurrently.

‣ Dierent instances of the same component can be used in parallel from dierent
threads.

‣ Encoders are designed to be fed from one thread and get the encoded bitstream from
another thread.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 10

Chapter 2. Installation

The following chapters describe how to:

‣ Set up Docker and NVIDIA GPU Cloud access

‣ Set up DRIVE OS with Debian packages

‣ Build and run samples

2.1 Install DRIVE OS Linux Docker
Containers from NGC

2.1.1 Set Up Docker and NVIDIA GPU Cloud
Access

Note:: The minimum required version of Docker Engine to run DRIVE OS Linux Docker
containers is 19.03.

‣ On the host system, download the type of Docker software needed for your
organization (Enterprise, Desktop, or other) from https://www.docker.com/.

‣ Alternatively, download an installation script from https://get.docker.com/ and install
DRIVE OS Docker on your host system with a command similar to the following:
wget -qO- https://get.docker.com/ | ${SHELL}

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 11

https://www.docker.com/
https://get.docker.com/

Installation

2.1.1.1 NVIDIA GPU Cloud Access
In order to access NVIDIA GPU Cloud (NGC), you will need an NVIDIA Developer Account,
and membership in the NVIDIA DRIVE® Developer Program for DRIVE AGX. Please register
for an account and apply for membership in the Developer Program before proceeding.

Note:: It may take up to a few days for access to the Developer Program to be approved.

Note:: Please reference NVIDIA DRIVE Platform Docker Containers for more information
on DRIVE OS Docker Container workows.

2.1.1.2 Sign in to NVIDIA GPU Cloud
Note:: Please make sure you’ve received the NGC activation email and successfully
activated your NGC Organization(s) and NGC Team(s) before proceeding.

1. On the host system, sign into NGC (https://ngc.nvidia.com) using your NVIDIA
Developer credentials.

2. Once you have signed in, select your NGC Organization (for NVIDIA Developer Users,
this will be drive). DRIVE OS Docker Containers are located under PRIVATE REGISTRY.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 12

http://ngc.nvidia.com/
http://developer.nvidia.com/
https://developer.nvidia.com/drive-agx-program
https://developer.nvidia.com/drive/docker-containers
https://ngc.nvidia.com

Installation

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 13

Installation

3. Once signed in, select Setup under the User menu in the top-right of the page to
Generate an API Key to pull Docker images.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 14

Installation

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 15

Installation

For more information, see:

https://docs.nvidia.com/ngc/ngc-overview/index.html#generating-api-key

Note:: Using NVIDIA GPU Cloud is beyond the scope of this document. Please refer to
the NVIDIA GPU Cloud documentation for more information.

4. Log in to the NGC container registry.
sudo docker login nvcr.io

5. When prompted for your username, enter the following text:
$oauthtoken

The $oauthtoken username is a special username that indicates that you will
authenticate with an API key, not a username and password.

6. When prompted for your password, enter your NGC API key as shown in the following
example:
Username: $oauthtoken
Password: my-api-key

See Docker Login documentation for more information on login methods.

After you log in, you have access to NVIDIA DRIVE OS Docker images, depending on your
specic permissions in the registry.

2.1.2 Set Up DRIVE OS Linux with NVIDIA GPU
Cloud (NGC)
Begin by referring to the instructions in Setup Docker and NVIDIA GPU Cloud Access, then
proceed with the following installation guide for DRIVE OS Linux.

2.1.2.1 Images Available in This Release
The following images will be available on NGC in this release:

 File Name Intent

drive-agx-orin-linux-aarch64-sdk-build-
x86:latest

Build and Flash DRIVE OS 6.0.7 SDK Linux

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 16

https://docs.nvidia.com/ngc/ngc-overview/index.html#generating-api-key
https://docs.nvidia.com/ngc/index.html
https://docs.docker.com/engine/reference/commandline/login/

Installation

2.1.2.2 Pull Docker Images from NGC
Note:: Prior to installation, you can choose to remove previously installed DRIVE OS Docker
images/containers to increase space capacity.

2.1.2.2.1 Instructions for Running DRIVE OS Docker
1. Log into the NVIDIA GPU Cloud (NGC) using instructions in the previous section.
2. On the host system, pull the image using the following command:

Note:: ${MY_NGC_ORG} is the NGC Organization allocated for your team.

sudo docker run -it --privileged --net=host -v /dev/bus/usb:/dev/bus/usb -v
 ${WORKSPACE}:/home/nvidia/
nvcr.io/${MY_NGC_ORG}/driveos-sdk/drive-agx-orin-linux-aarch64-sdk-build-
x86:latest

2.1.2.3 Flash DRIVE OS Linux
Use the procedures in this section to ash NVIDIA DRIVE™ OS Linux to the target system
from the Docker container.

2.1.2.3.1 Flash Using the DRIVE OS Docker Container
1. Log on to the NVIDIA GPU Cloud (NGC). If you need to download a DRIVE OS Docker

image, use the procedures in the Set Up Docker and NVIDIA GPU Cloud Access section
of this document.

2. Connect NVIDIA DRIVE™ AGX to the host system.

Note:: Ensure that NVIDIA DRIVE AGX is connected to the host system, and that no
other processes, such as TCUMuxer or Minicom are holding a lock on /dev/ttyACM*
before starting the Docker container.

3. Start the DRIVE OS Docker container and ash DRIVE OS onto the NVIDIA DRIVE AGX
using the following command.
sudo docker run -it --privileged --net=host -v /dev/bus/usb:/dev/bus/usb -v /
drive_flashing:/drive_flashing

nvcr.io/${MY_NGC_ORG}/driveos-sdk/drive-agx-orin-linux-aarch64-sdk-build-
x86:latest

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 17

Installation

2.1.2.3.1.1 Instructions for Flashing

Flash with ash.py:
./flash.py /dev/ttyACM1 p3710

Note:: /dev/ttyACM1 is the default port for the DRIVE AGX Orin Developer Kit on the x86
Host system if only one Developer Kit or another USB device is connected. If there are
additional devices in this device range, please disconnect them before ashing.

Note:: If ashing the target system fails, try the following:

1. Reseat the USB cable connected from the Host PC to the LEFT USB Type-C port on
the target on both ends. See the "NVIDIA DRIVE AGX Orin Developer Kit Hardware
Quick Start Guide" for more details.

2. Use a USB 3.1 port on the host PC if available.

3. Use a dierent USB C/SS cable, OR a higher speed cable such as a USB SS10 (for
example, Amazon Model Number L6LUC146-CS-R).

4. Use a USB 2.0 port on the host PC used for ashing.

2.2 Set Up DRIVE OS with Debian
Packages

2.2.1 Prerequisites
Prior to the installation of DRIVE OS local repo Debian packages, ensure the Ubuntu host
apt database is clear of any errors. The below command will return a non-ZERO value
in case of issues. Please make sure to correct these issues before proceeding with the
installation steps in this guide.
sudo apt update

echo $?

CAUTION:: Proceeding with a non-ZERO value can result in installation errors.

2.2.2 Downloading from NVONLINE
1. Log into NVONLINE (partners.nvidia.com) with your NVIDIA Partner Account. If you do

not have an NVONLINE account, please contact your NVIDIA representative.
2. To access the Debian packages, nd the DRIVE OS 6.0.7 Linux SDK group for Linux.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 18

https://partners.nvidia.com/

Installation

3. The downloaded local repo will have the local repo Debian package and extra Debian
packages that are available to be installed outside of the local repo.

4. The local repo Debian package has the following format:
nv-driveos-repo-[SDK]-[OS]-[RELEASE]-[BUILD]-[GCID]_amd64.deb

Select the Download All button to download all Debian packages simultaneously.

DRIVE OS Linux Debian Package File List

Package Filename Description

nv-driveos-
repo-sdk-linux-
*

nv-driveos-
repo-sdk-linux-
*_amd64.deb

Installs NVIDIA DRIVE OS Linux SDK/PDK/Flash
Components

Installs all DRIVE OS Linux Components provided by
NVIDIA

cuda-repo-
ubuntu*-local

cuda-repo-
ubuntu*-
local_*_amd64.deb

CUDA repository conguration les

Contains repository conguration for CUDA.

Contains a local repository for CUDA.

nv-driveos-
linux-vksc-dev-
*

nv-driveos-
linux-vksc-dev-
*_amd64.deb

Installs NVIDIA DRIVE OS Linux VKSC DEV module

Installs all DRIVE OS Linux VKSC DEV components
provided by NVIDIA

nv-driveos-
linux-config-
dhcp-*

nv-driveos-linux-
config-dhcp-
*_amd64.deb

Installs NVIDIA DRIVE OS LINUX DHCP cong

Installs all DRIVE OS LINUX DHCP components provided
by NVIDIA

driveworks-stm driveworks-
stm_*~linux*_arm64.deb

NVIDIA DriveWorks software development kit (SDK)
provides a foundation to build applications for
autonomous driving, providing computationally intensive
algorithms for object detection, map localization, and
path planning.

driveworks-
cross

driveworks-
cross_*~linux*_amd64.deb

NVIDIA DriveWorks software development kit (SDK)
provides a foundation to build applications for
autonomous driving, providing computationally intensive
algorithms for object detection, map localization, and
path planning.

nv-tensorrt-
repo-
ubuntu2004-
cuda*-tr*-d6l-
target-ga-*

nv-tensorrt-repo-
ubuntu2004-cuda*-
trt*-d6l-target-
ga-*_arm64.deb

nv-tensorrt repository conguration les

Contains repository conguration for nv-tensorrt.

Contains a local repository for nv-tensorrt.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 19

Installation

Package Filename Description

nv-driveos-
linux-driveos-
oobe-desktop-
ubuntu-20.04-
rfs-*

nv-driveos-
linux-driveos-
oobe-desktop-
ubuntu-20.04-rfs-
*_amd64.deb

NVIDIA DRIVE OS Linux Filesystem image le

nv-driveos-
linux-
driveos-oobe-
ubuntu-20.04-
rfs-*

nv-driveos-linux-
driveos-oobe-
ubuntu-20.04-rfs-
*_amd64.deb

NVIDIA DRIVE OS Linux Filesystem image le

nv-driveos-
linux-config-
minicom-*

nv-driveos-linux-
config-minicom-
*_amd64.deb

Installs NVIDIA DRIVE OS Linux minicom cong

Installs all DRIVE OS Linux minicom components provided
by NVIDIA

driveworks-stm-
cross

driveworks-stm-
cross_*~linux*_amd64.deb

NVIDIA DriveWorks software development kit (SDK)
provides a foundation to build applications for
autonomous driving, providing computationally intensive
algorithms for object detection, map localization, and
path planning.

nv-driveos-
linux-yocto-*

nv-driveos-linux-
yocto-*_amd64.deb Installs NVIDIA DRIVE OS Linux YOCTO Components

Installs all DRIVE OS Linux YOCTO Source Components
provided by NVIDIA

nv-driveos-
linux-yocto-
oss-src-*

nv-driveos-linux-
yocto-oss-src-
*_amd64.deb

Installs NVIDIA DRIVE OS Linux Yocto OSS Source SDK
Components

Installs all DRIVE OS Linux Yocto OSS Source Components
provided by NVIDIA

nsight-
graphics-for-
embeddedlinux-
pro-*

NVIDIA_Nsight_Graphics_D5L_NDA_*.debNVIDIA Nsight Graphics is a standalone application for the
debugging, proling, and analysis of graphics applications.

driveworks-
samples

driveworks-
samples_*~linux*_arm64.deb

NVIDIA DriveWorks software development kit (SDK)
provides a foundation to build applications for
autonomous driving, providing computationally intensive
algorithms for object detection, map localization, and
path planning.

driveworks-cgf-
cross

driveworks-cgf-
cross_*~linux*_amd64.deb

NVIDIA DriveWorks software development kit (SDK)
provides a foundation to build applications for
autonomous driving, providing computationally intensive
algorithms for object detection, map localization, and
path planning.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 20

Installation

Package Filename Description

cuda-repo-
cross-aarch64-
ubuntu*-local

cuda-repo-
cross-aarch64-
ubuntu2004-
*_all.deb

CUDA repository conguration les

Contains repository conguration for CUDA.

Contains a local repository for CUDA.

cuda-tegra-
repo-ubuntu*-
local

cuda-tegra-
repo-ubuntu2004-
*_arm64.deb

cuda-tegra repository conguration les

Contains repository conguration for cuda-tegra.

Contains a local repository for cuda-tegra.

nv-driveos-
linux-
ubuntu-20.04-
src-*

nv-driveos-linux-
ubuntu-20.04-src-
*_amd64.deb

Ubuntu Sources for NVIDIA DRIVE OS Linux lesystem.

Provides Ubuntu Sources that are used to build NVIDIA
DRIVE OS Linux lesystem.

nv-tensorrt-
repo-
ubuntu2004-
cuda*-trt*-x86-
host-ga-*

nv-tensorrt-repo-
ubuntu2004-cuda*-
trt*-x86-host-ga-
*_amd64.deb

nv-tensorrt repository conguration les

Contains repository conguration for nv-tensorrt.

Contains a local repository for nv-tensorrt.

nv-driveos-
linux-config-
nfs-*

nv-driveos-
linux-config-nfs-
*_amd64.deb

Installs NVIDIA DRIVE OS Linux NFS cong

Installs all DRIVE OS Linux NFS components provided by
NVIDIA

nv-driveos-
linux-vksc-
ecosystem-*

nv-driveos-linux-
vksc-ecosystem-
*_amd64.deb

Installs NVIDIA DRIVE OS Linux VKSC ECOSYSTEM module

Installs all DRIVE OS Linux VKSC ECOSYSTEM
components provided by NVIDIA

nv-driveos-
linux-
tegra2aurix-
updater-*

nv-driveos-linux-
tegra2aurix-
updater-
*_amd64.deb

Installs NVIDIA DRIVE OS Linux Tegra2Aurix updater hex
les

Installs all DRIVE OS Linux Tegra2Aurix updater hex les
provided by NVIDIA

nv-tensorrt-
repo-
ubuntu2004-
cuda*-trt*-d6l-
cross-ga-*

nv-tensorrt-repo-
ubuntu2004-cuda*-
trt*-d6l-cross-
ga-*_amd64.deb

nv-tensorrt repository conguration les

Contains repository conguration for nv-tensorrt

Contains a local repository for nv-tensorrt

nv-driveos-
linux-
ubuntu-20.04-
base-*

nv-driveos-linux-
ubuntu-20.04-
base-*_amd64.deb

Installs Canonical's Base Ubuntu lesystem.

Provides Canonical's Base Ubuntu lesystem.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 21

Installation

Package Filename Description

driveworks-stm-
samples

driveworks-stm-
samples_*~linux*_arm64.debNVIDIA DriveWorks software development kit (SDK)

provides a foundation to build applications for
autonomous driving, providing computationally intensive
algorithms for object detection, map localization, and
path planning.

driveworks driveworks_*~linux*_arm64.deb
NVIDIA DriveWorks software development kit (SDK)
provides a foundation to build applications for
autonomous driving, providing computationally intensive
algorithms for object detection, map localization, and
path planning.

nv-driveos-
linux-mlnx-
docker-arm64-
debians-*

nv-driveos-linux-
mlnx-docker-
arm64-debians-
*_amd64.deb

Installs NVIDIA Docker and Mellanox lesystem Debians

Installs the NVIDIA Docker and Mellanox lesystem
Debians required to rebuild the lesystems

driveworks-cgf-
samples

driveworks-cgf-
samples_*~linux*_arm64.debNVIDIA DriveWorks software development kit (SDK)

provides a foundation to build applications for
autonomous driving, providing computationally intensive
algorithms for object detection, map localization, and
path planning.

driveworks-cgf driveworks-
cgf_*~linux*_arm64.debNVIDIA DriveWorks software development kit (SDK)

provides a foundation to build applications for
autonomous driving, providing computationally intensive
algorithms for object detection, map localization, and
path planning.

nv-driveos-
linux-p3898-
specific-*

nv-driveos-linux-
p3898-specific-
*_amd64.deb

Installs NVIDIA DRIVE OS Linux SDK components specic
for the P3898 platform

Installs all DRIVE OS Linux SDK P3898 platform specic
components provided by NVIDIA

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 22

Installation

Package Filename Description

nv-driveos-
linux-
ubuntu-20.04-
arm64-debians-*

nv-driveos-linux-
ubuntu-20.04-
arm64-debians-
*_amd64.deb

Installs NVIDIA DRIVE OS Linux lesystem ARM64
Debians

Installs all DRIVE OS Linux lesystem ARM64 Debians
provided by NVIDIA required to rebuild the lesystems

nv-driveos-
repo-pdk-linux-
*

nv-driveos-
repo-pdk-linux-
*_amd64.deb

Installs NVIDIA DRIVE OS Linux SDK/PDK/Flash
Components

Installs all DRIVE OS Linux Components provided by
NVIDIA

nv-driveos-
linux-target-
arm64-debians-*

nv-driveos-
linux-target-
arm64-debians-
*_amd64.deb

Installs DRIVE OS Linux target Debians for standard
lesystems

Installs the DRIVE OS Linux target Debians for standard
lesystems required for rebuilding standard lesystems.

2.3 Install DRIVE OS Linux Debian
Packages

2.3.1 Uninstall Steps for Local Repo Debian
Packages
If you have previously installed DRIVE OS, the existing DRIVE OS rst needs to be
uninstalled. This will help maintain content integrity and avoid any conicts.

To remove or uninstall, please follow these instructions:

sudo -E apt-get -y --purge remove "nv-driveos*"

sudo apt-get -y autoremove

Optional step: The DRIVE OS Debian Package uninstall will not remove any data from
$NV_WORKSPACE.

If you want to remove, please follow the below instruction:

sudo rm -rf $NV_WORKSPACE

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 23

Installation

2.3.2 Installation Steps for Local Repo Debian
Packages
Instructions for installing local repo Debian packages.

1. To install the local repo Debian packages, use dpkg.
sudo dpkg -i ./nv-driveos-repo-sdk-linux-[VERSION]-[GCID]_[VERSION]_amd64.deb

2. Install top-level DRIVE OS SDK Debian packages:
export NV_WORKSPACE=/path/where/SDK/needs/to/be/installed

If using SDK Local Repo Debian packages:
sudo -E apt -f -y install nv-driveos-build-[SDK]-[OS]-[RELEASE]-[GCID]
2>&1 | tee nv-driveos-build-[SDK]-[OS]-[RELEASE]-[GCID]_install.log

After a successful installation of nv-driveos-build-[SDK]-[OS]-[RELEASE]-[GCID], the
SDK install directory structure will be as following:

$NV_WORKSPACE directory structure Sub-directories

drive-foundation firmware make platform-config security
 tools version-nv-sdk.txt virtualization

drive-linux filesystem firmware include kernel lib-
target make oss samples tools tests

drive-linux_src 3rdparty_dtc_src.tgz
 e2fsprogs-1.41.11.tar.gz jq-1.5.tar.gz
 kernel linuxptp.tgz NVIDIA-kernel-
module-source-TempVersion.tar.xz wayland
 yocto

toolchains aarch64--glibc--stable-2022.03-1 armv5-
eabi--glibc--stable-2020.08-1 armv7-
eabihf--glibc--stable-2020.08-1

2.3.2.1 Installation Steps for the Extra Packages
1. Install the below CUDA 11.4 Debian packages for Linux available under the same folder.

sudo dpkg -i ./cuda-repo-ubuntu2004-11-4-local_[CUDA-VERSION]-[DRIVER-
VERSION]-1_amd64.deb
sudo dpkg -i ./cuda-repo-cross-aarch64-ubuntu2004-11-4-local_[CUDA-
VERSION]-1_all.deb
sudo apt-key add /var/cuda-repo-ubuntu2004-11-4-local/51997F51.pub
sudo apt-key add /var/cuda-repo-cross-aarch64-ubuntu2004-11-4-local/32437944.pub
sudo apt update
sudo apt -y install cuda-toolkit-11-4 -y
sudo apt -y install cuda-cross-aarch64-11-4 -y

2. In case of any issue with the installation, remove old packages and reinstall.
sudo rm /var/lib/apt/lists/_var_cuda*
sudo apt --fix-broken install -y
sudo apt autoremove -y
sudo apt remove--purge -y "cuda*"
sudo apt remove--purge -y "*cublas*"

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 24

Installation

sudo apt remove--purge -y "*nsight*"
sudo apt autoremove -y

3. Install the cuDNN Debian packages for Linux:
sudo apt install ./cudnn-local-repo-ubuntu2004-[CUDNN-VERSION].deb
sudo apt-key add /var/cudnn-local-repo-ubuntu2004-[CUDNN-VERSION]/44B3C3AF.pub
sudo apt update
sudo apt install libcudnn8 -y
sudo apt install libcudnn8-dev -y
sudo apt install libcudnn8-samples -y

4. Install the cuDNN Debian packages for cross-compiling on Linux:
sudo apt install ./cudnn-local-repo-cross-aarch64-ubuntu2004-[CUDNN-
VERSION].deb
sudo apt-key add /var/cudnn-local-repo-cross-aarch64-ubuntu2004-[CUDNN-
VERSION]/8DD81901.pub
sudo apt update
sudo apt install libcudnn8-cross-aarch64 -y

5. Install TensorRT Debian packages for Linux:
sudo dpkg -i nv-tensorrt-repo-ubuntu2004-cuda11.4-trt[RELEASE]-x86-host-[ea|ga]-
[BUILD-DATE]_1-1_amd64.deb
sudo apt-key add /var/nv-tensorrt-repo-ubuntu2004-cuda11.4-trt[RELEASE]-x86-host-
[ea|ga]-[BUILD-DATE]/91acf5b1.pub
sudo apt update
sudo apt install tensorrt -y

6. Install TensorRT Debian packages for cross-compiling on Linux:
sudo dpkg -i nv-tensorrt-repo-ubuntu2004-cuda11.4-trt[RELEASE]-d6l-cross-
ga-20221229_1-1_amd64.deb
sudo apt-get install tensorrt-cross-aarch64 -y

2.3.3 Flash DRIVE OS Linux

2.3.3.1 Instructions for BIND PCT
cd $NV_WORKSPACE/drive-foundation

./make/bind_partitions -b <board-variant> linux

Note:: Please refer to DRIVE Platform Supported Boards to identify your board variant.

2.3.3.2 Instructions for Flashing
1. Put the DRIVE AGX system into reset mode from the Aurix MCU console.

Connect to the Aurix MCU console:
sudo minicom -w -D /dev/ttyACM1

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 25

Installation

From the Aurix MCU console:
tegrarecovery x1 on
tegrareset x1

2. Flash:
tools/flashtools/bootburn/bootburn.py -b <board-variant> -B qspi

Note:: You do not need to use sudo for the following commands:

‣ bootburn.py

‣ create_bsp_images.py

‣ flash_bsp_images.py

However, if you choose to use sudo for one, use it consistently with the others. Do not
switch between sudo/non-sudo usage.

Note:: Please refer to DRIVE Platform Supported Boards to identify your board variant.

2.4 Install DRIVE OS Linux Docker
Containers from NGC

2.4.1 Set Up Docker and NVIDIA GPU Cloud
Access

Note:: The minimum required version of Docker Engine to run DRIVE OS Linux Docker
containers is 19.03.

‣ On the host system, download the type of Docker software needed for your
organization (Enterprise, Desktop, or other) from https://www.docker.com/.

‣ Alternatively, download an installation script from https://get.docker.com/ and install
DRIVE OS Docker on your host system with a command similar to the following:
wget -qO- https://get.docker.com/ | ${SHELL}

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 26

https://www.docker.com/
https://get.docker.com/

Installation

2.4.1.1 NVIDIA GPU Cloud Access
In order to access NVIDIA GPU Cloud (NGC), you will need an NVIDIA Developer Account,
and membership in the NVIDIA DRIVE® Developer Program for DRIVE AGX. Please register
for an account and apply for membership in the Developer Program before proceeding.

Note:: It may take up to a few days for access to the Developer Program to be approved.

Note:: Please reference NVIDIA DRIVE Platform Docker Containers for more information
on DRIVE OS Docker Container workows.

2.4.1.2 Sign in to NVIDIA GPU Cloud
Note:: Please make sure you’ve received the NGC activation email and successfully
activated your NGC Organization(s) and NGC Team(s) before proceeding.

1. On the host system, sign into NGC (https://ngc.nvidia.com) using your NVIDIA
Developer credentials.

2. Once you have signed in, select your NGC Organization (for NVIDIA Developer Users,
this will be drive). DRIVE OS Docker Containers are located under PRIVATE REGISTRY.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 27

http://ngc.nvidia.com/
http://developer.nvidia.com/
https://developer.nvidia.com/drive-agx-program
https://developer.nvidia.com/drive/docker-containers
https://ngc.nvidia.com

Installation

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 28

Installation

3. Once signed in, select Setup under the User menu in the top-right of the page to
Generate an API Key to pull Docker images.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 29

Installation

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 30

Installation

For more information, see:

https://docs.nvidia.com/ngc/ngc-overview/index.html#generating-api-key

Note:: Using NVIDIA GPU Cloud is beyond the scope of this document. Please refer to
the NVIDIA GPU Cloud documentation for more information.

4. Log in to the NGC container registry.
sudo docker login nvcr.io

5. When prompted for your username, enter the following text:
$oauthtoken

The $oauthtoken username is a special username that indicates that you will
authenticate with an API key, not a username and password.

6. When prompted for your password, enter your NGC API key as shown in the following
example:
Username: $oauthtoken
Password: my-api-key

See Docker Login documentation for more information on login methods.

After you log in, you have access to NVIDIA DRIVE OS Docker images, depending on your
specic permissions in the registry.

2.4.2 Set Up DRIVE OS Linux with NVIDIA GPU
Cloud (NGC)
Begin by referring to the instructions in Setup Docker and NVIDIA GPU Cloud Access, then
proceed with the following installation guide for DRIVE OS Linux.

2.4.2.1 Images Available in This Release
The following images will be available on NGC in this release:

 File Name Intent

drive-agx-orin-linux-aarch64-sdk-build-
x86:latest

Build and Flash DRIVE OS 6.0.7 SDK Linux

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 31

https://docs.nvidia.com/ngc/ngc-overview/index.html#generating-api-key
https://docs.nvidia.com/ngc/index.html
https://docs.docker.com/engine/reference/commandline/login/

Installation

2.4.2.2 Pull Docker Images from NGC
Note:: Prior to installation, you can choose to remove previously installed DRIVE OS Docker
images/containers to increase space capacity.

2.4.2.2.1 Instructions for Running DRIVE OS Docker
1. Log into the NVIDIA GPU Cloud (NGC) using instructions in the previous section.
2. On the host system, pull the image using the following command:

sudo docker run -it --privileged --net=host -v /dev/bus/usb:/dev/bus/usb -v
 ${WORKSPACE}:/home/nvidia/
nvcr.io/drive/driveos-sdk/drive-agx-orin-linux-aarch64-sdk-build-x86:latest

2.4.2.3 Flash DRIVE OS Linux
Use the procedures in this section to ash NVIDIA DRIVE™ OS Linux to the target system
from the Docker container.

2.4.2.3.1 Flash Using the DRIVE OS Docker Container
1. Log on to the NVIDIA GPU Cloud (NGC). If you need to download a DRIVE OS Docker

image, use the procedures in the Set Up Docker and NVIDIA GPU Cloud Access section
of this document.

2. Connect NVIDIA DRIVE™ AGX to the host system.

Note:: Ensure that NVIDIA DRIVE AGX is connected to the host system, and that no
other processes, such as TCUMuxer or Minicom are holding a lock on /dev/ttyACM*
before starting the Docker container.

3. Start the DRIVE OS Docker container and ash DRIVE OS onto the NVIDIA DRIVE AGX
using the following command.
sudo docker run -it --privileged --net=host -v /dev/bus/usb:/dev/bus/usb -v /
drive_flashing:/drive_flashing

nvcr.io/drive/driveos-sdk/drive-agx-orin-linux-aarch64-sdk-build-x86:latest

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 32

Installation

2.4.2.3.1.1 Instructions for Flashing

Flash with ash.py:
./flash.py /dev/ttyACM1 p3710

Note:: /dev/ttyACM1 is the default port for the DRIVE AGX Orin Developer Kit on the x86
Host system if only one Developer Kit or another USB device is connected. If there are
additional devices in this device range, please disconnect them before ashing.

Note:: If ashing the target system fails, try the following:

1. Reseat the USB cable connected from the Host PC to the LEFT USB Type-C port on
the target on both ends. See the "NVIDIA DRIVE AGX Orin Developer Kit Hardware
Quick Start Guide" for more details.

2. Use a USB 3.1 port on the host PC if available.

3. Use a dierent USB C/SS cable, OR a higher speed cable such as a USB SS10 (for
example, Amazon Model Number L6LUC146-CS-R).

4. Use a USB 2.0 port on the host PC used for ashing.

2.5 Download and Run SDK Manager
Instructions for downloading and running SDK Manager from NVIDIA Developer are
detailed below.

2.5.1 Download via NVIDIA DRIVE Developer
Program
The following instructions are for NVIDIA DRIVE Developer Program users.

1. Navigate to https://developer.nvidia.com/nvidia-sdk-manager, and log in.

Alternatively, you can access SDK Manager from the download page that corresponds
with the product category you are installing (for example, NVIDIA DRIVE Downloads).

2. From the download page, locate the Debian package for Ubuntu or download directly
from https://developer.nvidia.com/sdkmanager_deb.

3. Download the le to your host machine.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 33

https://developer.nvidia.com
https://developer.nvidia.com/nvidia-sdk-manager
https://developer.nvidia.com/drive/downloads
https://developer.nvidia.com/sdkmanager_deb

Installation

2.5.2 Install the SDK Manager Package
Note:: Ubuntu version 20.04 LTS comes with Python3 installed as the default and /
usr/bin/python is not present, as detailed here: https://wiki.ubuntu.com/FocalFossa/
ReleaseNotes#Other_base_system_changes_since_18.04_LTS. However, DRIVE OS
installation using SDK Manager requires /usr/bin/python in the system. To address this,
run the following command before starting the installation:
sudo update-alternatives --install /usr/bin/python python /usr/bin/python3 1

Alternatively, you can install the python-is-python3 package, which will cause /usr/bin/
python to point to python3 instead:
sudo apt install python-is-python3

Once you have downloaded the SDK Manager .deb le to your host machine, do the
following.

1. From a terminal, install the Debian package:
sudo apt install ./sdkmanager_[version]-[build#]_amd64.deb

2. Next, you can start SDK Manager using one of the following two methods:

a). Launch SDK Manager from the Ubuntu launcher.
b). Open a terminal and launch SDK Manager with the following command:

sdkmanager

Note:: SDK Manager also supports a command line interface. To see the options, run:
sdkmanager --help

To learn more, see Command Line Install.

2.5.3 Log In to SDK Manager
1. From the SDK Manager launch screen, select the appropriate login tab for your account

type and installation.

‣ NVIDIA DRIVE Developer Program — developer.nvidia.com

‣ Oine — to install SDKs that were previously downloaded, and are available from a
local folder or mounted drive. For more information, see Oine Install.

The default login tab is for NVIDIA Developer.

a). On the SDK Manager log in page, enter the credentials for your NVIDIA Developer
account, and click Login.

b). Once completed, SDK Manager will start.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 34

https://wiki.ubuntu.com/FocalFossa/ReleaseNotes#Other_base_system_changes_since_18.04_LTS
https://wiki.ubuntu.com/FocalFossa/ReleaseNotes#Other_base_system_changes_since_18.04_LTS
https://docs.nvidia.com/sdk-manager/sdkm-command-line-install/index.html
https://developer.nvidia.com/
https://docs.nvidia.com/sdk-manager/offline-install/index.html

Installation

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 35

Installation

QR code login option:

a). Click the QR code icon from the sign in panel.
b). When the QR code image appears, scan the code via a camera application on a

dierent device.
c). Enter the credentials for your NVIDIA Developer account on that device.
d). Once completed, SDK Manager will start.

2. Before proceeding, choose whether or not to enable data collection.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 36

Installation

2.6 Finalize DRIVE AGX Orin System
Setup

Note:: If the End User License Agreement (EULA) has not been accepted on the DRIVE
AGX Orin Developer Kit, the DP display will not be activated when ashing is completed.
The user must connect to the DRIVE AGX platform console via a terminal emulator to
determine when ashing has been completed, and to complete the platform setup.

Instructions for connecting a terminal emulator to the platform are in the NVIDIA
DRIVE OS Linux SDK Developer Guide sections Using tcu_muxer and Terminal
Emulation.

Note:: The username, password, and security prole/setup will remain persistent on later
ashes once they are set the rst time after ashing the DRIVE OS SDK release. The
user will not be prompted for this information again when ashing this or later releases.
However, the user may need to clear the persistent data when downgrading to an earlier
release. See the NVIDIA DRIVE OS Linux SDK Developer Guide section on Persistence
across Bootburn Flashing for information on removing the persistent data, and User
Management for information on adding/deleting/changing users or changing the security
prole and settings.

1. Accept EULA and Set Admin Username/Password.

See the NVIDIA DRIVE OS Linux SDK Developer Guide section on DRIVE OS Linux oem-
cong for more information on these prompts. (This is only needed for the rst boot
out of the box, and does not apply to SDK Manager or Docker ashed systems, unless
persistent data is cleared.)

2. Select SSH Prole and Other Setup Options.

DRIVE OS Linux provides two proles for security setup (including SSH): an NVIDIA
enhanced security prole that uses ECDSA-based algorithms for SSH security, or stock
Ubuntu 18.04 conguration. The customer must select the prole on the rst setup
screen. Both proles will enable SSH server in the target by default.

The user can follow the other prompts after SSH prole selection to install additional
users; see DRIVE OS Linux oem-cong for more information [not prompted if already

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 37

https://developer.nvidia.com/docs/drive/drive-os/latest/linux/sdk/common/topics/util_setup/TegraCombinedUARTandthetcu_muxerUtility1.html
https://developer.nvidia.com/docs/drive/drive-os/latest/linux/sdk/common/topics/util_setup/TerminalEmulation1.html
https://developer.nvidia.com/docs/drive/drive-os/latest/linux/sdk/common/topics/util_setup/TerminalEmulation1.html
https://developer.nvidia.com/docs/drive/drive-os/latest/linux/sdk/common/topics/sys_components/PersistenceAcrossBootburnFlashingUsingPe36.html
https://developer.nvidia.com/docs/drive/drive-os/latest/linux/sdk/common/topics/sys_components/PersistenceAcrossBootburnFlashingUsingPe36.html
https://developer.nvidia.com/docs/drive/drive-os/latest/linux/sdk/common/topics/sys_components/WorkflowwithPersistentPartition48.html
https://developer.nvidia.com/docs/drive/drive-os/latest/linux/sdk/common/topics/sys_components/WorkflowwithPersistentPartition48.html
https://developer.nvidia.com/docs/drive/drive-os/latest/linux/sdk/common/topics/sys_components/WorkflowwithPersistentPartition48.html

Installation

set on DRIVE OS Linux rst ashing]. After these prompts are completed, the platform
will boot to the prompt to enter the username.

Note:: If you ash with NGC Dockers with the bootburn --init_persistent_partitions
option, the new login and password is not set on the target on ashing, and the expected
system conguration screens do not appear. You can still add/delete user logins or change
passwords using the information in the NVIDIA DRIVE OS Linux SDK Developer Guide
section on DRIVE OS User Management.

Note:: You do not need to use sudo for the following commands:

‣ bootburn.py

‣ create_bsp_images.py

‣ flash_bsp_images.py

However, if you choose to use sudo for one, use it consistently with the others. Do not
switch between sudo/non-sudo usage.

2.7 Getting Started with DRIVE OS 6.x
Linux Development
This guide is for the users of the DRIVE OS Linux operating system running on the NVIDIA
DRIVE AGX platforms.

2.7.1 Target SSH Access from the Linux Host
If using a network connection ("Preferred method"), ensure the target and host system are
both connected to the same network. Both the target and the host will be assigned an IP
address automatically.

If a direct connection between the host and the target is required, refer to the DRIVE
OS 6.0 SDK Developer Guide Setting Up Networking on the Host and Target for more
information about enabling the DHCP server.

As discussed in Finalize DRIVE AGX Orin System Setup, during the initial setup of the
target device, you are prompted to choose an SSH prole. If you choose the DRIVE OS
Linux Secure Login prole, see the DRIVE OS 6.0 SDK Developer Guide section in SSH Key-
Based Authentication from Clients to Server to create a key on the Linux host to connect
to the target.

The DRIVE AGX Developer Kit is pre-ashed with the SSH server installed and enabled by
default. If you ash the developer kit with SDK Manager or Docker, the SSH server is also
installed and enabled by default. However, if you ash with the base DRIVE OS SDK Debian
build, which uses the driveos-core-rfs lesystem, the SSH server will not be installed by

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 38

https://developer.nvidia.com/docs/drive/drive-os/latest/linux/sdk/common/topics/sys_components/DRIVEOSLinuxUsernameandPassword8.html
https://developer.nvidia.com/docs/drive/drive-os/latest/linux/sdk/common/topics/config_setup/Host_TargetSetupandConfiguration1.html#SettingUpNetworkingontheHostandTarget1
https://developer.nvidia.com/docs/drive/drive-os/latest/linux/sdk/common/topics/config_setup/Host_TargetSetupandConfiguration1.html#SSHKey-BasedAuthenticationfromClientstoS72
https://developer.nvidia.com/docs/drive/drive-os/latest/linux/sdk/common/topics/config_setup/Host_TargetSetupandConfiguration1.html#SSHKey-BasedAuthenticationfromClientstoS72

Installation

default. Therefore, you need to install and set up by following the instructions as described
in DRIVE OS Linux SSH Server.

Note:: While ping and ifconfig are not installed by default in the DRIVE OS Docker, ssh
client and rcp are, so the user will be able to ssh/rcp between the Docker and target using
the following procedures.

To conrm the overall network and SSH installation, follow these steps:

1. Verify that the target can communicate to the host by using the ping command.
ping <target-IP>

2. Launch the ssh client.
ssh <user>@<target-IP>

Use the username and password that were set for the system setup during the
initial boot process. Verify that the same terms are used here. Follow the steps in the
software guides found at developer.nvidia.com/drive/start.

If the ping or ssh command is not successful and the target does not respond, you can
launch the UART terminal (Minicom) to access the target.

1. Ensure that only one DRIVE AGX platform is connected to the USB port on the host
system.

2. On the host system, conrm the ttyACM0 and ttyACM1 are listed under the /dev/ folder.
3. Run Minicom.

minicom -D /dev/ttyACM0

4. Check the IP address.
ifconfig eqos_0

Note:: eqos_0 is the interface name for the RJ45 interface on the lower center of the
Developer Kit backpanel. If other Developer Kit Ethernet interfaces are used, the interface
name will vary.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 39

https://developer.nvidia.com/docs/drive/drive-os/latest/linux/sdk/common/topics/config_setup/Host_TargetSetupandConfiguration1.html#DRIVEOSLinuxSSHServer52
https://developer.nvidia.com/drive/start

Installation

2.8 Build and Run Sample Applications
for DRIVE OS 6.x Linux

Note:: To access the GPU from a Docker Container, please ensure that you have NVIDIA
Container Toolkit installed. Installation instructions for NVIDIA Container Toolkit can
be found at https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-
guide.html for your host development environment distribution. An NVIDIA GPU and
appropriate CUDA drivers must also be available on the host to run GPU-accelerated
applications, including samples.

Note:: If you are compiling and running samples in Docker and you want to preserve
the compiled samples, please keep in mind that Docker containers are a temporary
environment that will essentially be deleted when the container is stopped. To
preserve the changes made in a running container, please refer to the Docker ocial
documentation on committing Docker images: https://docs.docker.com/engine/reference/
commandline/commit.

Alternatively, if the container was started with a mounted ${WORKSPACE}, you may
copy or move the compiled binaries to the mounted ${WORKSPACE} before exiting
the container so that the compiled binaries will be available on the host.

2.8.1 Graphics Applications
For boards that are pre-ashed or ashed with the custom GDM desktop le system
(default for SDK Manager and Docker installations), the Bubble sample application is
available in the /opt/nvidia/drive-linux/samples/ folder.

To run a basic X11 sample, use the following commands:
$ sudo -b X -noreset -ac
$ export DISPLAY=:0
$ cd /opt/nvidia/drive-linux/samples/opengles2/bubble/x11
$./bubble -fps

To run other graphics samples for X11 and the supported window systems, see Building
and Running Samples and Window Systems.

2.8.2 CUDA
Documentation is available online: CUDA Toolkit Documentation v11.4.1.

‣ The installations of CUDA Host x86 and Linux AArch64 are in the /usr/local/
cuda-11.4/ folder.

‣ The source code les of all CUDA samples are in the /usr/local/cuda-11.4/samples
folder.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 40

https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html
https://docs.docker.com/engine/reference/commandline/commit
https://docs.docker.com/engine/reference/commandline/commit
https://developer.nvidia.com/docs/drive/drive-os/latest/linux/sdk/common/topics/graphics_content/BuildingandRunningSamples1.html
https://developer.nvidia.com/docs/drive/drive-os/latest/linux/sdk/common/topics/graphics_content/BuildingandRunningSamples1.html
https://developer.nvidia.com/docs/drive/drive-os/latest/linux/sdk/common/topics/window_system_stub/WindowSystems1.html
https://docs.nvidia.com/cuda/archive/11.4.1/index.html

Installation

2.8.2.1 How to Build the CUDA Samples for the Linux
Target
Host cross-compile is supported for DRIVE OS releases only. After you nish installing
CUDA x86 and cross-compile packages, perform the following steps:

1. Install the CUDA sample sources to a directory on your x86 development host where
you do not need root privileges to write, such as the $HOME directory as shown in the
following example:
$ cd ~/

‣ Use the following command to run the cuda-install-samples-11.4.sh script from
the CUDA installation in the x86 host le system:
$ <$NV_WORKSPACE>/drive-linux/filesystem/targetfs/usr/local/cuda-11.4/bin/cuda-
install-samples-11.4.sh .

Where $NV_WORKSPACE is:

‣ Docker: /drive

‣ A successful run will show the following:
Copying samples to ./NVIDIA_CUDA-11.4_Samples now...
Finished copying samples.

Samples will be installed to the directory ~/NVIDIA_CUDA-11.4_Samples.
2. $ cd ~/NVIDIA_CUDA-11.4_Samples

$ sudo make SMS=87 TARGET_ARCH=aarch64 TARGET_OS=linux TARGET_FS=$NV_WORKSPACE/
drive-linux_src/filesystem/targetfs

Note:: This will build the samples for the Orin GPU (SMS=87). To build for other GPUs,
replace the SMS value with the target compute version.

2.8.2.2 How to Run the CUDA Samples
To run a CUDA sample application,

1. Copy the sample les of your choice to the target.
2. From the target, run the sample application.

For example:
$ cd ~/
$ rcp -r NVIDIA-CUDA-11.4_Samples <username>@<host>:/home/<username>

From the target:
$ cd ~/NVIDIA_CUDA-11.4_Samples/bin/aarch64/linux/release/
$./deviceQueryDrv

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 41

Installation

2.8.3 TensorRT
After you nish installing the TensorRT packages, the /usr/src/tensorrt folder is created
on the development host.

For more information about:

‣ TensorRT Developer Guide and API Reference, see NVIDIA TensorRT Documentation.

‣ How to cross-compile TensorRT samples, see Sample Support Guide in NVIDIA
TensorRT Documentation.

2.8.3.1 How to Build the TensorRT Samples
On the development host:
$ cd /usr/src/tensorrt/samples
$ sudo make TARGET=aarch64

2.8.3.2 How to Run the TensorRT Samples on the Target
To run a TensorRT sample application,

1. Copy the sample les of your choice to the target.
2. From the target, run the sample application.

For example, from the host:
$ scp -r /usr/src/tensorrt <username>@<target ip address>:/home/nvidia/tensorrt

From the target:
$ cd /home/nvidia/tensorrt
$./bin/sample_algorithm_selector

For further information, the TensorRT Developer guide and API reference documents are
available at https://docs.nvidia.com/deeplearning/tensorrt/index.html, including sample
cross-compile information at https://docs.nvidia.com/deeplearning/tensorrt/sample-
support-guide/index.html#cross-compiling-linux.

2.9 DRIVE Platform Supported Boards
DRIVE OS supports the DRIVE Platform boards captured in the table below.

To ash your system, locate your Part Number (P/N) in the table below, and use the
associated Board Variant as a parameter to ashing/binding utilities. If you don’t know your
Part Number (P/N), please reference How to Identify System Part Number (P/N).

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 42

https://docs.nvidia.com/deeplearning/tensorrt/index.html
https://docs.nvidia.com/deeplearning/tensorrt/sample-support-guide/index.html#cross-compiling-linux
https://docs.nvidia.com/deeplearning/tensorrt/sample-support-guide/index.html#cross-compiling-linux
https://docs.nvidia.com/deeplearning/tensorrt/index.html
https://docs.nvidia.com/deeplearning/tensorrt/sample-support-guide/index.html#cross-compiling-linux
https://docs.nvidia.com/deeplearning/tensorrt/sample-support-guide/index.html#cross-compiling-linux

Installation

DRIVE Platform Part Numbers and Board Variants

Ocial Name Platform Part Number Board Variant

DRIVE OS
Version

Required

Drive Orin N p3898 900-63898-0000-100 p3663-a01 6.0.7.0+

940-63663-0000-100 p3663-a01 6.0.0.0+

940-63663-0001-200 p3663-01-a02 6.0.3.0+DRIVE Orin p3663

940-63663-0002-200 p3663-02-a02 6.0.4.0+

‣ 940-63710-0010-
TS1

‣ 940-63710-0010-
TS2

‣ 940-63710-0010-
A00

‣ 940-63710-0010-000

‣ p3710-10-a01
‣ p3710-10-

a01-ct02
6.0.1.x+

‣ 940-63710-0010-
TS3

‣ 940-63710-0010-
B00

p3710-10-a03 6.0.2.1+

‣ 940-63710-0010-
TS4

‣ 940-63710-0010-
C00

p3710-10-a04 6.0.3.0+

‣ 940-63710-0010-
TS5

‣ 940-63710-0010-
D00

p3710-10-s05 6.0.3.1

‣ 940-63710-0010-
RC1

‣ 940-63710-0010-100
‣ 940-63710-0010-200
‣ 940-63710-0010-300

p3710-10-s05 6.0.4.0

DRIVE AGX Orin
Developer Kit p3710

‣ 940-63710-0012-
TS3

‣ 940-63710-0012-
B00

p3710-12-a03 6.0.2.1+

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 43

Installation

Ocial Name Platform Part Number Board Variant

DRIVE OS
Version

Required

‣ 940-63710-0010-
TS4

‣ 940-63710-0010-
C00

p3710-12-a04 6.0.3.0+

‣ 940-63710-0012-
TS5

‣ 940-63710-0012-
D00

p3710-12-s05 6.0.3.1+

‣ 940-63710-0012-
RC1

‣ 940-63710-0012-100
‣ 694-63710-0012-

D00
‣ 694-63710-0012-100

p3710-12-s05 6.0.4.0

How to Identify System Part Number (P/N)

The Part Number (P/N) of your system is located on the bottom of the system. As an
example, the picture below shows the bottom of the DRIVE AGX Orin Developer Kit.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 44

Installation

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 45

Chapter 3. Setup and Conguration

The following sections describe how to set up and congure your system.

3.1 NVIDIA DRIVE AGX Board Setup
This section describes how to setup the hardware for the platform.

For board setup details, refer to the NVIDIA DRIVE AGX Orin Developer Hardware Quick
Start Guide.

3.2 Placing the Board In/Out of Recovery
Mode
Recovery mode is used to load software updates, burn fuses, and run self-tests. To get into
recovery mode:

To get into recovery mode, if the target has an AURIX terminal:

Command Description

tegrarecovery [x1] [o|on] Set the device in recovery mode.

tegrareset [x1] Reset the device. Default is X1.

Examples

To boot in recovery mode:
tegrarecovery x1 on
tegrareset x1

To boot:
tegrarecovery x1 off
tegrareset x1

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 46

https://developer.nvidia.com/drive-agx-orin-hardware-quick-start-guide
https://developer.nvidia.com/drive-agx-orin-hardware-quick-start-guide

Setup and Conguration

3.3 Getting Started with DRIVE OS Linux
6.0 Development
This guide is for users of NVIDIA DRIVE

®
 OS Linux running on the NVIDIA DRIVE AGX™

platform. After the initial setup between the target and the host is complete, you can build
and run graphics, CUDA, and TensorRT sample applications. For more information on how
to build and run the sample applications, see the Installation chapter.

3.3.1 Target SSH Access from the Linux Host
The target should have an IP address assigned automatically by the network or the host
system to which it is connected. For more information about enabling the DHCP server
on your development host to connect the target directly, see the DRIVE™ OS 6.0 SDK
Developer Guide section in Setting Up Networking on the Host and Target.

During the initial setup of the target device, you are prompted to choose an SSH prole. If
you choose the DRIVE OS Linux Secure Login prole, see the DRIVE OS 6.0 SDK Developer
Guide section in SSH Key-Based Authentication from Clients to Server to create a key on
the Linux host to connect to the target.

The DRIVE AGX Devkit is pre-ashed with the SSH server installed and enabled by default.
If you ash with base DRIVE OS SDK Debian build, which uses the driveos-core-rfs
lesystem, the SSH server will not be installed by default. Therefore, you need to install
and set up by following the instructions as described in DRIVE OS Linux SSH Server. If you
install the driveos-oobe-desktop lesystem by following the instructions in the Finalize
DRIVE AGX System Setup (Linux) section, the SSH server will be enabled by default.

To conrm the overall network and SSH installation, follow these steps:

1. Verify that the target can communicate to the host by using the ping command.
$ ping <target-IP>

2. Launch the SSH client.
$ ssh <user>@<target-IP>

Use the username and password that were set for the system setup during the initial
boot process. Verify that same terms are used here. Follow the steps in the software
guides found at developer.nvidia.com/drive/start.

If the ping or ssh command is not successful and the target does not respond, you can
launch the UART terminal (Minicom) to access the target.

‣ Ensure that only one DRIVE AGX platform is connected to the USB port on the host
system.

‣ On the host system, verify that ttyACM0 and ttyACM1 are listed under the /dev/ folder.

‣ Run Minicom.
$ minicom -D /dev/ACM0

‣ Check the IP address.
$ ifconfig eqos_0

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 47

https://developer.nvidia.com/drive/start

Setup and Conguration

3.4 Host/Target Setup and Conguration
This topic describes how to set up the networking between the host system and the target
system, as well as target user account setup and environment for cross-compilation.

DRIVE OS Linux ships with an application that allows the end user to set up a user account
using wizard prompts in the UART interface. When the target device boots for the rst
time after ashing, it automatically runs OEM-cong.

Note:

‣ OEM-cong is not available in production SDK le systems including driveos-prod-rfs
and driveos-prod-debug-rfs. If any of these le systems are ashed, you can log in by
providing a username (nvidia) and password (nvidia).

‣ To change user account information, such as username or password, or to add more
user accounts, follow the steps described in the other sections of this topic to manage
user accounts.

Before the target system boots for the rst time, you must start a serial application on the
host computer. For more instructions, check the Terminal Emulation section.

3.4.1 DRIVE OS Linux Conguration on the Target
Use the following steps to set up the NVIDIA DRIVE

®
 OS Linux conguration on the target:

 1. Allow the system to power on and boot up the operating system.

After the operating system boots, OEM-cong will start and splash the user interface
on the terminal with the welcome screen as shown below. If the OEM-cong window
does not appear, press the Enter key to refresh the screen, and the following prompt
appears:

‣ To proceed with OEM-cong to display the EULA, use the Tab key to move to <Yes>,
and then press Enter.

‣ To remain at the same screen, use the Tab key to move to <No>, and then press
Enter.

 2. After the EULA appears, use the <PgUp> and <PgDn> keys to scroll up and down when
reading the EULA.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 48

Setup and Conguration

After reading the EULA, use the Tab key to move to <Ok>, and then press Enter to
proceed to the acceptance of the EULA as follows:

‣ To accept the EULA, use the Tab key to move to <Yes> and press Enter to proceed.

To proceed to the next step, accept the EULA.

‣ To reject the EULA, use the Tab key to move to <No>, and then press Enter to shut
down the system safely.

 3. Follow the OEM-cong prompt to set up the rst user in the system. The rst user is
always the administrator account (who can run the sudo commands).

The OEM-cong will prompt you later to add more user accounts with the account type
of non-administrator or administrator.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 49

Setup and Conguration

Press the Enter key to continue to set up the rst user account.
 4. Enter the full name of the rst user, and then press Enter to continue.

 5. Enter the rst user's username.

A valid username must satisfy this regular expression (regex) ^[a-z_][a-z0-9_-]
{0,31}$, and OEM-cong rejects invalid usernames.

The regex validates the username with the following conditions:

‣ The username must not be empty.

‣ The username must start with either a lowercase letter or an underscore (_).

‣ The second and subsequent characters can be a lowercase letter, number,
underscore (_), or hyphen (-).

‣ The username must be fewer than or equal to 32 characters in length.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 50

Setup and Conguration

 6. Enter a password of your choice and re-enter the same password to conrm. The
password must be made of ASCII characters.

 7. After entering a password, use the Tab key to move to <Yes>, and then press Enter to
proceed.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 51

Setup and Conguration

If the password created in step 6 is weak (for example, fewer than eight characters as
shown in the preceding gure), the system recommends that you change the password
with a warning message. To change the password, use the Tab key to move to <No>,
and then press Enter to go back to step 6.

 8. Follow the OEM-cong prompt to enable or disable the secure login feature as shown in
the following gure.

The secure login feature from NVIDIA DRIVE OS provides better security for SSH
connections by using ECDSA-based algorithms. It is recommended that you enable the
secure login feature.

‣ To enable the feature, use the Tab key to move to <Yes>, and then press Enter.

‣ To disable the feature, use the Tab key to move to <No>, and then press Enter.

 9. Follow the OEM-cong prompt to add more users.

‣ To add more users, use the Tab key to move to <Yes>, and then press Enter.

‣ Otherwise, use the Tab key to move to <No>, and then press Enter.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 52

Setup and Conguration

 10.(Optional) If you choose to add more user accounts in step 9, OEM-cong prompts you
to choose the type of user for the new user account: admin or non-admin.

‣ To choose the administrator account, use the Tab key to move to Admin, and then
press Enter.

‣ To choose the non-administrator account, use the Tab key to move to NonAdmin,
and then press Enter.

 11.To enable OEM-cong to provide information before executing steps in the backend to
congure the system based on your inputs, press Enter to proceed.

 12.OEM-cong setup is complete. Press Enter to exit the OEM-cong screen to display the
target command prompt.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 53

Setup and Conguration

Note: If OEM-cong is interrupted by powering o the board or resetting the board on
step 11 or before, your inputs are not recorded, and you must start over from step 1.

3.4.2 DRIVE OS Linux User Management

Warning: Whenever any change is made to the lesystem such as adding/
modifying/removing user login information, ensure that all data is saved prior
to resetting. Execute a software shutdown command, such as halt, shutdown,
or reboot to the target system to avoid data corruption; otherwise, le system
corruption may occur. Once the target system is shut down, you may use physical/
electrical shutdown or reset commands, such as tegrareset or aurixreset in the
AURIX command terminal.

NVIDIA DRIVE OS Linux uses standard Ubuntu tools to manage user accounts. Only admin-
users (such as sudoers or root user) can change user accounts. The following steps assume
that you are an admin user. Enter the password of your current user.

3.4.2.1 Steps to Change the Username and Password
The following steps describe how to change your username and password in the DRIVE OS
Linux lesystem.

Warning: Whenever any change is made to the lesystem such as adding/
modifying/removing user login information, ensure that all data is saved prior
to resetting. Execute a software shutdown command, such as halt, shutdown,
or reboot to the target system to avoid data corruption; otherwise, le system
corruption may occur. Once the target system is shut down, you may use physical/
electrical shutdown or reset commands, such as tegrareset or aurixreset in the
AURIX command terminal.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 54

Setup and Conguration

Changing the Username

1. Enable administrative account.

‣ Enable the root administrative account by setting a password for the root account.
Use the following command to set a password for root account. You will be
prompted for the password of your current user.

$ sudo passwd

2. Close existing user sessions.

‣ Log out of all sessions, including GUI and consoles of the user that you are changing
the username for. You cannot change the username if a session is still alive.

‣ Use the following command to exit console sessions:

$ exit

3. Log into the system as root account.

‣ After completing step #2, you will be presented with a login prompt. Proceed to log
in using the credentials you established for the root account.

4. Change the username.

‣ Change the username of the user from ${USERNAME1} to ${USERNAME2} with the
following commands:
$ usermod -m -d /home/${USERNAME2} -l ${USERNAME2} ${USERNAME1}
$ groupmod -n ${USERNAME2} ${USERNAME1}

‣ Log out of the root account using the following command:
$ exit

You have successfully changed the username. Proceed to log in with the new username.

Changing the Password

Note: When changing the password for the current user, enter the command without
sudo as listed below. Entering sudo passwd changes the password for the root user.

1. Enter the following command to update password.
$ passwd

Enter your existing password and enter the new password.
Changing password for <user>.
(current) UNIX password:
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully.

2. Enter the current password and then the new password.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 55

Setup and Conguration

3.4.2.2 Adding a Non-Admin User
 1. Execute adduser with the new username as input and ll in the information when

prompted.
$ sudo adduser <user>

Note:

Non-Admin users can be added to specic groups to get privileged access to
components that are otherwise accessible only if the user is root. See Common
Groups used in DRIVE OS Linux Filesystems .

Ensure the Non-Admin user is not added to the 'sudo' or 'adm' group, as this
will allow them to run any commands using sudo.

 2. Execute usermod to add the user to the required groups as per the use case
requirements of the user.
$ sudo usermod -aG <groups> <user>

3.4.2.2.1 Example
$ sudo adduser test
Adding user `test' ...
Adding new group `test' (1001) ...
Adding new user `test' (1001) with group `test' ...
Creating home directory `/home/test' ...
Copying files from `/etc/skel' ...
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully
Changing the user information for test
Enter the new value, or press ENTER for the default
 Full Name []:
 Room Number []:
 Work Phone []:
 Home Phone []:
 Other []:
Is the information correct? [Y/n] Y

3.4.2.3 Adding an Admin User
 1. Create a non-admin user <user> by following the instructions in the section Adding a

Non-Admin User.
 2. Make the created user <user> an admin user by adding the user to all the groups

specied in 'Common Groups used in DRIVE OS Linux Filesystems' following the
instructions in the section Adding a Non-Admin User above.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 56

Setup and Conguration

3.4.2.4 Common Groups Used in DRIVE OS Linux
Filesystems

Group Description

adm Group adm is used for system monitoring tasks. Members of this group can read many
log les in /var/log.

audio This group can be used to give a set of users, access to sound devices. (e.g., sound
timers)

dialout Members of this group gets full and direct access to serial ports.

plugdev Allows members to mount (only with the options nodev and nosuid, for security
reasons) and umount removable devices through pmount.

sudo Members of this group can execute any command with sudo (/etc/sudoers)

video This group can be used to give a set of users access to a video device (like the
framebuer, the videocard or a webcam).

Users may require to be added to this group to run DRIVE OS graphics samples.

debug This group can be used to give a set of users, access to prole and debug data for
GPUs in the system.

3.4.2.4.1 Removing a User
The steps to remove an admin or non-admin users are identical. Removing users using the
steps below also removes their /home/<user> directory.

To remove a user, enter:
$ sudo deluser --backup --remove-home <user>

This backs up and creates a tarball (<user>.tar.bz2) of the deleted user data in the
current working directory.

3.4.2.4.2 Setting Password as an Admin User
As admin-users are sudoers, they can set the password of any user account with username
<username> using the command below. Enter the password of your current user.
$ sudo passwd <username>
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 57

Setup and Conguration

3.4.2.4.3 Updating a Password as a Non-Admin User

Note: When changing the password for the current user, enter the command without
sudo as listed below. Entering sudo passwd changes the password for the root user.

Non-admin users can only update their own passwords. The steps below update your user
account's password:

 1. Enter the following command:
$ passwd

 2. Enter your existing password and enter the new password.
Changing password for <user>.
(current) UNIX password:
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully.

 3. Enter the current password and then the new password.

3.4.2.4.4 Disabling a User Account
The following step allows an admin user to disable the user account with a username
$USER:
$ sudo usermod --expiredate 1 $USER

Disabling the user account ensures that the account is unusable in any context in the
lesystem. The disabled user ($USER) can be re-enabled with the following command:
$ sudo usermod --expiredate "" $USER

3.4.2.5 Disabling the Secure Login Feature
Disabling Secure Login Feature (SLF) removes NVIDIA DRIVE OS security SSH server cong
and replaces it with stock ubuntu SSH server cong. There are two (2) options to disable
the secure login feature:

1. If the user wants to disable the SLF, the rst option is available during the target setup
process using OEM-cong and choosing No for the following prompt:
Would you like to enable or disable the Secure Login Feature?

2. The second option is to manually copy the ubuntu stock SSH server cong to the
system's SSH server cong:

a). sudo cp /usr/share/openssh/sshd_config /etc/ssh/sshd_config

b). sudo systemctl restart ssh

If the user wants to re-enable SLF after the steps above, copy the NVIDIA DRIVE OS
security SSH server cong to the system and restart SSH server.

1. sudo cp /etc/nvidia/configs/sshd_config.driveos /etc/ssh/sshd_config

2. sudo systemctl restart ssh

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 58

Setup and Conguration

3.4.3 DRIVE OS Linux SSH Server
The shipped NVIDIA DRIVE OS LINUX lesystem driveos-oobe-rfs contains SSH server.
However, driveos-core-rfs does not include SSH server. Use the steps below to install SSH
server.

3.4.3.1 Install/Update SSH Server
 1. Ensure platform is connected to the internet
 2. Update the existing apt database:

apt-get update

 3. Install SSH server package:
apt-get install ssh

 4. When prompted by apt-get (see prompt below), choose the option keep the local
version currently installed to ensure DRIVE OS SSH conguration is applied.

3.4.3.2 Setting Up SSH Server Service
After SSH server is available in the lesystem, use the steps below as root user to start and
congure SSH server service to run on every boot:

 1. Remove the stamp le to unblock SSH server:
$ sudo rm -f /etc/ssh/sshd_not_to_be_run

 2. Start SSH server service on the current boot:
$ sudo systemctl start ssh

 3. Start service to add SSH host-keys to the target:
$ sudo systemctl start nv_ssh_host_keys

After completing the steps above, the SSH server service is started. Additionally, it runs
on every boot. SSH clients may now connect to this SSH server.

3.4.3.3 SSH Server Conguration File
NVIDIA DRIVE OS Linux contains an SSH server conguration le sshd_cong that pre-
congures the following :

‣ Permits only connections with Elliptic Curve Digital Signature Algorithm (ECDSA) host
key.

‣ Disables compression.

‣ Permits specic key exchange, host signature, and session encryption algorithms.

NVIDIA DRIVE OS Linux recommends that you congure strong security options for the
following SSH parameters:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 59

https://manpages.ubuntu.com/manpages/bionic/en/man5/sshd_config.5.html

Setup and Conguration

‣ Client Verication via key exchange: Parameter KexAlgorithms from sshd_cong to set
the supported key type(s) for client verication.

‣ Host Signature: Parameter HostbasedAcceptedKeyTypes from sshd_cong to set the
supported key type(s) for host verication.

‣ Session Encryption: Parameter Ciphers from sshd_cong to set the supported SSH
session encryption algorithm(s).

The table below suggests recommended strong values to enable recommended security
features; the default option is highlighted in the table below.:

Option Client Verication Host Signature Session Encryption

1 ecdh-sha2-nistp256

ECDH [SP 800-56A]
over secp256r1 [SEC2-
V2] with SHA-256 [FIPS
180-4]

ecdsa-sha2-nistp256-cert-
v01@openssh.com

ECDSA [FIPS 186-4]
[ANS X9.62] over
secp256r1 [SEC2-V2]
with SHA-256 [FIPS 180-4]

aes128-
gcm@openssh.com

GCM [SP 800-38D]
with AES-128 [FIPS
197]

2 ecdh-sha2-nistp384

ECDH [SP 800-56A]
over secp384r1 [SEC2-
V2] with SHA-384 [FIPS
180-4]

ecdsa-sha2-nistp384-cert-
v01@openssh.com

ECDSA [FIPS 186-4][ANS
X9.62] over secp384r1
[SEC2-V2] with SHA-384
[FIPS 180-4]

aes256-
gcm@openssh.com

GCM [SP 800-38D]
with AES-256 [FIPS
197]

3 (Default)

ecdh-sha2-nistp521

ECDH [SP 800-56A]
over secp521r1 [SEC2-
V2] with SHA-512 [FIPS
180-4]

(Default)

ecdsa-sha2-nistp521-cert-
v01@openssh.com

ECDSA [FIPS 186-4][ANS
X9.62] over secp521r1
[SEC2-V2] with SHA-512
[FIPS 180-4]

(Default)

aes256-
gcm@openssh.com

GCM [SP 800-38D]
with AES-256 [FIPS
197]

3.4.3.4 Switching Options in the SSHD Conguration File
DRIVE OS Linux contains the snippets for all three (3) options with exactly one option
(option 3) enabled as shown below. The options 1, 2, and 3 are mutually exclusive and
exactly only one option can be active at a time.
option 1
Use algorithms as per DRIVE recommended options: 1,2, or 3
#KexAlgorithms ecdh-sha2-nistp256
#HostbasedAcceptedKeyTypes ecdsa-sha2-nistp256-cert-v01@openssh.com
#Ciphers aes128-gcm@openssh.com
option 2
#KexAlgorithms ecdh-sha2-nistp384

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 60

https://manpages.ubuntu.com/manpages/bionic/en/man5/sshd_config.5.html
https://manpages.ubuntu.com/manpages/bionic/en/man5/sshd_config.5.html
https://manpages.ubuntu.com/manpages/bionic/en/man5/sshd_config.5.html

Setup and Conguration

#HostbasedAcceptedKeyTypes ecdsa-sha2-nistp384-cert-v01@openssh.com
#Ciphers aes256-gcm@openssh.com
option 3 (default)
KexAlgorithms ecdh-sha2-nistp521
HostbasedAcceptedKeyTypes ecdsa-sha2-nistp521-cert-v01@openssh.com
Ciphers aes256-gcm@openssh.com

To switch from one option to another

1. Comment out the three (3) lines corresponding to the current option.
2. Uncomment the three (3) lines corresponding to the new option.
3. Restart SSHD using the command below as the root user:

$ sudo systemctl restart ssh

As an example, assume that the current option is option 3 (from the snippet above).

To switch to option 2, execute the following steps:

1. Comment out the three (3) lines following # option 3.
2. Uncomment the three (3) lines from the line below # option 2 until the line above #

option 3.
3. Restart SSHD using the command below as the root user:

$ sudo systemctl restart ssh

4. SSHD now uses encryption algorithms from option 2.

3.4.3.5 SSH Key-Based Authentication from Clients to
Server
DRIVE OS Linux shipped SSHD tries key-based authentication rst and falls back to
password-based authentication when the former is unavailable. The following sections
describe how to set up a user-specic authentication key, add it to the list of trusted-keys,
and use the key to authenticate (instead of the password) to the SSH server.

3.4.3.5.1 Create a new key-pair at the client side
The rst step is to create a public/private key pair using the command:
$ ssh-keygen -t ecdsa

Continue through the prompts by pressing ENTER and these steps save the key to ~/.ssh.

3.4.3.5.2 Set up the server side to register key
The next step is to add the contents of the client (user-specic authentication) public key
~/.ssh/id_ecdsa.pub into the text le ~/.ssh/authorized_keys.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 61

Setup and Conguration

3.4.3.5.3 Use the new key at the client side to connect to the
server
Only the user who created the key can log in to the SSHD server (using the registered
keys). At the client side, connect to the server using the ssh command:
$ ssh <user>@<target_ip>

The setup done above is one-directional (i.e., from client to server). To similarly setup in a
reverse direction (i.e., from server to client), the above steps must be swapped with regards
to client/server and executed to setup key-based authentication from the server to client-
side.

3.4.4 Enabling VNC Remote Access
To install/run x11vnc:
$ sudo apt update
$ sudo apt install x11vnc

VNC command when running X server manually:
$ sudo x11vnc -display :0 -noxrecord -noxfixes -noxdamage -forever -loop –nopw

VNC command when running full desktop:

1. Congure the target desktop for auto login:
$ sudo vi /etc/gdm3/custom.conf

2. Uncomment/edit the following lines as shown below:
Enabling automatic login
 AutomaticLoginEnable = true
 AutomaticLogin = <user>

3. Save/exit the le and restart the gdm service:
$ sudo systemctl restart gdm3.service

4. Start the VNC server:
$ sudo x11vnc -display :0 -noxrecord -noxfixes -noxdamage -forever -loop -nopw -
auth /run/user/1000/gdm/Xauthority

3.4.5 Setting Up Networking on the Host and
Target
Use the information in this topic to set up the network between an Ubuntu host and your
NVIDIA DRIVE™ platform. The steps to set up networking includes conguring the DHCP
and NFS servers, conguring networking on the host computer, etc.

3.4.5.1 Conguring the Network Interface
Conguring the network interface for your device requires:

‣ Connecting the board to the host Linux development system.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 62

Setup and Conguration

‣ Conguring the network interface.

Warning: To avoid auto detection conicts with the adapter, do not congure these items
with the network manager.

3.4.5.1.1 Connecting the Target to the Host Using the Network
Interface
You can connect your target board to the Linux Ubuntu host machine using a private LAN.
This private LAN is not the LAN connecting the host to the Internet. Connect through
Onboard 1Gb Ethernet connector.

3.4.5.1.1.1 To use onboard HMTD connector to connect the board and host on the private LAN

 1. To use onboard 1Gb ethernet, connect to the DRIVE platform 1 Gb RJ45 Ethernet port
on the target as described in the DRIVE AGX Orin Developer Kit Hardware Quick Start
Guide.

 2. Obtain a CAT-6 crossover patch cable and plug one of the RJ45 male ends into the
RJ45 port of target from step 1.

 3. Plug the other male end of the CAT-6 crossover patch cable into the RJ45 port of HOST
machine or to RJ45 port of USB-to-Ethernet adapter (e.g., Dlink DUB-E100 (smsc95xx))
connected on your host machine.

3.4.5.1.2 Conguring the Private LAN to the Target Network
Use the following procedure to congure the host interface for the private LAN connected
to the target platform. The procedure assumes eth1 is the Ethernet port on the host PC
connected to the NVIDIA board.

3.4.5.1.2.1 To congure the private LAN to the target

 1. Determine which host eth<n> port is connected to the target, where <n> is the port
instance.

‣ Find the eth device with the following command:
dmesg | grep -i eth

‣ In the grep results, identify the eth<n> port for the Dlink DUB-E100 (smsc95xx) or
similar USB Ethernet adapter.

‣ For example, the following dmesg result indicates that the eth1 port is connected to
the target:
[1310932.166153] smsc95xx 2-5.1:1.0: eth1: register
'smsc95xx' at usb-0000:00:1d.7-5.1, smsc95xx USB 2.0
Ethernet, 00:04:4b:1b:32:6b

 2. On the host, nd and edit the following le:
/etc/network/interfaces

This le is read-only, so you must open it with administrative privileges, for example:
sudo vim /etc/network/interfaces

 3. Depending on your connection at the host, modify the interfaces le:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 63

https://developer.nvidia.com/drive-agx-orin-hardware-quick-start-guide
https://developer.nvidia.com/drive-agx-orin-hardware-quick-start-guide

Setup and Conguration

‣ Additional NIC card/adapter: Add the following to the interfaces le:
auto eth1
iface eth1 inet static
 address 10.0.0.1
 netmask 255.255.255.0

‣ USB Ethernet adapter: Add the following to the interfaces le:
auto eth1
allow-hotplug eth1
iface eth1 inet static
 address 10.0.0.1
 netmask 255.255.255.0
 post-up /etc/init.d/isc-dhcp-server restart

 4. Restart the host's networking with the following command:
sudo /etc/init.d/networking restart

 5. Hard reboot the host system.

3.4.5.2 Conguring the DHCP and NFS Server on the
Host
The DHCP server on the host is used to assign the IP address to the target system and the
NFS server is used to mount the root le system on the NVIDIA target system using NFS.

If the DHCP and NFS servers are not yet installed on the host, the installer installs and
congures them. Alternatively, those servers can be installed and congured as follows.

3.4.5.2.1 To set the DHCP server
 1. Install the DHCP server on the host:

sudo apt-get install isc-dhcp-server

 2. Specify the interface on which the server should listen for leasing an IP address from
the target over the private LAN.

‣ Locate and edit the following le:
/etc/default/isc-dhcp-server

This le is read-only, so you must open it with administrator privileges.

‣ Modify the isc-dhcp-server le to set INTERFACES to the eth<n> connection you
determined when connecting your network interface.

For example, add the following line if the DHCP server should listen on eth1
interface.
INTERFACES="eth1"

Changing the interface to "eth3" can result in the following error:
udevd[148]: error changing net interface name eth0 to eth3:
Device or resource busy

To resolve this error, delete the /etc/udev/rules.d/70-persistent-net.rules le.
 3. Congure your host DHCP server for the target interface.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 64

Setup and Conguration

‣ Locate and edit the following le:
/etc/dhcp/dhcpd.conf

Because the le is read-only, open it with administrator privileges.

‣ Modify the dhcpd.conf le to contain the following:
ddns-update-style none;
allow bootp;
subnet 10.0.0.0 netmask 255.255.255.0 {
 option routers 10.0.0.1;
 option domain-name <domain_name>;
 option domain-name-servers <DNS1>, <DNS2>, ... ;
 default-lease-time 345600;
 max-lease-time 31557600;
 range 10.0.0.2 10.0.0.254;
 option root-path "10.0.0.1:/<top>/drive-linux/
/filesystem/targetfs,wsize=8192,rsize=8192,v3";
}

Where:

‣ <domain_name> is your company domain name.

‣ <DNS1>, <DNS2> are the DNS servers that you already added to the /etc/
resolv.conf le on your host system. Multiple DNS servers are separated by
commas. For example, the Google public DNS IP addresses are formatted as:
8.8.8.8, 8.8.4.4

 4. Restart the DHCP server:
sudo /etc/init.d/isc-dhcp-server restart

3.4.5.2.2 To set the NFS server
 1. Install the NFS server on the host using apt-get:

sudo apt-get install nfs-kernel-server nfs-common portmap

 2. Locate and edit the following le:
/etc/exports

Add the corresponding path to the target le system:
<top>/drive-linux *(async,rw,no_root_squash,no_all_squash,no_subtree_check)

This change exports the target le system.
 3. Restart the NFS server:

sudo /etc/init.d/nfs-kernel-server restart
sudo exportfs -a

3.4.5.2.3 To enable Internet access from the target
On the Linux host, enter these commands to enable settings on the host:
$ sudo sysctl -w net.ipv4.ip_forward=1
$ sudo iptables -F
$ sudo iptables -t nat -A POSTROUTING -o eth1 -j MASQUERADE

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 65

Setup and Conguration

Where eth1 is the interface connected to the network that is connected to the Internet on
the host.
$ sudo iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

Where eth0 is the private LAN interface connected to target from the host.

3.4.5.3 Conguring Static IP to the Device

The following procedure describes how to assign a static IP to DUT’s 1G or 10G interface
for Ubuntu 17.10, 18.04, and higher.

1. Create the .yaml conguration le for netplan in /etc/netplan if it does not already
exist. A number prex is used for orderly processing. For more information, see man
netplan.

Note: Replace eth0 with the interface name of your system.

sudo cat >/etc/netplan/01-network-manager-all.yaml
 network:
 version: 2
 renderer: networkd
 ethernets:
 eth0: # Use your interface name
 dhcp4: no
 dhcp6: no
 addresses:
 - 10.0.0.X/22 # Your IP address
 gateway4: 10.0.0.1 # Your gateway
 nameservers:
 search: [nvidia.com, client.nvidia.com,
 nvclient.nvidia.com] #Your corp domain names
 addresses: [DNS1,DNS2]

2. After the editing of the 01-network-manager-all.yaml le is complete, apply the
settings using the following command.
sudo netplan apply

3. Review the conguration.
ip addr
ip show

3.5 Camera Setup and Conguration
The platform provides multiple video and camera ports.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 66

Setup and Conguration

Before using these cameras with the NvMedia sample applications, the cameras must be
attached to the ports in a specic order. If you fail to do so, NvMedia reports errors.

Warning:

Before connecting/disconnecting cameras to/from the platform, disconnect the
power. Failure to do so may damage the camera.

For information on setting up the board, see DRIVE AGX Orin Developer
Kit_Hardware_Quick Start Guide.

3.5.1 Camera Interfaces
Maxim Integrated GMSL SERDES

The NVIDIA DRIVE® AGX Orin platform (P3710) provides GMSL camera interfaces. The
GMSL camera interfaces:

‣ Provide 16 simultaneous GMSL camera inputs.

Note:

The actual number of camera outputs supported depends on the resolution of
the camera output, frame rate of the output, and power mode (specically the
Video Input (VI) and ISP HW clocks).

‣ Route camera data to either SoC.

‣ SoC generates a TSC_EDGE_OUT signal on a GPIO pin that is connected to all
deserializers. This common PWM signal is then forwarded to all 16 GMSL cameras to
achieve frame synchronization.

For information on the connectors, see the rear view board image in Setting Up Your
Platform.

TI FPD-Link SERDES Support

Initial support for TI FPD-Link IV SERDES links is available in Drive OS 6.0.6.0, with the
driver and source for the DS90UB9724 deserializer provided in conjunction with the
DS90UB971 serializer. This is available in SIPL, with the P3714-B00 FPDLINK CIM. Driver
and conguration support for the IMX728 FPD-Link camera module using the DS90UB971
serializer is also available.

3.5.2 Mapping Connectors
Each GMSL camera group can be routed to the chip using a GMSL deserializer.

‣ GMSL cameras are organized into quads. For example, A, B, C and D as available.

‣ Dierent cameras may be used in dierent quads.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 67

https://developer.nvidia.com/drive-agx-orin-hardware-quick-start-guide
https://developer.nvidia.com/drive-agx-orin-hardware-quick-start-guide

Setup and Conguration

‣ When connecting or disconnecting the GMSL cameras, ensure the power is o. If the
power is ON, the GMSL camera or the platform may be damaged.

‣ For Camera group A and B, I2C bus speed is 1Mhz. For Camera group C and D, I2C bus
speed is 400KHz. Connect the GMSL cameras to the group with the correct I2C bus
speed.

The camera mapping for the DRIVE AGX Orin Developer Kit (P3710-10) board is as follows:

3.5.3 Connecting the Cameras
Warning:

The GMSL camera must be 8V tolerant. Refer to the platform datasheet for details
on the electrical requirements for the GMSL camera.

Always turn o main power before connecting or disconnecting cameras.

To connect multiple cameras using the quad camera breakout cable

1. Connect the quad camera breakout cable to the platform camera group A.
2. Using the Fakra coax cable, connect the GMSL camera to the other end of the quad

camera breakout cable.
3. Connect any subsequent cameras to each connector of the quad camera breakout

cable.
4. The mapping of the quad camera breakout cable:

‣ Green: A0

‣ Red: A1

‣ Blue: A2

‣ White: A3

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 68

Setup and Conguration

To run the sample applications

1. Start camera capture using commands.

For example, for Valeo IMX728 B1 camera module connected to A0 port in the Group
A, and an HDMI monitor is connected to the DP (DisplayPort) port. The commands are
below.

Before using the -d option with the nvsipl_camera application, you must complete the
following requirements:

a). Terminate Ubuntu Desktop

‣ Terminate Desktop:
systemctl disable gdm
systemctl stop gdm

‣ Alternatively:
sudo service lightdm stop
sudo service gdm stop

b). Terminate X11
sudo pkill Xorg

c). Terminate any active Vulkan or OpenGL or Graphics applications.
d). sudo lsmod | grep nvidia-drm
e). If the output shows nvidia-drm, uninstall drm:

sudo rmmod nvidia-drm

2. Launch a terminal window and navigate to the following directory.

‣ On Ubuntu rootfs:

/opt/nvidia/drive-linux/samples/nvmedia/nvsipl/test/camera

‣ On Yocto rootfs:

/opt/root/samples/nvmedia/nvsipl/test/camera

3. Enter this command.
sudo ./nvsipl_camera --platform-config "V728S1-120V1-FWC_CPHY_x4" --link-enable-
masks "0x0001 0x0000 0x0000 0x0000" -d 0

Where:

‣ V728S1-120V1-FWC_CPHY_x4 species the name of the platform conguration that
describes the connection of image sensors to Orin based platforms.

‣ -d 1 species the display number.

‣ -w 1 species display window ID.
4. To obtain the available display devices for Tegra, execute the following command:

./nvsipl_camera -h

The available display devices are identied.
5. Select the desired display ID.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 69

Setup and Conguration

3.5.4 Setting up Cameras on the P3898 Platform

Note: The P3898 platform has connections for two camera groups. There are two
dierent deserializers used per camera group, and each one supports the dierent link
speed between the serializer and the deserializer. Connect the camera module to the
compatible deserializer. Otherwise, the link-lock error is reported.

P3898

Camera Group A : MAX96724 (3 or 6Gbps)

Camera Group B : MAX96724F (3 Gbps)

3.6 Supported Sensors
The following sensors are supported:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 70

Setup and Conguration

Camera Make / Model Supported Release

Sony IMX728 8MP 120FOV Camera with
FPDLink Serializer

6.0.6

Valeo IMX728 B3 6.0.3

OmniVision OV2311 2MP GS-IR DMS 55 6.0.3

Entron F008A120RM0AES 6.0.2

Valeo IMX728 B2 6.0.2

Valeo IMX728 B1 6.0.1

For more information, refer to DRIVE Hyperion 8.1 Sensors and Accessories and DRIVE AGX
Orin Sensors and Accessories.

3.7 MCU Setup and Usage
MCU Device Types

On the NVIDIA DRIVE AGX Orin™ Platform, the Safety MCU provided is the Inneon AURIX
TC397X B-Step. The device is supported with Vector rmware.

Accessing the SoC from UART

Before using UART on the host system:

‣ Install Foundation package.

‣ Install the following packages on the host system:
sudo apt-get install p7zip-full
sudo apt-get install dpkg-dev

3.7.1 Software Setup on the Linux Host
Note:: Connect the USB cable from USB 2 Port on NVIDIA DRIVE Orin™ to the host
system.

Setting Up and Conguring Minicom

For detailed information, see using Minicom.

1. If Minicom is not installed, install it with the command.
sudo apt-get install minicom

2. Congure Minicom on the host as follows.
sudo minicom –s

3. From the conguration dialog, select Serial port setup.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 71

https://developer.nvidia.com/drive/ecosystem-hw-sw
https://developer.nvidia.com/drive/ecosystem-orin
https://developer.nvidia.com/drive/ecosystem-orin

Setup and Conguration

4. Dene the conguration as follows:

‣ Serial Device: /dev/ttyUSB0

‣ Lockle location: /var/lock

‣ Bps/Par/Bits: 115200 8N1

‣ Hardware Flow Control: No

‣ Software Flow Control: No

5. Save the setup as the default setup.
6. Launch Minicom for a specic device using the –D option.

‣ For P3663
sudo minicom –D /dev/ttyUSB1

‣ ttyUSB0 for NVIDIA DRIVE Orin™ X1

‣ ttyUSB1 for AURIX

Note:: The USB[X] will be assigned based on which is plugged in rst to the host.
The previous conguration is just an example.

‣ For P3710
sudo minicom –D /dev/ttyACM1

‣ ttyACM0 for NVIDIA DRIVE Orin™ X1

‣ ttyACM1 for AURIX
7. Query the relevant serial devices on the host system with the command.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 72

Setup and Conguration

‣ For P3663

dmesg | grep ttyUSB

‣ For P3710
dmesg | grep ttyACM

3.7.2 Using the MCU Console
After the target is connected, the MCU prompt displays in the serial console. Use the MCU
console to run commands and get information from the MCU.

UART Settings

The serial communication settings for the MCU console are as follows:

‣ Baud rate: 115,200 bits per second (bps)

‣ Data: 8-bit, no parity, 1 stop

MCU Console Commands

The MCU console commands are as follows.

Command Description

aurixreset Power cycle board including Aurix.

date [0x12345678] Set date = 0x12345678 on Aurix in seconds(Unix
style).

version Show the current ashed/running rmware
version.

cansetbr [a|b|c|d|e|f] [125|250|500] Switch baudrate of requested CAN channel to
supported baudrate.

cycliccanon [CAN|CANFD|CANEx|All] Switch on Cyclic CAN/CANFD/CANEx messages
(for AURIX).

cycliccanoff [CAN|CANFD|CANEx|All] Switch o Cyclic CAN/CANFD/CANEx messages
(for AURIX).

i2cread x y z n Read 'n' bytes from device 'y' at oset 'z' of I2C-
controller 'x' (all hex-byte-values).

i2cscan [0] Scan all connected I2C devices at I2C module 0.

i2cwrite x y z n b0 b1 ... Write 'n' bytes to device 'y' at oset 'z' , values
Byte-b0, Byte-b1 of I2C-controller 'x' (all hex-
byte-values).

inforomdump Dump the Inforom content in hex format.

help Show all available commands supported.

poweron Turn main power on and release Tegra resets.

poweroff [safeshutdown] Set the outputs to system power o state.

readNvRam Read NvRam content.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 73

Setup and Conguration

setdfltbtchain [x1] [A|B|C|D] Set default boot chain conguration for Tegra x1
to A|B|C|D.

getdfltbtchain [x1] Get default boot chain conguration for Tegra
x1.

setnxtbtchain [x1] [A|B|C|D] Set next boot chain for Tegra x1 to A|B|C|D.

getnxtbtchain [x1] Get next boot chain conguration for x1.

tegrarecovery [x1] [on|off] Set Tegra X1 in recovery mode.

tegrareset [x1] [h] Reset Tegra X1. Default is 'X1'. If 'h' option is
supplied, then hold the specied Tegra in reset.

gptpon Enable Aurix as PTP master.

gptpoff Disable Aurix as PTP master.

status Display the Aurix internal status.

setnetworkconfig [0-10] Set network conguration.

getnetworkconfig Get network Conguration.

show_fanrpm Show RPM of all fans.

set_fanpwm [1|2] [DutyCyclePercentage] Set Fan PWM, that is, duty cycle.

get_temperature Get temperature.

send_temperature [Temperature] Send temperature.

set_tmonerror [init|rdwr|lcltgl|rmttgl|
tmonalert|tmontherm]

Inject false case.

setistconfig [config] Set Tegra IST conguration.

istabort Abort IST.

getistinfo Get Tegra IST information.

getistconfig Get Tegra IST conguration.

getistresult [config] Get Tegra IST results.

entersc7 Enter SC7 power mode.

exitsc7 Exit from SC7 power mode.

readvrs10status Read VRS10 status register.

readvrs11status Read VRS11 status register.

vrs10injecterror [inputs|regwrite|
nirqtoggle|corruptfint]

Inject faults in VRS10.

vrs11injecterror [regwrite1|regwrite2|
nirqtoggle1|nirqtoggle2|corruptfint1|
corruptfint2]

Inject faults in VRS11.

vrs12injcterror [overror|uverror|
wrongcrc|plauscheck]

Inject faults in VRS12.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 74

Setup and Conguration

3.7.3 SoC to Microcontroller Communications
Common Interface for SoC to MCU Communication

MCU manages power-on, power-o, recovery, and reset sequence of SoC on the NVIDIA
DRIVE AGX™ board. It supports reashing of its rmware and conguration, as well as
GPIO-based boot chain selection of SoC rmware.

User applications on SoC, such as NVIDIA Drive
®
 Update, communicate with MCU to use

these features of MCU. This communication is established through Common Interface,
which exposes a set of interfaces on SoC and connects to MCU using UDP over Ethernet.

Common Interface provides the following features:

‣ Read InfoROM dump.

‣ Get current version information of MCU rmware.

‣ Validate MCU rmware to be ashed for compatibility.

‣ Flash program Update and Production MCU rmware.

‣ Set GPIO based boot chain conguration.

‣ Read current conguration of GPIO-based boot chain conguration.

‣ SoC reboot and MCU reboot.

‣ Choose or get network conguration on MCU.

‣ Test behavior of MCU boot chain APIs.

‣ Test behavior of SoC reboot and MCU reboot.

The following diagram provides positioning of Common Interface modules in the system:

Library Usage and Conguration

User applications intending to use these functionalities shall link to Common Interface
Library (libmcu_common_if.so).

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 75

Setup and Conguration

Availability of these features depends on the build conguration. All features are available
on the standard build. Boot chain APIs are available in safety builds only.

The Common Interface communication with MCU is only supported over a VLAN Ethernet
interface; the VLAN interface is established at initialization.

Refer to the Conguration for Common Interface section for detailed information on the
conguration parameters and VLAN interface creation.

Common Interface Sample Application Usage

The common_if_testapp is a command-line interface to verify supported features. Running
the common_if_testapp -h command lists supported commands with brief description.

Examples of command with short description:

Resets MCU. Resets the complete DRIVE AGX board.

#common_if_testapp -mcureset

Reset Tegra x1.

#common_if_testapp -tegrareset x1

Set default boot chain of Tegra x1 to A.

#common_if_testapp -set_default_bootchain x1 A

Set the boot chain temporarily for next reboot.

#common_if_testapp -set_next_bootchain x1 B

Get the default boot chain for Tegra x1.

#common_if_testapp -get_default_bootchain x1

Get active/current boot chain for Tegra x1.

#common_if_testapp -get_active_bootchain x1

Flash given production rmware.

#common_if_testapp -flash_mcu_fw lib/firmware/DRIVE-V6.0.x-P3663-AFW-Aurix-
StepB-5.xx.xx.hex

Flash given update rmware.

#common_if_testapp -flash_mcu_ufw lib/firmware/DRIVE-V6.x.x-P3663-NV-Aurix-UPDATE-
StepB-1.xx.xx.hex

Read currently running rmware version.

#common_if_testapp -get_fw_version

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 76

Setup and Conguration

Read update rmware version ashed on MCU.

#common_if_testapp -get_update_fw_version

Read the version of the hex le from its content.

#common_if_testapp -get_mcu_hexfile_version lib/firmware/DRIVE-V6.x.x-P3663-NV-Aurix-
UPDATE-StepB-1.xx.xx.hex

Read data from infoROM dump.
#common_if_testapp -get_inforom_dump

Reboot MCU in Production FW mode.

#common_if_testapp -reboot_mcu_afw

Reboot MCU in Update-FW mode.

#common_if_testapp -reboot_mcu_ufw

Choose network Conguration on MCU.
#common_if_testapp -nw_cfg base

Get NW Conguration on MCU. Print the current status of MCU network conguration.

#common_if_testapp -nw_cfg getStatus

The additional commands listed with the -h(help) option are dummy and meant for
debugging purposes only.

Executing SC7 Entry and Exiting from Console

‣ On the NVIDIA DRIVE Orin™ console, run the common_if_testapp -enter_sc7
command so that MCU starts the timer to wait for NVIDIA DRIVE Orin™ to enter SC7.
This is done by monitoring the GPIO -SOC_PWR_REQ.

‣ On the NVIDIA DRIVE Orin™ console, use the following API function to trigger SC7
entry:
status = nvdvms_set_vm_state(NVDVMS_SUSPEND);
if (status != NvDvmsSuccess) {
 /** Failure case **/
 }

For more information, see the NvDVMS_Client::User Interface API module in the API
Reference.

‣ As soon as NVIDIA DRIVE Orin™ enters SC7, pin SOC_PWR_REQ will be set to
STD_HIGH, and MCU will execute SC7 entry sequence.

‣ Full VRS sequence is not implemented. VM_EN1 will be pulled low.

‣ If NVIDIA DRIVE Orin™ does not enter SC7 before the timeout of 20 seconds, MCU will
go into error state. To recover from it, run either the poweron or aurixreset command.

‣ To exit, run the command exitsc7 on the MCU console.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 77

../../../api_reference/index.html
../../../api_reference/index.html

Setup and Conguration

‣ AURIX_SOC_WAKE is toggled.

Running Safe-Shutdown from Console

For an orderly shutdown of NVIDIA DRIVE Orin™, when a shutdown request is triggered,
MCU software waits for an indication of safe-shutdown completion from NVIDIA DRIVE
Orin™ SoC through the GPIO pin (IST_DONE_N). If the indication is not received before a
congured timeout (20 seconds), MCU software continues to power o and report errors
to the user application.

To initiate safe shutdown:

‣ On the NVIDIA DRIVE Orin™ console, run the common_if_testapp -tegrareset
command to perform a tegrareset or the common_if_testapp -mcureset command to
perform an Aurix reset.

‣ On the NVIDIA DRIVE Orin™ console, use the following API function to trigger shutdown
of TCF:
status = nvdvms_set_vm_state(NVDVMS_DEINIT);
if (status != NvDvmsSuccess) {
 /** Failure case **/
}

For more information, see the NvDVMS_Client::User Interface API module in the API
Reference.

‣ After the request is successfully received by NvMCU_BootChainCfg on Aurix,
acknowledgment will be sent. This request will be forwarded to the user application
for further arbitration and if preconditions are met, NvMCU_OrinPwrCtrl will start the
monitoring of Handshake GPIO.

‣ As soon as the Handshake GPIO is set, NvMCU_OrinPwrCtrl will switch o the NVIDIA
DRIVE Orin™ Module power rails and proceed with the hardware recommended
shutdown sequence.

‣ If the Handshake GPIO is not set within 20 seconds, NvMCU_OrinPwrCtrl will report an
error to the user application and proceed with the same shutdown sequence.

3.8 Networking
This topic describes the system network setup.

.

3.8.1 Network Conguration
Note: The following section is not valid for P3898 as it has a dierent switch.

DRIVE OS 6.0 supports two network congurations named Base and Safety. Base
conguration is applicable to standard PCD conguration i.e., AV+L Standard and AV+Q

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 78

../../../api_reference/index.html
../../../api_reference/index.html

Setup and Conguration

Standard, while Safety is applicable for AV+Q prod, Prod_debug, and prod_debug_extra.
These switch congurations are controlled by the AURIX MCU rmware via AURIX
command line.

The conguration selection is enabled via AURIX MCU AUTOSAR rmware commands.
Commands details:

getnetworkconfig : Get the current network config info
setnetworkconfig <config value>: Sets network config for next MCU boot

Where the <config value> parameter is as below:

Conguration Value
Orin PCT
(applicable)

Max MTU
supported
(MGBE2-OAK)

PTP support
in OAK
Switch

Switch
Over the
air update
support

NW_CFG_BASE 0 AV+L & AV+Q
standard

Up to
16Kbytes

Yes (Refer PTP
section)

Yes

NW_CFG_BASE_SAFETY1 AV+Q Safety 1500 bytes Bypass (Switch
CPU disable)

No

The major dierence use cases between NW_CFG_BASE and NW_CFG_BASE_SAFETY are:

1. Switch CPU & Firmware disabled : In safety platform congurations, Marvell switch CPU
(QM) and rmware (ASIL NA) are disabled to achieve DRIVE OS time sync safety goals.

2. Max MTU size: In safety platform congurations, The max MTU size in MGBE2 and OAK
switch is reduced to ~1500. To minimize the PTP bypass latency time in safety.

3. OTA support: In safety, Marvell switch CPU is disabled. Therefore, there is no OTA
support for Marvell switches.

Note: It is important to keep the software in Tegra (Orin) and network conguration
setting in Aurix compatible as dened above in table . This has to be done manually and
there is no automated way to keep Orin software and Aurix 'setnetworkcong' in sync/
compatible mode. Using a network conguration that does not match the Orin PCT might
result in undened behavior.

P3710 Networking Port Conguration

Networking port conguration is captured below and is common for both networking
congurations i.e., NW_CFG_BASE and NW_CFG_BASE_SAFETY.

Node
Controller/
Switch Port

Mode &
Speed T1 Role PHY present

L2 switch
forwarding
restriction

EQOS 1G-BASE-T NA Yes NA

MGBE-0 10G-BASE-T1 Primary Yes NA

Tegra

MGBE-1 10G-BASE-T NA Yes NA

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 79

Setup and Conguration

Node
Controller/
Switch Port

Mode &
Speed T1 Role PHY present

L2 switch
forwarding
restriction

MGBE-2 5G (XFI) NA No NA

MGBE-3 10G (XFI) NA No NA

P0 (Internal
CPU port)

1G NA No No Restriction

P1 100M-BASE-T1 Primary Yes (internal) No Restriction
except
forwarding to
Switch-1 P8

P2 100M-BASE-T1 Primary Yes (internal) No Restriction
except
forwarding to
Switch-1 P8

P3 100M-BASE-T1 Primary Yes (internal) No Restriction
except
forwarding to
Switch-1 P8

P4 100M-BASE-T1 Primary Yes (internal) No Restriction
except
forwarding to
Switch-1 P8

P5 100M-BASE-T1 Primary Yes (internal) No Restriction
except
forwarding to
Switch-1 P8

P6 100M-BASE-T1 Primary Yes (internal) No Restriction
except
forwarding to
Switch-1 P8

P7 100M-BASE-T1 Primary Yes (internal) No Restriction
except
forwarding to
Switch-1 P8

P8 1G (RGMII) NA No Only to P10

P9 1G-BASE-T1 Primary Yes No Restriction
except
forwarding to
Switch-1 P8

P10 5G (XFI) NA No No Restriction

Switch-1
(88Q5072)

P11 PCIe Gen3 X1 NA No No Restriction
except
forwarding to
Switch-1 P8

P0 (Internal
CPU port)

1G NA No No RestrictionSwitch-2
(88Q6113)

P1 1G-BASE-T1 Secondary Yes No Restriction

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 80

Setup and Conguration

Node
Controller/
Switch Port

Mode &
Speed T1 Role PHY present

L2 switch
forwarding
restriction

P2 1G-BASE-T1 Primary Yes No Restriction

P3 1G-BASE-T1 Primary Yes No Restriction

P4 1G-BASE-T1 Primary Yes No Restriction

P5 1G-BASE-T1 Primary Yes No Restriction

P6 SGMII NA No No Restriction

P7 1G-BASE-T1 Primary Yes No Restriction

P8 1G-BASE-T1 Primary Yes No Restriction

P9 1G-BASE-T1 Primary Yes No Restriction

P10 10G (XFI) NA No No Restriction

P11 PCIe Gen3 X2 NA No No Restriction

Tegra PCIe
Ethernet

LAN 7431
controller

1G-BASE-T1 Master Yes NA

P3663 Network Port Conguration

Networking port conguration is captured below and its common for both networking
congurations i.e., NW_CFG_BASE and NW_CFG_BASE_SAFETY.

Node
Controller/
Switch Port

Mode &
Speed T1 Role PHY present L2 Routing

EQOS 1G-BASE-T1 NA Yes NA

MGBE-0 10G-BASE-T1 Primary Yes NA

Tegra

MGBE-2 5G (XFI) NA No NA

P0 (Internal
CPU port)

1G NA No No Restriction

P1

P2

P3

P4

P5

P6

P7

100M-BASE-T1 Primary Yes (internal)
No Restriction
except
forwarding

to Switch-1 P8
(ie, to Aurix)

Switch-1
(88Q5072)

P8 1G (RGMII) NA No Only to P10 (ie,
Aurix to Tegra)

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 81

Setup and Conguration

Node
Controller/
Switch Port

Mode &
Speed T1 Role PHY present L2 Routing

P10 5G (XFI) No Restriction

P11 PCIe Gen3 X1
No Restriction
except
forwarding

to Switch-1 P8
(ie, to Aurix)

Tegra PCIe
Ethernet

LAN 7431
controller

1G-BASE-T1 Primary Yes NA

P3898 Network Port Conguration

The p3898 network port conguration is as follows:

Node
Controller/
Switch Port

Mode &
Speed T1 Role PHY present L2 Routing

EQOS 1G (RGMII) N/A No N/A

N/A N/A N/A N/A N/A

Tegra

N/A N/A N/A N/A N/A

P2

P3

P4

100M-BASE-T1 Primary Yes (internal)
No Restriction
except
forwarding to
Switch P5 (I.e.,
to AURIX)

P5 Only to P8 (i.e.,
Aurix to Tegra)

Switch

P8

1G (RGMII) N/A No

No restriction

P0

P6

1G-BASE-T1 Primary Yes
No Restriction
except
forwarding to
Switch P5 (i.e.,
to AURIX)

3.8.2 Static IP Assignment
Ubuntu 17.10, 18.04, and higher follow the steps below to assign the static IP to DUT's 1G
or 10G interface.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 82

Setup and Conguration

1. Create .yaml cong le for netplan in /etc/netplan if it does not exist. A number prex
is used for orderly processing. For more information, refer to man netplan.

Note: Replace eth0 with your system's interface name

sudo cat >/etc/netplan/01-network-manager-all.yaml
 network:
 version: 2
 renderer: networkd
 ethernets:
 eth0: # Use your
 interface name
 dhcp4: no
 dhcp6: no
 addresses:
 - 10.0.0.X/22 # Your IP address
 gateway4: 10.0.0.1 # Your gateway
 nameservers:
 search: [nvidia.com,
 client.nvidia.com, nvclient.nvidia.com] #Your corp domain names
 addresses: [DNS1,DNS2]

2. Once the editing of 01-network-manager-all.yaml is completed, apply the settings:
sudo netplan apply

3. To review the conguration:
 ip addr
ip show

Clearly mention the windowing system used (X, Wayland ,lightdm, etc.).

3.8.3 P3710 Networking
The following diagram shows the P3710 network topology:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 83

Setup and Conguration

Board External Connectors

(Common for both P3663 and P3710)

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 84

Setup and Conguration

Matenet

Matenet connector has connection for Port 1 to Port 6 of Oak switch.

QUAD HMTD

The following is the channel map of HMTD:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 85

Setup and Conguration

External Connector Port: Mapping to Switch/Controller

QUAD HMTD Connector J3

Port Connected to

1 Switch-1 (88Q5072) Port 9

2 Switch-2 (88Q6113) Port 2

3 Switch-2 (88Q6113) Port 3

4 Switch-2 (88Q6113) Port 4

QUAD HMTD Connector J4

Port Connected to

1 Switch-2 (88Q6113) Port 5

2 Switch-2 (88Q6113) Port 7

3 Switch-2 (88Q6113) Port 8

4 Switch-2 (88Q6113) Port 9

Dual HMTD Connector J2

Port Connected to

1 Tegra MGBE0 Ethernet Controller

2 LAN7431 (PCIe Ethernet Controller)

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 86

Setup and Conguration

MateNET Connector J11:

Port Pin Number Connected to

1 Pin 1&2 Switch (88Q5072) Port 1

2 Pin 3&4 Switch (88Q5072) Port 2

3 Pin 5&6 Switch (88Q5072) Port 3

4 Pin 11&12 Switch (88Q5072) Port 4

5 Pin 9&10 Switch (88Q5072) Port 5

6 Pin 7&8 Switch (88Q5072) Port 6

3.8.4 P3663 Networking
The following diagram shows the P3663 network topology:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 87

Setup and Conguration

External Connector Channels - Mapping to Switch/Controller

QUAD HMTD Connector J7

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 88

Setup and Conguration

Port Connected to

1 Switch-1(88Q5072) Port 7

2 LAN7431 (PCIe Ethernet Controller)

3 Tegra MGBE0 Ethernet Controller

4 Tegra EQOS Ethernet Controller

MateNET Connector J3

Port Pin Number Connected to

1 Pin 1&2 Switch (88Q5072) Port 1

2 Pin 3&4 Switch (88Q5072) Port 2

3 Pin 5&6 Switch (88Q5072) Port 3

4 Pin 11&12 Switch (88Q5072) Port 4

5 Pin 9&10 Switch (88Q5072) Port 5

6 Pin 7&8 Switch (88Q5072) Port 6

3.8.5 3898 Networking
The following diagram shows the P3898 network topology:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 89

Setup and Conguration

External Connector Channels : Mapping to Switch/Controller

Switch Port Connected To

P8 Tegra EQOS Ethernet Controller

P5 Aurix Ethernet Controller

P2 Out of Harness, H-MTD Female cable tagged P8

P3 Out of Harness, H-MTD Female cable tagged P9

P4 Out of Harness, H-MTD Female cable tagged P7

P0 H-MTD Male connector J24

P6 H-MTD Male connector J23

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 90

Setup and Conguration

Steps to Enable Networking on Orin

By default, switch rmware and switch tools are not part of the PDK. Follow the steps
below to enable EQOS networking on the board.

‣ Boot AV+L.

‣ Reset the switch from Orin console:

1. sudo su

2. echo 454 > /sys/class/gpio/export

3. echo out > /sys/class/gpio/PQ.06/direction

4. echo 0 > /sys/class/gpio/PQ.06/value

5. echo 1 > /sys/class/gpio/PQ.06/value

‣ Bring EQOS interface up:
sudo ifconfig eqos_0 <ip address> netmask 255.255.255.0 up

3.8.6 VLAN Conguration
IBF VLAN aka VLAN 200 AKA TACP VLAN

Intra-board function VLAN is used for communication between onboard devices like Aurix,
Tegra, and switches. No Ethernet frames over this VLAN go outside the board. IBF VLAN is
used for the following:

1. Tegra-Tegra communication
2. Tegra-Aurix communication
3. Aurix OTA from Tegra
4. Switch Firmware over-the-air (OTA) updates

VLAN 200 Cong in P3710

In 3710, the following ports and controllers are part of VLAN 200.

‣ Tegra MGBE-2 interface

‣ Aurix Ethernet interface

‣ Switch-1: P0 (Internal CPU) , P10 (interfacing MGBE-2), P8 (Aurix interfacing port) and
P7 (Switch-2 interfacing port)

‣ Switch-2: P0 (Internal CPU) and P1 (Switch-2 interfacing port)

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 91

Setup and Conguration

VLAN 200 Cong in P3663

In 3663, the following ports and controllers are part of VLAN 200.

‣ Tegra MGBE-2 interface

‣ Aurix Ethernet interface

‣ Switch-1: P0 (Internal CPU) , P10 (interfacing MGBE-2) and P8 (Aurix interfacing port)

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 92

Setup and Conguration

VLAN 200 Cong in P3898

In 3898, the following ports and controllers are part of VLAN 200.

‣ Tegra EQOS interface

‣ Aurix Ethernet interface

‣ Switch: P8 (interfacing EQOS) and P5 (AURIX interfacing port)

TACP Networking VLAN Conguration

The VLAN networking conguration to set up this channel occurs in three distinct places in
standard or safety operating systems.

1. Tegra (Orin) side conguration
2. Network switch conguration
3. Aurix AUTOSAR conguration

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 93

Setup and Conguration

Tegra (Orin) Side Conguration

For standard OS the TACP VLAN conguration parameters are stored in the device tree
while the safety OS has its values within a conguration le.

Standard OS

For standard OS the TACP VLAN conguration parameters are stored in the device tree,
which has les located here:
<top>/hardware/nvidia/platform/t23x/automotive/kernel-dts/

They are further broken down by the board type. The networking information is in the
following device tree les under the node board_config.
p3710/common/tegra234-p3710-0010.dtsi
p3663/common/tegra234-p3663-0001.dtsi
p3898/common/tegra234-p3898-0010.dtsi

The conguration le supports these parameters under the board cong node required for
the TACP VLAN setup.

‣ Tegra (Orin) IP address

‣ VLAN ID and interface name

board_config {
 TEGRA_IP_ADDRESS="10.42.0.28";
 aurix {
 /* Provide instance.200 as aurix interface,
 * where instance is network controller
 * interface name */
 aurix_linux_interface="mgbe2_0.200";
 aurix_qnx_interface="mgbe2_0.200";
 AURIX_IP_ADDRESS="10.42.0.146";
 };

Where aurix_qnx_interface/ aurix_linux_interface =
<MAIN_ETH_IFACE>.<VLANID> : <MAIN_ETH_IFACE> is the network interface over the VLAN
is supposed to created and <VLANID> is the vlan ID of the newly created VLAN interface.
TEGRA_IP_ADDRESS= <IP_ADDRESS> : IP address for Tegra tacp VLAN interface

Tegra-side TACP VLAN Customization

Tegra side TACP VLAN customization is possible for the following parameters by changing
the value assigned in the board-specic device tree in standard OS, and by changing the
hardcoded values in the bootup script.

‣ Tegra IP address

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 94

Setup and Conguration

‣ VLAN ID and interface name

Note: Changes in VLAN parameters requires corresponding changes in the Aurix AFW
for new VLAN support along with the new VLAN conguration in the network switches.
Changes in IP address (if other subnet) requires a change in IP address of the VLAN
interface on the Aurix MCU side.

Network Switch VLAN Conguration

Note: For the P3898 board, switch conguration occurs via Orin over SPI or through the
network switch rmware.

In NVIDIA platforms, network switch conguration occurs via Aurix MCU rmware or
through the network switch rmware. These conguration cannot be altered in run time.

Aurix MCU VLAN Conguration

Refer to the MCU Porting Guide for details.

3.8.7 Time Synchronization
Platform time sync essentially represents the PTP topology and PTP prole supported for
development and production use cases.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 95

Setup and Conguration

Supported Proles

Use-cases Supported Prole Comments

Development (base cong) AVNU CDS 1.6
With time aware switch

All networking nodes of the
DRIVE development platforms
are made time-aware systems/
nodes, such as the Tegra CPU
nodes, which act as time-aware
end-stations, and all switches
acts as time-aware bridge (Only
AVNU CDS 1.6 prole).

Orin development platforms
have total 2 dierent models of
Ethernet switches connected
on board.

‣ Marvell 88Q5072 switch
(OAK).

‣ Marvell 88Q6113 switch
(Spruce).

Both the switches has its own
internal MCU and rmware
capable of handling the PTP
(AVNU CDS 1.6 prole) locally
in side switch. Hence switches
are made time-aware bridge
by enabling the PTP support
in its rmware. All the external
ports coming out of switches
supports PTP with static PTP
roles.

Production (safety cong) AUTOSAR Time Synchronization
Protocol (pdelay disabled)

With Switch PTP Bypass
(Switch Internal CPU disabled)

Platform PTP Topology and Port Roles

3710 : Platform PTP Port Roles

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 96

Setup and Conguration

3663: Base Cong : Development

3710: Safety Cong : Production

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 97

Setup and Conguration

3663 : Safety Cong : Production

Port Roles

3710 : Platform PTP Port Roles

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 98

Setup and Conguration

Development Use Case Production Use Case

Platform
Ports
(Internal/
External)

Connecting
External
Port/
Internal
Node

Port PTP
Role

Protocol
Support

PTP
device
allowed
to
connect
to this
port
(role/
protocol)

Port PTP
Role

Protocol
Support

PTP
device
allowed
to
connect
to this
port
(role/
protocol)

Switch-1
(88Q5072)
- Port 1

MateNET
Connector
J11: P1

Primary AVNU
AutoCDS
v1.6

Secondary/
AVNU
AutoCDS
v1.6

Disabled NA Secondary/
AUTOSAR
TSync
(pdelay
disabled)

Switch-1
(88Q5072)
- Port 2

MateNET
Connector
J11: P2

Primary AVNU
AutoCDS
v1.6

Secondary/
AVNU
AutoCDS
v1.6

Disabled NA Secondary/
AUTOSAR
TSync
(pdelay
disabled)

Switch-1
(88Q5072)
- Port 3

MateNET
Connector
J11: P3

Primary AVNU
AutoCDS
v1.6

Secondary/
AVNU
AutoCDS
v1.6

Disabled NA Secondary/
AUTOSAR
TSync
(pdelay
disabled)

Switch-1
(88Q5072)
- Port 4

MateNET
Connector
J11: P4

Secondary AVNU
AutoCDS
v1.6

Primary/
AVNU
AutoCDS
v1.6

Disabled NA Secondary/
AUTOSAR
TSync
(pdelay
disabled)

Switch-1
(88Q5072)
- Port 5

MateNET
Connector
J11: P5

Primary AVNU
AutoCDS
v1.6

Secondary/
AVNU
AutoCDS
v1.6

Disabled NA Secondary/
AUTOSAR
TSync
(pdelay
disabled)

Switch-1
(88Q5072)
- Port 6

MateNET
Connector
J11: P6

Primary AVNU
AutoCDS
v1.6

Secondary/
AVNU
AutoCDS
v1.6

Disabled NA Secondary/
AUTOSAR
TSync
(pdelay
disabled)

Switch-1
(88Q5072)
- Port 9

QUAD
HMTD
Connector
J3: P1

Primary AVNU
AutoCDS
v1.6

Secondary/
AVNU
AutoCDS
v1.6

Disabled NA Secondary/
AUTOSAR
TSync
(pdelay
disabled)

Switch-2
(88Q6113)
- Port 2

QUAD
HMTD
Connector
J3: P2

Primary AVNU
AutoCDS
v1.6

Secondary/
AVNU
AutoCDS
v1.6

Disabled NA Secondary/
AUTOSAR
TSync
(pdelay
disabled)

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 99

Setup and Conguration

Development Use Case Production Use Case

Platform
Ports
(Internal/
External)

Connecting
External
Port/
Internal
Node

Port PTP
Role

Protocol
Support

PTP
device
allowed
to
connect
to this
port
(role/
protocol)

Port PTP
Role

Protocol
Support

PTP
device
allowed
to
connect
to this
port
(role/
protocol)

Switch-2
(88Q6113)
- Port 3

QUAD
HMTD
Connector
J3: P3

Primary AVNU
AutoCDS
v1.6

Secondary/
AVNU
AutoCDS
v1.6

Disabled NA Secondary/
AUTOSAR
TSync
(pdelay
disabled)

Switch-2
(88Q6113)
- Port 4

QUAD
HMTD
Connector
J3: P4

Primary AVNU
AutoCDS
v1.6

Secondary/
AVNU
AutoCDS
v1.6

Disabled NA Secondary/
AUTOSAR
TSync
(pdelay
disabled)

Switch-2
(88Q6113)
- Port 5

QUAD
HMTD
Connector
J4: P1

Primary AVNU
AutoCDS
v1.6

Secondary/
AVNU
AutoCDS
v1.6

Disabled NA Secondary/
AUTOSAR
TSync
(pdelay
disabled)

Switch-2
(88Q6113)
- Port 7

QUAD
HMTD
Connector
J4: P2

Primary AVNU
AutoCDS
v1.6

Secondary/
AVNU
AutoCDS
v1.6

Disabled NA Secondary/
AUTOSAR
TSync
(pdelay
disabled)

Switch-2
(88Q6113)
- Port 8

QUAD
HMTD
Connector
J4: P3

Primary AVNU
AutoCDS
v1.6

Secondary/
AVNU
AutoCDS
v1.6

Disabled NA Secondary/
AUTOSAR
TSync
(pdelay
disabled)

Switch-2
(88Q6113)
- Port 9

QUAD
HMTD
Connector
J4: P4

Primary AVNU
AutoCDS
v1.6

Secondary/
AVNU
AutoCDS
v1.6

Disabled NA Secondary/
AUTOSAR
TSync
(pdelay
disabled)

Switch-1
(88Q5072)
- Port 10

Tegra-
MGBE 2

Primary AVNU
AutoCDS
v1.6

Secondary/
AVNU
AutoCDS
v1.6

Disabled NA Secondary/
AUTOSAR
TSync
(pdelay
disabled)

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 100

Setup and Conguration

Development Use Case Production Use Case

Platform
Ports
(Internal/
External)

Connecting
External
Port/
Internal
Node

Port PTP
Role

Protocol
Support

PTP
device
allowed
to
connect
to this
port
(role/
protocol)

Port PTP
Role

Protocol
Support

PTP
device
allowed
to
connect
to this
port
(role/
protocol)

Switch-2
(88Q6113)
- Port 10

Tegra-
MGBE 3

Primary AVNU
AutoCDS
v1.6

Secondary/
AVNU
AutoCDS
v1.6

Disabled NA Secondary/
AUTOSAR
TSync
(pdelay
disabled)

Switch-1
(88Q5072)
- Port 8

Aurix -
MAC

Primary AVNU
AutoCDS
v1.6

Secondary/
AVNU
AutoCDS
v1.6

Disabled NA Secondary/
AUTOSAR
TSync
(pdelay
disabled)

Tegra
EQOS

RJ45 -J13 Primary AVNU
AutoCDS
v1.6

Secondary/
AVNU
AutoCDS
v1.6

Primary AUTOSAR
TSync
(pdelay
disabled)

Secondary/
AUTOSAR
TSync
(pdelay
disabled)

3663 : Platform PTP Port Roles

Table 1.
Development Use Case Production Use Case

Platform
Ports
(Inernal/
External)

Connecting
External
Port /
Internal
Node

Port PTP
Role

Protocol
Support

PTP
device
allowed
to
connect
to this
port
(role/
protocol)

Port PTP
Role

Protocol
Support

PTP
device
allowed
to
connect
to this
port
(role/
protocol)

Switch
(88Q5072)
- Port 1

MateNET
Connector
J3: P1

Primary AVNU
AutoCDS
v1.6

Secondary/
AVNU
AutoCDS
v1.6

Disabled NA Secondary/
AUTOSAR
TSync
(pdelay
disabled)

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 101

Setup and Conguration

Development Use Case Production Use Case

Platform
Ports
(Inernal/
External)

Connecting
External
Port /
Internal
Node

Port PTP
Role

Protocol
Support

PTP
device
allowed
to
connect
to this
port
(role/
protocol)

Port PTP
Role

Protocol
Support

PTP
device
allowed
to
connect
to this
port
(role/
protocol)

Switch
(88Q5072)
- Port 2

MateNET
Connector
J3: P2

Primary AVNU
AutoCDS
v1.6

Secondary/
AVNU
AutoCDS
v1.6

Disabled NA Secondary/
AUTOSAR
TSync
(pdelay
disabled)

Switch
(88Q5072)
- Port 3

MateNET
Connector
J3: P3

Primary AVNU
AutoCDS
v1.6

Secondary/
AVNU
AutoCDS
v1.6

Disabled NA Secondary/
AUTOSAR
TSync
(pdelay
disabled)

Switch
(88Q5072)
- Port 4

MateNET
Connector
J3: P4

Secondary AVNU
AutoCDS
v1.6

Primary/
AVNU
AutoCDS
v1.6

Disabled NA Secondary/
AUTOSAR
TSync
(pdelay
disabled)

Switch(88Q5072)
- Port 5

MateNET
Connector
J3: P5

Primary AVNU
AutoCDS
v1.6

Secondary/
AVNU
AutoCDS
v1.6

Disabled NA Secondary/
AUTOSAR
TSync
(pdelay
disabled)

Switch
(88Q5072)
- Port 6

MateNET
Connector
J3: P6

Primary AVNU
AutoCDS
v1.6

Secondary/
AVNU
AutoCDS
v1.6

Disabled NA Secondary/
AUTOSAR
TSync
(pdelay
disabled)

Switch
(88Q5072)
- Port 7

QUAD
HMTD
Connector
J7: P1

Primary AVNU
AutoCDS
v1.6

Secondary/
AVNU
AutoCDS
v1.6

Disabled NA Secondary/
AUTOSAR
TSync
(pdelay
disabled)

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 102

Setup and Conguration

Development Use Case Production Use Case

Platform
Ports
(Inernal/
External)

Connecting
External
Port /
Internal
Node

Port PTP
Role

Protocol
Support

PTP
device
allowed
to
connect
to this
port
(role/
protocol)

Port PTP
Role

Protocol
Support

PTP
device
allowed
to
connect
to this
port
(role/
protocol)

Switch
(88Q5072)
- Port 10

Tegra-
MGBE 2

Primary AVNU
AutoCDS
v1.6

Secondary/
AVNU
AutoCDS
v1.6

Disabled NA Secondary/
AUTOSAR
TSync
(pdelay
disabled)

Switch
(88Q5072)
- Port 8

Aurix -
MAC

Primary AVNU
AutoCDS
v1.6

Secondary/
AVNU
AutoCDS
v1.6

Disabled NA Secondary/
AUTOSAR
TSync
(pdelay
disabled)

Tegra
EQOS

QUAD
HMTD
Connector
J7: P4

Primary AVNU
AutoCDS
v1.6

Secondary/
AVNU
AutoCDS
v1.6

Primary AUTOSAR
TSync
(pdelay
disabled)

Secondary/
AUTOSAR
TSync
(pdelay
disabled)

Note:

The AURIX MCU PTP role shown in above diagram is for representation purpose
only (to make the topology complete). DRIVE OS does not have PTP enabled in
AURIX rmware.

3.8.7.1 Orin Time Sync
Orin Time Sync has multiple components as described below in diagram. It consist of:

‣ PTP daemon for synchronizing one of the Tegra's internal PHC clock which act as a
source for all other local clock as base for synchronization/co-relation.

‣ PTP - TSC HW synchronization for aligning TSC with PHC increment rate using 1HZ PPS
signal input to TSC from MAC. Needed for camera Fsync signal generation alignment
with PTP second boundary.

‣ PTP bridge in Tgera (MAC-MAC)- To allow other MAC(s) to synchronize with GM time
through the primary MAC (connected to GM) in order to support other Time aware
client devices like Lidar etc connected through other MACs in Tegra.

‣ Time Co-relation Module: Provides concurrent and correlated snapshot of multiple time
domain like CCPLEX TSC, PTP etc. on a given event to be consumed by upper layer
software.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 103

Setup and Conguration

PTP Support in Orin

As per the supported PTP topology, One of the Tegra MAC and its associated PHC needs to
get synchronized with external Grand Master clock. Once synchronized this MAC PHC (PTP
hardware counter) works as a base for:

‣ All the Tegra internal clocks which needs to be synchronized or to be correlated as per
the use-case.

‣ All the software component requiring the current PTP time in system.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 104

Setup and Conguration

AVNU PTP for Development

In DRIVE OS Linux (AV+L), Linuxptp daemon i.e ptp4l is supposed to be run in client mode
with automotive prole mode to synchronize Tegra's MGBE_2 mac interface from external
GM.
./ptp4l -f automotive_slave.cfg -i mgbe2_0 -p /dev/ptp<X> -m
// where:
// /dev/ptp<X> - PTP dev node associated with the mgbe2_0

For device connected on EQOS another daemon instance can be started with following
command in server mode. To identify <x>, use the ethtool -T [Interface ID] command.
If ethtool is not installed on the host and DUT, use the sudo apt install ethtool
command to install.

./ptp4l -f automotive_master.cfg -i eqos_0 -p /dev/ptp<X> -m
// where:
// /dev/ptp<X> - PTP dev node associated with the eqos_0

AUTOSAR TSync PTP for Production

Note: Tsync PTP implementation is for development purpose only and it must not be used
for production.

AUTOSAR Ethernet Tsync prole PTP commands:
/ #Server Mode

cd /opt/nvidia/drive-linux/samples/nvavb/daemons/
sudo ./gptpTsync <interface> -F autosar_cfg.ini -INITPDELAY 0 -OPERPDELAY 0 -INITSYNC
 -3 -OPERSYNC -3 -S -V -GM

// #client Mode

cd /opt/nvidia/drive-linux/samples/nvavb/daemons/
sudo ./gptpTsync <interface> -F autosar_cfg.ini -INITPDELAY 0 -OPERPDELAY 0 -INITSYNC
 -3 -OPERSYNC -3 -S -V -N -A

// where:
// <iface> : Interface name i.e eqos_0, mgbe0_0, mgbe1_0 on which PTP is supposed to
 be started. It could be a VLAN interface above the primary interface.

The following section explains the autosar specic congurable parameters from INI le
for gptpTsync binary:
/*
Time secure TLV related data
Specification for 10.2.4 EthTSynGlobalTimeFollowUpDataIDList, Also refer
 ECUC_EthTSyn_00030
Provide 16 data element values in decimal
Provide value in decimal value only(not in hexadecimal) */
FollowUpDataIdList = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

/*
Time secure TLV CRC_Time_Flags for CRC calcuation in master mode.
Refer CRC_Time_Flags from SWS_EthTSyn_00065
Following values to be 'OR'ed to create flag as per requirement
BitMask 0x01 [messageLength]
BitMask 0x02 [domainNumber]

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 105

Setup and Conguration

BitMask 0x04 [correctionField]
BitMask 0x08 [sourcePortIdentity]
BitMask 0x10 [sequenceId]
BitMask 0x20 [preciseOriginTimestamp]
Value provided in below config will be 'AND' with 0x3F to consider only valid bits
Provide value in hex format only */
EthTSynCrcTimeFlagsTxSecured = 0x37

/*
Status TLV related data
if SyncToGateWay is set, SGW with SyncToSubDomain will be set. Otherwise, SyncToGTM
 will be set.
Valid values 0 and 1
Provide value in decimal value only(not in hexadecimal) */
SyncToGateWay = 0

/*
User data TLV number of bytes UserDataLength
this value should be 1 >= UserDataLength <= 3 */
UserDataLength = 1

/*
User data TLV Related data
Provide user byte of size uint8_t with space separated, i.e UserByte = UserByte_0
 UserByte_1 UserByte_2
Provide value in decimal value only(not in hexadecimal) */
UserByte = 0 0 0

/*
CRC validation mode for slave
CRC_IGNORED and CRC_VALIDATED */
EthTSynRxCrcValidated = CRC_VALIDATED

/*
Static Pdelay setting.
Set to 1 to disable path delay calculation using Pdelay_req, Pdelay_resp,
 Pdelay_respfup.
and use EthTSynGlobalTimePropagationDelay as static Link delay.
Setting it to 1 will also make daemon to ignore path delay messages received.

Set 0 to enable path delay calculation using Pdelay_req, Pdelay_resp,
 Pdelay_respfup
and ignore EthTSynGlobalTimePropagationDelay.
Provide value in decimal value only(not in hexadecimal) */
UseStaticPdelay = 0

/*
Static Delay in nanosecond will be used when UseStaticPdelay is set to 1
Default value of 0 will be used if UseStaticPdelay set and below field is not
 populated.
Provide value in decimal value only(not in hexadecimal) */
EthTSynGlobalTimePropagationDelay = 20000000

/*
Option to enable and disable processing and transmit of sub-TLV's.
Set values to 1 enable and 0 to disable
Time secure sub-TLV
Provide value in decimal value only(not in hexadecimal) */
EthTSynTLVFollowUpTimeSubTLV = 1
/* # Status sub-TLV */
EthTSynTLVFollowUpStatusSubTLV = 1
/* # User dats sub-TLV */
EthTSynTLVFollowUpUserDataSubTLV = 1

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 106

Setup and Conguration

Other PTP Proles in Orin

DRIVE OS QNX supports IEEE 1588, IEEE 802.1AS and AUTOSAR EthTsync proles. Support
for these proles are limited to the software stack running in Tegra/Orin i.e., no support
in switches. This means these proles can not be enabled on Ethernet MACs which are
directly connected to the switches on the DRIVE Orin Development Platforms. For custom
boards all the Tegra MACs can support these proles.

Available in all Standard (non-Safety), Safety and Safety overlay platform congurations.

Prerequisites

Safety extensions are not implemented & deployed in for IEEE 1588 prole qnd 802.1AS
and hence it still uses the QNX default io-pkt path (non safe) for PHC correction. Hence
running these proles on ethernet switch connected MACs like MGBE_2 and MGBE_3 on
custom boards will requires following changes and rebuild of the PDK/SDK.

‣ Switching from NvEthMgr to io-pkt by removing property "enable_asil_ioctl" in Ethernet
server device tree from Ethernet mac node.

‣ Edit the startup commands/device tree

‣ For relaunching the NvTime Resource manager with -L option.

‣ Stop the the launch of NvTime GTS daemon.

IEEE 1588 (over IPv4) Command

// #Server Mode
// Assign IP address to interface first

sudo ./ptp4l -i <iface> -p /dev/ptp<X> -m -4 -l7

// #client Mode

sudo ./ptp4l -i <iface> -p /dev/ptp<X> -m -s -l7 -4 &

// where:
// <iface> : Interface name i.e eqos_0, mgbe0_0, mgbe1_0 on which PTP is supposed to
 be started. It could be a VLAN interface above the primary interface.
// /dev/ptp<X> - PTP dev node associated with the interface. Use "ethtool -T" command
 to identify the hardware clock instance i.e <X>

IEEE 802.1AS Command

Only available in standard (non safety) and and overlay platform congurations.
//pre-requisite

slay ptpd
slay ptpd-avb

// #Server Mode

// In standard build, In prod_debug and prod_debug_extra
SOCK=/sock<X> /proc/boot/ptpd-avb -WKLCQb <iface>

// #client Mode

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 107

Setup and Conguration

// Standard build, prod_debug and prod_debug_extra

SOCK=/sock<X> /proc/boot/ptpd-avb -gKLCQb <iface>

// where:
// <iface> : Interface name i.e eqos_0, mgbe0_0, mgbe1_0 on which PTP is supposed to
 be started. It could be a VLAN interface above the primary interface.

PTP Bridging in Orin

Orin SOC has 5 Ethernet MAC controllers imbedded in it. Out of which only one can act
as PTP secondary interface to synchronize the Tegra with external GM. There could be
use-cases where the time info coming from external GM needs to be forwarded to the
devices connected to other mac controllers. This requires a PTP time aware bridge like
implementation in Tegra. Starting 6.0.2 a new feature is included in lower layer to sync
multiple MAC PHCs from an external GM. As of now, support is there for only 2 macs at a
time.

Primary (source) and secondary (sink) MAC selection is congurable through device tree.
Check the device tree binding doc in Documentation/devicetree/bindings/platform/
tegra/tegra-nvethernet.txt.

Note: By default, the MGBE2→ EQOS sync is enabled on boot-up starting 6.0.2 release.

PTP-TSC Sync

Orin SOC provides a hardware assisted mechanism to align/sync the TSC (clock/counter)
with one of the Tegra SOC Ethernet MAC on second boundary using the PPS signal from
the MAC. This feature is useful in synchronizing camera fsync signals (used for camera
frame capture/timestamping) with PTP time in order to reduce the timestamp jitter
between sensors timestamped with PTP domain. This feature is also useful for co-relation
of TSC and PTP time-domain timestamps (needed for sensor fusion application) as it
ensures a xed oset (no run-time drift) between PTP and TSC counters over the time. The
MAC selection for TSC reference is based on the PTP topology of the platform. It must be
always the MAC acting as PTP client for External GTM directly or through switch.

PTP time source MAC selection is congurable through NvPPS/NvTime2 modules
conguration section.

Note: By default, the MGBE2→ TSC locking enabled on boot starting 6.0.3 release.

NvPPS

NvPPS module is Linux kernel module/driver which provide a single point of access to all
the user applications to query:

‣ Current synchronized PTP time from PHC

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 108

Setup and Conguration

‣ Event co-related PTP and TSC time domain timestamps

This module is enabled by default in the DRIVE OS kernel.

Operating Mode

NvPPS module has two operating modes.

1. GPIO/PPS mode : The NvPPS driver takes external 1PPS signal as input from devices
like GPS etc.. on Tegra GPIO pin as an event and reads the timestamps from relevant
time domains for correlation.

2. Timer mode: In this mode event for co-relation is based on periodic SW timer scheduled
inside NvPPS module.

Timer mode is useful when there is no external device like GPS present for 1 PPS signal
generation in system design or if their is no provision in platform (e.g P3663) to receive PPS
signal through Tegra GPIO.

Userspace exposed interfaces

The module exposes a dev node named as "/dev/nvpps0". The dev node supports following
IOCTL calls:

SN IOCTL Description

1 NVPPS_GETTIMESTAMP Get current timestamps from
kernel and PTP time from
primary PHC interface

2 NVPPS_GETEVENT Get correlated timestamps of
dierent time-domains (TSC,
PTP etc.) at the last event.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 109

Setup and Conguration

SN IOCTL Description

3 NVPPS_GETVERSION Get NvPPS driver and API
versions.

4 NVPPS_GETPARAMS
Get the current NVPPS
parameters. Like Operating
mode(in GPIO or Timer mode)
and TSC timestamp mode(in
Nanosec or Counter mode).

For the mode values to be used,
please refer ioctl header le
mentioned below.

5 NVPPS_SETPARAMS
Set the NvPPS parameters,
described in the
NVPPS_GETPARAMS section.
This IOCTL can be used to
update NvPPS parameters in
runtime

The parameter settings in
NvPPS module are common to
all client applications.

The data structures required for supporting the IOCTLs are dened in kernel/nvidia/
include/uapi/linux/nvpps_ioctl.h

Kernel space exposed interface

In addition to User space interfaces, NvPPS module exports a kernel API for other kernel
modules to get the current synchronized PTP time in kernel. Please refer to kernel/nvidia/
include/linux/nvpps.h.

/*
 * Get PTP time
 * Clients may call this API whenever PTP time is needed.
 * If PTP time source is not registered, returns -EINVAL
 *
 * This API is available irrespective of nvpps dt availablity
 * When nvpps dt node is not present, interface name will
 * default to "eth0".
 */
int nvpps_get_ptp_ts(void *ts)

NvPPS module conguration

Following static conguration is possible through NvPPS Device tree node. Refer to device
tree binding doc kernel/nvidia/Documentation/devicetree/bindings/nvpps/nvpps.txt.

‣ Primary PTP interface (prop_name: "interface") - The MAC interface which connects to
external GM.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 110

https://tegra-sw-opengrok.nvidia.com/source/xref/stage-main_automotive/kernel/nvidia/include/uapi/linux/nvpps_ioctl.h
https://tegra-sw-opengrok.nvidia.com/source/xref/stage-main_automotive/kernel/nvidia/include/uapi/linux/nvpps_ioctl.h
https://tegra-sw-opengrok.nvidia.com/source/xref/stage-main_automotive/kernel/nvidia/include/linux/nvpps.h
https://tegra-sw-opengrok.nvidia.com/source/xref/stage-main_automotive/kernel/nvidia/include/linux/nvpps.h
https://tegra-sw-opengrok.nvidia.com/source/xref/stage-main_automotive/kernel/nvidia/Documentation/devicetree/bindings/nvpps/nvpps.txt

Setup and Conguration

‣ Secondary PTP interface (prop_name: "sec_interface") - The MAC which synchronizes
with primary PTP MAC interface using PTP bridging.

‣ 1PPS input pin (prop_name: "gpios") - Species GPIO pin detail on which 1PPS signal is
available. Please refer platform specic NvPPS DT node more info.

‣ PTP_TSC sync disable (prop name: "ptp_tsc_dis") - Dene this dt property to disable
TSC syncing with PTP

‣ PTP_TSC sync K_INT value (prop name: "ptp_tsc_k_int") - The property is used to dene
the K_INT value, which is used when calculating the delta value to apply, when using
fast convergence algorithm. Minimum val: 0x0, Max val: 0x, and default val: 0x70.

‣ PTP_TSC sync LOCK_THRESHOLD value (prop name: "ptp_tsc_lock_threshold") - The
property is used to dene the LOCK_THRESHOLD value, The PTP_TSC lock is deemed
lost when the when the absolute di value exceeds this threshold value. The reset
value 0x1F correspond to 1us. Min: 0x1F(1us), max:0xFFFF(approx 2.1ms), Default:
0x26c(20us). eg: if 50us needs to be programmed, then 0x1F * 0x32(50) = 0x60E

3.8.8 TSN API
TSN is grouped into three basic key component categories required for complete real-time
communication. Multiple specications fall under these three categories.

‣ Time Synchronization i.e. 802.1AS(gPTP)

‣ Scheduling and trac shaping - i.e 802.1Qav, 802.1Qbv, 802.1Qbu/802.3br, 802.1CB
and 802.1Qci.

‣ Selection of communication paths, reservation and fault tolerance - i.e SRP (802.1Qat)
and 802.1Qcc are key standards that dene the system conguration of TSN networks.

Standards Support on Orin Software and Hardware

802.1AS YES

802.1 Qbu + 802.3br

(egress path)

YES

802.1 Qbv

(egress path)

YES

802.1 Qav (CBS)

(egress path)

YES

IEEE 802.1Qat (SRP) NO

This document provides sample application code for reference along with documenting
the ioctl interface, which can be used to write customized applications to validate TSN
specications for Linux and QNX operating systems. Sample applications are used to
congure end-to-end connections between two Ethernet interfaces

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 111

Setup and Conguration

Terminology

TC - Trac class value from 0 to 7.

GCL - gate control list, this is reliant to 802.1Qbv Specication

RQ - Frame Preemption Residue Queue. The Rx queue number to which the residual

preemption frames must be forwarded. Preemption frames that are tagged and pass the
SA/DA/VLAN ltering are routed and All other frames are treated as residual frames and
are routed to the queue number mentioned in this eld. The Queue-0 is used as a default
queue for express frames, so this eld cannot be programmed to a value 0.

APP - application

OS - Operating system

DUT - Target device

Linux OS

This section is explaining how to use driver provided private IOCTL for conguring
hardware in Linux OS.

Using IOCTL Interfaces
/* include */
#include "ether_export.h"

static int open_socket(char *ifname)
{
 int sockfd;

 sockfd = socket(PF_INET, SOCK_STREAM, 0);
 return sockfd;
}

static void close_socket(int sockfd)
{
 close(sockfd);
}

int main(int argc, char *argv[])
{

int sockfd;
static char *if_name;
struct ifreq ifr;
struct ifr_data_struct data;
struct osi_est_config cfg;

sockfd = open_socket(argv[1]);
if_name = strdup(argv[1]);

/* Update all fields of osi_est_config from user input for example..*/
cfg.en_dis = atoi(argv1);
 cfg.btr[0] = atoi(argv2);
 cfg.btr[1] = atoi(argv3);
 cfg.btr_offset[0] = atoi(argv4);

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 112

Setup and Conguration

 cfg.btr_offset[1] = atoi(argv5);
 cfg.ctr[0] = strtol(argv6, NULL, 16);
 cfg.ctr[1] = strtol(argv7, NULL, 16);

data.cmd = ETHER_EST_CFG;
data.ptr = &cfg;
strcpy(ifr.ifr_ifrn.ifrn_name, ifname);
ifr.ifr_ifru.ifru_data = &data;

 ret = ioctl(sockfd, DWC_ETH_QOS_PRV_IOCTL, &ifr);
if (ret < 0)
 printf("IOCTL Error in %s()\n",__func__);
 else
 printf("Configured successfully\n");
close_socket(sockfd);
Return ret;
}

IOCTL Supported Commands

/**
 * @addtogroup private IOCTL related info
 *
 * @brief MACRO are defined for driver supported
 * private IOCTLs. These IOCTLs can be called using
 * SIOCDEVPRIVATE custom ioctl command.
 * @{
 */
/** Line speed */
#define EQOS_GET_CONNECTED_SPEED 25
/** To set HW AVB configuration from user application */
#define ETHER_AVB_ALGORITHM 27
/** To get current configuration in HW */
#define ETHER_GET_AVB_ALGORITHM 46
/** To configure EST(802.1 bv) in HW */
#define ETHER_CONFIG_EST 49
/** For configure FPE (802.1 bu + 803.2 br) in HW */
#define ETHER_CONFIG_FPE 50
/** @} */

Data Structures

Data structure heater les are in the drive-linux/include folder.

Sample Applications

The sample applications use development utility code and should not be used for
production.

802.1Qbu + 802.3br

IEEE 802.1 Qbu stops the transmission of long, non-critical frames to prioritize time-
sensitive trac, addressing the problem of transmission hogging. A major challenge for
the timely transfer of critical messages is the presence of legacy trac sharing the same
network. Once a packet travels down a wire, it will block the wire from other packets until
the end of the packet is reached.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 113

Setup and Conguration

To counter this issue, IEEE dened two standards- IEEE 802.1Qbu and IEEE802.3br, to
support preemption. These standards, which build upon the TAS feature in 802.1Qbv, allow
devices to preempt the transmission of non-TSN Ethernet frames (often legacy trac) to
prioritize high priority frames, while allowing the remainder of the interrupted frame to be
sent later.

Syntax
.nvether_sample_app <interface name> fpe <TC preemption mask> <RQ>

Parameters

‣ TC preemption mask> - preemption- bit corresponding to TC should have value 1 else
express/default bit value 0.

‣ RQ - Residual/default queue for unltered preemptable packets.This value can be any
enabled Rx queue except rx queue 0.

Stats: ethtool -S <interface name>

‣ mmc_tx_fpe_frag_cnt - Tx fragment count

‣ mmc_tx_fpe_hold_req_cnt - Tx set-hold count

‣ mmc_rx_packet_reass_err_cnt - Rx reassembly error

‣ mmc_rx_packet_smd_err_cnt - Rx SMD error

‣ mmc_rx_packet_asm_ok_cnt - Rx assembly ok

‣ mmc_rx_fpe_fragment_cnt - Rx fragment count.

Note:

‣ Rx Queue 0 can not be RQ

‣ Please use ethtool -S <interface name> to get stats related to FPE

‣ Use the primary interface i.e eqos_0, mgbe2_0, etc. for conguration

‣ FPE and MACSEC don’t coexist incase of MGBE HW due to HW limitation.

‣ FPE is congured when peer device supports FPE and responds to verify packet(SMD-
V).

Example

‣ To set preemption for TC 1 and TC 2 - (bit value representation rep 0x6), and RQ 2

‣ nvether_sample_app <interface name> fpe 0x6 2

‣ To disable TX preemption

‣ nvether_sample_app <interface name> fpe 0x0 2

802.1Qbv

Trac scheduling allows for dierent trac classes to coexist with competing priorities on
the same network. IEEE 802.1Qbv and IEEE 802.1Qbu work together to help manage this
coexistence. IEEE 802.1 Qbv and IEEE 802.1Qbu can prioritize dierent trac classes and
enable time-sensitive data.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 114

Setup and Conguration

Devices/systems with IEEE 802.1Qbv can prioritize TSN Ethernet frames on a schedule,
while non-TSN Ethernet frames to be transmitted on a best-eort basis around the TSN
frames. The 802.1Qbv standard denes up to eight queues per port for forwarding trac
where each frame is assigned to a queue based on a QoS priority. To control the ow
of queued trac to a TSN enabled switch, this standard denes a time-aware shaper
(TAS) mechanism that moderates queue trac, preventing delays during scheduled
transmission. Put simply, a gate in front of each queue opens at a specic point in time for
time-sensitive trac over standard (non-TSN) Ethernet packets. PTP should be initialized
to make TSN working on DUT.

Syntax
nvether_sample_app <interface name> est <enable/disable> <base-time> <base-time
 offset>
 <cycle time> <number of GCL entry> <GCL-entries>

Parameters

‣ enable - 1 and disable - 0

‣ base-time <nsec> <sec> put 0 0 if not sure - Value in decimal. If both values are 0 Driver
will get PTP current time from MAC HW registers and add the base time oset into it.

‣ base-time oset <nsec> <sec> - Value decimal. This oset is given to start a new GCL
from base time value + oset.

‣ cycle time <nsec> <sec> - Value in HEX. - ONE GCL full cycle time.

‣ number of GCL entry max index 255 - value in decimal

‣ GCL entries

‣ [0x<8 bit gate mask> <24 bit interval - value in ns>]

‣ [0x<8 bit gate mask> <24 bit interval - value in ns>]

‣ :

‣ :

‣ [0x<8 bit gate mask> <24 bit interval in ns>]

Note:

‣ When EST and FPE are enabled, bit 0 of the gate mask represents set-and-hold. In this
case preemption is enabled for TC 0.

‣ When only EST is enabled, all bits of the gate mask represent open-and-close. In this
case all TC are expressed TC.

‣ Disable tx ow control, such as ethtool -A <interface name> tx o rx o autoneg o

‣ Use the primary interface, such as eqos_0, mgbe2_0 to conguration

Stats: ethtool -S <interface name>

‣ const_gate_ctr_err - CGCE error count

‣ head_of_line_blk_sch - Head of line block due to scheduling count

‣ hlbs_q[0] - Head of line block due to scheduling count for TC 0

‣ hlbs_q[1] - Head of line block due to scheduling count for TC 1

‣ hlbs_q[2] - Head of line block due to scheduling count for TC 2

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 115

Setup and Conguration

‣ hlbs_q[3] - Head of line block due to scheduling count for TC 3

‣ Hlbs_q[4] - Head of line block due to scheduling count for TC 4

‣ hlbs_q[5] - Head of line block due to scheduling count for TC 5

‣ hlbs_q[6] - Head of line block due to scheduling count for TC 6

‣ hlbs_q[7] - Head of line block due to scheduling count for TC 7

‣ head_of_line_blk_frm - Head of line block due to size count

‣ hlbf_q[0] - Head of line block due to size count for TC0

‣ hlbf_q[1] - Head of line block due to size count for TC1

‣ hlbf_q[2] - Head of line block due to size count for TC2

‣ hlbf_q[3] - Head of line block due to size count for TC3

‣ hlbf_q[4] - Head of line block due to size count for TC4

‣ hlbf_q[5] - Head of line block due to size count for TC5

‣ hlbf_q[6] - Head of line block due to size count for TC6

‣ hlbf_q[7] - Head of line block due to size count for TC7

‣ base_time_reg_err - Base time wrongly programmed in the past.

‣ sw_own_list_complete - GCL switch happens successfully. This will increase this
counter by 1.

Example

‣ Enable EST with cycle time 16,777,685 ns, 2 GCL entries where in 1st entry for TC0
open for 470 ns and in 2nd entry no gate open for 16,777,685 ns.

‣ nvether_sample_app eth1 est 1 0 0 0 10 0x10001d5 0 2 0x10001d6 0xffffff

‣ Example for FPE and EST enable with set-and-hold feature

‣ Congure FPE as mentioned in 802.1Qbu + 802.3br

‣ Congure EST with set-and-hold feature like for case “Enable EST with cycle time
16,777,685 ns, 2 GCL entries where in 1st entry for TC0 open for 470 ns with set-
and-hold bit set and in 2nd entry no gate open for 16,777,215 ns”

nvether_sample_app eth1 est 1 0 0 0 10 0x10001d5 0 2 0x30001d6 0xfffff

Check if the New GCL is Activated

GCL conguration and GCL activation are dierent. Note that programmed GCL is
activated based on base time programmed. Check the results of ethtool -S <interface
name> to check if the sw_own_list_complete value updated from the last value or if an
error counter increased.

802.1Qav

Originally developed to meet the bandwidth requirements of audio/video streams while
preserving bandwidth for best eort trac, IEEE 802.1Qav, known as Forwarding and
Queueing for Time-Sensitive Streams (FQTSS) and later integrated into 802.1Q, denes a
credit-based trac shaper for reserving bandwidth for A/V streams in a bridged network.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 116

Setup and Conguration

In bridges, reserved A/V stream trac is prioritized over best eort trac as long as
sucient credits are available to transmit the higher-priority A/V data. As with end
stations sourcing stream data, the credit-based trac shaper results in stream data
distributed evenly across a bridged network over time

.

Syntax

nvether_sample_app <interface name> avb <qinx> <algorithm_value> <bw>
 <credit_control> <tcinx>

Parameters

‣ qinx - Tx Queue index

‣ algorithm value

‣ 0 - Default (strict priority for EQOS and EST for MGBE)

‣ 1 - CBS (credit based shaper)

‣ bw - Value in terms of percentage of bandwidth to be allocated (1-100)

‣ credit_control

‣ 0 - disabled credit_control. The credit accumulates even when there is no packet
waiting in TC<n> and another TC is transmitting.

‣ 1 - enabled credit_control. When there is no packet waiting in TC<n> and other TC is
transmitting, no credit is accumulated.

‣ tcinx - TC mapping for <qinx>

Note:

‣ credit_control is applicable for cbs only. CBS conguration is per TC.

‣ Use the primary interface, such as eqos_0, mgbe2_0 for conguration.

Example

‣ ‣ Give 20 % bandwidth to TxQ/TC 2.

nvether_sample_app <interface name> avb 2 1 20 1 2

‣ Reset to default tx selection algorithm for TxQ/TC 2

nvether_sample_app <interface name> avb 2 0 20 1 2

VLAN(802.1Q)

In Linux, to create VLAN and MAP the ingress and egress priority to SKB priority following
Linux standard tools and utilities can be used. Example commands are as follows:

ip link add link eth0 name eth0.5 type vlan id 5
ip addr add 10.0.1.6/24 brd 10.0.1.255 dev eth0.5
ip link set dev eth0.5 up

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 117

Setup and Conguration

ip link add link eth0 name eth0.5 type vlan id 5 egress 0:1 1:2 4:4

In the previous command, the internal skb prio 0 is mapped to VLAN prio 1, skb prio 1 to
VLAN prio 2 and 4 to 4.

You can also use in built application vcong such as vconfig set_egress_map [vlan-
name] [skb_priority] [vlan_qos]

PTP (802.1AS) - 2 step PTP

Nodes in the TSN network communicate with each other in real time and need a shared
understanding of time to agree on corrective actions, recognize each other’s state, and
cooperate together.

The IEEE 802.1AS project created a prole of the IEEE 1588 PTP synchronization protocol
for TSN. This prole will enable clock synchronization compatibility between dierent
TSN devices. 802.1AS also addresses support for fault tolerance and multiple active
synchronization masters.

3.8.9 FRP (Flexible Receive Parser) Validation
This section explains how to enable an in-built programmable parser to parse the received
Ethernet packet and provide an interface for users to congure rules in the parser.

The sample(QM) application shows how to congure parser rules for user-dened actions
matched Rx packets.

FRP (Flexible Receive Parser)

The MAC hardware controller has an in-built programmable parser to parse the Ethernet
packet based on a software-controlled/programmable rule-set. This supports ltering
and packet steering decisions (DMA channel selection) of the received packet based on
any header eld, 64/124 bytes from SOF (start of frame), of existing protocols or custom
and future protocols. The parser uses a software programmed lookup table that contains
instructions and ltering and routing decisions taken by the controller on the received
packets.

Note: When FRP-based routing is enabled, MAC, RSS and IP based routing will not apply.
Create FRP rules for any such added routing rules.

Scope

There is a designated interface for FRP conguration, such as default 0, and this dedicated
instance can congure any physical MAC controller instance of that hardware.

Abbreviations

‣ FRP -Flexible Receive Parser

‣ MAC - Medium access control

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 118

Setup and Conguration

‣ MAC - Medium access control

‣ RSS - Receive side scaling

‣ IP - Internet protocol

‣ DUT - Device under test

‣ OK index(OKI)

‣ NIC - Next Instruction Control.

 if (NIC==0) continue parse from OK Index
 else /*(NIC ==1)*/ continue sequentially (parse the next entry in the instruction
 table)

‣ L2 Filter - Layer 2 MAC address lter

Linux OS

Note: The sample application is for development purposes and not for production.

Linux nvether_sample_app utility

QM sample application binary for Nvidia DUT (nvether_sample_app)

‣ Part of SDK release for reference

To check the version:
./nvether_sample_app

Look for string such as Version(4), which means 4.

FRP_ADD Command Syntax

AV+L:

nvether_sample_app <primary interface> frp_add <ID> <Match> <Type> <Filter Mode>
 <Offset> <OKI> <DMASel>

Parameters

‣ Id - FRP table ID to add (0 to 255)

‣ Match - Match data is used for comparing

‣ MAX 12 bytes data

‣ Type - Match data type

‣ 0 - Normal data

‣ 1 - L2 DA MAC

‣ 2 - L2 SA MAC

‣ 3 - L3 Source IP

‣ 4 - L3 Destination IP

‣ 5 - L4 UDP Source Port

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 119

Setup and Conguration

‣ 6 - L4 UDP Destination Port

‣ 7 - L4 TCP Source Port

‣ 8 - L4 TCP Destination Port

‣ 9 - VLAN Tag

‣ Mode - Filter mode for the entry

‣ 0 - Accept and route

‣ 1 - Reject and Drop

‣ 2 - Accept and Bypass FRP Route

‣ 3 - Link to OK Index

‣ 4 - Inverse the Match, Accept and route

‣ 5 - Inverse the Match, Reject and Drop

‣ 6 - Inverse the Match, Accept and Bypass FRP Route

‣ 7 - Inverse the Match, Link to OK Index

‣ Oset - Frame oset of Match data

‣ OKI - When NIC set give the value for Next Instruction

‣ DMASel - Bit selection of DMA channels to route the frame

‣ Bit[0] - DMA channel 0

‣ ...

‣ Bit [N] - DMA channel N]

‣ Max N for EQOS HW is 7

‣ Max N for MGBE is 9

Note: Packet duplication to multiple DMA channels works only for MC/BC packets and
Highest RxQ needs to be enabled on the DT. Highest queue (Rx queue 9 for MGBE and Rx
queue 7 for Orin platform)

Example

1. Add FRP rule to accept and route packets from 192.168.1.100

nvether_sample_app <primary interface> frp_add 0 C0A80164 4 0 0 0 1

2. Add FRP rule to reject and drop packets from 192.168.1.100

nvether_sample_app <primary interface> frp_add 0 C0A80164 4 1 0 0 1

FRP_UPDATE Command Syntax

AV+L:

nvether_sample_app <primary interface> frp_update <ID> <Match> <Type> <Filter Mode>
<Oset> <OKI> <DMASel>

‣ Id - FRP table ID to add (0 to 255)

‣ Match - Match data is used for comparing

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 120

Setup and Conguration

‣ MAX 12 bytes data

‣ Type - Match data type

‣ 0 - Normal data

‣ 1 - L2 DA MAC

‣ 2 - L2 SA MAC

‣ 3 - L3 Source IP

‣ 4 - L3 Destination IP

‣ 5 - L4 UDP Source Port

‣ 6 - L4 UDP Destination Port

‣ 7 - L4 TCP Source Port

‣ 8 - L4 TCP Destination Port

‣ 9 - VLAN Tag

‣ Mode - Filter mode for the entry

‣ 0 - Accept and route

‣ 1 - Reject and Drop

‣ 2 - Accept and Bypass FRP Route

‣ 3 - Link to OK Index

‣ 4 - Inverse the Match, Accept and route

‣ 5 - Inverse the Match, Reject and Drop

‣ 6 - Inverse the Match, Accept and Bypass FRP Route

‣ 7 - Inverse the Match, Link to OK Index

‣ Oset - Frame oset of Match data

‣ OKI - When NIC set give the value for Next Instruction

‣ DMASel - Bit selection of DMA channels to route the frame

‣ Bit[0] - DMA channel 0

‣ ...

‣ Bit [N] - DMA channel N]

‣ Max N for EQOS HW is 7

‣ Max N for MGBE is 9

Note: The Multiple DMA channel selection only works for MC/BC packets and Highest RxQ
needs to be enabled on the DT. Highest queue (9 for MGBE and 7 for Orin platform)

Example

1. Add FRP rule to accept and route packets from 192.168.1.100

nvether_sample_app <primary interface> frp_add 0 C0A80164 4 0 0 0 1

2. Update FRP rule to reject and drop packets from 192.168.1.100

nvether_sample_app <primary interface> frp_update 0 C0A80164 4 1 0 0 1

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 121

Setup and Conguration

FRP_DEL Command Syntax

AV+L

./nvether_sample_app <primary interface> frp_del <ID>

Parameters

‣ Id - FRP table ID to add (0 to 255)

Example

‣ Delete FRP rule at ID 0.

nvether_sample_app <primary interface> frp_del 0

Additional Example Syntax

L2 DA accept Filtering and DMA route

‣ Delete Old FRP entries with frp_del command

nvether_sample_app <primary interface> frp_del 0

‣ Add FRP rule to ADD DA f2:3b:00:06:87::

nvether_sample_app <primary interface> frp_add 0 f23b000687ff 1 0 0 0 0x10

L2 DA Reject Filtering and DMA route

‣ Add FRP rule to ADD DA f2:3b:00:06:87::

nvether_sample_app <primary interface> frp_update 0 f23b000687ff 1 1 0 0 0x10

L2 MC DA Accept Filtering and Multiple DMA Channels Route

‣ DUT side Add/Update FRP rule to MC MAC 01:00:5E:01:01:01

1. nvether_sample_app <primary interface> frp_update 0 01005E010101 1 0 0 0 0x3FF

L2 MC DA Reject Filtering

‣ DUT side Add/Update FRP rule to MC MAC 01:00:5E:01:01:01

nvether_sample_app <primary interface> frp_update 0 01005E010101 1 1 0 0 0x3FF

L2 BC DA Accept Filtering and Multiple DMA Channels

‣ DUT side Add/Update FRP rule for BC MAC FF:FF:FF:FF:FF:FF

nvether_sample_app <primary interface> frp_update 0 FFFFFFFFFFFF 1 0 0 0 0x3FF

L2 BC DA Reject Filtering

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 122

Setup and Conguration

‣ DUT side Add/Update FRP rule for BC MAC FF:FF:FF:FF:FF:FF

nvether_sample_app <primary interface> frp_update 0 FFFFFFFFFFFF 1 1 0 0 0x3FF

L2 SA Reject ltering

‣ DUT side Add/Update FRP table 0 and 1 entry to ADD SA <<00:17:b6:00:00:00>>

nvether_sample_app <primary interface> frp_update 0 <<0017b6000000>> 2 1 0 0 0x8

L3 SA IP Reject ltering

‣ DUT Side Add/Update FRP table entry 0 and 1 for Source IP 192.168.1.3

nvether_sample_app <primary interface> frp_update 0 C0A80103 3 1 0 0 0x2

Enable VLAN accept ltering using FRP command

nvether_sample_app <primary interface> frp_update 0 0005 9 0 0 0 0x2

Enable VLAN reject ltering FRP commands

nvether_sample_app <primary interface> frp_update 0 0005 9 1 0 0 0x2

L2 DA + L2 SA accept Filtering and DMA route

‣ Add FRP rule for L2 DA <<f2:3b:00:06:87:>> L2 SA and link both rules:

‣ nvether_sample_app <primary interface> frp_add 0 <f23b000687ff> 1 0 0 0 0x10

‣ nvether_sample_app <primary interface> frp_add 1 <f23b000687ff> 2 0 0 0 0x10

‣ nvether_sample_app <primary interface> frp_update 0 <f23b000687ff> 1 4 0 0 0x10

L2 DA + L2 SA Reject Filtering

‣ Add FRP rule for L2 DA <<f2:3b:00:06:87:>> L2 SA and link both rules:

‣ nvether_sample_app <primary interface> frp_add 0 <f23b000687ff> 1 0 0 0 0x10

‣ nvether_sample_app <primary interface> frp_add 1 <f23b000687ff> 2 1 0 0 0x10

‣ nvether_sample_app <primary interface> frp_update 0 <f23b000687> 1 4 0 0
0x10

L2 Address Filter Command Syntax

AV+L
nvether_sample_app <interface name> l2_filter <filter_no> <enable/disable> <mac addr>
 Filter_no
 Index 0 to 31.
 enable/disable
 0 - to disable filter, 1 - to enable filter\n"

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 123

Setup and Conguration

 mac addr - MAC address(Ex - 94:18:82:71:ae:1d)]\n"

Note:

‣ Rx Packets are routed to the DMA channel, which is bound to the interface used for
conguration.

‣ This feature can be used only with Ethernet virtualization enabled.

‣ As there are multiple default L2 addresses congured, use index numbers in reverse
order reverse, such as 31, 30, 29, to avoid overwriting.

Example

‣ To add/enable AA:10:18:2b:8f:8a at index 9

‣ eqos_0 l2_filter 9 1 AA:10:18:2b:8f:8a

‣ To delete/disable AA:10:18:2b:8f:8a at index 9

‣ eqos_0 l2_filter 9 0 AA:10:18:2b:8f:8a

3.8.10 Marvell Switch Firmware Management
The following table describes Marvell switch current rmware versions on the switches.:

Platform Switch Version Firmware Name
Function
supported

P3663 Oak/88Q5072 0.07.1186.01 P3663_88Q5072_ash.v0.07.1186.01.binAVNU CDS 1.6
PTP enabled as
per role described
in PTP section

Oak/88Q5072 0.07.1186.01 P3663_88Q5072_ash.v0.07.1186.01.binAVNU CDS 1.6
PTP enabled as
per role described
in PTP section

P3710

Spruce/88Q6113 0.07.1186.01 P3710_88Q6113_ash.v0.07.1186.01.binAVNU CDS 1.6
PTP enabled as
per role described
in PTP section

Switch rmware update from Orin over Ethernet

Starting in 6.0.0.1, Its possible to update the Marvell switch rmware from Orin through
"update_rmware.sh" script packaged in le system. Silent feature of update process/
framework is as below:

‣ Automatic upgrade is by default enabled in AV+L standard build only through boot-up
script.

‣ Manual force upgrade/downgrade is also possible via scripts in AV+L, AV+Q & AV+Q+Q
standard builds.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 124

Setup and Conguration

‣ Provision to get the current ashed rmware is also possible via script.

Note: Aurix MCU must be pre-ashed with rmware version >= 6.0.0.1.

Manual up-grade/de-grade the rmware

For manual up-grade/de-grade, dierent scripts are provided per switch, Firmware binaries
to be used for this purpose can be found in /lib/firmware/marvell_ethernet. Following
are the command references and their locations.

//P3663 - Oak
$sudo /bin/bash /lib/firmware/marvell_ethernet/driveota/P3663_88Q5072.sh --Install
 <FW>

//P3710 - Oak
$sudo /bin/bash /lib/firmware/marvell_ethernet/driveota/P3710_88Q5072.sh --Install
 <FW>

//P3710 - Spruce
$sudo /bin/bash /lib/firmware/marvell_ethernet/driveota/P3710_88Q6113.sh --Install
 <FW>

Print current ashed rmware version:

//P3663 - Oak
$sudo /bin/bash /lib/firmware/marvell_ethernet/driveota/P3663_88Q5072.sh --
GetCurrentVersion

//P3710 - Oak
$sudo /bin/bash /lib/firmware/marvell_ethernet/driveota/P3710_88Q5072.sh --
GetCurrentVersion

//P3710 - Spruce
$sudo /bin/bash /lib/firmware/marvell_ethernet/driveota/P3710_88Q6113.sh --
GetCurrentVersion

Note:

1. Newly installed rmware will take aect only after aurix is power cycled (As aurix
resets the switch)

2. It is not recommended to update the switch rmware manually unless absolutely
required or informed by NVIDIA

3. Its advised to run the script intended for a specic board on that board only(ex: Run
P3710_88Q6113.sh on P3710 only) as the recovery from rmware corruption cannot
be done without manually ashing using JATG

4. File format of the rmware binary to be provided as input to "–Install" is xed. Please
refer SWITCH_FW_FORMAT from <board>_<switch>.sh (ex:P3663_88Q5072.sh). Binary
provided in any other format will be rejected.

5. Output of "GetCurrentVersion" follows following format.

x.xx.xxxx.xx

0.07.1186.01

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 125

Setup and Conguration

3.8.11 PCIe Ethernet
PCIe Ethernet(LAN7431) is a 1G interface to be used only for development purpose like
drive OTA update and others.

The interface is available on both P3663 and P3710.

Since its only used for development purposes, PTP support is not used/veried on this
interface.

The LAN7431 interface enumerates as enP7p1s0

3.8.12 Marvel 88Q4364 PHY Firmware Update
Prerequisite: ensure the interface is up before you start rmware ash.

To ash the latest rmware version, go to the rmware ashing tool path:/lib/firmware/
marvell_ethernet/88Q4364/

Flash, as follows:

./lib/firmware/marvell_ethernet/88Q4364/flash_4364 --install mgbe0_0
 Arc-7.1.8.fw.image-ARC_9KB_nvidia_Main_MSMode-GPIO_ID58_VER2031.nvm.bin

Once ashed, check the version number:

./lib/firmware/marvell_ethernet/88Q4364/flash_4364 --GetCurrentVersion mgbe0_0

3.8.13 MACsec Overview
The IEEE 802.1AE MACsec standard and its amendments provide the infrastructure for
secure L2 network communication, oering authentication and condentiality of the data
communicated between two peers on the network.

The NVIDIA MACsec(NvMACsec) implementation for Orin has two (2) major entities: KaY
entity (IEEE 802.1x standard) and SecY entity (IEEE 802.1AE standard). In NvMACsec, KaY
entity is implemented in nv_macsec_wpa_supplicant application and SecY entity is part of
the MACsec hardware. The NvMACsec nv_macsec_wpa_supplicant tool implemented using
open source wpa_supplicant version 2.10 and supports:

‣ Authentication only, no condentiality

‣ Either GCM-AES-128 or GCM-AES-256 at a time

‣ 32-bit Packet number and does not support Extended Packet Number (64-bit PN)

NvMACsec is enabled by default in the ethernet DT variable “nvidia,macsec-enable =
<0x1>”. When enabled, ethernet MTU size is reduced by 34 bytes to accommodate MACsec
related headers.

NvMACsec can be used on Orin by launching a supplicant process in the background using
below command with root privileges. NvMACsec supplicant process must not be killed
abruptly and can be gracefully terminated with SIGINT(Ctrl+C) signal. In QNX, the below

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 126

Setup and Conguration

command can be prepended with SOCK=<sock_variable> to run the supplicant application
on a specic interface, the same can be applied to run the supplicant on Guest OS0 or
Guest OS1:
nv_macsec_wpa_supplicant -i <interface_name> -D nv_macsec -c
 nv_wpa_supplicant_macsec.conf &

The example below adds launch of supplicant from bootup scripts in QNX.
eqos_1_09: eqos_1_09 {
 cmd = "iolauncher -U
 3333:3333,3660,3500,3350,3775,3640,2280,3000,2281,2282,2283,3780,3790,6025,6026,40002,40006,40007,45011,45037,45057,45066,45071,45040,40037,45112
 --secpol-type supplicant_launch_t --set-var SOCK=/eqos_1 nv_macsec_wpa_supplicant -i
 eqos_1 -D nv_macsec -c /etc/nv_wpa_supplicant_macsec_template.conf";
 sc7 = "restart";
 critical_process = "no";
 heartbeat = "no";
 oneshot = "no";
};

The contents of template conf le (nv_wpa_supplicant_macsec.conf):
eapol_version=3
ap_scan=0
network={
 key_mgmt=NONE
 eapol_flags=0
 mka_priority=16
 macsec_policy=1
 macsec_integ_only=1
 macsec_cak_len=16
 mka_cak_pkcs_id=MACSEC_CAK_eqos_0
 mka_ckn=112233445566778899AABBCCDDEEFF112233445566778899AABBCCDDEEFF1122
}

key_mgmt: Don’t change the default value

eapol_ags: Don’t change the default value

mka_priority : It is the MKA key server priority. Lower the value, higher is the key server
priority.

macsec_policy: Flag to enable or disable MACsec. Make sure to set it to 1 for MACsec to
be enabled.

macsec_integ_only: Flag to specify if encryption/integrity check to be enabled only. Orin
doesn’t support encryption. Make sure to set it to 1 for Nvmacsec.

macsec_cak_len: Length of the CAK in bytes programmed in secure storage.

mka_cak_pkcs_id: PKCS ID used while programming the CAK in secure storage. The
NvMACsec will retrieve CAK handle from securely stored CAK using pkcs11 api’s. Details
on programing the CAK to secure storage can be referred from “Provisioning PKCS#11 Key
Objects” section under “Understanding Security” chapter of PDK.

mka_ckn: Any 32 byte network name used while forming the SC.

macsec_cs_index: If the DUT is the key server this parameter is used to decide the
cipher suite. This parameter 0 is congured to 0 to select GCM_AES_128, 1 to select
GCM_AES_256

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 127

Setup and Conguration

macsec_pn_exhaustion: If the DUT is the key server this parameter is used to program the
number of frames after which Re-Keying needs to be initiated.

For debugging, NvMACsec driver supports the error counters and functional stats with
applications. The stats can be obtained by issuing DEVCTLs with below details:
msg.i.dcmd= SIOCGDRVSPEC

ifd.ifd_cmd = NV_MACSEC_DBG_CMD_READ_IRQ_STATS macro in nv_macsec.h for error stats
of MACSEC.

The following details MACsec IRQ counters:
 /** Tx debug buffer capture done */
 nveu64_t tx_dbg_capture_done;
 /** Tx MTU check failed */
 nveu64_t tx_mtu_check_fail;
 /** Tx MAC CRC err */
 nveu64_t tx_mac_crc_error;
 /** Tx SC AN not valid */
 nveu64_t tx_sc_an_not_valid;
 /** Tx AES GCM buffer overflow */
 nveu64_t tx_aes_gcm_buf_ovf;
 /** Tx LUT lookup miss */
 nveu64_t tx_lkup_miss;
 /** Tx uninitialized key slot */
 nveu64_t tx_uninit_key_slot;
 /** Tx PN threshold reached */
 nveu64_t tx_pn_threshold;
 /** Tx PN exhausted */
 nveu64_t tx_pn_exhausted;
 /** Tx debug buffer capture done */
 nveu64_t rx_dbg_capture_done;
 /** Rx ICV error threshold */
 nveu64_t rx_icv_err_threshold;
 /** Rx replay error */
 nveu64_t rx_replay_error;
 /** Rx MTU check failed */
 nveu64_t rx_mtu_check_fail;
 /** Rx MAC CRC err */
 nveu64_t rx_mac_crc_error;
 /** Rx AES GCM buffer overflow */
 nveu64_t rx_aes_gcm_buf_ovf;
 /** Rx LUT lookup miss */
 nveu64_t rx_lkup_miss;
 /** Rx uninitialized key slot */
 nveu64_t rx_uninit_key_slot;
 /** Rx PN exhausted */
 nveu64_t rx_pn_exhausted;
 /** Secure reg violation */
 nveu64_t secure_reg_viol;

ifd.ifd_cmd = NV_MACSEC_DBG_CMD_READ_MMC_CNTRS macro in nv_macsec.h for functional
stats of MACsec.

The following details MACsec MMC counters:
 /** This counter provides the number of controller port macsec
 * untaged packets */
 nveul64_t rx_pkts_no_tag;
 /** This counter provides the number of controller port macsec
 * untaged packets validateFrame != strict */
 nveul64_t rx_pkts_untagged;
 /** This counter provides the number of invalid tag or icv packets */
 nveul64_t rx_pkts_bad_tag;

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 128

Setup and Conguration

 /** This counter provides the number of no sc lookup hit or sc match
 * packets */
 nveul64_t rx_pkts_no_sa_err;
 /** This counter provides the number of no sc lookup hit or sc match
 * packets validateFrame != strict */
 nveul64_t rx_pkts_no_sa;
 /** This counter provides the number of late packets
 *received PN < lowest PN */
 nveul64_t rx_pkts_late[16];
 /** This counter provides the number of overrun packets */
 nveul64_t rx_pkts_overrun;
 /** This counter provides the number of octets after IVC passing */
 nveul64_t rx_octets_validated;
 /** This counter provides the number not valid packets */
 nveul64_t rx_pkts_not_valid[16];
 /** This counter provides the number of invalid packets */
 nveul64_t in_pkts_invalid[16];
 /** This counter provides the number of in packet delayed */
 nveul64_t rx_pkts_delayed[16];
 /** This counter provides the number of in packets un checked */
 nveul64_t rx_pkts_unchecked[16];
 /** This counter provides the number of in packets ok */
 nveul64_t rx_pkts_ok[16];
 /** This counter provides the number of out packets untaged */
 nveul64_t tx_pkts_untaged;
 /** This counter provides the number of out too long */
 nveul64_t tx_pkts_too_long;
 /** This counter provides the number of out packets protected */
 nveul64_t tx_pkts_protected[16];
 /** This counter provides the number of out octets protected */
 nveul64_t tx_octets_protected;

3.8.14 Layer-2 Bridge in Orin
DRIVE OS supports low bandwidth layer-2 network bridge between 2 or more Tegra
ethernet MACs using ethernet MAC HW virtualization, ethernet MAC HW Flexible Receive
Parser (FRP) features and brctl (from bridge-utils package in Linux).

The Layer-2 bridge is in "deny all" mode for all unicast & multicast packets. To allow packets
through this bridge, FRP rules need to be programmed in the ethernet MAC.

A Layer-2 bridge is already deployed (without FRP rules) in NDAS usecase (starting 6.0.7.0)
between MGBE2 & EQOS ethernet MAC. The block diagram is shown below.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 129

Setup and Conguration

Creating the Bridge

To create the bridge:

1. Virtualize the MAC interfaces using the steps mentioned in "Ethernet VF conguration"
section under Networking

2. Enable creating of Layer 2 nw bridge by updating the device tree with device node '
ndas_nw_bridge ' and ' status = "okay".

3. Create the Layer 2 bridge interface and add the interfaces using brctl (from bridge-utils
package utility).

4. Assign zero IP address to the interfaces participating in bridge function.
5. Set up FRP rules to allow packets through the Layer-2 bridge. Refer below section for

setting up FRP rules.

FRP Rules Setup Examples

This Layer-2 bridging solution requires combination of Layer-2 Destination Addr ltering
rules and FRP rules in HW MACs participating in the bridging.

Prerequisites

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 130

Setup and Conguration

‣ ‣ A sample tool named nvether_sample_appneeds to be generated based on
Networking header les packaged in include path of AV+L DRIVE OS SDK package,
The tool is required to congure the FRP Rules and L2 lter rules.

‣ Following parameters need to be congured statically.

‣ MAC address of devices connected across the layer-2 bridge.

‣ Multicast addresses based on use case.

Refer to the Exported Networking element APIs in API reference section for the list of
IOCTLs used by sample tool.

Example setup details:

Interface Name MAC IP

Host1 (host1_eth0) b2:fc:eb:b3:f6:90 192.168.90.10

Host2 (host2_eth0) 8a:05:14:b6:23:01 192.168.100.10

MGBE2_0 7e:98:e2:75:ee:56 192.168.90.20

MGBE2_1 7e:98:e2:75:ee:57 192.168.90.40

EQOS_0 ca:46:a3:f7:fc:16 192.168.100.20

EQOS_1 ca:46:a3:f7:fc:17 192.168.100.40

Note: All MAC addresses in the table above are randomly generated.

Setup routing rules on Linux hosts

Example Use Cases

Add MAC L2 lter rule to allow packets to reach FRP engine of the ethernet MAC interface.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 131

Setup and Conguration

Use case 1: Allow ping through the bridge using unicast MAC DA based lter.

Once the rules are set. Ping Host2 from Host1 and vice versa. Ping should pass.

Use case 2: Allow Multicast packets through the bridge using Multicast DA based lter.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 132

Setup and Conguration

Once the rules are set, start the application to send packets with MC MAC DA addr as
01:00:5E:00:00:C8 on Host1 and on Host2 observe the MC packets reaching it using
capture tool and vice versa.

For more details on FRP rules, refer to FRP Validation under Networking.

Limitations

‣ All interfaces used across the layer-2 bridge must have same MTU size congured.
Packets transmitted by devices must be limited to the congured MTU size.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 133

Setup and Conguration

‣ This solution is designed to support only low bandwidth use cases like Diagnostics
System, etc. needed only in non mission mode.

‣ The design assumption that both virtual interfaces added to the Layer-2 bridge are
owned by a single VM.

3.8.15 TSN API
TSN is grouped into three basic key component categories that are required for complete
real-time communication. There are multiple specications that come under these 3
categories:

1. Time Synchronization i.e. 802.1AS(gPTP)
2. Scheduling and trac shaping - i.e., 802.1Qav, 802.1Qbv, 802.1Qbu/802.3br, 802.1CB

and 802.1Qci.
3. Selection of communication paths, reservation and fault tolerance - i.e., SRP (802.1Qat)

and 802.1Qcc are key standards that dene the system conguration of TSN networks.

Standards Support on Orin SW + HW

802.1AS YES

802.1 Qbu + 802.3br

(egress path)

YES

802.1 Qbv

(egress path)

YES

802.1 Qav (CBS)

(egress path)

YES

IEEE 802.1Qat (SRP) NO

This chapter provides sample application code for reference and documents the
ioctl interface, which can be used to write customized applications to validate TSN
specications for Linux and QNX OS. Sample applications are used to congure end-to-end
connection between 2 Ethernet interfaces.

Important Terms

Table 2.
Term Description

TC Trac class value from 0 to 7

GCL Gate control list (this is reliant to 802.1Qbv
specication)

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 134

Setup and Conguration

Term Description

RQ
Frame Preemption Residue Queue. The Rx queue
number to which the residual

preemption frames must be forwarded.
Preemption frames that are tagged and pass
the SA/DA/VLAN ltering are routed and All
other frames are treated as residual frames
and are routed to the queue number mentioned
in this eld. The Queue-0 is used as a default
queue for express frames, so this eld cannot be
programmed to a value 0.

APP Application

OS Operating system

DUT Target device

3.8.15.1 IOCTL Interfaces
This chapter explains how to use driver provided private IOCTL for conguring hardware in
Linux OS.

How to Use IOCTL Interfaces

/* include */
#include "ether_export.h"

static int open_socket(char *ifname)
{
 int sockfd;

 sockfd = socket(PF_INET, SOCK_STREAM, 0);
 return sockfd;
}

static void close_socket(int sockfd)
{
 close(sockfd);
}

int main(int argc, char *argv[])
{

int sockfd;
static char *if_name;
struct ifreq ifr;
struct ifr_data_struct data;
struct osi_est_config cfg;

sockfd = open_socket(argv[1]);
if_name = strdup(argv[1]);

/* Update all fields of osi_est_config from user input for example..*/
cfg.en_dis = atoi(argv1);
 cfg.btr[0] = atoi(argv2);

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 135

Setup and Conguration

 cfg.btr[1] = atoi(argv3);
 cfg.btr_offset[0] = atoi(argv4);
 cfg.btr_offset[1] = atoi(argv5);
 cfg.ctr[0] = strtol(argv6, NULL, 16);
 cfg.ctr[1] = strtol(argv7, NULL, 16);

data.cmd = ETHER_EST_CFG;
data.ptr = &cfg;
strcpy(ifr.ifr_ifrn.ifrn_name, ifname);
ifr.ifr_ifru.ifru_data = &data;

 ret = ioctl(sockfd, DWC_ETH_QOS_PRV_IOCTL, &ifr);
if (ret < 0)
 printf("IOCTL Error in %s()\n",__func__);
 else
 printf("Configured successfully\n");
close_socket(sockfd);
Return ret;
}

Supported IOCTL Commands

/**
 * @addtogroup private IOCTL related info
 *
 * @brief MACRO are defined for driver supported
 * private IOCTLs. These IOCTLs can be called using
 * SIOCDEVPRIVATE custom ioctl command.
 * @{
 */
/** Line speed */
#define EQOS_GET_CONNECTED_SPEED 25
/** To set HW AVB configuration from user application */
#define ETHER_AVB_ALGORITHM 27
/** To get current configuration in HW */
#define ETHER_GET_AVB_ALGORITHM 46
/** To configure EST(802.1 bv) in HW */
#define ETHER_CONFIG_EST 49
/** For configure FPE (802.1 bu + 803.2 br) in HW */
#define ETHER_CONFIG_FPE 50
/** @} */

Data Structures

Data structure is part of the drive-linux/include/ folder.

3.8.15.2 Sample Application
Note: This is sample development utility code and reference for development and must
not be used in production.

802.1Qbu + 802.3br

IEEE 802.1 Qbu stops the transmission of long, non-critical frames to prioritize time-
sensitive trac, addressing the problem of transmission hogging. A major challenge for
the timely transfer of critical messages is the presence of legacy trac sharing the same

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 136

Setup and Conguration

network. Once a packet travels down a wire, it will block the wire from other packets until
the end of the packet is reached.

To counter this issue, IEEE dened two standards- IEEE 802.1Qbu and IEEE802.3br, to
support preemption. These standards, which build upon the TAS feature in 802.1Qbv, allow
devices to preempt the transmission of non-TSN Ethernet frames (often legacy trac) to
prioritize high priority frames, while allowing the remainder of the interrupted frame to be
sent later.

Syntax
nvethernet_sample <interface name> fpe <TC preemption mask> <RQ>

Parameters

‣ TC preemption mask : preemption-bit corresponding to TC should have value 1 else
express/default bit value 0.

‣ RQ : Residual/default queue for unltered preemptable packets.This value can be any
enabled Rx queue except rx queue 0.

Stats: ethtool -S <interface name>

‣ mmc_tx_fpe_frag_cnt - Tx fragment count

‣ mmc_tx_fpe_hold_req_cnt - Tx set-hold count

‣ mmc_rx_packet_reass_err_cnt - Rx reassembly error

‣ mmc_rx_packet_smd_err_cnt - Rx SMD error

‣ mmc_rx_packet_asm_ok_cnt - Rx assembly ok

‣ mmc_rx_fpe_fragment_cnt - Rx fragment count.

Note:

‣ Rx Queue 0 can't be RQ
‣ Please use nvethernet_sample <interface name> mmc_stats to get stats

related to FPE
‣ Use the primary interface i.e eqos_0, mgbe2_0, etc. for conguration
‣ FPE and MACSEC don’t coexist incase of MGBE HW due to HW limitation.
‣ FPE get congured when peer device supports FPE and responds to verify

packet(SMD-V).

For example:

‣ To set preemption for TC 1 and TC 2 - (bit value representation rep 0x6), and RQ 2:
nvether_sample_app <interface name> fpe 0x6 2

‣ To disable TX preemption:
nvether_sample_app <interface name> fpe 0x0 2

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 137

Setup and Conguration

802.1Qbv

Trac scheduling allows for dierent trac classes to coexist with competing priorities on
the same network. IEEE 802.1Qbv and IEEE 802.1Qbu work together to help manage this
coexistence. IEEE 802.1 Qbv and IEEE 802.1Qbu can prioritize dierent trac classes and
enable time-sensitive data.

Devices/systems with IEEE 802.1Qbv can prioritize TSN Ethernet frames on a schedule,
while non-TSN Ethernet frames to be transmitted on a best-eort basis around the TSN
frames. The 802.1Qbv standard denes up to eight queues per port for forwarding trac
where each frame is assigned to a queue based on a QoS priority. To control the ow
of queued trac to a TSN enabled switch, this standard denes a time-aware shaper
(TAS) mechanism that moderates queue trac, preventing delays during scheduled
transmission. Put simply, a gate in front of each queue opens at a specic point in time for
time-sensitive trac over standard (non-TSN) Ethernet packets. PTP should be initialized
to make TSN working on DUT.

Syntax
nvether_sample_app <interface name> est <enable/disable> <base-time> <base-time
 offset>
 <cycle time> <number of GCL entry> <GCL-entries>

Parameters

‣ ‣ enable - 1 and disable - 0

‣ base-time <nsec> <sec> put 0 0 if not sure - Value in decimal. If both values are
0 Driver will get PTP current time from MAC HW registers and add the base time
oset into it.

‣ base-time oset <nsec> <sec> - Value decimal. This oset is given to start a new
GCL from base time value + oset.

‣ cycle time <nsec> <sec> - Value in HEX. - ONE GCL full cycle time.

‣ number of GCL entry max index 255 - value in decimal

‣ GCL entries:

‣ [0x<8 bit gate mask> <24 bit interval - value in ns>]

‣ [0x<8 bit gate mask> <24 bit interval - value in ns>]

‣ :

‣ :

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 138

Setup and Conguration

‣ [0x<8 bit gate mask> <24 bit interval in ns>]

Note:

‣ When EST and FPE are enabled, bit 0 of the gate mask represents set-and-
hold. In this case preemption is enabled for TC 0.

‣ When only EST is enabled, all bits of the gate mask represent open-and-close.
In this case all TC are expressed TC.

‣ Disable Tx ow control from device tree.
‣ Use the primary interface i.e eqos_0, mgbe2_0, etc. for conguration.

Stats: ethtool -S <interface name>

‣ const_gate_ctr_err - CGCE error count

‣ head_of_line_blk_sch - Head of line block due to scheduling count

‣ hlbs_q[0] - Head of line block due to scheduling count for TC 0

‣ hlbs_q[1] - Head of line block due to scheduling count for TC 1

‣ hlbs_q[2] - Head of line block due to scheduling count for TC 2

‣ hlbs_q[3] - Head of line block due to scheduling count for TC 3

‣ Hlbs_q[4] - Head of line block due to scheduling count for TC 4

‣ hlbs_q[5] - Head of line block due to scheduling count for TC 5

‣ hlbs_q[6] - Head of line block due to scheduling count for TC 6

‣ hlbs_q[7] - Head of line block due to scheduling count for TC 7

‣ head_of_line_blk_frm - Head of line block due to size count

‣ hlbf_q[0] - Head of line block due to size count for TC0

‣ hlbf_q[1] - Head of line block due to size count for TC1

‣ hlbf_q[2] - Head of line block due to size count for TC2

‣ hlbf_q[3] - Head of line block due to size count for TC3

‣ hlbf_q[4] - Head of line block due to size count for TC4

‣ hlbf_q[5] - Head of line block due to size count for TC5

‣ hlbf_q[6] - Head of line block due to size count for TC6

‣ hlbf_q[7] - Head of line block due to size count for TC7

‣ base_time_reg_err - Base time wrongly programmed in the past.

‣ sw_own_list_complete - GCL switch happens successfully. This will increase this
counter by 1.

For example:

‣ Enable EST with cycle time 16,777,685 ns, 2 GCL entries where in 1st entry for TC0
open for 470 ns and in 2nd entry no gate open for 16,777,685 ns.
nvether_sample_app eth1 est 1 0 0 0 10 0x10001d5 0 2 0x10001d6 0xffffff

‣ Example for FPE and EST enable with set-and-hold feature:

‣ Congure FPE as mentioned in 802.1Qbu + 802.3br

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 139

Setup and Conguration

‣ Congure EST with set-and-hold feature like for case “Enable EST with cycle time
16,777,685 ns, 2 GCL entries where in 1st entry for TC0 open for 470 ns with set-
and-hold bit set and in 2nd entry no gate open for 16,777,215 ns”
nvether_sample_app eth1 est 1 0 0 0 10 0x10001d5 0 2 0x30001d6 0xfffff

To check whether the new GCL is activated

As GCL conguration and GCL activation are 2 dierent things, please note programmed
GCL gets activated based on Base time programmed. Please check results of ethtool -S
<interface name> to check sw_own_list_complete value updated from last value or any
error counter increased.

802.1Qav (CBS)

Originally developed to meet the bandwidth requirements of audio/video streams while
preserving bandwidth for best eort trac, IEEE 802.1Qav, known as Forwarding and
Queueing for Time-Sensitive Streams (FQTSS) and later integrated into 802.1Q, denes a
credit-based trac shaper for reserving bandwidth for A/V streams in a bridged network.

In bridges, reserved A/V stream trac is prioritized over best eort trac as long as
sucient credits are available to transmit the higher-priority A/V data. As with end
stations sourcing stream data, the credit-based trac shaper results in stream data
distributed evenly across a bridged network over time.

Syntax

nvether_sample_app <interface name> avb <qinx> <algorithm_value> <bw>
 <credit_control> <tcinx>

Parameters

‣ qinx : Tx Queue index

‣ algorithm value

‣ 0 - default (strict priority for EQOS, ETS for MGBE)

‣ 1 - cbs (credit based shaper)

‣ bw : value in Mbits/sec of bw to be allocated

‣ credit_control

‣ 0 - disabled credit_control. The credit accumulates even when there is no packet
waiting in TC<n> and another TC is transmitting.

‣ 1 - enabled credit_control. When there is no packet waiting in TC<n> and other TC is
transmitting, no credit is accumulated.

‣ tcinx : TC mapping for <qinx>

Note:

‣ credit_control is applicable for cbs only. CBS conguration is per TC.
‣ Use the primary interface i.e., eqos_0, mgbe2_0 etc. for conguration.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 140

Setup and Conguration

For example:

‣ Give 20% bandwidth to TxQ/TC 2:
nvether_sample_app <interface name> avb 2 1 20 1 2

‣ Reset to default tx selection algorithm for TxQ/TC 2:
nvether_sample_app <interface name> avb 2 0 20 1 2

VLAN (802.1Q)

In Linux, to create VLAN and MAP, the ingress and/or egress priority to SKB priority
following Linux standard tools/utilities can be used. Example commands are:
ip link add link eth0 name eth0.5 type vlan id 5
ip addr add 10.0.1.6/24 brd 10.0.1.255 dev eth0.5
ip link set dev eth0.5 up

ip link add link eth0 name eth0.5 type vlan id 5 egress 0:1 1:2 4:4

In the last command above, the internal skb prio 0 is mapped to VLAN prio 1, skb prio 1 to
VLAN prio 2 and 4 to 4.

You can also use the built in application vcong:
vconfig set_egress_map [vlan-name] [skb_priority] [vlan_qos]

PTP (802.1AS) : 2 Step PTP

Nodes in the TSN network communicate with each other in real time and need a shared
understanding of time to agree on corrective actions, recognize each other’s state, and
cooperate together.

The IEEE 802.1AS project created a prole of the IEEE 1588 PTP synchronization protocol
for TSN. This prole will enable clock synchronization compatibility between dierent
TSN devices. 802.1AS also addresses support for fault tolerance and multiple active
synchronization masters.

Multiple proles are supported.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 141

Chapter 4. Flashing

The following sections describe how to ash and customize your system.

4.1 Flashing Basics
Note: You do not need to use sudo for the following commands:

‣ bootburn.py

‣ create_bsp_images.py

‣ ash_bsp_images.py

However, if you choose to use sudo for one, use it consistently the others. Do not
switch between sudo/non-sudo usage.

This topic provides guidance on ashing preprocessed binaries.

4.1.1 Flashing AURIX from NVIDIA Orin
You can use the nv_aurix_check_fw script to check the AURIX rmware version on boot.

‣ The script is located at

‣ For QNX:
<top>/proc/boot/nv_aurix_check_fw.sh

‣ For Linux:
<top>/etc/systemd/scripts/nv_aurix_check_fw.sh

‣ If the AURIX rmware is the latest version, a corresponding message is displayed at the
console.

‣ If the AURIX Main rmware version requires updating, the AURIX update command runs
automatically and updates the rmware to the latest version.

The correct hex le for ashing is chosen from the root lesystem at /lib/firmware.

‣ After the Main AURIX rmware is updated, the version of the Update rmware is
checked and the Update rmware is ashed if a newer version is found.

To check the rmware version again from the SoC:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 142

Flashing

‣ Run the command:

‣ For QNX:
/bin/ksh /proc/boot/nv_aurix_check_fw.sh

‣ For Linux:
sudo /bin/bash /etc/systemd/scripts/nv_aurix_check_fw.sh

To update the AURIX rmware:

1. Ensure that both the Main (NV-IFW or AFW) AURIX rmware and the UPDATE(NV)
rmware les are in the root lesystem.

2. Ensure that the les follow the naming convention as follows:
DRIVE-<branch>-<platform>-[NV/AFW]-Aurix-[UPDATE]-<Board>-
<major>.<minor>.<revision>[-SNAPSHOT-<snapshot>].hex

Where:

‣ The path to the AFW rmware and UPDATE rmware is:

‣ /lib/firmware/*<platform>-AFW-Aurix-*

‣ /lib/firmware/*<platform>-NV-Aurix-UPDATE*

‣ NV indicates NVIDIA internal rmware.

‣ AFW indicates AUTOSAR rmware from the vendor Vector.

‣ <platform> is the board number, such as P3663.

‣ <FW_Type> is IFW / UPDATE / AFW.

‣ <Board> StepB.

‣ <major> contains one numeric digit.

‣ <minor> contains two numeric digits.

‣ <revision> contains two numeric digits.

‣ <snapshot> contains two numeric digits.

‣ Items in brackets [] are optional.

‣ Version numbers with 1.x.x indicate internal rmware; 5.x.x is the AFW from vendor
Vector.

3. Update the rmware by running the command:

‣ For QNX:
</bin/ksh/ /proc/boot/nv_aurix_check_fw.sh -auto_update

‣ For Linux:
<sudo /bin/bash /etc/systemd/scripts/nv_aurix_check_fw.sh -auto_update

Where the path to the AFW and UPDATE rmware is as follows:

‣ /lib/firmware/*<platform>-AFW-Aurix-*

‣ /lib/firmware/*<platform>-NV-Aurix-*

Updating the rmware includes:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 143

Flashing

‣ Comparing the rmware version between the ashed version and the one on the
root lesystem.

‣ Updating the rmware if a higher rmware version is in the root lesystem.

‣ Resetting the platform.
4. When the platform boots again, repeat the command to reset it a second time.

After two resets, the AURIX MAIN rmware is updated.
5. Rerun the command to update the UPDATE rmware.

Note:

The AURIX ashing program/erase cycle is 1000. To avoid wear on the AURIX
ash components, ash the rmware only when necessary.

The ashing of AURIX MAIN and UPDATE rmware requires a maximum of two
SoC resets, and three invocations of the nv_aurix_update application.

6. Board supports only the Vector AFW (Versions 5.x.x) and NV internal rmware (version
1.x.x). When the Vector AFW hex le is not packaged in the /lib/firmware folder, the
update script automatically chooses NV internal FW as an alternative.

4.1.2 Bind Steps for NVIDIA Orin System on a Chip
(SOC)
For information about how to bind an NVIDIA Orin system on a chip, see See the "AV PCT
Conguration" topic in the NVIDIA DRIVE OS Linux PDK Developer Guide.

4.1.3 Flash Steps for NVIDIA Orin System on Chip
(SoC)
Use the bootburn utility to ash platform boards with the boot loader, kernel, and le
system. The bootburn utility is provided as part of the Foundation package.

Bootburn

Bootburn is a Python script that:

‣ Boots the device in the recovery-mode with RAMDisk

‣ Signs or generates the images on the host

‣ Transfers the images to target using ADB

‣ Flashes the boards

Bootburn automatically resizes the rootfs image on the target to optimize the available
storage on the partition dedicated to it, either on eMMC or NOR.

Bootburn supports a host NFS share as the mount point for the target rootfs. This feature
provides a convenient way for developers to copy les between the target and host for

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 144

Flashing

rapid development. In this case, the uncompressed target rootfs directory on the host is
leveraged directly by the target.

Bootburn relies on the Foundation services to provide the ashing and boot loader
functionality. You congure it with the CFG le rather than with bootburn command-line
parameters; the bootburn utility supports limited command-line options.

Bootburn Command Usage

Run the bootburn.py script from a shell on your host Linux system by executing the
command:
./bootburn.py <options>

Bootburn Options

Options Description

-b

<p3710-10-a01
| p3710-10-a03
| p3710-10-a04
| p3710-10-s05
| p3710-12-a01
| p3710-12-a03
| p3710-12-a04
| p3710-12-s05
| p3663-a01 |
p3663-01-a02 |
p3663-02-a02 |
p3898-a01>

(lowercase b)

Provides the board name and revision. Possible board names
include:

‣ p3710-10-a01
‣ p3710-10-a03
‣ p3710-10-a04
‣ p3710-10-s05
‣ p3710-12-a01
‣ p3710-12-a03
‣ p3710-12-a04
‣ p3710-12-s05
‣ p3663-a01
‣ p3663-01-a02
‣ p3663-02-a02
‣ p3898-a01

Not all boards are supported in Safety and Standard. For
more information, see the API Reference.

--board_cong
<board_name>.json

Can be used with bootburn.py, create_bsp_images.py, and
flash_bsp_images.py board_name must include absolute
path.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 145

../../../api_reference/index.html

Flashing

Options Description

-d <partition_name>
<dtb_le>

(lowercase d)

Species the DTB le to ash and the
target partition. The default le is dened in
BoardSetFilePathsAndDefaultValues.

bpmp-fw-dtb and kernel-dtb may be specied
simultaneously.

Note: This option is not intended to specify kernel-dtb in
Hypervisor.

--encryption_key
Takes as parameter the full le path and name.
Secure boot encryption key. Can be used with
bootburn.py and create_bsp_images.py. Additionally,
edit drive-foundation/tools/flashtools/flash/
tegrasign_v3_oemkey.yaml or drive-foundation-safety/
tools/flashtools/flash/tegrasign_v3_oemkey.yaml

Find "SBK".
"AES" : {
"SBK" :
{
"IV" : OEM_FUSE_IV,
"Manifest" : "10860000",
"Offset" : "0d01",
#"Plain" :
 "63979cd900154cfaedc539cd17572387296058fe988013c055be99bfd8db41f9",
"Plain" :
 "753aafbeab213322ef0f8cecc805d1b086e252953dfb3cac215a778f68cb5a72",
#"Plain" :
 "00",

(#) is a comment in yaml les. Add the key that is needed:

"Plain" : "<key>"

Where <key> is the hexidecimal value of the key. There are
some standard SBK (Secure Boot Keys), so you may be able
to uncomment the key. Make sure that all SBK entries are
commented out (#) except for the one in use.

-f (lowercase) Failure analysis (FA) mode support.

--gpuvbios_fw Species the rmware to ash to the dGPU.

-h

(lowercase h)

Provides guidance on the actions and options of bootburn.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 146

Flashing

Options Description

-i (lowercase i) File path to platform conguration le. If not provided
for hypervisor congurations, then the tool expects the
platform conguration le to be present in the hypervisor
output directory.

-k <conguration le>

(lowercase k)

Species the conguration le for ashing.

-m (lowercase) Flashing Modular Diagnostic Software (MODS). This option
enables mods-specic overrides.

-o

(lowercase o)

Skips ashing of recovery partitions. Used by minicom.

WARNING: If you are using minicom with -o option, minicom
does not initialize the port and therefore does NOT check or
acquire the lock les for the communication port. If minicom
is running in the background and you run bootburn with the
-x option, bootburn acquires the lock BEFORE accessing
the communication port. So, when bootburn attempts to
communicate with AURIX it fails.

-p <key_le_path>

(lowercase p)

Signs the boot loader, secure OS (TOS), kernel and BCT
binary, then ashes the device. <key_file_path> must be
the full pathname of the key_le.

--hsm <key_string> Can be used with bootburn.py and create_bsp_images.py.
Tells Bootburn what keys will be used in HSM mode. Key
String is Key + Encrypt Keys. Key is rsa. Encrypt Keys are
sbk. Example:

--hsm rsa

-q

(lowercase q)

Flashes QNX images.

-s

(lowercase s)

Skips ashing the le system.

Use the -s ag only when the target le system is already
ashed.

-t <output_directory>

(lowercase t)

Species the output directory where images to be ashed
onto the target are to be stored. The default directory is
named _temp_dump, and is present in the ashing directory.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 147

Flashing

Options Description

-x Species the communication port for AURIX to put the SoC
in recovery mode automatically.

With this -x option, bootburn performs target validation for
the user provided board name on the command line, with
the -b option, before ashing the board.

Bootburn generates a unique ID from the target Inforom
data. The allowed target ID list for the user provided board
is generated from BOM data le included in the package.
Bootburn aborts ashing if the target unique ID is not found
in the list of generated unique IDs for the provided board
name. This feature is supported on e3550b01 and e3550b03
boards with Inforom system object version 3 or above.

Note:

On boards with inforom, the bct sku info is
updated with the information in the inforom.

If the -x option is used during the AURIX setup, at the end
during the AURIX reset of the ashing procedure there
may be output messages of the form: "Killed sudo cat
$l_Aurix > $p_FlashFiles/$l_AurixLogFile". These
messages are not errors and can be safely ignored.

Warning:

If minicom is used with the -o option, minicom
does not initialize the port and therefore does
NOT check or acquire the lock les for the
communication port.

‣ If minicom is running in the background
and you run bootburn with the -x option,
bootburn acquires the lock BEFORE accessing
the communication port. So when bootburn
attempts to communicate with AURIX it fails.

‣ If you quit minicom forcefully it may not fully
stop the process and it will be lingering in the
background.

‣ When bootburn attempts to connect in this
state it will acquire the port but the output will
still be directed to the minicom running in the
background.

‣ Avoid using the -o option when using minicom.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 148

Flashing

Options Description

-B <boot_device>

(uppercase B)

Species the boot device, which must be either qspi or
emmc. qspi is the default.

-C

(uppercase C)

Species use of debug binaries for the boot loader.

-D

(uppercase D)

Directs bootburn debug output to stdout along with the
tool's regular output. If -D is not specied, debug output
goes to a temporary le.

-E

(uppercase E)

Enables DRAM ECC.

-I <bus_id>
<device_id>

(uppercase I)

Flashes a specic device when multiple devices are in
recovery.

To get the bus and device ID of each device in recovery,
enter the lsusb command on the host. For example, if lsusb
gives the following output:

Bus 003 Device 105: ID 0955:7018 NVidia Corp.

Bus 003 Device 104: ID 0955:7018 NVidia Corp.

Then ash the second device with the –I option as in this
example:

-I 003 104

-L

(uppercase L)

Enables low-power modes. This option requires that the spe-
fw and WB0 rmware packages be included in the bootburn
conguration because low-power modes require them.

-M

(uppercase M)

Species development version rmware.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 149

Flashing

Options Description

-R

(uppercase R)

Species RCM boot support, where the device boots
without being ashed. When the target is in recovery
mode, this option causes the ashing script to download
all binaries, other than BCT, from the host. The target then
reads the BCT from storage and other binaries from RAM. It
boots the kernel directly on RAM.

This option is much faster than when ashing also occurs. It
is especially useful during debugging.

Use the -R ag to initiate RCMBOOT with any of the
commands mentioned in this table.

-T

(uppercase T)

Enables tracing. Tracing logs are stored under the bootburn
directory as log_trace*.txt.

--safety Execute bootburn scripts in safety mode. Only a limited
set of options is available for use in safety mode. For more
information, see the Safety Use Cases for Bootburn Scripts
chapter in the NVIDIA DRIVE OS 6.0 Safety Developer Guide
for more information.

-U Pass in the UFS provision conguration le.

-V

(uppercase V)

Species read-back verication, where the binary images
are read back (after writing) from the target's storage and
compared with the original binary images. The two sets of
images are compared to detect discrepancies.

--customer-data Specied customer data such as skuinfo and others to be
updated during ashing

See ashing_customer_data.docx for information on how to
use it.

Passing Additional Parameters

To pass additional kernel parameters, modify the os_args parameter of the kernel-dtb
partitions in:
drive-foundation/
virtualization/pct/<pct>/qnx/qnx_<guest>/
qnx_vm1_storage_emmc.cfg

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 150

Flashing

4.1.4 Flashing with Docker
The NVIDIA DRIVE

®
 OS Docker build image contains a python script called flash.py to

ash the target.

Usage

flash.py [-h] [--disable-full] [--pct-variant PCT] [--tegra TEGRA] [--clean]
[--recovery-timeout [TIMEOUT]] [--bind-opt BIND_OPT] [--opt-arg OPT_ARG] AURIX_PORT
 BOARD

The following table shows required and optional arguments:

Argument Description

BOARD Species the target board base name.

AURIX_PORT Species AURIX Port for the desired board.

Options

Use the following flash.py options to override the default parameters:

Option Description

--tegra TEGRA Specify the NVIDIA Tegra
®
 chip to ash. The

default is Tegra A.

-h, --help Shows usage/help output and exits.

--disable-full Flash single bootchain. Otherwise, will ash both
bootchains.

--pct-variant PCT Specify the PCT variant to ash.

--clean Perform clean ash to re-initialize persistent
partitions.

--recovery-timeout [TIMEOUT] Specify the time required for the device to be
available after it is set to recovery.

--bind-opt BIND_OPT, -b BIND_OPT Specify arguments to pass through to bind
partitions utility.

--opt-arg OPT_ARG, -o OPT_ARG Specify argument to pass through to bootburn
ashing utility.

Examples

‣ Flash the default conguration for p3710 the Docker image on board connected to /
dev/ttyACM1:

./flash.py /dev/ttyACM1 p3710

‣ If a PCT is required to be specied (for QNX, QNX Safety, Prod Linux, and so on), pass
the PCT variant as an argument:

./flash.py --pct-variant prod /dev/ttyACM1 p3710

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 151

Flashing

‣ Additional Make arguments can also be passed through for the binding phase. For
instance, to set R/W permissions on Root FS for the NDAS use case.
./flash.py --bind-opt '-u ndas' --bind-opt 'OS_ARGS_MOUNT_PER=rw' /dev/ttyACM0
 p3710
or
./flash.py -b '-u ndas' -b 'OS_ARGS_ROOT_MOUNT_PER=rw' /dev/ttyACM0 p3710

‣ Additional arguments can be passed through for the ashing phase. For instance to
disable UART on target for rcm-boot and cold-boot:
./flash.py --opt-arg '--disable_uart' /dev/ttyACM0 p3710
or
./flash.py -o '--disable_uart' /dev/ttyACM0 p3710

4.1.5 Flashing AURIX
AURIX is intended for debugging and sanity checking purposes.

Note: In this section, <top> refers to the root directory of the guest VM.

4.1.5.1 Flashing AURIX from Windows Host with Inneon
Memtool
Step 1: Target Setup

On P3710

P3710 uses TOPO MCU to provide Aurix UART console access; you should connect
microUSB to your windows host machine as shown in the following gures.

You should see a list of /dev/ttyACM*. Usually Aurix is the 2nd in the list of /dev/ttyACM*,
which is /dev/ttyACM1 if starting from /dev/ttyACM0. You should nd the Aurix console
rst before ashing.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 152

Flashing

On P3663

P3663 does not have TOPO MCU for Aurix UART console; instead, the Aurix UART signal
(VCC/TX/RX/GND) is routed to the jumper below.

You should connect the Aurix UART console jumper to

‣ USB-UART cable

‣ Windows host

In Windows host, you should see /dev/ttyUSB* for Aurix console.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 153

Flashing

On P3898

P3898 does not have TOPO MCU for Aurix UART console; instead, the Aurix UART signals
(VCC/RX/TX/GND) are routed to the jumper J1_34 as shown below.

You should connect the Aurix UART console jumper to:

‣ USB-UART cable

‣ Windows host

Note: The Rx and Tx pins indicated below are respectively input and output from AURIX, so
connect the USB-UART cable pins accordingly. For example, connect USB-UART Tx to Rx on
board.

On the Windows host, you see /dev/ttyUSB* for AURIX console.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 154

Flashing

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 155

Flashing

Step 2: Host Setup

Use a Windows machine for this upgrade.

1. Download and install the latest memtool from Inneon.
2. For P3663 and P3710, use the UART cfg le below:

[Main]
Signature=UDE_TARGINFO_2.0
Description=TriBoard with TC39x B-Step (BSL/ASC)
MCUs=Controller0
Architecture=TriCore Aurix
Vendor=Starter Kits (Bootstrap Loader)
Board=

[Controller0]
Family=TriCore
Type=TC39xB
Enabled=1
IntClock=100000
ExtClock=20000

[Controller0.Core0]
Protocol=MMTC
Enabled=1

[Controller0.PCP]
Master=Core
Enabled=0

[Controller0.Core0.MmTcTargIntf]
MonType=ASC
BaudRate=57600
PortType=COMX
PortSel=COM4
ExecInitCmds=0
ReqReset=0
ReqResetMsg=
ResetOnConnect=1
ResetWaitTime=500
ExtStartMode=0
KLineProt=0
UseRS232Drv=1
CanPortNum=1
AssureSendOfComPort=0
Stm32AscBaudrateForConnect=0
CheckAckCode=1
AlwaysEINIT=0
UseExtMon=0
MonitorPath=
UseExtMon2=0
Mon2Path=
Mon2Start=0xFFFFFFFF
SCRMSupport=0
SCRMBaudRate=0
RSTCON_H=0x0
S0BRL=-1
UseChangedBaudRate=0
Sv2PLLCON=0x7103
Sv2ASC0BG=0xFFFF
Sv2CANBTR=0xFFFF
TcPllValue=0x0
TcPllValue2=0x0
TcPllValue3=0x0

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 156

https://www.infineon.com/dgdlc/en?dcId=8a8181663431cb50013431cb500b0000&downloadTitle=Infineon-Memtool-DevelopmentTools-v04_90-EN.exe&download=L2RnZGwvSW5maW5lb24tTWVtdG9vbC1EZXZlbG9wbWVudFRvb2xzLXYwNF85MC1FTi5leGU/ZmlsZUlkPTU1NDZkNDYyNTE4ZmZkODUwMTUyNTUzN2MxOTcyMDZm

Flashing

TcAscBgValue=0x0
TcCanBtrValue=0x0
XC2000ScrmClock=40000000
MaxReadBlockSize=0
BootPasswd0=0xFEEDFACE
BootPasswd1=0xCAFEBEEF
AurixEdBootWorkaround=0

[Controller0.PFLASH0]
Enabled=1
EnableMemtoolByDefault=1

[Controller0.PFLASH1]
Enabled=1
EnableMemtoolByDefault=1

[Controller0.PFLASH2]
Enabled=1
EnableMemtoolByDefault=1

[Controller0.PFLASH3]
Enabled=1
EnableMemtoolByDefault=1

[Controller0.PFLASH4]
Enabled=1
EnableMemtoolByDefault=1

[Controller0.PFLASH5]
Enabled=1
EnableMemtoolByDefault=1

[Controller0.DF_EEPROM]
Enabled=1
EnableMemtoolByDefault=1

[Controller0.DF1]
Enabled=1
EnableMemtoolByDefault=0

[Controller0.DF_UCBS]
Enabled=1
EnableMemtoolByDefault=0

[Controller0.Core0.MmTcTargIntf.InitScript]
[FlashMod_DF_UCBS]
Enabled=1

If you use miniwiggler to upgrade (a JTAG debugger), you should use the miniwiggler
one.

Note: This is the same conguration le as the Xavier platform step B AURIX. For
UART, the TriBoard_TC39xB_ASC_BSL.cfg conguration le is located in the delivery
folder.

3. For P3898, the Miniwiggler conguration le to be used for ashing through UART is
located in the delivery folder and is named TriBoard_TC36x.cfg.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 157

Flashing

P3710:

1. Find the jumper below and insert JP 1-2 (short pin 1 and pin 2).
2. Power cycle the P3710 system.

This can put Aurix into recovery mode. In this mode, Aurix console does not show any
message.

Note: Close any tool that opening Aurix console before proceeding to the next step.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 158

Flashing

Step 3: Put Aurix into Recovery Mode

First put Aurix into recovery mode.

P3663:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 159

Flashing

1. P3663 does not have TOPO, so you need to insert pin 1 and pin 2 for the jumper.
2. Power cycle P3663.

P3898:

1. Short J1_57 pins 1 and 2 to set HWCFG3 = 0 for UART boot. Please refer the gure
below for location of the jumper and pins to be shorted.

2. Power cycle P3898.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 160

Flashing

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 161

Flashing

Step 4: Connect Memtool to Aurix

To start the memtool,

1. Choose Target > Change and select the folder where you have saved the conguration
le in step 2.

2. Select Triboard with TC39x (BSL/ASC) and click OK. For P3898, select Triboard with
TC36x (BSL/ASC).

3. Choose Target > Setup and select Remember device name (e.g. COM1).
4. In Access Device, choose the COM port as identied in step 1.
5. Add “set DTR” to the RTS/DTR Connect settings as shown below.

If you have tried to connect but failed. Restart memtool and P3710, and ensure you
have this setting.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 162

Flashing

Step 5: Start Flashing

1. Click Open File and select the le.
2. Click Select All.
3. Click Add Sel. >> to add all the le content to the ash area.
4. Click Program all to start the ashing.

The ash should start and nish.

Note: Do not use the Erase button in the memtool.

Note: For P3898 with TC36x AURIX variant, the PFLASH size is shown as 4 MByte.

4.1.5.2 Flashing AFW from Orin Using Force Update
AFW can also be ashed using the update script from the NVIDIA Orin console.

Prerequisites: The following rmware versions on MCU are required:

‣ Internal rmware (IFW) version 1.46.4 or the latest

‣ Update rmware (UFW) version 1.46.4 or the latest

Command:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 163

Flashing

‣ For Linux:
sudo /bin/bash /etc/systemd/scripts/nv_aurix_check_fw.sh -force_update
 AFW_Firmware_to_be_Programmed

‣ For QNX:
/bin/ksh /proc/boot/nv_aurix_check_fw.sh -force_update
 AFW_Firmware_to_be_Programmed

Example:
sudo /bin/bash /etc/systemd/scripts/nv_aurix_check_fw.sh -force_update DRIVE-V6.0.0-
P3663-AFW-Aurix-StepB-5.00.01.hex

Run this command twice:

1. On rst execution of this command, control switches from IFW to UFW leading to
NVIDIA Orin reset during switching.

2. After NVIDIA Orin starts up completely, repeat this command, which starts AFW
ashing.

4.2 Flashing Customization
This section provides guidance on customizing ashing.

‣ Bootburn

‣ Kernel

‣ Prebuilt binaries

‣ Oine binaries

Select Boot Chain Platform Conguration

Within the board support package (BSP) with Virtualization support the top-level
conguration le global_storage.cfgdenes the sub conguration le used to create the
target BSP. Currently, this defaults to boot_chain_storage.cfg. As an example, if you run
the bind command:

the resulting boot chains are:
[partition]
name=A_qspi_chain
allocation_policy=sequential
filesystem_type=basic
size=0x840000
partition_attribute=0x40000002
virtual_storage_ivc_ch=0x83802762
sub_cfg_file=boot_chain_storage.cfg
[partition]
name=B_qspi_chain
allocation_policy=sequential
filesystem_type=basic
size=0x840000
partition_attribute=0x40000002
virtual_storage_ivc_ch=0x83802863
sub_cfg_file=boot_chain_storage.cfg

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 164

Flashing

The virtual_storage_ivc_ch depends on the VSC server and may be dierent than
above. If you would like to use a custom sub cong le for the platform rather than the
default boot_chain_storage.cfg for either chain A or chain B, then replace cfg le path
of sub_cfg_file=boot_chain_storage.cfg in global_storage.cfg le to your cong le
and run the bind command again. For instance, edit to sub_cfg_file=/tmp/myconfig.cfg
under name=A_qspi_chain partition and execute the bind command.

The resulting conguration is:
[partition]
name=A_qspi_chain
allocation_policy=sequential
filesystem_type=basic
size=0x840000
partition_attribute=0x40000002
virtual_storage_ivc_ch=0x83802762
sub_cfg_file=/tmp/myconfig.cfg
[partition]
name=B_qspi_chain
allocation_policy=sequential
filesystem_type=basic
size=0x840000
partition_attribute=0x40000002
virtual_storage_ivc_ch=0x83802863
sub_cfg_file=boot_chain_storage.cfg

Use an absolute path to the conguration le if it does not reside in the virtualization
folder for the given target and platform. The le is not checked to be valid or that the path
exists. If the path is invalid, an error is thrown during the ashing process.

4.2.1 Flashing Customization
This section provides guidance on customizing ashing.

‣ Bootburn

‣ Kernel

‣ Prebuilt binaries

‣ Oine binaries

Select Boot Chain Platform Conguration

Within the board support package (BSP) with Virtualization support the top-level
conguration le global_storage.cfgdenes the sub conguration le used to create the
target BSP. Currently, this defaults to boot_chain_storage.cfg. As an example, if you run
the bind command:

the resulting boot chains are:
[partition]
name=A_qspi_chain
allocation_policy=sequential
filesystem_type=basic
size=0x840000
partition_attribute=0x40000002
virtual_storage_ivc_ch=0x83802762
sub_cfg_file=boot_chain_storage.cfg

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 165

Flashing

[partition]
name=B_qspi_chain
allocation_policy=sequential
filesystem_type=basic
size=0x840000
partition_attribute=0x40000002
virtual_storage_ivc_ch=0x83802863
sub_cfg_file=boot_chain_storage.cfg

The virtual_storage_ivc_ch depends on the VSC server and may be dierent than
above. If you would like to use a custom sub cong le for the platform rather than the
default boot_chain_storage.cfg for either chain A or chain B, then replace cfg le path
of sub_cfg_file=boot_chain_storage.cfg in global_storage.cfg le to your cong le
and run the bind command again. For instance, edit to sub_cfg_file=/tmp/myconfig.cfg
under name=A_qspi_chain partition and execute the bind command.

The resulting conguration is:
[partition]
name=A_qspi_chain
allocation_policy=sequential
filesystem_type=basic
size=0x840000
partition_attribute=0x40000002
virtual_storage_ivc_ch=0x83802762
sub_cfg_file=/tmp/myconfig.cfg
[partition]
name=B_qspi_chain
allocation_policy=sequential
filesystem_type=basic
size=0x840000
partition_attribute=0x40000002
virtual_storage_ivc_ch=0x83802863
sub_cfg_file=boot_chain_storage.cfg

Use an absolute path to the conguration le if it does not reside in the virtualization
folder for the given target and platform. The le is not checked to be valid or that the path
exists. If the path is invalid, an error is thrown during the ashing process.

4.2.2 Bind Steps for NVIDIA Orin System on a Chip
(SOC)
For information about how to bind an NVIDIA Orin system on a chip, see See the "AV PCT
Conguration" topic in the NVIDIA DRIVE OS Linux PDK Developer Guide.

4.2.3 Bootburn Usage
Use the Bootburn utility to ash platform boards with the boot loader, kernel, and le
system. The Bootburn utility is provided as part of the Foundation package.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 166

Flashing

4.2.3.1 Bootburn Usage
Note: You do not need to use sudo for the following commands:

‣ bootburn.py

‣ create_bsp_images.py

‣ ash_bsp_images.py

However, if you choose to use sudo for one, use it consistently the others. Do not
switch between sudo/non-sudo usage.

Use the Bootburn utility to ash platform boards with the boot loader, kernel, and le
system. The Bootburn utility is provided as part of the Foundation package.

Bootburn

Bootburn is a shell script that:

‣ Boots the device in recovery mode with RAMDisk. Recovery Mode is where BootROM
waits on recovery USB to receive data. All boot images are received from the host by
NVIDIA Orin over USB and stored in RAM. The system is booted using the data stored in
RAM.

‣ Signs or generates the images on the host.

‣ Transfers the images to target using ADB.

‣ Flashes the boards.

Bootburn automatically resizes the rootfs image on the target to optimize the available
storage on the partition dedicated to it, either on eMMC or NOR.

Bootburn supports a host NFS share as the mount point for the target rootfs. This feature
provides a convenient way for developers to copy les between the target and host for
rapid development. In this case, the uncompressed target rootfs directory on the host is
leveraged directly by the target.

Bootburn relies on the Foundation services to provide the ashing and boot loader
functionality. You congure it with the CFG le rather than with Bootburn command-line
parameters; Bootburn supports limited command line options.

Bootburn Command Usage

Run the bootburn.py script from a shell on your host Linux system by executing the
command:
./tools/flashtools/bootburn/bootburn.py <options>

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 167

Flashing

Options Description

-b <board_name>

(lowercase b)

Provides the board name. Possible board names
include:

‣ p3710-10-a01
‣ p3710-10-a01-f1
‣ p3663-a01
‣ p3663-a01-f1
‣ p4024-a00-a
‣ p4024-a00-a-f1
‣ p4024-a00-b
‣ p4024-a00-b-f1
‣ p3898-a01

See Section 1.0 of the Release Notes for your
release to conrm your board and revision
information.

For more information, see Supported Platforms/
PCTs and SDK/PDK Packages under API
Modules.

--board_cong <board_name>.json
Can be used with bootburn.py,
create_bsp_images.py, and
flash_bsp_images.py board_name must
include absolute path.

--clean Erases all of QSPI and eMMC.

-d <partition_name> <dtb_le>

(lowercase d)

Species the DTB le to ash and the
target partition. The default le is dened in
BoardSetFilePathsAndDefaultValues.

bpmp-fw-dtb and kernel-dtb may be specied
simultaneously.

Note: This option is not intended to specify
kernel-dtb in Hypervisor.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 168

Flashing

Options Description

-encrypt (preferred)
This option does not need the encryption key to
be passed.

Either the -encrypt or --encryption_key
option can be used with bootburn.py and
create_bsp_images.py.

Additionally, edit drive-foundation/tools/
flashtools/flash/tegrasign_v3_oemkey.yaml

or drive-foundation-safety/tools/
flashtools/flash/tegrasign_v3_oemkey.yaml.

Find "SBK".
"AES" : {
"SBK" :
{
"IV" : OEM_FUSE_IV,
"Manifest" : "10860000",
"Offset" : "0d01",
#"Plain" :
 "63979cd900154cfaedc539cd17572387296058fe988013c055be99bfd8db41f9",
"Plain" :
 "753aafbeab213322ef0f8cecc805d1b086e252953dfb3cac215a778f68cb5a72",
#"Plain" :
 "00",

(#) denotes a comment in yaml les.

Add the key that is needed in the yaml le as
follows:

"Plain" : "<key>"

Where <key> is the hexidecimal value of the
key. There are some standard SBK (Secure
Boot Keys), so you may be able to uncomment
the key. Make sure that all SBK entries are
commented out (#) except for the one in use.

--encryption_key (obsolete) Takes as parameter the full le path and name.
Secure boot encryption key.

See the description of the -encrypt option.

-f (lower case) Failure analysis (FA) mode support.

--gpuvbios_fw Species the rmware to ash to the dGPU.

-h

(lowercase h)

Provides guidance on the actions and options of
bootburn.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 169

Flashing

Options Description

-i (lowercase i) File path to platform conguration le. If not
provided for hypervisor congurations, then the
tool expects the platform conguration le to
be present in the hypervisor output directory

-k <conguration le>

(lowercase k)

Species the conguration le for ashing.

-m (lower case) Flashing Modular Diagnostic Software (MODS).
This option enables mods-specic overrides.

-o

(lowercase o)

Skips ashing of recovery partitions. Used by
minicom.

WARNING: If you are using minicom with -o
option, minicom does not initialize the port and
therefore does NOT check or acquire the lock
les for the communication port. If minicom is
running in the background and you run bootburn
with the -x option, bootburn acquires the lock
BEFORE accessing the communication port. So,
when bootburn attempts to communicate with
AURIX it fails.

-p <key_le_path>

(lowercase p)

Signs the boot loader, secure OS (TOS), kernel
and BCT binary, then ashes the device.
<key_le_path> must be the full pathname of
the key_le.

--hsm <key_string>
Can be used with bootburn.py and
create_bsp_images.py. Tells Bootburn what keys
will be used in HSM mode. Key String is Key +
Encrypt Keys. Key is rsa|eddsa. Encrypt Keys are
sbk or kek0. Examples:

--hsm rsa

--hsm rsa+sbk

--hsm eddsa

--hsm eddsa+sbk

-q

(lowercase q)

Flashes QNX images.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 170

Flashing

Options Description

-s

(lowercase s)

Skips ashing the le system.

Use the -s ag only when the target le system
is already ashed.

-t <output_directory>

(lowercase t)

Species the output directory where images to
be ashed onto the target are to be stored. The
default directory is named _temp_dump, and is
present in the ashing directory.

-u <partition_name ...>

(lowercase u)

Species one or more partitions to create, ash,
or create and ash.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 171

Flashing

Options Description

-x
Species the communication port for AURIX to
put the SoC in recovery mode automatically.

With this -x option, bootburn performs target
validation for the user provided board name on
the command line, with the -b option, before
ashing the board.

Bootburn generates a unique ID from the target
Inforom data. The allowed target ID list for the
user provided board is generated from BOM
data le included in the package. Bootburn
aborts ashing if the target unique ID is not
found in the list of generated unique IDs for the
provided board name. This feature is supported
on p3663 and p3710 boards with Inforom
system object version 3 or above.

Note: On boards with inforom, the bct sku info is
updated with the information in the inforom.

If the -x option is used during the AURIX
setup, at the end during the AURIX reset of
the ashing procedure there may be output
messages of the form: "Killed sudo cat $l_Aurix
> $p_FlashFiles/$l_AurixLogFile". These
messages are not errors and can be safely
ignored.

WARNING: If minicom is used with the -o
option, minicom does not initialize the port and
therefore does NOT check or acquire the lock
les for the communication port.

‣ If minicom is running in the background
and you run bootburn with the -x option,
bootburn acquires the lock BEFORE
accessing the communication port. So when
bootburn attempts to communicate with
AURIX it fails.

‣ If you quit minicom forcefully it may not fully
stop the process and it will be lingering in
the background.

‣ When bootburn attempts to connect in this
state it will acquire the port but the output
will still be directed to the minicom running
in the background.

‣ Avoid using the -o option when using
minicom.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 172

Flashing

Options Description

-B <boot_device>

(upper-case B)

Species the boot device, which must be either
qspi or emmc. qspi is the default.

-C

(upper-case C)

Species use of debug binaries for the boot
loader.

-D

(upper-case D)

Directs bootburn debug output to stdout
along with the tool’s regular output. If -D is not
specied, debug output goes to a temporary le.

-E

(upper-case E)

Enables DRAM ECC.

-I <bus_id> <device_id>

(upper-case I)

Flashes a specic device when multiple devices
are in recovery.

To get the bus and device ID of each device in
recovery, enter the lsusb command on the host.
For example, if lsusb gives the following output:

Bus 003 Device 105: ID 0955:7018 NVidia Corp.

Bus 003 Device 104: ID 0955:7018 NVidia Corp.

Then ash the second device with the –I option
as in this example:

-I 003 104

-L

(upper-case L)

Enables low power modes. This option requires
that the spe-fw and WB0 rmware packages be
included in the bootburn conguration because
low-power modes require them.

-M

(upper-case M)

Species development version rmware.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 173

Flashing

Options Description

-R

(upper-case R)

Species RCM boot support, where the device
boots without being ashed. When the target
is in recovery mode, this option causes the
ashing script to download all binaries, other
than BCT, from the host. The target then reads
the BCT from storage and other binaries from
RAM. It boots the kernel directly on RAM.

This option is much faster than when ashing
also occurs. It is especially useful during
debugging.

Use the -R ag to initiate RCMBOOT with any of
the commands mentioned in this table.

-T

(upper-case T)

Enables tracing. Tracing logs are stored under
the bootburn directory as log_trace*.txt.

-U Pass in the UFS provision conguration le.

-V

(upper case V)

Species read-back verication, where the
binary images are read back (after writing) from
the target’s storage and compared with the
original binary images. The two sets of images
are compared to detect discrepancies.

--customer-data
Specied customer data such as skuinfo and
others to be updated during ashing

See ashing_customer_data.docx for
information on how to use it.

--init_persistent_partitions Used to initialize persistent partitions. The
image used to initialize the partition must be
specied in the cfg le and the partition must
be marked with ispersistent=yes.

--devicetype Used to write single non-volatile memory device
{spi, sdhci or ufshci}

--logs Absolute path to directory for log les.

Kernel Parameter Combinations

Possible combinations of kernel parameters nfsdev, ip, and nfsroot are as follows. An error
indicates that the initramfs shell is started.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 174

Flashing

nfsdev ip nfsroot Result

(not set) (not set) (not set) no network; root must
be set in some other
way

(not set) (not set) set error; needs IP
conguration

(not set) set (not set) error; no root path to
mount

(not set) set set valid combination

set (not set) (not set) valid combination;
DHCP request is sent

set (not set) set error; needs IP
conguration

set set (not set) error; no root path to
mount

set set set valid combination; no
DHCP requests

Passing Additional Kernel Parameters

To pass additional kernel parameters, modify the os_args parameter of the kernel-dtb
partitions in:
drive-<TBD_platform_ver>-foundation/platform-config/hardware/nvidia/platform/t23x/
automotive/pct/drive_av/<pct>/qnx_gos0_storage.cfg

Dialout Group

Add yourself to the dialout group since it is not possible to open the serial ports to the
AURIX via sudo.

To add yourself to the dialout group:
sudo adduser <user name> dialout

You must log out and log back in for the command to take eect.

Bootburn Conguration File

The following is the list of keys that can be added to a JSON le and their meanings.

Name Description Default Used By Optional

f_NvQbDtbImage Qb Dtb Quick Boot N

f_MB1Pad Pad Voltage/DPD cfg le None Tegrabct_v2 N

f_MB1Pinmux Pinmux conguration File None Tegrabct_v2 N

f_MB1Prod File containing Prod setting for pinmux None Tegrabct_v2 N

f_MB1Pmic File containing PMIC-Real MMIO/I2C None Tegrabct_v2 N

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 175

Flashing

Name Description Default Used By Optional

f_MB1Misc Misc Parameter File None Tegrabct_v2 N

f_MB1GpioInt Gpio Interrupt Routing Cfg File None Tegrabct_v2 N

f_MB1BootDevice Device specic Platform Cfg File None Tegrabct_v2 N

f_FlashingMB1SdRamParamveried memory cfg from mem-qual (rcm-
mode)

None sw_memcfg_overlay.plN

f_MB1SdRamParam
veried memory cfg from mem-qual
(Mission Mode)

None sw_memcfg_overlay.plN

f_MB1wb0SdRamParamveried memory cfg from mem-qual for SC7 None sw_memcfg_overlay.plN

s_Kernel_Dtb_VariantSubstitution string for Kernel Dtb None Dtb
Manipulations

If
used

f_FlashingDtbImg RCM Flashing Dtb None Dtb
Manipulations

N

f_BpmpFwDtb Bpmp Fw Dtb None Dtb
Manipulations

N

s_BPMP_Dtb_VariantSubstition string for bpmp Dtb None Dtb
Manipulations

If
used

f_FlashingBpmpFwDtbFlashing Bpmp Fw Dtb None Dtb
Manipulations

N

f_DtbImg Guest Os Dtb None Dtb
Manipulations

N

None N

f_UFSPhyLaneFile Uphy lane cfg le (to extract USB lan ID and
ownership pair from)

None Misc N

s_FuseBypass FuseByPass File Name fuse_bypass_t186.binMisc N

n_DramOverride Does board support ECC False Bootburn
scripts

Y

s_GrCsvString None Used in
Golden
Registers

Y

s_BoardId None Used in
Golden
Registers

Y

s_MediaCombination None Used in
Golden
Registers

Y

s_ChipFamily Chip family None Used by
bootburn
scripts

s_Soc SoC None Used by
bootburn
scripts

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 176

Flashing

Name Description Default Used By Optional

s_chipID Chip id None Used by
bootburn
scripts

n_FlashFirmware Flash rmware False Used by
bootburn
scripts

N_FlashMicrosemi Flash Microsemi False Used by
bootburn
scripts

s_BrickOnTCFFlashingFailSet to “True” to enable Atomic Flashing.
TegraCoreFirmware(TCF) ashing. If all
rmware is not ashed correctly, the target
is scratched to make non-bootable.

False Used by
bootburn
scripts

s_Int Pre-Prod – Soc Binning Value None Used by
bootburn
scripts.

f_SignedCustomerDataCustomer Data File in Board Congs None Used by
bootburn
scripts to
ll in Br
Bct Signed
Customer
Data.

Example Board Conguration File

The following is an example of a JSON le. You can either use built-in path substitution or
full paths names.

The built-in string substitutions are for PDK.

Name Denition Default Value

p_PlatformBCT None <PdkTop>/drive-
<TBD_platform_ver>-
foundation/platform-
cong/hardware/
nvidia/platform/t23x/
automotive/bct

s_VerStr Tegra Version a01- a01-

l_BootDevice Boot Device qspi qspi, sdmmc, or ufs

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 177

Flashing

Name Denition Default Value

s_DtbImgSux Wrapper for Qnx “” For Qnx “-qnxwrap”

p_BCT None <PdkTop>/drive-
<TBD_platform_ver>-
foundation/platform-
cong/bct/t23x

p_PlatformCommonBCT None <PdkTop>/drive-
<TBD_platform_ver>-
foundation/platform-
cong/hardware/
nvidia/platform/t23x/
common/bct

p3663-a01
{
 "p3663-a01":
 {
 "f_BootromCfg":"<p_PlatformBCT>/p3663/reset/tegra234-mb1-bct-p3663-a01-
reset.dts",
 "f_BrBctDevParam":"<p_PlatformBCT>/common/bootrom/tegra234-br-bct-auto-
<l_BootDevice>.dts",
 "f_NvQbDtbImage":"t23x-refs.dtb",
 "f_MB1Pad":"<p_PlatformBCT>/p3663/padvoltage/tegra23x-mb1-bct-p3663-a01-
padvoltage-default.dts",
 "f_MB1Pinmux":"<p_PlatformBCT>/p3663/pinmux/tegra23x-mb1-bct-p3663-a01-
pinmux.dts",
 "f_MB1Prod":"<p_PlatformBCT>/p3663/prod/tegra234-mb1-bct-p3663-a01-prod.dts",
 "f_MB1Pmic":"<p_PlatformBCT>/p3663/pmic/tegra234-mb1-bct-p3663-a01-pmic.dts",
 "f_MB1Misc":"<p_PlatformBCT>/p3663/misc/tegra234-mb1-bct-p3663-a01-misc.dts",
 "f_MB1Misc_Carveout":"<p_BCT>/misc/tegrabl_carveout_id.h",
 "f_MB2Bct":"<p_PlatformBCT>/p3663/misc/tegra234-mb2-bct-p3663-a01-auto.dts",
 "f_MB1VDK":"<NV_OUTDIR>/nvidia/bootloader/mb1-private/soc/t234/build/
standard-boot/mb1_t234.bin",
 "f_FlashingMB1SdRamParam":"<p_PlatformBCT>/p3663/sdram/t234-p3663-a01-
sdram.dts",
 "f_MB1SdRamParam":"<p_PlatformBCT>/p3663/sdram/t234-p3663-a01-sdram.dts",
 "f_MB1wb0SdRamParam":"<p_PlatformBCT>/p3663/sdram/t234-p3663-a01-sdram.dts",
 "f_MB1GpioInt":"<p_PlatformBCT>/p3663/gpioint/tegra234-mb1-bct-p3663-a01-
gpioint.dts",
 "f_MB1BootDevice":"<p_PlatformBCT>/p3663/device/tegra234-mb1-bct-p3663-a01-
device.dts",
 "f_MB2Scr":"<p_PlatformBCT>/p3663/firewall/tegra234-mb2-bct-p3663-a01-
firewall.dts",
 "s_Kernel_Dtb_Variant":"p3663-0001-a01",
 "f_DtbImg":"tegra234-p3663-0001-a01-linux-native<s_DtbImgSuffix>.dtb",
 "f_FlashingDtbImg":"tegra234-p3663-0001-a01-flashing_base.dtb",
 "f_BpmpFwDtb":"tegra234-bpmp-3663-0001-a01.dtb",
 "s_BPMP_Dtb_Variant":"bpmp-3663-0001-a01",
 "f_FlashingBpmpFwDtb":"tegra234-bpmp-3663-0001-a01.dtb",
 "f_UFSPhyLaneFile":"<p_PlatformBCT>/p3663/uphy-lanes/tegra234-mb1-bct-p3663-
a01-uphylane.dts",
 "s_FuseBypass":"fuse_bypass_t234.bin",
 "s_GrCsvString":"P3663",
 "s_ChipFamily":"t23x",
 "s_Soc":"t234",
 "s_chipID":"0x23",
 "s_Int":"F0",
 "f_SignedCustomerData":"p3663_signed_customer_data.json"
 "n_DramOverride":"True"
 }
}

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 178

Flashing

Example of Successful Flash
Bootburn completed successfully!

Bootburn Time 505.16470408439636 seconds

returning to directory /media/home/t186-dev-main-1201/foundation/embedded/tools-t23x/
scripts/t234_bootburn_py
Cleaning up ...
 Cleaning temp dir

Example of Unsuccessful Flash
------------ Stack Trace ------------
stack frame 0 : PrintStackTrace(234) in /media/home/t186-dev-main-1201/foundation/
embedded/tools-t23x/scripts/t234_bootburn_py/flashtools_nverror.py

stack frame 1 : AbnormalTermination(250) in /media/home/t186-dev-main-1201/
foundation/embedded/tools-t23x/scripts/t234_bootburn_py/flashtools_nverror.py

stack frame 2 : GenerateImage(1791) in /media/home/t186-dev-main-1201/foundation/
embedded/tools-t23x/scripts/t234_bootburn_py/bootburn_lib.py

stack frame 3 : CreateFlashImages(1926) in /media/home/t186-dev-main-1201/foundation/
embedded/tools-t23x/scripts/t234_bootburn_py/bootburn_lib.py

stack frame 4 : bootburn_active(94) in ./bootburn.py

stack frame 5 : run(93) in /usr/lib/python3.4/multiprocessing/process.py

stack frame 6 : _bootstrap(254) in /usr/lib/python3.4/multiprocessing/process.py

stack frame 7 : _launch(77) in /usr/lib/python3.4/multiprocessing/popen_fork.py

stack frame 8 : __init__(21) in /usr/lib/python3.4/multiprocessing/popen_fork.py

stack frame 9 : _Popen(267) in /usr/lib/python3.4/multiprocessing/context.py

stack frame 10 : _Popen(212) in /usr/lib/python3.4/multiprocessing/context.py

stack frame 11 : start(105) in /usr/lib/python3.4/multiprocessing/process.py

stack frame 12 : bootburn(280) in ./bootburn.py

stack frame 13 : bootburnCommandLine(355) in ./bootburn.py

stack frame 14 : <module>(359) in ./bootburn.py

s_ERROR_TOOL_NVIMAGEGEN

ERROR CODE = 53
 s_ERROR_TOOL_NVIMAGEGEN
Exception raised in bootburn_active
Traceback (most recent call last):
 File "./bootburn.py", line 94, in bootburn_active
 bootburnLib.CreateFlashImages(targetConfig.f_FlashCfg)
 File "/media/home/t186-dev-main-1201/foundation/embedded/tools-t23x/scripts/
t234_bootburn_py/bootburn_lib.py", line 1926, in CreateFlashImages
 self.GenerateImage(configFiles, l_Operation, p_TempDumpPath)
 File "/media/home/t186-dev-main-1201/foundation/embedded/tools-t23x/scripts/
t234_bootburn_py/bootburn_lib.py", line 1791, in GenerateImage
 AbnormalTermination("s_ERROR_TOOL_NVIMAGEGEN", nverror.NvError_NvImagegen)

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 179

Flashing

 File "/media/home/t186-dev-main-1201/foundation/embedded/tools-t23x/scripts/
t234_bootburn_py/flashtools_nverror.py", line 258, in AbnormalTermination
 raise OSError(errorCode)
OSError: 53

returning to directory /media/home/t234-dev-main-1201/foundation/embedded/tools-t23x/
scripts/t234_bootburn_py
Cleaning up ...
 Cleaning temp dir

Decoding Errors

Additional information is needed to fully determine the cause of some errors. That
information can be found in the log les. The command executed determines the name
of the log le (bootburn.txt, bootburnTegra-A.txt, BootburnTegra-B.txt, create_bsp.txt, or
ash_bsp.txt). in the _t194_bootburn_py folder.

Error Name Numeric Value Meaning Most Likely Cause

NvError_Success 0 Operation Worked Consult log for more
details.

NvError_NotImplemented1 Context Specic Consult log for more
details.

NvError_NotSupported 2 Context Specic Consult log for more
details

NvError_NotInitialized 3 Incorrect setting of
environmental variables

Consult log for more
details

NvError_BadParameter 4 Either unknown
parameter or incorrect
use of options

Context Specic

NvError_Timeout 5 Timeout conditions
waiting for a system
event.

Consult log for more
details.

NvError_InsucientMemory6 Context Specic Consult log for more
details.

NvError_ReadOnlyAttribute7 Context Specic Consult log for more
details.

NvError_InvalidState 8 Context Specic Consult log for more
details.

NvError_InvalidAddress 9 Context Specic Consult log for more
details.

NvError_InvalidSize 10 bad Parition Size Missing le or invalid
cfg

NvError_BadValue 11 Operation Failed Consult log for more
details.

NvError_AlreadyAllocated12 Context Specic Consult log for more
details.

NvError_Busy 13 Context Specic Consult log for more
details.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 180

Flashing

Error Name Numeric Value Meaning Most Likely Cause

NvError_ModuleNotPresent14 Context Specic Consult log for more
details.

NvError_ResourceError 15 Can't connect to Aurix
Port

Consult log for more
details

NvError_CountMismatch 16 Context Specic Consult log for more
details

NvError_OverFlow 17 Context Specic Consult log for more
details.

NvError_ImageCorrupt 18 Context Specic Consult log for more
details.

NvError_BadImage 19 Context Specic Consult log for more
details.

NvError_FuseBurningTempReadFailure20 Context Specic Consult log for more
details

NvError_Mb1PartialUpdate21 Context Specic Consult log for more
details

NvError_Sc7PartialUpdate22 Context Specic Consult log for more
details

NvError_MtsPartialUpdate23 Context Specic Consult log for more
details

NvError_Mb1OemSwRatchetSanityCheckFailed24 Context Specic Consult log for more
details

NvError_MtsOemSwRatchetSanityCheckFailed25 Context Specic Consult log for more
details

NvError_MtsRatchetScratchNotInitialized26 Context Specic Consult log for more
details

NvError_Sc7OemSwRatchetSanityCheckFailed27 Context Specic Consult log for more
details

NvError_Mb1Sc7OemSwRatchetMismatch28 Context Specic Consult log for more
details

NvError_HashMismatch 29 Context Specic Consult log for more
details

NvError_ImageMismatch30 Context Specic Consult log for more
details

NvError_InvalidPtLayout 31 Context Specic Consult log for more
details

NvError_BCHNotCached 32 Context Specic Consult log for more
details

NvError_FuseBurningTempLow33 Context Specic Consult log for more
details

NvError_FuseBurningTempHigh34 Context Specic Consult log for more
details

NvError_ECIDMisMatch 35 Context Specic Consult log for more
details

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 181

Flashing

Error Name Numeric Value Meaning Most Likely Cause

NvError_InActiveVinInvalid36 Context Specic Consult log for more
details

NvError_BomDataBoardMapFileNotFound37 Board Bom Data File
not Found

Missing Data File

NvError_TargetValidationFail38 Aurix Validation Failed Consult log for more
details

NvError_DevBinariesonProdTarget39 Context Specic Consult log for more
details

NvError_ProdBinariesonDevTarget40 Context Specic Consult log for more
details

NvError_TegraBctError 42 Call to Nvtegrabct_v2
failed

Consult log for more
details

NvError_TegraRcmError 43 tegrarcm_v2 failed Consult log for more
details

NvError_TegraSkuInfoError44 Nvskuinfo return an
error

Consult log for more
details

NvError_TegraSignError 45 Tegrasign failed to sign Bad key or missing le

NvError_NvImagegen 46 NvImagegen has failed Consult log for more
details

NvError_DeviceFailToBoot47 Attempt to read Target
uid failed

Consult log for more
details

NvError_SystemCommand48 Shell Command Failed Consult log for more
details

NvError_RatchetCongNotFound49 Ratchet Tool is not
found

Invalid Conguration

NvError_AdbPull 50 Adb Pull Failed Consult log for more
details

NvError_AdbPush 51 Adb Push Failed Consult log for more
details

NvError_AdbShell 52 Target side shell script
failed

Consult log for more
details

NvError_Adb 53 Adb Operation Failed Consult log for more
details

NvError_Python 54 Context Specic Consult log for more
details

NvError_Bad_MD5 55 Md5 Checksum Failed Device has corrupted
data

NvError_InsucientHostSpace56 Not enough Storage
Space

Can’t create images

NvError_TegraParserError57 TegraParser Failed Error in call to
TegraParser

NvError_TegraUfsProvisionError58 Ufs Provision Failed Consult log for more
details

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 182

Flashing

Error Name Numeric Value Meaning Most Likely Cause

NvError_FileWriteFailed 59 Write Failed Consult log for more
details

NvError_FileReadFailed 60 Context Specic Consult log for more
details

NvError_EndofFile 61 Context Specic Consult log for more
details

NvError_FileOperationFailed63 Various Failures of
Linux File Operations

Consult log for more
details

NvError_OperationNotPermitted64 Invalid Operation
Attempted

Consult log for more
details

NvError_DirOperationFailed65 Missing Directory need Consult log for more
details

NvError_EndOfDirList 66 Context Specic Consult log for more
details

NvError_CongVarNotFound67 Cong Variable Not
found

Consult log for more
details

NvError_InvalidCongVar68 Sku Info not set or Low
Power cfg issue

Consult log for more
details

NvError_MemoryMapFailed69 Context Specic Consult log for more
details

NvError_IoctlFailed 70 Aurix Validation Failed Consult log for more
details

NvError_AcessDenied 71 Aurix Validation Failed Consult log for more
details

NvError_DeviceNotFound72 Requested Device can't
be found

Device not found

NvError_KernelDriverNotFound73 Aurix Validation Failed Consult log for more
details

NvError_FileNotFound 74 Missing File Consult log for more
details

NvError_InvalidArgument75 Context Specic Consult log for more
details

NvError_ProcessNotFound76 Context Specic Consult log for more
details

NvError_Deadlock 77 Context Specic Consult log for more
details

NvError_FileNameNotExist78 Missing le Consult log for more
details

NvError_PartitionNotExist79 Aurix Validation Failed Consult log for more
details

NvError_DeviceFailToRegister80 Aurix Validation Failed Consult log for more
details

NvError_SystemCommandFailed81 System Command
Failed

Consult log for more
details

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 183

Flashing

Error Name Numeric Value Meaning Most Likely Cause

NvError_CorruptedBuer82 Context Specic Consult log for more
details

NvError_SdioCardNotPresent83 Context Specic Consult log for more
details

NvError_SdioInstanceTaken84 Context Specic Consult log for more
details

NvError_SdioControllerBusy85 Context Specic Consult log for more
details

NvError_SdioReadFailed 86 Context Specic Consult log for more
details

NvError_SdioWriteFailed 87 Context Specic Consult log for more
details

NvError_SdioBadBlockSize88 Context Specic Consult log for more
details

NvError_SdioClockNotCongured89 Context Specic Consult log for more
details

NvError_SdioSdhcPatternIntegrityFailed90 Context Specic Consult log for more
details

NvError_SdioCommandFailed91 Context Specic Consult log for more
details

NvError_SdioCardAlwaysPresent92 Context Specic Consult log for more
details

NvError_SdioAutoDetectCard93 Context Specic Consult log for more
details

NvError_SdMmcRecoveryFailed94 Context Specic Consult log for more
details

NvError_SdMmcTransferStateTimeout95 Context Specic Consult log for more
details

NvError_SdMmcStandByStateTimeout96 Context Specic Consult log for more
details

NvError_SdMmcIdleStateTimeout97 Context Specic Consult log for more
details

NvError_I2cReadFailed 98 Context Specic Consult log for more
details

NvError_I2cWriteFailed 99 Context Specic Consult log for more
details

NvError_I2cDeviceNotFound100 Context Specic Consult log for more
details

NvError_I2cInternalError 101 Context Specic Consult log for more
details

NvError_I2cArbitrationFailed102 Context Specic Consult log for more
details

NvError_I2CCommunicationError103 Context Specic Consult log for more
details

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 184

Flashing

Error Name Numeric Value Meaning Most Likely Cause

NvError_IdeHwError 104 Context Specic Consult log for more
details

NvError_IdeReadError 105 Context Specic Consult log for more
details

NvError_IdeWriteError 106 Context Specic Consult log for more
details

NvError_VsWriteError 107 Context Specic Consult log for more
details

NvError_VsReadError 108 Context Specic Consult log for more
details

NvError_ChipSkuClockLimitViolatio109 Context Specic Consult log for more
details

NvError_ChipSkuNumCoreViolation110 Context Specic Consult log for more
details

NvError_ChipSkuDmaFuseReadFail111 Context Specic Consult log for more
details

NvError_ChipSkuNoTableEntry112 Context Specic Consult log for more
details

NvError_ChipSkuInvalidDividerValue113 Context Specic Consult log for more
details

NvError_MCMRevFyseReadFail114 Context Specic Consult log for more
details

NvError_NvImageSign 115 Resign Failed Consult log for more
details

NvError_Unknown 116 Context Specic Consult log for more
details

USB Bus Access without sudo

sudo access is required to enable USB bus access. Edit or create 90-nvidia.rules located
at /etc/udev/rules.d. Add the line:

SUBSYSTEMS=="usb", ACTION=="add", ATTRS{idVendor}=="0955", MODE:="0666"

To reload the udev rules, run:

udevadm control --reload

4.2.3.1.1 Example Board Conguration File
The following is an example of a JSON le. You can either use built-in path substitution or
full paths names.

The built-in string substitutions are for PDK.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 185

Flashing

Name Denition Default Value

p_PlatformBCT None <PdkTop>/platform-cong/hardware/nvidia/
platform/t23x/automotive/bct

s_VerStr Tegra
Version

a02- a01- or a02-

l_BootDevice Boot
Device

qspi Qspi, sdmmc, or ufs

s_DtbImgSux Wrapper
for Qnx

"" For Qnx "-qnxwrap"

p_BCT None <PdkTop>/platform-cong/bct/t23x

p_PlatformCommonBCT None <PdkTop>/platform-cong/hardware/nvidia/
platform/t23x/common/bct

4.2.3.2 Kernel Parameter Combinations
Possible combinations of kernel parameters nfsdev, ip, and nfsroot are as follows. An error
indicates that the initramfs shell is started.

nfsdev ip nfsroot Result

(not set) (not set) (not set) no network; root must be set
in some other way

(not set) (not set) set error; needs IP conguration

(not set) set (not set) error; no root path to mount

(not set) set set valid combination

set (not set) (not set) valid combination; DHCP
request is sent

set (not set) set error; needs IP conguration

set set (not set) error; no root path to mount

set set set valid combination; no DHCP
requests

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 186

Flashing

4.2.3.2.1 Passing Additional Kernel Parameters
To pass additional kernel parameters, modify the os_args parameter of the kernel-dtb and
kernel-dtb-r partitions in this le.
drive-foundation/virtualization/pct/<platform>/linux/linux_storage_qspi.cfg

Where <platform> is:

‣ p3710-10-a01

‣ p3710-10-a01-f1

‣ p3663-a01

‣ p3663-a01-f1

‣ p4024-a00-a

‣ p4024-a00-a-f1

‣ p4024-a00-b

‣ p4024-a00-b-f1

To bind:
cd <top>/drive-foundation ./make/bind_partitions linux -b <platform>

To ash all images for Linux:
cd <top>/drive-foundation/
tools/flashtools/bootburn_t23x
./bootburn.py -b <platform> -B qspi

To ash kernel-dtb only:
cd <top>/drive-foundation/tools
/flashtools/bootburn_t23x
./bootburn.py -b <platform> -B qspi -d A_1_kernel-dtb

4.2.3.3 RAM Spoong for NDAS Use Case
For development use case running NDAS conguration it is possible to spoof 16 GB RAM
conguration on a board having 32 GB of physical RAM.

This can be done using board_cong bootburn option while ashing the board and using
appropriate 16 GB spoong board conguration le.

List of les board conguration le packaged for spoong support:
p3710-10-a01_16GB_sdram.json
p3710-10-a01-f1_16GB_sdram.json

For more information, see Bootburn Options for more details on –board_config options.

4.2.3.4 Example of Successful Flash
Bootburn completed successfully!

[bootburn]: Bootburn Time 191.073220015 seconds

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 187

Flashing

returning to directory /localhome/drive-foundation-safety/tools/flashtools/bootburn
Cleaning up ...
 Cleaning temp dir

4.2.3.5 Example of Unsuccessful Flash
------------ Stack Trace ------------
stack frame 0 : PrintStackTrace(234) in /media/home/t186-dev-main-1201
/foundation/embedded/tools-t23x/scripts/t234_bootburn_py/flashtools_nverror.py

stack frame 1 : AbnormalTermination(250) in /media/home/t186-dev-main-1201/
foundation/embedded/tools-t23x/scripts/t234_bootburn_py/flashtools_nverror.py

stack frame 2 : GenerateImage(1791) in /media/home/t186-dev-main-1201/
foundation/embedded/tools-t23x/scripts/t234_bootburn_py/bootburn_lib.py

stack frame 3 : CreateFlashImages(1926) in /media/home/t186-dev-main-1201/
foundation/embedded/tools-t23x/scripts/t234_bootburn_py/bootburn_lib.py

stack frame 4 : bootburn_active(94) in ./bootburn.py
stack frame 5 : run(93) in /usr/lib/python3.4/multiprocessing/
process.py

stack frame 6 : _bootstrap(254) in /usr/lib/python3.4/
multiprocessing/process.py

stack frame 7 : _launch(77) in /usr/lib/python3.4/
multiprocessing/popen_fork.py

stack frame 8 : __init__(21) in /usr/lib/python3.4/
multiprocessing/popen_fork.py

stack frame 9 : _Popen(267) in /usr/lib/python3.4/
multiprocessing/context.py

stack frame 10 : _Popen(212) in /usr/lib/python3.4/
multiprocessing/context.py

stack frame 11 : start(105) in /usr/lib/python3.4/
multiprocessing/process.py

stack frame 12 : bootburn(280) in ./bootburn.py

stack frame 13 : bootburnCommandLine(355) in ./bootburn.py

stack frame 14 : <module>(359) in ./bootburn.py

s_ERROR_TOOL_NVIMAGEGEN
ERROR CODE = 53
 s_ERROR_TOOL_NVIMAGEGEN
Exception raised in bootburn_active
Traceback (most recent call last):
 File "./bootburn.py", line 94, in bootburn_active
 bootburnLib.CreateFlashImages(targetConfig.f_FlashCfg)
 File "/media/home/t186-dev-main-1201/foundation/embedded/tools-t23x/
scripts/t234_bootburn_py/bootburn_lib.py", line 1926, in CreateFlashImages
 self.GenerateImage(configFiles, l_Operation, p_TempDumpPath)
 File "/media/home/t186-dev-main-1201/foundation/embedded/tools-t23x/
scripts/t234_bootburn_py/bootburn_lib.py", line 1791, in GenerateImage
 AbnormalTermination("s_ERROR_TOOL_NVIMAGEGEN", nverror.NvError_NvImagegen)
 File "/media/home/t186-dev-main-1201/foundation/embedded/tools-t23x/
scripts/t234_bootburn_py/flashtools_nverror.py", line 258, in AbnormalTermination
 raise OSError(errorCode)

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 188

Flashing

OSError: 53

returning to directory /media/home/t186-dev-main-1201/foundation/embedded/
tools-t23x/scripts/t234_bootburn_py
Cleaning up ...
 Cleaning temp dir

4.2.3.6 Decoding Errors
Additional information is needed to fully determine the cause of some errors. That
information can be found in the log les. The command executed determines the name of
the log le (bootburn.txt, bootburnTegra-A.txt, BootburnTegra-B.txt, create_bsp.txt,
or flash_bsp.txt). in the _t23x_bootburn_py folder.

Error Name
Numeric
Value Meaning

Most Likely
Cause

NvError_NotSupported 2 Context
Specic

Consult log
for more
details

NvError_NotInitialized 3 Incorrect
setting of
environmental
variables

Consult log
for more
details

NvError_BadParameter 4 Either
unknown
parameter or
incorrect use
of options

Context
Specic

NvError_Timeout 5 Timeout
conditions
waiting for a
system event

Consult log
for more
details

NvError_InvalidSize 10 bad Parition
Size

Missing le
or invalid cfg

NvError_ResourceError 15 Can't connect
to Aurix Port

Consult log
for more
details

NvError_BomDataBoardMapFileNotFound37 Board Bom
Data File not
Found

Missing Data
File

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 189

Flashing

Error Name
Numeric
Value Meaning

Most Likely
Cause

NvError_TargetValidationFail 38 Aurix
Validation
Failed

Consult log
for more
details

NvError_TegraBctError 49 Call to
Nvtegrabct_v2
failed

Consult log
for more
details

NvError_TegraRcmError 50 tegrarcm_v2
failed

Consult log
for more
details

NvError_TegraSkuInfoError 51 Nvskuinfo
return an error

Consult log
for more
details

NvError_TegraSignError 52 Tegrasign
failed to sign

Bad key or
missing le

NvError_ImageMismatch 53 Must use
Debug if using
Virtual Box

User error

NvError_NvImagegen 53 NvImagegen
has failed

Consult log
for more
details

NvError_DeviceFailToBoot 54 Attempt to
read Target
uid failed

Consult log
for more
details

NvError_SystemCommand 55 Shell
Command
Failed

Consult log
for more
details

NvError_RatchetCongNotFound 56 Ratchet Tool is
not found

Invalid
Conguration

NvError_AdbShell 59 Target side
shell script
failed

Consult log
for more
details

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 190

Flashing

Error Name
Numeric
Value Meaning

Most Likely
Cause

NvError_Adb 60 Adb Operation
Failed

Consult log
for more
details

NvError_Bad_MD5 62 Md5
Checksum
Failed

Device has
corrupted
data

NvError_FileOperationFailed 196,611 Various
Failures of
Linux File
Operations

Consult log
for more
details

NvError_DirOperationFailed 196,612 Missing
Directory need

Consult log
for more
details

NvError_CongVarNotFound 196,614 Missing le Consult log
for more
details

NvError_InvalidCongVar 196,615 Sku Info not
set or Low
Power cfg
issue

Consult log
for more
details

NvError_DeviceNotFound 196,625 Requested
Device can't
be found

Device not
found

NvError_FileNotFound 196,627 Missing File Consult log
for more
details

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 191

Flashing

Error Name
Numeric
Value Meaning

Most Likely
Cause

NvError_InvalidArgument 196,628 Context
Specic

Consult log
for more
details

NvError_FileNameNotExist 196,631 Missing le Consult log
for more
details

NvError_SystemCommandFailed 196,634 System
Command
Failed

Consult log
for more
details

4.2.4 Updating Customer Data into BCT
Note: Customer data can only be specied at
create_bsp_images.py/flash_bsp_images.py when the target has been fused for
authentication. In this case, the customer data can only be updated when a privacy key is
available.

There are two types of customer data:

1. Product specic : Unique to product
2. Target specic : Unique to target

Customer data is typically done with a read, modify, and write process, except for the
authentication exception noted above. Two methods are provided are explained below.

Product Customer Data

Product specic customer data can be specied using the board json le. The following
key/le is added to board specic json le.
"f_SignedCustomerData":"p3710_signed_customer_data.json"

This is intended for customer data items that never or rarely change.

Target Specic Customer Data

Target specic customer data can be specied at any time (creation or ashing).

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 192

Flashing

4.2.4.1 Command Line Option
The command-line option is as follows.

Options Description

--customer-data
<json_data_le>
[<json_schema_le>]

Species customer data, such as skuinfo.

<json_data_file> species the customer data values in
a JSON le.

<json_schema_file> species the optional customer
data schema les.

Note: Arguments -z and -A are no longer
supported. ,

Note:

Partial customer data updates are supported. It is not required to update all the
data elds specied in the schema.

4.2.4.1.1 Usage
./bootburn.py --customer-data customer_data.json -b p3663-a01 -B qspi
./create_bsp_images.py --customer-data customer_data.json
 nv_customer_data_schema.json -b p3663-a01 -r 02 -g ./flashing_images
./flash_bsp_images.py --customer-data customer_data.json -b p3663-a01 -P ./
flashing_images/940-ORIN-2200-000_VD*

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 193

Flashing

4.2.4.2 Customer Data Schema File Format

4.2.4.3 Denitions
‣ BCT section name: Name of the BCT section where data needs to be updated in BCT.

‣ Supported sections at present are: "customer-data-unsigned" or "customer-data-
signed".

‣ allowed-oset-ranges: Array of allowed oset ranges for a section type where each
range is specied as an array of [start of the range, end of the range].

‣ Data eld name: Field name for the data.

‣ parser-metadata: Metadata used to parse the user input value and convert them into
list of words represented by their schema given in "schema".

‣ data-separator-string: Separator characters to allow separating user input data into
individual words.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 194

Flashing

‣ number-of-words: Expected number of words after data-separator-string is applied
to the user input.

‣ schema: Schema to interpret input data words and covert input data to bytes.

‣ version: Version for the data item (defaults to 1)

‣ Version schema object is optional and only need to be specied for the data
items that requires version information.

‣ value

‣ List of schema objects in sequence to allow interpreting each word in user input
value for the data eld.

Note:

If the multiple format is supported for each word, schema for a word
can be a list of schema objects.

‣ Each schema object is of the following format:

Type

Type Interpretation

"decimal" Used for integer formats "I", "H"
and "Q"

"char" Used for character format "c"

"string" Used for string format "s"

‣ format-string:

Format String Interpretation

"I" Four bytes unsigned integer

"H" Two bytes unsinged short
integer

"Q" Eight bytes unsigned integer

"c" One byte characters

"s" Null terminated string

‣ oset: Oset where value needs to be stored in the BCT section

‣ Oset values must be within the allowed range specied by "allowed-oset-
ranges" for each section.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 195

Flashing

‣ min-len

‣ Minimum required input value length

‣ Only required for "c" and "s" format types

‣ max-len

‣ Maximum required input value length.

‣ Only required for "c" and "s" format types.

4.2.4.4 Format of the Data Value File
{
 "<Field Name>": "<Field Value>"
 "<Field Name>": {
 "version": <Version Value>,
 "value": <Field Value>,
 }
}

4.2.4.4.1 Description
Field Name: Name of the data eld as specied in the schema (must match the name
specied in the schema).

Field Value: Value of the data eld.

version: Version value for the data eld format.

value: Value of the data eld (same as eld value above).

4.2.4.4.2 Example customer data le

{
"customer-data-signed":
{ "boardSerial": "223145", "macInUseCount": 8, "macId0": "mac0 0x00044BAF6805 3",
"macId1": "mac1 0x00044BAF6815 3", "macId2": "mac2 0x00044BAF6825 1",
"macId3": "mac3 0x00044BAF6835 4", "macId6": "mac6 0x00044BAF6865 7",
"macId5": "mac5 0x00044BAF6855 6", "macId4": "mac4 0x00044BAF6845 5",
"macId7": "mac7 0x00044BAF6875 2" }
}

4.2.4.4.3 Example schema le
{
 "customer-data-unsigned": {
 "allowed-offset-ranges": [[0, 1024]],
 "data": {
 "boardSerial": {
 "parser-metadata" : {
 "data-separator-string": null,
 "number-of-words": 1
 },
 "schema": {
 "version": {
 "type": "unsigned-char",
 "format-string": "B",

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 196

Flashing

 "offset": 16
 },
 "value": [
 {
 "type": "decimal",
 "format-string": "Q",
 "offset": 20
 }
]
 }
 },
 "macInUseCount": {
 "parser-metadata" : {
 "data-separator-string": null,
 "number-of-words": 1
 },
 "schema": {
 "value": [
 {
 "type": "unsigned-char",
 "format-string": "B",
 "offset": 34
 }
]
 }
 },
 "macId0": {
 "parser-metadata" : {
 "data-separator-string": " ",
 "number-of-words": 3
 },
 "schema": {
 "value": [
 {
 "type": "string",
 "format-string": "s",
 "offset": 40,
 "max-len": 10,
 "min-len": 1
 },
 {
 "type": "hex",
 "format-string": "Q",
 "offset": 50,
 "max-len": 6,
 "min-len": 6
 },
 {
 "type": "unsigned-char",
 "format-string": "B",
 "offset": 56
 }
]
 }
 },
 "macId1": {
 "parser-metadata" : {
 "data-separator-string": " ",
 "number-of-words": 3
 },
 "schema": {
 "value": [
 {
 "type": "string",
 "format-string": "s",
 "offset": 64,
 "max-len": 10,

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 197

Flashing

 "min-len": 1
 },
 {
 "type": "hex",
 "format-string": "Q",
 "offset": 74,
 "max-len": 6,
 "min-len": 6
 },
 {
 "type": "unsigned-char",
 "format-string": "B",
 "offset": 80
 }
]
 }
 },
 "macId2": {
 "parser-metadata" : {
 "data-separator-string": " ",
 "number-of-words": 3
 },
 "schema": {
 "value": [
 {
 "type": "string",
 "format-string": "s",
 "offset": 88,
 "max-len": 10,
 "min-len": 1
 },
 {
 "type": "hex",
 "format-string": "Q",
 "offset": 98,
 "max-len": 6,
 "min-len": 6
 },
 {
 "type": "unsigned-char",
 "format-string": "B",
 "offset": 104
 }
]
 }
 },
 "macId3": {
 "parser-metadata" : {
 "data-separator-string": " ",
 "number-of-words": 3
 },
 "schema": {
 "value": [
 {
 "type": "string",
 "format-string": "s",
 "offset": 112,
 "max-len": 10,
 "min-len": 1
 },
 {
 "type": "hex",
 "format-string": "Q",
 "offset": 122,
 "max-len": 6,
 "min-len": 6
 },

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 198

Flashing

 {
 "type": "unsigned-char",
 "format-string": "B",
 "offset": 128
 }
]
 }
 },
 "macId4": {
 "parser-metadata" : {
 "data-separator-string": " ",
 "number-of-words": 3
 },
 "schema": {
 "value": [
 {
 "type": "string",
 "format-string": "s",
 "offset": 136,
 "max-len": 10,
 "min-len": 1
 },
 {
 "type": "hex",
 "format-string": "Q",
 "offset": 146,
 "max-len": 6,
 "min-len": 6
 },
 {
 "type": "unsigned-char",
 "format-string": "B",
 "offset": 152
 }
]
 }
 },
 "macId5": {
 "parser-metadata" : {
 "data-separator-string": " ",
 "number-of-words": 3
 },
 "schema": {
 "value": [
 {
 "type": "string",
 "format-string": "s",
 "offset": 160,
 "max-len": 10,
 "min-len": 1
 },
 {
 "type": "hex",
 "format-string": "Q",
 "offset": 170,
 "max-len": 6,
 "min-len": 6
 },
 {
 "type": "unsigned-char",
 "format-string": "B",
 "offset": 176
 }
]
 }
 },
 "macId6": {

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 199

Flashing

 "parser-metadata" : {
 "data-separator-string": " ",
 "number-of-words": 3
 },
 "schema": {
 "value": [
 {
 "type": "string",
 "format-string": "s",
 "offset": 184,
 "max-len": 10,
 "min-len": 1
 },
 {
 "type": "hex",
 "format-string": "Q",
 "offset": 194,
 "max-len": 6,
 "min-len": 6
 },
 {
 "type": "unsigned-char",
 "format-string": "B",
 "offset": 200
 }
]
 }
 },
 "macId7": {
 "parser-metadata" : {
 "data-separator-string": " ",
 "number-of-words": 3
 },
 "schema": {
 "value": [
 {
 "type": "string",
 "format-string": "s",
 "offset": 208,
 "max-len": 10,
 "min-len": 1
 },
 {
 "type": "hex",
 "format-string": "Q",
 "offset": 218,
 "max-len": 6,
 "min-len": 6
 },
 {
 "type": "unsigned-char",
 "format-string": "B",
 "offset": 224
 }
]
 }
 },
 "VIN": {
 "parser-metadata" : {
 "data-separator-string": null,
 "number-of-words": 1
 },
 "schema": {
 "value": [
 {
 "type": "char",
 "format-string": "c",

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 200

Flashing

 "offset": 264,
 "max-len": 19,
 "min-len": 17
 }
]
 }
 },
 "bomId": {
 "parser-metadata" : {
 "data-separator-string": null,
 "number-of-words": 1
 },
 "schema": {
 "value": [
 {
 "type": "string",
 "format-string": "s",
 "offset": 284,
 "max-len": 19,
 "min-len": 1
 }
]
 }
 },
 "machineName": {
 "parser-metadata" : {
 "data-separator-string": null,
 "number-of-words": 1
 },
 "schema": {
 "value": [
 {
 "type": "string",
 "format-string": "s",
 "offset": 304,
 "max-len": 19,
 "min-len": 1
 }
]
 }
 }
 }
 }
}

4.2.5 Generating Flashing Binaries Oine
Note: You do not need to use sudo for the following commands:

‣ bootburn.py

‣ create_bsp_images.py

‣ ash_bsp_images.py

However, if you choose to use sudo for one, use it consistently the others. Do not
switch between sudo/non-sudo usage.

Use the create_bsp_images.py script to generate ashing binaries oine when the target
is not connected to the host using create_bsp tools. Flashing binaries are pre-processed
binaries used by the update_sample update tool.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 201

Flashing

The create_bsp tool create_bsp_images.py requires bootburn_lib.py and bootburn
helper les for execution. The script uses default paths as in bootburn for the target.
Depending on the conguration le, it processes raw binaries for ashing; including adding
and signing headers. The create_bsp_images.py image invokes tools such as nvimagegen,
nvtegrabct_v2 internally, similar to bootburn.py, to process binaries.

The create_bsp_images.py script is available at:
<top>/drive-foundation/tools/flashtools/bootburn

Prerequisites

To enable bootburn tracing support, execute the command:
sudo apt-get install -f lockfile-progs

create_bsp_images.py Command Line Options

The table below shows the parameter list for create_bsp_images.py.

Options Description

-B <boot_device> Specify the boot-device. Supported boot devices
are qspi and emmc. Default is qspi.

-C Selects debug binaries for boot loaders.

-D Enables debug prints from ashing script.

-E Species ECC-enabled binaries for Native Only

-M Species development version rmware for non-
production board.

-X Enables the golden register address. Value
dumps into the GR memory carveout.

-Y Species the dt-overlay odm-data parameter.

-b <board_name>
Species the board name:

‣ p3710-10-a01
‣ p3710-10-a01-f1
‣ p3663-a01
‣ p3663-a01-f1
‣ p4024-a00-a
‣ p4024-a00-a-f1
‣ p4024-a00-b
‣ p4024-a00-b-f1
‣ p3898-a01

-c Selects a safety prole: SCE with safety
rmware, or APE with camera.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 202

Flashing

Options Description

-d <partition_name> <lename>
Species a DTB le.

The default le is dened in the
BoardSetFilePathsAndDefaultValues function in
bootburn_helper.sh.

bpmp-fw-dtb and kernel-dtb may be specied
simultaneously.

Note: This option is not intended to specify
kernel-dtb in Hypervisor.

-g Generates binaries at the specied path. Does
not ash.

-h Provides help on options for the
create_bsp_images tool.

-k
Species the absolute path of the conguration
le to be used.

If used with Hypervisor, the conguration le
must have been created from bind_partitions
and be located in the hypervisor output
directory.

‣ The default value for DRIVE OS Linux:
quickboot_qspi_linux.cfg

‣ The default value for DRIVE OS QNX:
Quickboot_qspi_qnx.cfg

-l

(Lower case l)

Creates Linux images.

-p <pkc_le> Species RSA or ECDSA key le <pkc_le> for
signing images.

-q Creates QNX images.

--encryption_key Takes as parameter the full le path and name.
Secure boot encryption key. Can be used with
bootburn.sh and create_bsp_images.sh.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 203

Flashing

Options Description

--hsm <key_string>
Can be used with bootburn.sh and
create_bsp_images.sh. Tells Bootburn what keys
will be used in HSM mode. Key String is Key +
Encrypt Keys. Key is rsa|eddsa. Encrypt Keys are
sbk or kek0. Examples:

--hsm rsa

--hsm rsa+sbk

--

--hsm eddsa

--hsm eddsa+sbk

--hsm sbk

-r
Species the chip revision. Supported values
are:

‣ 01
‣ 02

This option must be used with the -b option.

-s

(Lower case s)

Skips creating the le system.

--asymmetric Used to generate images for native chain in
asymmetric mode.

--customer-data Specied customer data such as skuinfo and
others to be updated during ashing.

--chain [A|B|C]
For use by DRIVE Update to generate update
packages.

encrypt Used to encrypt binaries

init_persistent_partition
If a partition has the attribute

ispersistent=yes

Then the partition has a initialization le created

merge_chains This is an option to be used with asymmetric
boot chains for manufacturing

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 204

Flashing

4.2.5.1 Processed Binaries Directory Structure
The create_bsp tools take the -g argument to specify the output directory path where
processed binaries are generated. After executing create_bsp tool, a per SKU-based
directory is created under the output directory.

For example, if create_bsp is executed to create binaries for --skunum
699-62382-0010-100 --setskuversion AA with -g images, a sub-directory is created
under the output directory, images in this case, with a name generated by appending the
skunum and setskuversion.
$ ls images

699-62382-0010-100_AA

Under the sub-directory, three sets of binaries are generated as ash-images: rcm-boot
and rcm-flash.

These binaries are required at dierent phases during ashing.
$ ls images/699-62382-0010-100_AA/
flash-images rcm-boot rcm-flash

The generated sub-directories are as follows:

Sub-directory Description

ash-images Contains processed binaries ashed on the target storage
medium. Also contains FileToFlash.txt, a summary le that contains
information about binary names to ash at osets for the nal
target ash structure.

These binaries are used for the update tool update_sample.

rcm-boot Contains the necessary binaries to boot the target without writing
binaries to the medium.

rcm-ash Contains binaries similar to rcm-boot for booting the Linux kernel
on initramfs without writing binaries to the medium. These binaries
are generated from a set of prebuilt binaries that are used for
ashing.

4.2.5.2 Generating Binaries for Flashing Asymmetric
Boot Chains

4.2.5.2.1 Prerequisites
‣ Linux+MODS and AV+Q packages are installed.

‣ Install fskp_fuseburn_py-<release>.tgz.

‣ Install Mods on PDK package (AV+L MODS) on a per board basis.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 205

Flashing

‣ For AV+QNX: Install AV + QNX Safety

‣ For AV+Linux : Install AV + Linux

4.2.5.2.2 Create Fskp Firmware
This step combines fskp_fuse.xml (OEM xml le) and fskp_t234.bin. fskp_t23x.key is a
key checked out from NVIDIA.
cd drive-foundation/tools/flashtools/fuseburn
./fskp_fuseburn.py -c 0x23 -f fskp_fuse.xml -k fskp_t23x.key -g <top>/drive-
foundation/firmware/bin/t234/fskpboot/ -i 63 -B <board> -b

or for hsm:
}}{{./fskp_fuseburn.py /drive-foundation/firmware/bin/t234/fskpboot/ -i 63 -B <board>
 -b -hsm fskp{{}}

4.2.5.2.3 Bind
Bind for Sinle Linux GOS VM+MODS
cd drive-foundation
bind_partitions -b <board> PCT=linux -z PCT_VARIANT=mods clean
bind_partitions -b <board> PCT=linux -z PCT_VARIANT=mods

4.2.5.2.4 How to Create and Merge Asymmetric Boot Images
Create A chain:

cd $NV_WORKSPACE/drive-foundation
tools/flashtools/bootburn/create_bsp_images.py -b <board> -r 1 -g ${PWD}/<board>/
chain_a -D --chain A --asymmetric -s --fskp-bct-path $NV_WORKSPACE/drive-foundation/
firmware/bin/t234/fskpboot/br_bct_BR_sigheader.bct -m

Create B chain:

‣ Using a privacy key for all images
Specify the key
$PWD/tools/flashtools/bootburn/create_bsp_images.py -b <board> -r 1 -g ${PWD}/
<board>/chain_b -D --chain B --asymmetric -s --encryption_key <Path to encryption
 key file> -p <Path_to_signing_key_file>

‣ Using a unique privacy key per SoC
Do not specify the key
$PWD/tools/flashtools/bootburn/create_bsp_images.py -b <board> -r 1 -g ${PWD}/
<board>/chain_b -D --chain B --asymmetric -s --encryption_key <Path to encryption
 key file>
cd $NV_WORKSPACE
Merge chains
${NV_WORKSPACE}/drive-foundation/tools/flashtools/bootburn/create_bsp_images.py
 -b <board> -r 1 -g ${NV_WORKSPACE}/<merge-chain> --asymmetric --merge-chains
 A=<chain_a> B=<chain_b>

For example,
${NV_WORKSPACE}/drive-foundation/tools/flashtools/bootburn/create_bsp_images.py -b
 p3710-10-a04 -r 1 -g ${NV_WORKSPACE}/p3710-10-a04-merge -D --asymmetric --merge-
chains A=${NV_WORKSPACE}/drive-foundation/p3710-10-a04/chain_a B=${NV_WORKSPACE}/
drive-foundation-safety/p3710-10-a04/chain_b

‣ Additional steps for using a unique key per SoC

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 206

Flashing

1. Sign the base package with the new unique key.
${NV_WORKSPACE}/drive-foundation/tools/flashtools/bootburn_t23x_py/
post_processing_tool.py --chip 0x23 --images ${NV_WORKSPACE}/p3710-10-
a04-merge/642-63710-0010-000_TS4/flash-images/ --headers-output-dir
 ${NV_WORKSPACE}/p3710-10-a04-headers --asymmetric --signing-key ~/keys/
edopenssl_v3_0.pem --debug

2. Generate a new fuse block for the unique key (updated fskp_fuse.xml). For more
information, see Create Fskp Firmware.
./fskp_fuseburn.py -c 0x23 -f fskp_fuse.xml -k fskp_t23x.key -g $NV_WORKSPACE/
drive-foundation/firmware/bin/t234/fskpboot/ -i 63 -B <board> -b

3. Copy the FSKP blob.
cp $NV_WORKSPACE/drive-foundation/firmware/bin/t234/fskpboot/
blob_fskp_updated_aligned_sigheader_encrypt.signed ${NV_WORKSPACE}/p3710-10-
a04-headers

4.2.5.3 Output
Output images: Output is saved in the directory path specied via input JSON
conguration le using output-directory : directory path.

Logs: Log les are generated for each create_bsp_images.py run using the <name>.log
where <name> is the chain name given for each chain in the JSON input conguration le.

4.2.6 Flashing Preprocessed Binaries
Note: You do not need to use sudo for the following commands:

‣ bootburn.py

‣ create_bsp_images.py

‣ ash_bsp_images.py

However, if you choose to use sudo for one, use it consistently the others. Do not
switch between sudo/non-sudo usage.

This topic describes how to ash prebuilt binaries that create_bsp_images.py generated.
Such binaries are generated oine, when the target is disconnected from the host.

The ash BSP tool, ash_bsp_image.py, calls the following scripts:

‣ bootburn_lib.py

‣ bootburn_adb.py

‣ bootburn_helper.py

Flash BSP ashes binaries that are generated oine by create_bsp_tool.py.

Flash BSP uses the following tools:

‣ tegrarcm_v2

‣ adb

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 207

Flashing

‣ nvdd

‣ nvskuinfo

flash_bsp_images.py is at:
<top>/drive-
foundation/tools/flashtools/bootburn_t23x/

flash_bsp_images.py is at:
<top>/drive-
foundation/tools/flashtools/bootburn_t23x_py/

4.2.6.1 Usage
The options flash_bsp_images.py supports are as follows.

Option Description

-D Enables debug messages from the Flashing script.

-I <bus_id> <device_id> Flashes a specic Orin when multiple devices are in
recovery.

Obtain the bus and device ID information of each NVIDIA
device in recovery by executing the lsusb command on
the host.

For example, if the lsusb command gives the following
output:

Bus 003 Device 105: ID 0955:7018
NVidia Corp.
Bus 003 Device 104: ID 0955:7018
NVidia Corp.

Then ash the second NVIDIA device with the -I option
as in the following example:

-I 003 104

-P <path> Species a directory from which flash_bsp_images.py
picks prebuild binaries. The script does not generate the
binaries.

-R Species RCM support. Boots without Flashing
Software(BCT is used from Media). Default ash-boot

-b <board_and_rev> Species the board name.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 208

Flashing

Option Description

-h Provides guidance on the ash_bsp_images tool options.

Note:

flash_bsp_images.pysupports only the
options described in this table, which are
a subset of the options listed by this -
h option. (This -h option lists all options
supported by bootburn_lib.py.)

-o Skips ashing of recovery partitions.

-u <partition_name ...> Species one or more partition names to ash.

--asymmetric Flag to specify asymmetric boot chain ashing.

--customer-data Specied customer data such as skuinfo and others to
be updated during ashing.

See Updating Customer Data into BCT for information
on how to use it.

devicetype Used to write single non-volatile memory device {spi,
sdhci or ufshci}.

logs Absolute path to directory for log les.

4.2.6.2 Directory Structure of Preprocessed Binaries
The Flash BSP tools -P argument species the output directory path with the processed
binaries.

The examples in this topic assume all images are in the images directory

For ashing, Flash BSP obtains the prebuilt images to ash from:
./images/<SKUInfo>-<SKUVersion>

For example:
$ ls images

The following subdirectories are present in the images/<SKUInfo> directory:

‣ ash-images

‣ rcm-boot

‣ rcm-ash

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 209

Flashing

For example:
$ ls images/699-63550-0001-300_GD/
flash-images rcm-boot rcm-flash

These directories contain dierent binaries that are used at dierent phases in ashing.

4.2.6.2.1 To ash the prebuilt binaries
 1. Connect the target to host PC and put target in recovery.
 2. Flash the binaries to the target. For example:

./flash_bsp_images.py -P images/699-63550-0001-500_AB
-b e3550b03-t194a

Because this command omits the -z option, the Flash BSP tool reads SKUInfo from the
target and preserves it in the BCT.

4.2.6.3 Flashing the Prebuilt Binaries
To ash the prebuilt binaries:

 1. Connect the target to host PC and put target in recovery.
 2. Flash the binaries to the target.

For example, the following command can be used to ash Orin:
./flash_bsp_images.py -P images/699-63550-0001-500_AB -b <board>

Because this command omits the -z option, the Flash BSP tool reads SKUInfo from the
target and preserves it in the BCT.

4.2.6.4 Flashing SKUInfo
The subdirectory name under the output directory, images in this example, is very
important because it contains SKUInfo. Flash BSP parses SKUInfo to obtain platform detail.

Flash BSP tools also accepts the -z option with arguments to ll SKUInfo in BR-BCT le.
The same BR_BCT le (with SKUInfo passed with -z) is updated to target.

4.2.6.4.1 To ash SKUInfo and the prebuilt binaries
 1. Connect the target to host PC and put target in recovery.
 2. Flash the binaries to the target. For example:

$./flash_bsp_images.py -P images/699-63550-0001-500_AB -b
e3550b03-t194a -z "--skunum 699-63550-0001-500 --setskuversion AB
--setboardserial 01234 --setprodinfo 699-63550-0001-500 AB

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 210

Flashing

--setmacid mac0 0x000ba4eba5"

Note:

The original copy of BCT SKUInfo is modied after flash_bsp.py executes.

4.2.6.5 Flashing Asymmetric Boot Chain Images
You can ash an asymmetric chain by using the following command:
python3 ./flash_bsp_images.py -b <board> -P ${PWD}/<board>/<output_directory> --
asymmetric

If debugging information is required, specify the -D option.

For example,
${NV_WORKSPACE}/p3710-10-a04-merge/tools/flashtools/bootburn/flash_bsp_images.py -
b p3710-10-a04 -D -P ${NV_WORKSPACE}/p3710-10-a04-merge/642-63710-0010-000_TS4/ --
asymmetric

To ash an asymmetric BSP using a unique key per SoC, use the ashing command as
follows:
./flash_bs_images.py -b <board> -P <output_directory> --headers <header-path>

For example,
${NV_WORKSPACE}/p3710-10-a04-merge/tools/flashtools/bootburn/flash_bsp_images.py -
b p3710-10-a04 -D -P ${NV_WORKSPACE}/p3710-10-a04-merge/642-63710-0010-000_TS4/ --
headers ${NV_WORKSPACE}/p3710-10-a04-fix-header/ --asymmetric

Where NV_WORKSPACE is the root directory that contains the BSP package and headers.

4.2.6.6 Flashing SKUInfo and Other Customer Data
Customer data, such as skuinfo and others, can be updated using the --customer-data
option to flash_bsp_images.py when ashing.

See Updating Customer Data into BCT for details on how to use the --customer-data
option.

4.2.6.7 Flashing Flow
The ashing ow of ash BSP is similar to the bootburn ow except that ash BSP does
not generate binaries.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 211

Chapter 5. Embedded Software
Components

The following sections describe the embedded software components used to build and
deploy applications for DRIVE AGX hardware acceleration engines.

5.1 Graphics Programming
Use the information in this section to understand graphics programming for this release.
This information includes topics such OpenGL ES programming tips, and recommendations
for managing binary shader programs.

For information on the graphics specications and extensions supported in this release,
see:

‣ OpenGL ES 2/3 Specs and Extensions in the API Reference

‣ EGL and EGL Extensions in the API Reference

‣ Vulkan Specs and Extensions in the API Reference

‣ Vulkan SC Specs and Extensions in the API Reference

5.1.1 OpenGL ES Programming Tips
Note:

NVIDIA does not recommend using OpenGL in a safety environment.

This topic is for readers who have some experience programming OpenGL ES and
want to improve the performance of their OpenGL ES application. It aims at providing
recommendations on getting the most out of the API and hardware resources without
diving into too many architectural details.

5.1.1.1 Programming Eciently
Some of the recommendations in this topic are incompatible with each other. One must
consider the trade-os between CPU load, memory, bandwidth, shader processing power,
precision, and image quality. Premature assumptions about the eectiveness of trade-

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 212

../../../api_reference/group__ogl2__group.html
../../../api_reference/index.html
../../../api_reference/group__egl__group.html
../../../api_reference/index.html
../../../api_reference/group__vulkan__group.html
../../../api_reference/index.html
../../../api_reference/group__vulkansc__group.html
../../../api_reference/index.html

Embedded Software Components

os should be avoided. The only denite answers come from benchmarking and looking at
rendered images!

The items below are not ordered according to importance or potential performance
increase. The identiers in parentheses exist only for reference.

5.1.1.1.1 State
Inecient management of GL state leads to increased CPU load that may limit the amount
of useful work the CPU could be doing elsewhere. Reducing the number of times rendering
is paused due to GL state change will increase the chance of realizing the potential
throughput of the GPU. The main point in this section is: do not modify or query GL state
unless absolutely necessarily.

Do not set any state redundantly (S1)

All relevant GL state should be initialized during application initialization and not in the
main render loop. For instance, occasionally glClearDepthf, glColorMask, or glViewport
nds its way into the application render loop even though the values passed to these
functions are always constant. Other times they are set unconditionally in the loop, just
in case their values have changed per frame. Only call these functions when the values
actually do need to change. Additionally, do not automatically set state back to some
predened value (e.g., the GL defaults). That idiom might be useful while developing your
application as it makes it easier to re-order pieces of rendering code, but it should not be
done in production code without a very good reason.

Avoid querying any GL state in the render loop (S2)

When a GL context is created, the state is initially well-dened. Every state variable has
a default value that is described in the OpenGL ES specication ("State Tables"). Except
when compiling shaders, determining available extensions, or the application needs to
query implementation specic constants, there should be no need to query any GL state.
These queries can almost always be done in initialization. Well-written applications check
for GL errors in debug builds. If no errors are reported as a result of changing state, it is
assumed that the changes are now part of the new GL state. For these two reasons, the
current state is always known and you should almost never need to query any GL state in
a loop. If an application frequently calls functions that begin with glIs* or glGet*, these
calls should be tracked down and eliminated.

Batch on shared state (S3)

An ecient approach to reduce the number of state changes is batching together all draw
calls that use the same state (shaders, blending, textures, etc.). For instance, not batching
on the shader changes has the form:
[UseProgram(21), DrawX1, UseProgram(59), DrawY1,
UseProgram(21), DrawX2, UseProgram(59), DrawY2]

Batching on the shaders leads to an improvement (fewer shader changes):
[UseProgram(21), DrawX1, DrawX2,
UseProgram(59), DrawY1, DrawY2]

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 213

Embedded Software Components

It is quite eective to group draw calls based on the shader programs they use.
Reprogramming the GPU by switching between shaders is a relatively costly operation.
Within each batch, a further optimization can be made by grouping draw calls that use
the same uniforms, texture objects and other state. Generating a log of all function calls
into the OpenGL ES API is a good approach for revealing poor batching. A tool such as
PerfHUDES can conveniently generate this log without rebuilding the GL application; no
change to the source code is necessary.

Do not repeat per object state when binding (S4)

Recall that some state is bound to the object it aects. As that state is stored in the
object, you do not need to repeat it when you rebind the object. A very common mistake
is setting the texture parameters for ltering and wrapping every time a texture object
is bound. Another common mistake is updating uniform variables that have not changed
value since the last time the particular shader program was used. In particular, when
batching opportunities are limited, repeating per object state generates enormously
inecient GL code that can easily have a measurable impact on framerate.

Enable backface culling whenever possible (S5)

Always enable face culling whenever the back-faces are not visible. Rendering the back-
faces of primitives is often not necessary.

Note:

The default GL state has backface culling disabled, so this is one state that should
almost always be set during application initialization and be left enabled for the
application lifetime.

5.1.1.1.2 Geometry
The amount of geometry, as well as the way it is transferred to the GL, can have a very
large impact on both CPU and GPU load. If the application sends geometry ineciently or
too frequently, that alone can create a bottleneck on the CPU side that does not give the
GPU enough data to work eciently. Geometry must be submitted in sizable chunks to
realize the potential of the GPU. At the same time, geometry should be minimally dened,
stored on the server side, and it should be accessed in a way to get the most out of the
two GPU caches that exist before and after vertices are transformed.

Use indexed primitives (G1)

The vertex processing engine contains a cache where previously transformed vertices
are stored. It is called Post-TnL vertex cache. Taking full advantage of this cache can lead
to very large performance improvement when vertex processing is the bottleneck. To
fully utilize it, it is necessary for the GPU to be able to recognize previously transformed
vertices. This can only be accomplished by specifying indexed primitives for the geometry.
However, for any non-trivial geometry the optimal order of indices will not be obvious to
the programmer. If some geometry is complex, and the application bottleneck is vertex
processing, then look into computing a vertex order that maximizes the hit ratio of the

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 214

Embedded Software Components

Post TnL cache. The topic has been thoroughly studied for years and even simple greedy
algorithms can provide a substantial performance boost. Good results have been reported
with the algorithm described at the below locations.

Document
URL to
Latest

Linear-Speed Vertex Cache Optimisation, by Tom Forsyth, RAD Game
Tools (28th September 2006)

URL

There is a free implementation of the algorithm in a library called vcacne.

Note:

The number of vertex attributes and the size of each attribute may determine
the eciency of this cache—it has storage for a xed number of bytes or
active attributes, not a xed number of vertices. A lot of attribute data per
vertex increases the risk of cache misses, resulting in potentially redundant
transformations of the same vertices.

Reduce vertex attribute size and components (G2)

It is important to use an appropriate attribute size and minimize the number of
components to avoid wasting memory bandwidth and to increase the eciency of the
cache that stores pre-transformed vertices. This cache is called Pre-TnL vertex cache.
For instance, you rarely need to specify attributes in 32 bit FLOATs. It might be possible
to dene the object-space geometry using 3 BYTEs per vertex for a simple object, or
3 SHORTs for a more complex or larger object. If the geometry requires oating-point
representation, half-oats (available in extension OES_vertex_half_float.txt) may be
sucient. Per vertex colors are accurately stored with 3 x BYTEs with a ag to normalize in
VertexAttributePointer. Texture coordinates can sometimes be represented with BYTEs
or SHORTs with a ag to normalize (if not tiling).

Note:

The exception case that normalizing texture coordinates is not necessary if they
are only used to sample a cube map texture.

Vertex normals can often be represented with 3 SHORTs (in a few cases, such as
for cuboids, even as 3 BYTEs) and these should be normalized. Normals can even be
represented with 2 components if the direction (sign) of the normal is implicit, given its
length is known to be 1. The remaining coordinate can be derived in a vertex shader (e.g. z
= SQRT(1 - x * x + y * y)) if memory or bandwidth (rather than vertex processing) is a
likely bottleneck.

An optimal OpenGL ES application will take advantage of any characteristics specic to
the geometry. For instance, a smooth sphere uses the normalized vertex coordinates as
normal—these are trivially computed in a vertex shader. It is important to benchmark

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 215

https://tomforsyth1000.github.io/papers/fast_vert_cache_opt.html

Embedded Software Components

intermediate results to ensure the vertex processing engine is not already saturated. Finally
remember, if some attribute for a primitive or a number of primitives is constant for the
same draw call, then disable the particular vertex attribute index and set the constant
value with VertexAttrib instead of replicating the data.

Pack vertex attributes (G3)

Vertex attributes normally have dierent sets of attributes that are completely unrelated.
Unlike uniform and varying variables in shader programs, vertex attributes do not get
automatically packed, and the number of vertex attributes is a limited resource. Failure to
pack these attributes together may lead to limitations sooner than expected. It is more
ecient to pack the components into fewer attributes even though they may not be
logically related. For instance, if each vertex comes with two sets of texture coordinates
for multi-texturing, these can often be combined these into one attribute with four
components instead of two attributes with two components. Unpacking and swizzling
components is rarely a performance consideration.

Choose an appropriate vertex attribute layout (G4)

There are two commonly used ways of storing vertex attributes:

‣ Array of structures

‣ Structures of arrays

An array of structures stores the attributes for a given vertex sequentially with an
appropriate oset for each attribute and a non-zero stride. The stride is computed from
the number of attribute components and their sizes. An array of structures is the preferred
way of storing vertex attributes due to more ecient memory access. If the vertex
attributes are constant (not updated in the render loop) there is no question that an array
of structures is the preferred layout.

In contrast, a structure of arrays stores the vertex attributes in separate buers using
the same oset for each attribute and a stride of zero. This layout forces the GPU to jump
around and fetch from dierent memory locations as it assembles the needed attributes
for each vertex. The structure of arrays layout is therefore less ecient than an array of
structures in most cases. The only time to consider a structure of arrays layout is if one or
more attributes must be updated dynamically. Strided writes in array of structures can be
expensive relative to the number of bytes modied. In this scenario, the recommendation
is to partition the attributes such that constant and dynamic attributes can be read and
written sequentially, respectively. The attributes that remain constant should be stored
in an array of structures. The attributes that are updated dynamically should be stored
in smaller separate buer objects (or perhaps just a single buer if the attributes are
updated with the same frequency).

Use consistent winding (G5)

The geometry winding (clockwise or counter-clockwise) should be determined up front and
dened in code. The geometry face that is culled by GL can be changed with the FrontFace
function, but having to switch back and forth between winding for dierent geometry
batches during rendering is not optimal for performance and can be avoided in most cases.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 216

Embedded Software Components

Always use vertex and index buer objects (G6)

Recall that vertices for geometry can either be sourced from application memory every
time it is rendered or from buers in graphics memory where it has been stored previously.
The same applies to vertex array indices. To achieve good performance, you should never
continuously source the data from application memory with DrawArrays. Buer objects
should always be used to store both geometry and indices. Check that no code is calling
DrawArrays, and that no code is calling DrawElements without a buer bind.

The default buer usage ag when allocating buer objects is STATIC_DRAW. In many cases
this will lead to fastest access.

Note:

STATIC_DRAW does not mean one can never write to the buer (although any
writing to a buer should always be avoided as much as possible). A STATIC_DRAW
ag may in fact be the appropriate usage ags, even if the buer contents
are updated every few frames. Only after careful benchmarking and arriving
at conclusive results should changing the usage ag to one of the alternatives
(DYNAMIC_DRAW or STREAM_DRAW) be considered.

Batch geometry into fewer buers and draw calls (G7)

There are only so many draw calls, or batches of geometry, that can be submitted to GL
before the application becomes CPU bound. Each draw call has an overhead that is more
or less xed. Therefore, it is very important to increase the sizes of batches whenever
possible. There does not need to be a one-to-one correspondence between a draw call
and a buer—a large vertex buer can store geometry with a similar layout for multiple
models. One or more index buers can be used to select the subset of vertices needed
from the vertex buer. A common mistake is to have too many small buers, leading to
too many draw calls and thus high CPU load. If the number of draw calls issued in any given
frame goes into many hundreds or thousands, then it is time to consider combining similar
geometry in fewer buers and use appropriate osets when dening the attribute data
and creating the index buer.

Unconnected geometry can be stitched together with degenerate triangles (alternatively,
by using extension NV_primitive_restart2 when available). Degenerate triangles are
triangles where two or more vertices are coincident leading to a null surface. These are
trivially rejected and ignored by the GPU. The benet from stitching together geometry
with degenerate triangles, such that fewer and larger buers are needed, tends to
outweigh the minor overhead of sending degenerates triangles down the pipeline. If
geometry batches are being broken up to bind dierent textures, then look at combining
several images into fewer textures (T5).

Use the smallest possible data type for indices (G8)

When the geometry uses relatively few vertices, an index buer should specify vertices
using only UNSIGNED_BYTE instead of UNSIGNED_SHORT (or an even larger integer type if

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 217

Embedded Software Components

the ES2 implementation supports it). Count the number of unique vertices per buer and
choose the right data type. When batching geometry for several unrelated models into
fewer buer objects (G7), then a larger data type for the indices may be required. This is
not a concern compared to the larger performance benets of batching.

Avoid allocating new buers in the rendering loop (G9)

If the application frequently updates the geometry, then allocate a set of suciently large
buers when the application initializes. A BufferData call with a NULL data pointer will
reserve the amount of memory you specify. This eliminates the time spent waiting for an
allocation to complete in the rendering loop. Reusing pre-allocated buers also helps to
reduce memory fragmentation.

Note:

Writing to a buer object that is being used by the GPU can introduce bubbles
in the pipeline where no useful work is being done. To avoid reducing throughput
when updating buers, consider cycling between multiple buers to minimize the
possibility of updating the buer from which content is currently being rendered.

Cull early and often (G10)

The GPU will not rasterize primitives when all of its vertices fall outside the viewport. It
also avoids processing hidden fragments when the depth test or stencil test fails (P4).
However, this does not mean that the GPU should do all the work in deciding what is visible.
In the case of vertices, they need to be loaded, assembled and processed in the vertex
shader, before the GPU can decide whether to cull or clip parts of the geometry. Testing
a single, simple bounding volume that encloses the geometry against the current view
frustum on the CPU side is a lot faster than testing hundreds of thousands of vertices
on the GPU. If an application is limited by vertex processing, this is denitely the place to
begin optimizing. Spheres are the most ecient volumes to test against and the volume of
choice if geometry is rotational symmetrical. For some geometry, spheres tend to lead to
overly conservative visibility acceptance. A rectangular cuboid (box) is only a slightly more
expensive test but can be made to t more tightly on most geometry. Hierarchical culling
can often be employed to reduce the number of tests necessary on the CPU. Ecient and
advanced culling algorithms have been heavily researched and published for many years.
You can nd a good introduction in the survey at the below locations.

5.1.1.1.3 Shader Programs
Writing ecient shaders is critical to achieving good performance. One should treat
shaders like pieces of code that run in the inner-most loops on a CPU. There is a very high
cost to littering these with conditionals or recomputing loop invariants. Before optimizing
an expensive vertex shader, make sure geometry that is entirely outside the view frustum

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 218

Embedded Software Components

is being culled on the CPU. Before optimizing an expensive fragment shader, make sure the
application is not generating an excess number of fragments with it.

Note:

When optimizing shaders, any source code that does not contribute to its output
variables is optimized out by the compiler. This feature can be exploited to
gain knowledge about whether the shader is part of the current bottleneck by
multiplying the output variable with a null vector to reduce the workload and then
measure if frame rate improves. Conversely, at the nal stages of optimization
one can quickly measure if there is headroom for increasing workload to ooad
computations to shader unit or to improve image quality by adding meaningless
but expensive ALU instructions, or texture sampling, to the output variables.

Move computations up the pipeline (P1)

As the rendering pipeline is traversed from the CPU to the vertex processor and then
to the fragment processor, the required workload tends to increase a few orders of
magnitude each time. Computations constant per model, per primitive or per vertex do
not belong in the fragment processor and should be moved up to the vertex processor or
earlier. Per draw call computations do not belong in the vertex processor and should be
moved to the CPU. For instance, if lighting is done in eye-space, the light vector should
be transformed into eye-space and stored in a uniform rather than repeating this for
each vertex or, even worse, per fragment. The light vector should naturally be stored pre-
normalized. Usually the light vector computations are constant for the draw call, so they do
not belong in any shader.

Do not write large or generalized shaders (P2)

It is critical to resist the temptation to write shader programs that take dierent code
paths depending on whether one or more constant variable have a particular value.
Uniforms are intended as constants for one (or hopefully many) primitives—they are not
substitutes for calling UseProgram. Shaders should be minimal and specialized to the task
they perform. It is much better to have many small shaders that run fast than a few large
shaders that all run slow. Code re-use (when source shaders are supported) should be
handled at the application level using the ShaderSource function. If the advice here of not
writing generalized shaders goes against the conicting goal of minimizing shader and
state changes, smaller and more specialized shaders are generally preferred. Additionally,
be careful with writing shader functions intended for concatenation into the nal shader
source code - shared functions tend to be overly generic and make it harder to exploit
possible shortcuts.

Take advantage of application specic knowledge (P3)

Application specic knowledge can be used to simplify or avoid computations. Math
shortcuts should be pursued everywhere because there are optimizations that the shader
compiler or the GPU cannot make. For instance, rendering screen-aligned primitives
is common for 2D user interface and post-processing eects. In this case, the entire
modelview transformation is avoided by dening the vertices in NDC (normalized device

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 219

Embedded Software Components

coordinates). A full-screen quad has its vertex coordinates in the [-1.0,1.0] range so these
can be passed directly from the vertex attribute to gl_Position. The types of matrix
transformations applied in the application when creating the modelview matrix should
be tracked and exploited when possible. For instance, an orthonormal matrix (e.g. no
non-uniform scaling) leads to an opportunity to avoid computations when transforming
normals with the inverse-transpose sub-matrix.

Optimize for depth and stencil culling (P4)

The GPU can quickly reject fragments based on depth or stencil testing before the
fragment shader is executed. The depth complexity of a scene is the number of times
each fragment gets written. Depth complexity can be measured by incrementing values
in a stencil buer. A high depth complexity in a 3D scene can be a result of rendering
opaque objects in a non-optimal order. The worst case is rendering back-to-front (aka
painter's algorithm) because it leads to a large number of fragments being overdrawn. An
application with high depth complexity should ensure that opaque objects are rendered
sorted front-to-back order with depth testing enabled. Straightforward rendering of 2D
user interfaces also leads to a high depth complexity that can often be decreased with
the same technique but also by using the stencil buer to mask fragments. Applications
that are heavily fragment limited can be sped up signicantly with clever use of these
techniques—sometimes up to a factor of 10 or more.

If vertex processing is not a bottleneck, it is worthwhile to run experiments that prime the
depth buer in a rst pass. Disable all color writes with ColorMask on the rst pass. The
fragments in the depth buer can then serve as occluders in a second pass when color
writes are enabled and the expensive fragment shaders are executed. Disable depth writes
with DepthMask in the second pass since there is no point in writing it twice.

Do not discard fragments, or modify depth, unless absolutely necessary (P5)

Some operations prevent the hardware from enabling its automatic optimization that
rejects fragments early in the pipeline (early-Z). In particular, the discard operation that
discards fragments based on some criteria will disable early-Z on some platforms. It is
critical to limit the use of discarding as much as possible (e.g., alpha testing)—unless depth
writing can be disabled. Another example is found in the GL_NV_fragdepth extension
available on some platforms, where the depth value can be written from the fragment
shader. This operation also forces the GPU to opt out of Early-Z reject in order to ensure
correct rendering.

Avoid conditionals in shaders when possible (P6)

Fragments are processed in chunks and both branches of a conditional may need to be
evaluated before the result of the false branch can be discarded by the GPU. Be careful
with assuming that conditionals skip computations and reduce the workload. This warning
is particularly relevant to fragment shaders. Benchmarking shaders can determine if
conditionals in the vertex or fragment shaders actually end up decreasing the workload.
Some conditional code can be rewritten in terms of algebra and/or built-in functions. For

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 220

Embedded Software Components

instance, the dot product between a normal and a light vector may be negative in which
case the result is not needed in a lighting equation. Instead of:
if (nDotL > 0.0) ...

the value can be clamped with:
clamp(nDotL, 0.0, 1.0)

and unconditionally used in the result (the negative value results in a zero-product).
Clamp may be faster than max and/or min for the 0.0 and 1.0 cases, but as always
benchmarking will have the nal say in the matter. Another reason to make an eort of
avoiding conditionals in fragment shaders is that mipmapped textures return undened
results when executed in a block statement that is conditional on run-time values.
Although the GLSL functions texture*Lod can be used to bias or specify the mipmap LOD,
it is expensive to manually derive the mipmap LOD. In addition, these LOD biasing samplers
may not run as fast as the non-LOD samplers.

Use appropriate precision qualiers (P7)

Recall that the default precision in vertex shaders is highp, and that fragment shaders
have no default precision until explicitly set. Precision qualiers can be valuable hints to the
compiler to reduce register pressure and may improve performance for several reasons.
Low precision may run twice as fast in hardware as high precision. These optimizations
can be approached by initially using highp and gradually reducing the precision to lowp
until rendering artifacts appear; if it looks good enough, then it is good enough. As a rule
of thumb, vertex position, exponential and trigonometry functions need highp. Texture
coordinates may need anything from lowp to highp depending on texture width and
height. Many application-dened uniform variables, interpolated colors, normals and
texture samples can usually be represented using lowp. However, oating-point texture
samplers need more than low precision - this is one of several reasons to minimize the use
of oating-point textures (T6).

Use the built-in functions and variable (P8)

The built-ins have a higher chance of compiling optimally and may even be implemented in
hardware. For instance, do not write shader code to determine the forward primitive face
or compute the reection vector in terms of dot-products and algebra; instead, use the
built-in variable gl_FrontFacing or the built-in function reect, respectively.

Consider encoding complex functions in textures (P9)

Shaders normally contain both arithmetic (ALU) and texture operations. A batch of
ALU operations may hide the latency of fetching samples from texture because they
occur in parallel. If a shader is the primary bottleneck, and when the ALU operations
signicantly outnumber the texture operations, it is worthwhile to investigate if some of
these operations can be encoded in textures. Sub-expressions in shaders can sometimes

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 221

Embedded Software Components

be stored in LUTs (look-up-tables). LUTs can sometimes be implemented in textures with
sucient precision and accessed as 1D or 2D textures with NEAREST ltering.

Note:

The old trick of using cubemaps to normalize vectors is most likely a performance
loss on discrete GPUs. If you pursue this idea, then make sure to benchmark to
determine if you have improved or worsened the performance!

Limit the amount of indirect texturing (P10)

Indirect texturing can sometimes be useful, but when the result of a texture operation
depends on another texture operation, the latency of texture sampling is dicult to hide.
It also tends to lead to scattered reads that minimize the benet of the texture cache.
Indirect texturing can sometimes be reduced, or avoided, at the expense of memory.
Whether that trade-o makes sense should of course be analyzed and benchmarked.

Do not let GLSL syntax obscure math optimizations (P11)

The GLSL shading language conveniently overloads arithmetic operators for vectors
and matrices. Care must be taken to not miss optimization opportunities due to this
syntax simplication. For instance, a rotation matrix can, but should not, be dened as
homogenous 4x4 matrix just because the other operand is a vec4 vector. A generalized
rotation matrix should be described only as a 3 x 3 matrix and applied to vec3 vectors.
And a rotation around basic vectors can be done even more eciently than mat3 * vec3
by directly accessing the relevant vector and matrix components with cos and sin. Take
advantage of any specic application knowledge to reduce the number of needed scalar
instructions.

Only normalize vectors when it is necessary (P12)

Normalization of vectors is required to eciently calculate the angle between them, or
perhaps more typically, the diuse component in many commonly used lighting equations.
In theory, normalization is required for geometry normals after having transformed them
with the normal matrix. In practice, it may not matter depending on the composition of the
matrix. It is a common mistake to normalizing vectors where it is not necessary, or at least
not visually discernible. As a result, the application may run slower for no good reason. For
instance, consider the case of interpolating vertex normals in order to compute lighting
per fragment (i.e., Phong shading). If the normal matrix only rotates, there is little reason to
normalize the normal vectors before interpolating.

Note:

Barycentric interpolation will not preserve the unit length of these vectors. So
normals that are interpolated in varying variables do must be normalized to ensure
the dot-product with the light vector obeys the cosine emission law.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 222

Embedded Software Components

5.1.1.1.4 Textures
Textures consume the largest amount of the available memory and bandwidth in many
applications. One of the best places to look for improvements when short on memory
or bandwidth to optimize texture size, format and usage. Careless use of texturing can
degrade the frame rate and can even result in inferior image quality.

Use texture compression whenever possible (T1)

Texture compression brings several benets that result from textures taking up
less memory: compressed textures use less of the available memory bandwidth,
reduces download time, and increases the eciency of the texture cache. The
texture_compression_s3tc and texture_compression_latc extensions both provide
block-based lossy texture compression that can be decompressed eciently in hardware.
The S3TC extension gives 8:1 or 4:1 compression ratio and is suitable for color images with
3 or 4 channels (with or without alpha) with relatively low-frequency data. Photographs
and other images that compress satisfactory with JPEG are great candidates for S3TC.
Images with hard and crisp edges are less good candidates for S3TC and may appear
slightly blurred and noisy. The LATC extension yields a 2:1 compression ratio, but improves
on the quality and can be useful for high resolution normal maps. The third coordinate
is derived in the fragment shader—be sure to benchmark if the application can aord
this trade-o between memory and computations! Unlike S3TC, the channels in LATC are
compressed separately, and quantization is less hard. Using texture compression does
not always result in lower perceived image quality, and with these extensions one can
experiment with increasing the texture resolution for the same memory. There are o-line
tools to compress textures (even if a GL extension supports compressing them on-the-y).
Search the NVIDIA developer website for "Texture Tools".

Use mipmaps when appropriate (T2)

Mipmaps should be used when there is not an obvious one-to-one mapping between texels
and framebuer pixels. If texture minication occurs in a scene and there are no mipmaps
to access, texture cache utilization will be poor due to the sparse sampling. If texture
minication occurs more often than not, then the texture size may be too large to begin
with. Coloring the mipmap levels dierently can provide a visual clue to the amount of
minication that is occurring. When reducing the texture size, it may also be worthwhile to
perform experiments to see if some degree of magnication is visually acceptable and if it
improves frame rate.

Although the GenerateMipmap function is convenient, it should not be the only option
for generating a mipmap chain. This function emphasizes execution speed over image
quality by using a simple box lter. Generating mipmaps o-line using more advanced
lters (e.g. Lanczos/Sinc) will often yield improved image quality at no extra cost. However,
GenerateMipmap may be preferable when generating textures dynamically due to speed.
One of the only situations where you do not want to use mipmaps is if there is always a
one-to-one mapping between texels and pixels. This is sometimes the case in 3D, but more
often the case for 2D user interfaces. Recall that a mipmapped texture takes up 33% more
storage than un-mipmapped, but they can provide much better performance and even
better image quality through reduced aliasing.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 223

Embedded Software Components

Use the smallest possible textures size (T3)

Always use the smallest possible texture size for any content that gives acceptable
image quality. The appropriate size of a texture should be determined by the size of the
framebuer and the way the textured geometry is projected onto it. But even when you
have a one-to-one mapping between texels and framebuer pixels, there may be cases
where a smaller size can be used. For instance, when blending a texture on the existing
content in the entire framebuer, the texture does not necessarily have to be the same
width and height as the framebuer. It may be the case that a signicantly smaller texture
that is magnied will produce results that are good enough. The bandwidth that is saved
from using a smaller and more appropriately sized texture can instead be spent where it
actually contributes to better image quality or performance.

Use the smallest possible texture format and data type (T4)

If hardware accelerated texture compression cannot be used for some textures, then
consider using a texture format with fewer components and/or fewer bits per component.
Textures for user interface elements sometimes have hard edges or color gradients that
result in inferior image quality when compressed. The S3TC algorithm make assumptions
that changes are smooth and colors values can be quantized. If these assumptions do not
t a particular image, but the number of unique colors is still low, then experiment with
storing these in a packed texture format using 16 bit/texel (e.g. UNSIGNED_SHORT_5_6_5).
Although the colors are remapped with less accuracy it may not be noticeable in the
nal application. Grayscale images should be stored as LUMINANCE and tinted images can
sometimes be stored the same way with the added cost of a dot product with the tint
color. If normal maps do not compress satisfactory with the LATC format, then it may be
possible to store two of the normals coordinates in uncompressed LUMINANCE_ALPHA and
derive the third in a shader assuming the direction (sign) of the normal is implicit (as is the
case of a heightmap terrain).

Note:

When optimizing uncompressed textures, the exception case that 24-bit (RGB)
textures are not necessarily faster to download or smaller in memory than
32-bit (RGBA) on most GPUs. In this case, it may be possible to use the last
component for something useful. For instance, if there already is an 8-bit
greyscale texture that is needed at the same time as an opaque color texture, that
single component texture can be stored in the unused alpha component of a 32-
bit (RGBA). The component could dene a specular/reectance map that describe
where and to what degree light is reected. This is useful for terrain satellite
imagery or land cover textures with water/snow/ice areas or for car textures with
their metal and glass surfaces or for textures for buildings with glass windows.

Store multiple images in each texture object (T5)

There is no requirement that there is a one-to-one mapping between an image and
a texture object. Textures objects can contain multiple distinct images. These are
sometimes referred to as a "texture atlas" or a "texture page". The geometry denes

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 224

Embedded Software Components

texture coordinates that only reference a subset of the texture. Texture atlases are useful
for minimizing state changes and enables larger batches when rendering. For example,
residential houses and oce buildings and factories might all use distinct texture images.
But the geometry and vertex layout for each is most likely identical so these could share
the same buer object. If the distinct images are stored in a texture atlas instead of
as separate textures, then these dierent kinds of buildings can all be rendered more
eciently in the same draw call (G7). The texture object could be a 2D texture, a cubemap
texture or an array texture.

Note:

Note that if mipmapping is enabled, the sub-textures in an atlas must have a
border wide enough to ensure that smaller mipmaps are not generated using
texels from neighboring images. And if texture tiling (REPEAT or MIRRORED_REPEAT)
is needed for a sub-image then it may be better to store it outside the texture
atlas.

Emulating either wrapping mode in a shader by manipulating texture coordinates is
possible, but not free. A cubemap texture can sometimes be useful since wrapping and
ltering apply per face, but the texture coordinates used must be remapped to a vec3
which may be inconvenient. If all the sub-images have the same or similar size, format and
type (e.g. image icons), the images are a good candidate for the array texture extension
if supported. Array textures may be more appropriate here than a 2D texture atlas where
mipmapping and wrapping restrictions have to be taken into consideration.

Float textures are always expensive (T6)

Textures with a oating-point format should be avoided whenever possible. If these
textures are simply being used to represent a larger range of values, it may be possible to
replace these with xed point textures and scaling instructions. For instance, unsigned 16-
bit integers cannot even accurately be represented by half-precision oats (FP16). These
would have to be stored using single precision (FP32) leading to twice the memory and
bandwidth requirements. It might be better to store these values in two components using
8 bits (LA8) and spend ALU instructions to unpack them in a shader.

Note:

Floating-point textures may not support anything better than nearest ltering.

Prefer power-of-two (POT) textures in most cases (T7)

Although Non-Power-of-Two (NPOT) textures are supported in ES2 they come with
a CLAMP_TO_EDGE restriction on the wrapping mode (unless relaxed by an extension).
More importantly, they cannot be mipmapped (unless relaxed by an extension). For that
reason, POT textures should be used when there is not signicant memory and bandwidth
to be saved from using NPOT. However, an NPOT texture may be padded internally to
accommodate alignment restrictions in hardware and that the amount of memory saved
might not be quite as large as the width and height suggests. As a rule of thumb, only large

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 225

Embedded Software Components

(i.e., hundreds of texels) NPOT textures will eectively save a signicant amount of memory
over POT textures.

Update textures sparingly (T8)

Writing to GPU resources can be expensive—it applies to textures as well. If texture
updates are required, then determine if they really need to be updated per frame or if
the same texture can be reused for several frames. For environment maps, unless the
lighting or the objects in the environment have been transformed (e.g., moved/rotated)
suciently to invalidate the previous map, the visual dierence may not be noticeable but
the performance improvement can be. The same applies to the depth texture(s) used for
shadow mapping algorithms.

Update textures eciently (T9)

When updating an existing texture, use TexSubImage instead of re-dening its entire
contents with TexImage when possible.

Note:

When using TexSubImage it is important to specify the same texture format and
data type with which that the texture object was dened; otherwise, there may be
an expensive conversion as texels are being updated.

If the application is only updating from a sub-rectangle of pixels in client memory, then
remember that the driver has no knowledge about the stride of pixels in your image. When
the width of the image rectangle diers from the texture width, this normally requires a
loop through single pixel rows calling TexSubImage repeatedly while updating the client
memory osets with pointer arithmetic. In this case, the unpack_subimage extension can
be used (if supported) to set the UNPACK_ROW_LENGTH pixelstore parameter to update the
entire region with one TexSubImage call.

Partition rendering based on alpha blending/testing (T10)

It is sometimes possible to improve performance by splitting up the rendering based on
whether alpha blending or alpha testing is required. Use separate draw calls for opaque
geometry so these can be rendered with maximum eciency with blending disabled.
Perform other draw calls for transparent geometry with alpha blending enabled, taking
into account the draw ordering that transparent geometry requires. As always, benchmarks
should be run to determine if this improves or reduces the frame rate since you will be
batching less by splitting up draw calls.

Filter textures appropriately (T11)

Do not automatically set expensive texture lters and enable anisotropic ltering.
Remember that nearest-neighbor ltering always fetches one texel, bilinear ltering
fetches up to four texels and trilinear fetches up to eight texels. However, it can be
incorrect to draw assumptions about the performance cost based on this. Bilinear ltering
may not cost four times as much as nearest ltering, and trilinear can be more or less

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 226

Embedded Software Components

than twice as expensive as bilinear. Even though textures have mipmaps, it does not
automatically mean trilinear ltering should be used. That decision should be made entirely
from observing the images from the running application. Only then can a judgment be
made if any abrupt changes between mipmap levels are visually disturbing enough to
justify the cost of interpolating the mipmaps with trilinear ltering. The same applies
to anisotropic ltering, which is signicantly more expensive and bandwidth intensive
than bilinear or trilinear ltering. If the angle between the textured primitives and the
projection plane (e.g. near plane) is never very large, there is nothing to be gained from
sampling anisotrophically and there is potentially lower performance. Therefore, an
application should start o with the simplest possible texture ltering and only enable
more expensive ltering after users have inspected the output images. It might be
worthwhile to benchmark the changes and take notes along the way. This will provide a
better indication of the relative cost of ltering method and if concessions must be made
if the performance budget is exceeded.

Try to exploit texture tiling (T12)

It is common for images to contain the same repeated pattern of pixels. Or an image might
repeat a few patterns that are close enough in similarity that they could be replaced with
a single pattern without impacting image quality. Tiling textures saves on memory and
bandwidth. Some image processing applications can identify repeated patterns and can
crop them so they can be tiled innitely without seams when using textures with the
REPEAT wrap mode. Sometimes even a quarter of a tile or shingle may be sucient to store
while using MIRRORED_REPEAT. Consider if tiling variation can be restored or achieved with
multi-texturing, using for instance a less expensive grey-scale texture that repeats at a
dierent frequency to modulate the texels from the tiled texture.

Use framebuer objects (FBO) for dynamically generated textures (T13)

OpenGL ES comes with functions for copying previously rendered pixels from a
framebuer into a texture (TexCopyImage, TexCopySubImage). These functions should be
avoided whenever possible for performance reasons. It is better to bind a framebuer
object with a texture attachment and render directly to the texture. Make sure you check
for framebuer completeness.

Note:

Not all pixel formats are color-renderable. Formats with 3 or 4 components in 16 or
32 bits are color-renderable in OpenGL ES 2.0, but LUMINANCE and/or ALPHA may
require a fall-back to TexCopyImage functions.

5.1.1.1.5 Miscellaneous
This topic contains miscellaneous OpenGL ES programming tips.

Avoid reading back the framebuer contents (M1)

Reading back the framebuer ushes the GL pipeline and limits the amount CPU/GPU
parallelism. Reading frequently or in the middle of a frame stalls the GPU and limits the

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 227

Embedded Software Components

throughput with lower frame rate as a result. If the buer contents must be read back
(perhaps for picking 3D objects in a complex scene), it should be done minimally and
scheduled at the beginning of the next frame. In the special case that the application is
reading back into a sub-rectangle of pixels in client memory, the pack_subimage extension
(if supported) is very useful. Setting the PACK_ROW_LENGTH pixel store parameter will reduce
the loop overhead that will otherwise be necessary (T9).

Avoid clearing buers needlessly (M2)

If the application always covers the entire color buer for each frame, then bandwidth can
be saved by not clearing it. It is a common mistake to call Clear(GL_COLOR_BUFFER_BIT)
when it is not necessary. If only part of the color buer is modied, then constrain pixel
operations to that region by enabling scissor testing and dene a minimal scissor box
for the region. The same applies to depth and stencil buers if full screen testing is not
needed.

Disable blending when it is not needed (M3)

Most blending operations require a read and a write to the framebuer.

Note:

Memory bandwidth is often doubled when rendering with blending is enabled. The
number of blended fragments should be kept to a minimum—it can drastically
speed up the GL application.

Minimize memory fragmentation (M4)

Buer objects and glTexImage* functions are eectively graphics memory allocations.
Reusing existing buer objects and texture objects will reduce memory fragmentation. If
geometry or textures are generated dynamically, the application should allocate a minimal
pool of objects for this purpose during application initialization. It may be that two buers
or textures used in a round-robin fashion are optimal for reducing the risk that the GPU is
waiting on the resource. Also, recall that sampling a texture that is being rendered to, at
the same time, is undened. This can be another reason to alternate between objects. For
more information, see Memory Fragmentation in this appendix.

5.1.1.1.6 Optimizing OpenGL ES Applications
Optimization is an iterative process. It can be time consuming, especially without prior
experience determining where bottlenecks tend to occur. Eort should be directed
towards the critical areas instead of starting a random place in the rendering code. When
the graphics application is complex it may be dicult to know where to start or exactly
where optimizations will yield the best return.

Partition the analysis into manageable chunks

Many rendering applications are complex and consist of hundreds of objects. But usually
they consist of logically separate rendering code. For example, a rendered image may

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 228

Embedded Software Components

consist of roads, buildings, landmarks, points of interest, sky, clouds, buildings, water,
terrain, icons, and a 2D user interface. It is helpful to write the GL application such that
rendering of each type of object can be disabled easily. This allows easy identication
of the most expensive objects when benchmarking and therefore makes optimizing the
rendering code more manageable.

Become familiar with bottlenecks in the graphics pipeline

It is important to begin optimizations by identifying the performance bottlenecks
at the dierent stages in the graphics pipeline. Because the work introduced in the
beginning of the pipeline normally aects the work needed at later stages, it often makes
sense to work backwards from the end of the pipeline. An introduction to identifying
graphics bottlenecks can be found in the GPU Gems book, "Chapter 28. Graphics Pipeline
Performance" (Cem Cebenoyan, NVIDIA).

5.1.1.2 Avoiding Memory Fragmentation
Memory Fragmentation generally is a bad thing. This is especially true for computer
graphics applications. In addition to avoiding system memory fragmentation, a graphics
application should strive to avoid video memory fragmentation as well.

Fortunately, controlling video memory fragmentation has techniques very similar to those
used to avoid system memory fragmentation. Since system memory fragmentation control
is fairly well known, this document will only treat system memory issues in passing and
focuses on video memory techniques.

5.1.1.2.1 Video Memory Overview
Video memory is much more heterogeneous than system memory.

NVIDIA video memory allocation algorithms have to take the following into account:

‣ There are multiple types of video memory types. The number and names of the types
vary by GPU model, but GPUs generally have at least two; linear, which is essentially
unformatted, and one or more GPU specic types. The GPU tracks dierent types
of memory, and will access and write them dierently. The types are important
because GPU native types can be faster for a given set of operations; in some GPU
architectures, the dierence is small, on the order of 10-15%. On others, it can be quite
large, more than 100% faster than linear memory.

‣ Video memory is often banked, especially for mipmapped textures. In most
architecture, alternating mipmap levels for a given texture must be put in separate
banks. This separation is mandatory in most NVIDIA GPUs.

‣ In addition to the restrictions above, dierent memory regions have dierent alignment
restrictions, to match host pages, improve DMA performance, or speed up framebuer
scan out. These alignment requirements may be orthogonal to the memory types,
adding further complication.

‣ The allocator may have other special restrictions that enhance performance, such as
distributing allocations to a sequence of dierent banks to improve allocation speed.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 229

Embedded Software Components

‣ These extra constraints complicate the video memory allocator, and make allocations
much more sensitive to reductions in available video memory. This is the major reason
why NVIDIA does not support multiple independent heaps in video memory, instead
requiring the application to allocate in such a way as to minimize fragmentation.

5.1.1.2.2 Allocating and Freeing Video Memory
This topic describes considerations for allocating and freeing video memory.

5.1.1.2.2.1 Allocating buers

When using OpenGL ES/EGL, there is only a small set of APIs that actually lead to long-
term video memory buer allocation:
glBufferData(enum target, sizeiptr size, const void *data,
enum usage)
glTexImage2D(enum target, int level, int internalFormat, sizei width,
sizei height, int border, enum format, enum type, const void *pixels)

glCopyTexImage2D(enum target, int level, enum internalformat, int x,
int y, sizei width, sizei height, int border)

Note:

The glCopyTexImage2D function allocates only when it copies to a null.

eglCreateWindowSurface(EGLDisplay dpy, EGLConfig config,
NativeWindowType win, const EGLint *attrib_list)

eglCreatePbufferSurface(EGLDisplay dpy, EGLConfig config, const
EGLint *attrib_list)

eglCreatePixmapSurface(EGLDisplay dpy, EGLConfig config,
NativePixmapType pixmap, const EGLint *attrib_list)

5.1.1.2.2.2 Freeing buers

A similar set of APIs free allocated video memory buers, whether they are textures, VBOs,
or surfaces:
glDeleteBuffers(sizei n, uint *buffers)

glDeleteTextures(sizei n const uint *textures)

eglDestroySurface(EGLDisplay dpy, EGLSurface surface)

Note:

The glDeleteTextures function works only if the texture object is greater than
zero; the default texture can't be explicitly deleted (although it can be replaced
with a texture containing one or two dimensions of zero, which accomplishes the
same thing).

Conceptually, these calls can be thought of as malloc() and free() for VBOs and texture
maps, respectively. The same techniques for avoiding fragmentation can also be applied.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 230

Embedded Software Components

5.1.1.2.2.3 Updating a Subregion of a Buer

In many cases, avoiding fragmentation means placing multiple objects into the same
shared buer, or reusing a buer by deleting or overwriting an older object with a newer
one. OpenGL ES provides a method for updating an arbitrary section of allocated VBOs,
textures, and surfaces:
glBufferSubData(enum target, intptr offset, sizeiptr size,
const void *data, enum usage)

glTexSubImage2D(enum target, int level, int xoffset, int yoffset,
sizei width, sizei height, enum format, enum type, const void *pixels)

glCopyTexSubImage2D(enum target, int level, int xoffset, int yoffset,
int x, int y, sizei width, sizei height)
glScissor(int left, int bottom, sizei width, sizei height);

glViewport(int x, int y, sizei w, sizei h)

The glTexSubImage2D and glCopyTexSubImage2D function update a subregion of the target
texture image. In the rst case, the source comes from an application buer; in the second,
from a rendering surface.

The glScissor and glViewport functions limit rendering to a subregion of a rendering
surface. The rst species the region of the buer that the glClear function will aect;
the second updates the transforms to limit rendered OpenGL ES primitives to the
specied subregion.

5.1.1.2.2.4 Using a Buer Subregion

Completing the functionality needed to reuse allocated buers is the ability to use an
arbitrary subregion of a texture, VBO, or surface:
glDrawArrays(enum mode, int first, sizei count)
glReadPixels(int x, int y, sizei width, sizei height, enum format, enum type, void
 *data)
glCopyTexImage2D(enum target, int level, int x, int y, sizei width, sizei height)
glCopyTexSubImage2D(enum target, int level, int xoffset, int yoffset, int x, int y,
 sizei width, sizei height)

For VBOs, the glDrawArrays function allows the application to choose a contiguous subset
of a VBO.

For textures, there's no explicit call to limit texturing source to a particular subregion. But
texture coordinates and wrapping modes can be specied in order to render an arbitrary
subregion of texture object.

For surfaces, the glReadPixels function can be used to read from a subregion of a display,
when copying data back to an application-allocated buer.

The glCopyTexImage2D and glCopyTexSubImage2D functions also restrict themselves
to copying from a subregion of the display surface when transferring data to a texture
map. The only area that's problematic is controlling the direct display of window surface
back buer. OpenGL ES and EGL have no way to show only a subregion of the backbuer
surface, but the native windowing systems may have this functionality.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 231

Embedded Software Components

5.1.1.2.3 Best Practices for Video Memory Management
The following is a list of good practices when allocating video memory to avoid or minimize
fragmentation:

5.1.1.2.3.1 1. Allocate large buers early

Ideally allocate large buers at the start of the program. On average, allocating large
surfaces gets more dicult as more allocations occur. When more allocations occur, free
space is broken into smaller pieces.

5.1.1.2.3.2 2. Combine many small allocations into a smaller number of larger allocations

Small allocations can disproportionately reduce available free space. Not only does the
allocator have a xed overhead per allocation, regardless of size, but small allocations tend
to break up large areas of free space into smaller pieces.

The ability to load a subregion of a VBO or texture map, and the ability to render that
subregion independently, makes it possible to combine VBOs and textures together.
For textures, a large texture can be used to hold a grid of smaller images. For VBOs,
multiple vertex arrays can be combined end to end into a larger one. Besides reducing
fragmentation, combining related images into a single texture, and related vertex
arrays into a single VBO often improves rendering time, since it reduces the number of
glBindBuffer or glBindTexture calls required to render a set of related objects.

5.1.1.2.3.3 3. Reduce the variation in size of allocated buers ideally to a single size

Allocating buers of varying sizes, especially sizes that aren't small multiples of each other,
is disruptive of memory space and causes fragmentation. The ability to load and render a
subset of a VBO or texture means that data loaded doesn't have to match the size of the
allocated buer; as long as it's smaller, it will work.

This approach does waste space, in that some of the allocated buer isn't used, but this
waste is often oset by the saving in reduced fragmentation and xed allocation overhead.
This approach can often be combined with approach (2) (combining multiple objects into
one allocated buer) to reduce total wastage. Generally, it's safe to ignore wastage it it's a
small percentage of the allocated buer size (say < 5%).

This approach is particularly good for dynamically allocated data, since xed size blocks
can often be freed and reallocated with little or no fragmentation. If wastage is excessive,
a set of buer sizes can be chosen (often a consecutive set of power of two sizes), and the
smallest free buer that will contain the data is used.

5.1.1.2.3.4 4. Reuse, rather than free and reallocate, buers whenever possible

The ability to reload a previously allocated buer with new data for both VBOs and textures
makes this technique practical. Reuse is particularly important for large buers; it is often
better to create a large buer at program start, and reuse it during mode switches, etc.,
even if it requires allocating a larger buer to handle all possible cases.

5.1.1.2.3.5 5. Minimize dynamic allocation

If possible, take memory allocation and freeing out of the inner loop of your application.
The ability to reuse buers makes this practical, even for algorithms that require dynamic

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 232

Embedded Software Components

allocation. Even with reuse, however, it's still better to organize the code to minimize
allocations and frees, and to move the remaining ones out of the main code path as much
as possible.

5.1.1.2.3.6 6. Try to group dynamic allocations

If dynamic allocation is mandatory, try to group similar allocations and frees together.
Ideally, an allocation of a buer is followed by freeing it before another allocation happens.
This rarely can be done in practice, but combining a group of related allocations is often
nearly as eective.

Again, allocations and frees should be replaced whenever possible. Grouping them is a last
resort.

5.1.1.3 Graphics Driver CPU Usage
In some cases, the reported graphics driver CPU usage may be high, but in fact the yield is
related to other CPUs. To reduce the reported CPU usage, set the environment variable as
follows:
$ export __GL_YIELD=USLEEP

5.1.2 EGLStream
EGLStream is a mechanism that eciently transfers a sequence of image frames from one
API to another. APIs can be OpenGL, CUDA, or NvMedia. A producer and a consumer are
attached to two ends of a stream object:

‣ A producer adds image frames into the stream.

‣ A consumer retrieves image frames from the stream.

5.1.2.1 EGLStream Producer
The EGLStream producer is the entity that posts EGL image frames into the EGLStream.
The producer is responsible for inserting each image frame into the EGLStream at the
correct time so that the consumer can display the image frame for the appropriate period
of time.

Dierent types of producers:

‣ CUDA producer: Posts a CUDA array or CUDA pointer as EGL image frames to the
EGLStream.

‣ GL producer: Posts graphic surfaces as EGL image frames to the EGLStream.

5.1.2.2 EGLStream Consumer
The EGLStream consumer is the entity that retrieves EGL image frames from the
EGLStream. The consumer is responsible for noticing that an image frame is available and
displaying it (or otherwise consuming it). The consumer is also responsible for indicating

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 233

Embedded Software Components

the latency when that is possible (the latency is the time that elapses between the time it
is retrieved from the EGLStream until the time it is displayed).

Dierent types of consumers:

‣ CUDA consumer: Retrieves EGL image frames and lls the frame information as a CUDA
array or CUDA pointer. The CUDA frames can then be processed in the CUDA domain.

‣ GL consumer: Retrieves EGL image frames that can then be bound as OpenGL textures
for graphics rendering.

‣ EGLOutput consumer (egldevice window system only): Retrieves EGL image frames
and renders them directly to EGLOutput. This consumer is valid when EGLOutput is
used on the egldevice window system.

5.1.2.3 EGLStream Operation Modes
There are two types of EGLStream operation modes: mailbox mode and FIFO mode.

5.1.2.3.1 Mailbox Mode
In mailbox mode, EGLStream conceptually operates as a mailbox. When the producer has
a new image frame it empties the mailbox (discards the old contents) and inserts the new
image frame into the mailbox. The consumer retrieves the image frame from the mailbox
and examines it. When the consumer is nished examining the image frame, it is either
placed back in the mailbox (if the mailbox is empty) or discarded (if the mailbox is not
empty).

Timing is mainly controlled by the producer. The consumer operates with a
xed latency that it indicates to the producer through the EGLStream attribute
EGL_CONSUMER_LATENCY_USEC_KHR. The consumer is expected to notice when a new
image frame is available in the EGLStream, retrieve it, and display it in the time indicated
by EGL_CONSUMER_LATENCY_USEC_KHR. The producer controls when the image frame is
displayed by inserting it into the stream at time T - EGL_CONSUMER_LATENCY_USEC_KHR,
where T is the time the image frame appears.

5.1.2.3.2 FIFO Mode
In FIFO mode no images are discarded. When a producer adds image frames to the stream,
they are placed in a queue for subsequent retrieval by the consumer. EGLStream sets the
queue size when it creates the queue. If the producer attempts to insert a frame and the
FIFO queue is full, then the producer stalls until there is room in the FIFO queue. When the
consumer retrieves an image frame from the EGLStream, it sees the image frame that
immediately follows the image frame that it last retrieved (unless no such frame has been
inserted yet, in which case it retrieves the same image frame that it retrieved last time).

Timing of an EGLStream in FIFO mode is the responsibility of the consumer. Each image
frame in the FIFO has an associated timestamp set by the producer. The consumer uses
this timestamp to determine when the image frame is intended to be displayed.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 234

Embedded Software Components

5.1.2.4 EGLStream Pipeline
EGL provides functions to create and destroy EGLStreams, to query and set attributes of
EGLStreams, and to connect EGLStreams to producers and consumers.

Each EGLStream must be connected to only one producer and one consumer. Once
an EGLStream is connected to a consumer, it is connected to that consumer until the
EGLStream is destroyed. Likewise, once an EGLStream is connected to a producer, it is
connected to that producer until the EGLStream is destroyed.

The EGLStream cannot be used until it has been connected to a consumer and then to a
producer. It must be connected to a consumer before it is connected to a producer.

5.1.2.4.1 Building a Simple EGLStream Pipeline
Before you build a simple EGLStream pipeline, you must initialize the EGL interface on the
platform and create the EGLDisplay.

1. Create the EGLDisplay object for the EGLStream to bind to it.
2. Call eglInitialize() to initialize EGL on the created display or on the default display.

If the GL consumer or EGLOutput consumer is used, you must initialize the rendering
window before creating the EGLStream pipeline.

If the CUDA producer-consumer is used, window system initialization is not required.
3. Create an EGLStream.

Example for creating the EGLStream (from eglstreamcube.c):
client->stream = eglCreateStreamKHR(demoState.display, streamAttr);
if (client->stream == EGL_NO_STREAM_KHR) {
 NvGlDemoLog("Couldn't create EGL stream.\n");
 goto fail;
}

Depending on whether mailbox mode or FIFO mode is used, streamAttr is set
accordingly. The attribute EGL_STREAM_FIFO_LENGTH_KHR is initialized for FIFO mode.
if (demoOptions.nFifo > 0) {
 streamAttr[numAttrs++] = EGL_STREAM_FIFO_LENGTH_KHR;
 streamAttr[numAttrs++] = demoOptions.nFifo;
}

4. Create a consumer and connect it to the EGLStream. It is specic to the consumer
type.

Example for connecting a GL consumer to EGLStream (from eglstreamcube.c):
glBindTexture(GL_TEXTURE_EXTERNAL_OES, texture);
if (!eglStreamConsumerGLTextureExternalKHR(demoState.display, client->stream)) {
 NvGlDemoLog("Couldn't bind texture.\n");
 goto fail;
}

Once an EGLStream is connected to a consumer, it remains connected to the same
consumer until the EGLStream is destroyed.

5. Create a producer and connect it to the EGLStream. It is specic to the producer type.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 235

Embedded Software Components

Example for connecting a GL producer to EGLStream (from nvgldemo_main.c):
eglCreateStreamProducerSurfaceKHR(demoState.display,
 demoState.config,
 demoState.stream,
 srfAttrs);

Once an EGLStream is connected to a producer, it must remain connected to the same
producer until the EGLStream is destroyed.

6. The producer posts the image frame to the consumer, depending on the producer type.

In the GL producer case, eglSwapBuffers posts the buer to the consumer.
7. The consumer acquires the image frame posted by the producer, uses it, and then

releases the frame back to the stream. Methods for acquiring frames from a stream
and releasing them back to a stream are dependent on the type of consumer.

Example for acquiring and releasing the frame in the GL consumer case (from
eglstreamcube.c):
eglStreamConsumerAcquireKHR(demoState.display,
 clientList[i].stream)
eglStreamConsumerReleaseKHR(demoState.display,
 client->stream)

In the GL consumer case, If eglStreamConsumerAcquireKHR() is called twice on the
same EGLStream without an intervening call to eglStreamConsumerReleaseKHR(),
then eglStreamConsumerReleaseKHR() is implicitly called at the start of
eglStreamConsumerAcquireKHR().

5.1.2.4.2 Destroying the EGLStream Pipeline
Destroy the EGLStream pipeline in the following order:

1. Destroy the producer.
2. Destroy the consumer.
3. Destroy the EGLStream.
4. Destroy the window system resources.

5.1.2.4.3 EGLStream State
After an EGLStream is created, at any given time, the EGLStream is in one of the following
dened states:

‣ EGL_STREAM_STATE_CREATED_KHR: The EGLStream has been created but not yet
connected to a producer or a consumer.

‣ EGL_STREAM_STATE_CONNECTING_KHR: The EGLStream has been connected to a
consumer but not yet connected to a producer.

‣ EGL_STREAM_STATE_EMPTY_KHR: The EGLStream has been connected to a consumer and
a producer, but the producer has not yet posted any image frames.

‣ EGL_STREAM_STATE_NEW_FRAME_AVAILABLE_KHR: The producer has posted at least one
image frame that the consumer has not yet acquired.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 236

Embedded Software Components

‣ EGL_STREAM_STATE_OLD_FRAME_AVAILABLE_KHR: The producer has posted at least one
image frame, and the consumer has acquired the most recently posted image frame.

‣ EGL_STREAM_STATE_DISCONNECTED_KHR: The producer, the consumer, or both, are
no longer connected to the EGLStream (e.g., they have been destroyed). Once the
EGLStream is in this state it remains in this state until the EGLStream is destroyed. In
this state only eglQueryStreamKHR() and eglDestroyStreamKHR() are valid operations.

The EGLStream state is queried as follows:
EGLBoolean eglQueryStreamKHR(
 EGLDisplay dpy,
 EGLStreamKHR stream,
 EGLenum attribute,
 EGLuint64KHR *value);

The following state transitions may occur:

1. EGL_STREAM_STATE_CREATED_KHR: A new EGLStream is created in this state.
2. EGL_STREAM_STATE_CREATED_KHR to EGL_STREAM_STATE_CONNECTING_KHR: Occurs when

a consumer is connected to the EGLStream.
3. EGL_STREAM_STATE_CONNECTING_KHR to EGL_STREAM_STATE_EMPTY_KHR: Occurs when a

producer is connected to the EGLStream.
4. EGL_STREAM_STATE_EMPTY_KHR to EGL_STREAM_STATE_NEW_FRAME_AVAILABLE_KHR:

Occurs the rst time the producer inserts an EGL image frame.
5. EGL_STREAM_STATE_NEW_FRAME_AVAILABLE_KHR to

EGL_STREAM_STATE_OLD_FRAME_AVAILABLE_KHR: Occurs when the consumer begins
acquiring a newly posted EGL image frame.

6. EGL_STREAM_STATE_OLD_FRAME_AVAILABLE_KHR to
EGL_STREAM_STATE_NEW_FRAME_AVAILABLE_KHR: Occurs when the producer posts a new
EGL image frame.

7. Any state to EGL_STREAM_STATE_DISCONNECTED_KHR: Occurs when the producer or
consumer is destroyed.

5.1.2.5 Building a Cross-Process EGLStream Pipeline
A cross-process EGLStream is one where the producer and consumer are in dierent
processes.

NVIDIA provides two options for establishing a cross-process stream. One uses
the EGL_KHR_stream_cross_process_fd extension, and the other uses the
EGL_NV_stream_remote extension. In both cases, producer and consumer processes are
responsible for establishing a socket connection with each other before beginning to
create the stream.

With the EGL_KHR_stream_cross_process_fd extension, one of the applications creates
the EGLStream and then gets a le descriptor from it. In the sample code, the consumer
creates the stream, but it could be either end. The creator then obtains a le descriptor
from the stream and passes it over to the socket to the other process. That process
receives the le descriptor and uses it to create the other end of the EGLStream. After
both endpoints have created their EGLStream object, consumer and producer connection

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 237

Embedded Software Components

proceeds as in the single process case. The processes maintain ownership of the socket,
and can continue to use it for any other communication they need.

With the EGL_NV_stream_remote extension, the processes may use the sockets they
create for any initial handshaking and communication, but then pass ownership of them to
the stream. Producer and consumer both create EGLStream endpoints from their socket.
For cross-process streams within the same partition, NVIDIA requires that the type used
for the socket in the EGLStream creation call be UNIX. INET sockets are not supported.
(This is in contrast with cross-partition streams described below.)

You can execute the following cross-process examples in two shells or run one in the
background in one shell.

5.1.2.5.1 Cross-process EGLStream example
Consult the samples/opengles2/eglstreamcube and samples/opengles2/bubble
examples. eglstreamcube is the consumer, and bubble app is the producer.

5.1.2.5.1.1 Consumer-side steps:

 1. Create the stream and get the le descriptor of the stream (refer to eglstreamcube.c).
client->stream = eglCreateStreamKHR(demoState.display, streamAttr);
client->fd = eglGetStreamFileDescriptorKHR(demoState.display, client->stream);

 2. Share the le descriptor with the producer through the socket.
 3. Bind the consumer end of the EGLStream with the GL texture (refer to

eglstreamcube.c).
glBindTexture(GL_TEXTURE_EXTERNAL_OES, texture);
eglStreamConsumerGLTextureExternalKHR(demoState.display, client->stream)

 4. Latch the recent image frame to the texture with eglStreamConsumerAcquireKHR:
eglStreamConsumerAcquireKHR(demoState.display,stream)

 5. Render the texture as one face of the cube.

5.1.2.5.1.2 Producer-side steps:

 1. Receive the stream le descriptor through the socket (given as an eglstreamsocket
argument) and create the stream (refer to nvgldemo_main.c):
eglCreateStreamFromFileDescriptorKHR(demoState.display, fd)

 2. Create the EGLStream surface (refer to nvgldemo_main.c).
eglCreateStreamProducerSurfaceKHR(
 demoState.display,
 demoState.config,
 demoState.stream,
 srfAttrs)

 3. Create EGLContext and eglMakeCurrent on the EGLStream surface created in step 2.
 4. Start to render the frames and eglSwapBuffers.

5.1.2.5.1.3 Run the cross-process example

./eglstreamcube -dispno 1 -layer 1 -windowoffset 1000 0
 -socket /tmp/test &
./bubble -eglstreamsocket /tmp/test &

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 238

Embedded Software Components

The bubble app content appears on one face of the cube.

5.1.2.6 Building a Cross-Partition EGLStream Pipeline
A cross-partition EGLStream is one where the producer and consumer are in two dierent
partitions.

Creating a cross-partition stream is similar to the second method (using
EGL_NV_stream_remote) for creating a cross-process extension described above. The two
processes must establish socket communication with each other, and then pass ownership
of that socket to the stream, with each end creating an EGLStream object from their
socket. For cross-partition streams, NVIDIA requires that the type used for the socket be
INET. (This is in contrast with cross-process streams described above.)

In our example code, the consumer acts as a server, opening a socket and listening for
a connection on a known address. The producer then connects to that address, and
both sides obtain the socket to use for the stream. They then proceed to create their
EGLStreams. After both endpoints have created their EGLStream object, consumer and
producer connection proceeds as in the single process case.

You can execute the following cross-partition examples in two shells, one for each
partition.

To run cross-partition samples, hv0 of the consumer and producer partition must be
congured to use two dierent IP addresses. For example, on VM1 (the producer partition),
set it to 12.0.0.2 using:
ifconfig hv0 12.0.0.2

Similarly, on the consumer partition, set it to 12.0.0.1.

5.1.2.6.1 Cross-partition EGLStream example
Consult the samples/opengles2/eglstreamcrosspart example.

5.1.2.6.1.1 Consumer-side steps:

 1. Create the socket on the port number given as an argument (default: 8888) and set the
created socket ID to g_ServerID (refer to nvgldemo_main.c).

 2. Create the cross-partition EGLStream for the consumer end by setting the attributes
(refer to nvgldemo_main.c).
EGL_STREAM_TYPE_NV:EGL_STREAM_CROSS_PARTITION_NV,
 EGL_STREAM_ENDPOINT_NV:EGL_STREAM_PRODUCER_NV,
EGL_SOCKET_HANDLE_NV: g_SEGLerverID
demoState.stream = eglCreateStreamKHR(demoState.display, attr);

 3. Bind the consumer end of the EGLStream with the GL texture (refer to
eglstreamcrosspart/consumer.cpp).
glBindTexture(GL_TEXTURE_EXTERNAL_OES, args.videoTexID);
eglStreamConsumerGLTextureExternalKHR(args.display,
args.eglStream)

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 239

Embedded Software Components

 4. Latch the recent image frame to the texture with eglStreamConsumerAcquireKHR,
render the frame, and call eglSwapBuffers (refer to eglstreamcrosspart/
consumer.cpp):
eglStreamConsumerAcquireKHR(args.display,args.eglStream)

5.1.2.6.1.2 Producer-side steps:

 1. Connect to the socket with the given IP address and the port number arguments. Set
the created socketID to g_ClientID (refer to nvgldemo_main.c)

 2. Create the cross-partition EGLStream for the producer end by setting the attributes
(refer to nvgldemo_main.c):
EGL_STREAM_TYPE_NV:EGL_STREAM_CROSS_PARTITION_NV,
 EGL_STREAM_ENDPOINT_NV:EGL_STREAM_PRODUCER_NV,
EGL_SOCKET_HANDLE_NV: g_ClientID

 3. Create the EGLStream surface (refer to nvgldemo_main.c):
eglCreateStreamProducerSurfaceKHR(
 demoState.display,
 demoState.config,
 demoState.stream,
 srfAttrs)

 4. Create EGLContext and eglMakeCurrent the EGLStream surface created in step 2 (refer
to nvgldemo_main.c).

 5. Start to render the frames and eglSwapBuffers (refer to eglstreamcrosspart/
producer.cpp).

5.1.2.6.1.3 Run the cross-partition sample

On Linux, run EGLStream producer:
/samples/opengles2/eglcrosspart/egldevice/eglcrosspart
 -proctype producer -ip 12.0.0.1 -port 1111 &

5.1.3 Binary Shader Program Management
Pre-built binary shader programs eliminate compilation time for individual shaders. If all
programs are pre-built, the driver may avoid consuming additional time and resources by
not loading the compiler libraries at all. Program binaries can be compiled and linked by an
application calling the OpenGL ES API directly at runtime or prebuilt with the glslc oine
shader compiler.

The NVIDIA® SDKno longer supports the GL_NV_platform_binary extension for use with
the OpenGL ES 2.0 glShaderBinary function. Program binaries can be saved and loaded
either by an application calling the OpenGL ES API directly, or using the automatic shader
cache.

5.1.3.1 Application Management of Binary Programs
Applications can control binary program management directly. With the
glGetProgramBinary function added in OpenGL ES 3.0, applications can read back
the binaries for any compiled and linked programs, and store them for later use. The
glProgramBinary function loads these saved binaries. Unlike the glShaderBinary function

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 240

Embedded Software Components

in OpenGL ES 2.0, this operates on a linked program instead of individual vertex and
fragment shaders, so there is no additional link step required after loading the binary.

5.1.3.1.1 Automatic Shader Cache
When the proprietary NVIDIA shader cache support in the driver is enabled, the OpenGL
ES 3.0 driver maintains a shader cache le for each program. When an application species
a shader source, the driver rst searches the cache to see if it has already compiled this
source with the current version of the compiler. If not, it compiles the program and then
saves a copy in the cache. If the shader has been previously compiled, the driver loads
the pre-built binary from the cache. The cache persists between application runs, so that
with a thorough initial test run, compilation need only occur the rst time a new driver is
installed.

The shader cache is enabled on read/write le systems by default. Assign the
__GL_SHADER_DISK_CACHE environment variable a value of 0 to disable the cache.

Note:

The shader cache is disabled by default on QNX as the root le system is
read only. The cache can be enabled by setting the environment variables
__GL_SHADER_DISK_CACHE to 1 and __GL_SHADER_DISK_CACHE_PATH to a location
with write access.

By default, the cache is placed in an .nv directory in the user's home directory, which is
created if it does not already exist. If desired, override the default location by specifying a
valid alternate path with the __GL_SHADER_DISK_CACHE_PATH environment variable. Unlike
the .nv directory, the driver does not create this non-default directory if it does not already
exist. If this variable species a directory that does not already exist, the cache is disabled.

The cache appears in the specied location as a subdirectory named GLCache containing
a set of directories and les with hashed names. These les encode the driver version,
GPU, and application. Whenever you install a new version of the driver, the hashed names
change. Users may therefore wish to clean out the old directory before running any
applications.

5.1.3.1.2 To use a read-only cache
 1. Run the application on a test/development system that has a le system with write

access.
 2. Copy the cache directory to the desired location in the target image.
 3. Set the environment variables described above to enable the cache and indicate its

location.

5.1.3.2 Comparison and Combination
The main advantage oered by the shader cache is that it is handled automatically, without
any application intervention. In addition, the driver sometimes needs to generate shaders

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 241

Embedded Software Components

internally for certain clear and copy operations. If the cache is enabled, these too will only
be generated once, rather than every time the application is run.

Although the cache eliminates the need to recompile shaders, there is search and
maintenance overhead. Applications can avoid this overhead by saving and loading
programs directly. Furthermore, the cache les become invalid every time a new driver is
installed. Saved binaries, on the other hand, only need to be replaced when the compiler
portion of the driver is updated.

The shader cache and the functions to read and load binaries are not mutually exclusive.
An application can make use of both. For instance, the most critical shader programs which
must be available as soon as possible after startup could be manually saved, while less
frequently used shaders rely on the cache.

5.1.4 GLSLC Shader Program Compiler
This section describes glslc, a compiler for OpenGL ES 3.0-style program binaries.
This compiler runs on the Linux host system to produce program binaries that can be
transferred to the target NVIDIA

®
 Tegra

®
 device.

Note:

Program binaries produced with glslc from a particular NVIDIA DRIVE
®
 SDK can

only be used with the OpenGL ES 3.0 driver from the same NVIDIA DRIVE
®
 SDK.

Shader sources must be recompiled to generate new program binaries whenever a
new SDKis installed.

To compile a shader program

‣ Generate a program binary <output_file> from vertex and fragment shader source
les <vertex_shader_file> and <fragment_shader_file> with the following
command (on the host system):

glslc -gles -chip 10 -binary <output_file> -vs <vertex_shader_file> -fs
 <fragment_shader_file>

Shader sources must not contain #include directives. If glslc is successful, it produces a
non-zero sized binary named <output file>.

Note:

For complete information about additional shader types and supported options
for glslc, run the following command:

glslc --help

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 242

Embedded Software Components

5.1.4.1 Compiled Shader Program Characteristics
The resulting program binary only functions correctly with the version of the driver with
which the compiler was released.

The format of a compiled program binary is:

‣ 4 bytes containing the size of the program binary

‣ 4 bytes containing the format of the program binary

‣ A variable number of bytes containing the program data

These should be passed as the 4th, 2nd, and 3rd arguments, respectively, of
glProgramBinary. See the gearslib.c le for more details on loading shader programs.

After a successful compilation, glslc displays the following message:
Program binary successfully written to <binary file name>

The size and format of a program binary produced by glslc are expected to match the size
and format of a program binary produced by the GL driver via a glGetProgramBinary call.

5.1.4.2 Libraries Loaded On-Demand
On supported systems, these libraries are only loaded when needed to compile shader
programs at runtime:
libnvidia-glcore-cg.so.<version>
libnvidia-glcore-ocg.so.<version>

If all of the program binaries used by the application are precompiled, the OpenGL ES
driver does not invoke the compiler, and the libraries are not loaded. Also, if the system
supports the shader disk cache and the required shaders are found there (usually after the
rst time the application is run), the libraries are not loaded.

Note:

Systems supporting the on-demand loading of these libraries are the systems
used with NVIDIA DRIVE

®
 Linux SDKand NVIDIA DRIVE

®
 QNX SDK. See the Release

Notes for those releases for specic hardware and software information.

The -driverstate option allows for a small subset of GPU machine microcode to be
inserted into the GL program binary via glProgramBinary. In very specic and limited
cases, this option can prevent libnvidia-glcore-ocg.so from loading at runtime. GL may
optimize machine code depending on the driver state, requiring a new machine code binary
to be generated depending on certain states of the driver for each draw call.

A dierent -driverstate parameter must be specied for each draw call or glClear call.
Multiple -driverstate commands can be input in a single GLSLC command line. The
resulting microcode is appended to the same program binary le.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 243

Embedded Software Components

As an example, consider an application utilizing vertex attribute arrays that makes two
draw calls, where the state of those arrays changes between each draw call. If attribute
array 0 is enabled and attribute array 1 is disabled (constant attribute) during the rst draw
call, and both arrays are enabled during the second draw call, then the GLSLC command
to obtain the program binary with optimized GPU machine code for both these states is
similar to the following:
glslc -chip 10 -vs vs.vert -fs fs.frag
 -binary prog.bin -driverstate vertexattribenable 0 -driverstate
 vertexattribenable 0 vertexattribenable 1

The two -driverstate ags correspond to the state of the driver during each draw call,
and there may be multiple vertexattribenable ags for each -driverstate usage.

A default set of machine code congurations are included if you use any -driverstate
ags. Specify an empty -driverstate option followed by no state options if you require a
set of default machine code congurations.

For example, the following produces a binary with a default set of machine code:
glslc -chip 10 -vs vert.vs -fs frag.fs
-driverstate

You do not need an empty -driverstate option to include the defaults. The defaults are
included if you use a -driverstate ag of any kind.

For example, the rst -driverstate option below is redundant:
glslc -chip 10 -vs vert.vs -fs frag.fs
-driverstate -driverstate vertexattribenable 0

The following is all that is needed:
glslc -chip 10 -vs vert.vs -fs frag.fs
-driverstate vertexattribenable 0

Note:

The available options are currently limited to vertex and fragment shaders with
a limited subset of options for producing the machine code. If the required
microcode is not a part of the program binary during runtime, then the
libnvidia-glcore-ocg.so library is loaded to perform runtime compilation.

5.1.5 Tegra GPU Scheduling Improvements
Warning:

There is a conict in environment variables when using the same terminal to build
and ash the tools. Unset the TEGRA_TOP environmental variable before trying to
ash, or use dierent terminals to build and ash.

NVIDIA
®
 Tegra

®
 GPU scheduling architecture addresses the quality of service (QoS) for

several classes of work. The following table summarizes these classes of work.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 244

Embedded Software Components

Priority Description Workload

HIGH Critical applications that must meet
their rendering deadlines

Small workloads (executable
within a display refresh cycle),
typically 60 frames/second (fps)

MEDIUM Well-behaved applications that are
not known to cause channel reset

Small-to-medium workloads (may
be spread across several refresh
cycles)

LOW Long-running or potentially rogue
applications (e.g., WebGL contexts)

Small-to-large workloads

Scheduling Parameters

Applications can achieve the desired QoS by tweaking the following scheduling
parameters:

‣ timeslice: Species the maximum time a channel can use an engine uninterrupted.

‣ runlist interleave frequency: Species the number of times a channel can appear on a
runlist.

‣ preemption type: Denes the preemption boundary and how a context is saved.

Previous Limitations

In the previous implementation, applications could set the timeslice (via a sysfs interface)
and the preemption type, but the runlist interleave frequency was xed at 1. This resulted
in high-priority applications receiving only one scheduling point per iteration of all channels
on the runlist. (For more information, see Runlist Interleave Frequency in this chapter). This
implementation was insucient to let high-priority applications reach their target frame
rate.

5.1.5.1 Setting the Timeslice
Use the following guidelines when setting the timeslice, depending on the priority of the
application.

High-Priority Applications

For high priority applications, set the timeslice large enough so that all work can be
completed within one timeslice.

The recommended upper bound for timeslice in single, high-priority applications is:

16.6 ms − lpt − cst – crt = 11.6 ms

Where:

‣ lpt is the low-priority timeslice, set to 1.5 ms

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 245

Embedded Software Components

‣ cst is the context-switch timeout, equal to 2.0 ms

‣ crt is the channel reset time, equal to 1.5 ms

For multiple, high-priority applications, use the timeslice for each high-priority application
to determine a reasonable bound. The recommended combined workload of all high-
priority applications must not exceed 50% of a display refresh cycle.

High-priority applications must avoid ushing work prematurely, whether by calling
glFlush or glFinish or by other means. This ensures all rendering for a frame completes
without any context switches.

Medium-Priority Applications

For medium-priority applications, set the timeslice both:

‣ Large enough that an application can make progress, but

‣ Not so large that it aects the scheduling latency of high-priority applications.

The recommended upper bound for timeslice in medium-priority applications is 2 ms.

Low-Priority Applications

For low-priority applications, set the timeslice both:

‣ Large enough that an application can make progress, but

‣ Not so large that it aects the scheduling latency of high- or medium-priority
applications.

The recommended upper bound for timeslice in low-priority applications is 1.5 milliseconds
(ms).

Reserve Time for Lower-Priority Applications

To ensure lower-priority applications make reasonable progress, you must ensure that
high- and medium-priority applications do not use 100% of the GPU by:

‣ Lowering your application frame rate targets and/or

‣ Reducing complexity of rendered frames.

The proportion of time to reserve for low-priority applications depends on the number and
nature of the applications.

5.1.5.2 Setting the Preemption Type
High-Priority Applications

For high-priority applications, set the timeslice large enough that all work can complete.
The recommended Compute-Instruction-Level-Preemption (CILP) setting for graphics and
for compute is a preemption type of Wait-For-Idle (WFI). This ensures CILP will not be hit
because NVIDIA

®
 CUDA

®
 kernels will have completed.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 246

Embedded Software Components

Medium-Priority Applications

The recommended setting for medium-priority applications is a preemption type enabled
for graphics (GFXP) and compute (CILP). For applications that can complete in their
timeslice, context-switch overhead is minimal because the GPU is in an idled state.

Low-Priority Applications

For low-priority applications, always enable graphics and compute preemption because
workloads are unpredictable.

5.1.5.3 Runlist Interleave Frequency
The runlist is an ordered list of channels that the GPU HOST reads to nd work for the
downstream engines to complete. To enable the GPU HOST to schedule a given channel
more often, include the channel multiple times on a runlist. For each priority level, the
runlist interleave frequency must be set to match the priority.

For example, if a system has one high-priority application, one medium-priority application,
and two low-priority applications, the GPU scheduler constructs the runlist as follows:

The scheduling latency for when a high-priority application will be able to run is governed
by:

worst-case latency(high) = (h-1) × timeslice(high) + execution time(low) + channel reset

Where:

5.1.5.4 Setting Parameters
Use the following guidelines when setting scheduling parameters.

‣ Identify the relevant use cases before setting scheduling parameters.

‣ Associate a priority with each application.

‣ Determine appropriate timeslices.

Then using the environment variables listed below, specify the runlist interleave frequency,
timeslice, and preemption type.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 247

Embedded Software Components

Environment Variable Role Values

NVRM_GPU_CHANNEL_

INTERLEAVE

Sets runlist frequency
for a context

1: LOW

2: MEDIUM

3: HIGH

NVRM_GPU_CHANNEL_

TIMESLICE

Sets timeslice for a
context

Non-zero value in
microseconds (minimum
1000 for 1 ms)

NVRM_GPU_NVGPU_FORCE_

GFX_

PREEMPTION

Enables GFXP 0: o

1: on

Note:

The environment variables apply to all contexts belonging to a process.

5.1.5.5 Setting Parameters on Behalf of Other
Applications
A privileged application can set scheduling parameters (timeslice and interleave) on behalf
of other applications based on their PID.

The libnvrm_gpusched library provides a way to:

‣ Get a list of all TSGs

‣ Get a list of recent TSGs (i.e., a list of TSGs opened since the last query)

‣ Get a list of TSGs opened by a given process

‣ Get notications when a TSG is allocated

‣ Get current scheduling parameters for a TSG

‣ Set runlist interleave for a TSG

‣ Set timeslice for a TSG

‣ Lock control (i.e., prevent other applications from changing their own scheduling
parameters such as timeslice and interleave)

Library API is dened in nvrm_gpusched.h and sample code implements command line to
control GPU scheduling parameters.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 248

Embedded Software Components

5.1.5.6 Building GPU Scheduling Sample Applications
Enter:
cd <top>/drive-linux/samples/nvrm/gpusched
make clean
make

5.1.5.7 Running the GPU Scheduling Sample Application
Here is a step-by-step example that shows how to tweak the GPU scheduling parameters
on behalf of other applications based on their PID.

To schedule a high-priority app to render at the desired frame rate

 1. Boot native Linux or a single Linux VM with a 4K HDMI display supporting 60 Hz refresh
rate attached to a NVIDIA DRIVE

®
 OS 6.0 Linux platform, and start X.

sudo ./nvrm_gpusched set interleave 3
sudo ./nvrm_gpusched set timeslice 11600
sudo –b X –ac –noreset –nolisten tcp

 2. Start 16 instances of bubble by entering this command:
export DISPLAY=:0
export NVRM_GPU_NVGPU_FORCE_GFX_PREEMPTION=1
export NVRM_GPU_CHANNEL_INTERLEAVE=1
export NVRM_GPU_CHANNEL_TIMESLICE=1000
export NV_SWAPINTERVAL=1
export WIDTH=960
export HEIGHT=540
let Y=2160-HEIGHT
while [$Y -ge 0]; do
let X=3840-WIDTH
while [$X -ge 0]; do
<top>/drive-linux/samples/opengles2/bubble/x11/bubble -windowsize $WIDTH $HEIGHT -
windowoffset $X $Y -msaa 8 -fps &
sleep 1
let X=X-WIDTH
done
let Y=Y-HEIGHT
done

 3. Wait about 10 seconds and record the frame rate of the bubble instances. All instances
should have a similar frame rate, and lower than 60 fps.

 4. Check scheduling parameters using:
sudo ./nvrm_gpusched get params

 5. Change the timeslice and runlist interleave of the last instance by entering:
sudo ./nvrm_gpusched set timeslice -p <pid> 3000
sudo ./nvrm_gpusched set interleave -p <pid> 2

 6. Wait about 10 seconds and record the frame rate of the last instance of bubble. It
should be xed around 60 fps, and the other instances should be running lower.

Note that NV_SWAPINTERVAL=1 limits the frame rate to the monitor's refresh rate.
 7. Restore timeslice to its previous value for the last bubble instance:

sudo ./nvrm_gpusched set timeslice -p <pid> 1000
sudo ./nvrm_gpusched set interleave -p <pid> 1

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 249

Embedded Software Components

 8. Wait about 10 seconds and check that all bubble instances have about the same fps.

5.1.6 Disabling GPU Debugger and Proler for
Security

Important: Points to consider before using GPU Debugger and Proler.

‣ NVIDIA recommends disabling the GPU Debugger and Proler support before deploying
NVIDIA DRIVE

®
 OS or when the support is not required during development.

Note: The GPU Debugger and Proler support is enabled by default in NVIDIA DRIVE
OS to better development experience.

‣ GPU Debugger and Proler can examine and alter the state of all the applications
running on the GPU, and attackers can exploit this capability.

‣ Potential security risks could occur when this support is enabled during the DRIVE OS
deployment.

To disable GPU Debugger and Proler:

1. Identify the Guest OS DTB le getting ashed on the target.
2. Back up the original DTB le, and convert it to the DTS format with this command:

dtc -I dtb -O dts <DTB> -o edit.dts

3. Edit edit.dts and set the support-gpu-tools device tree property in the GPU device
node to 0.

‣ For more information, see <top>/kernel/kernel-5.10/Documentation/
devicetree/bindings/gpu/nvidia,gv11b.txt.

‣ On NVIDIA DRIVE Orin™, the GPU device node name is ga10b.
4. Save the edits and compile DTS back to DTB format with command:

dtc -I dts -O dtb edit.dts -o <DTB>

5. Bind and ash the target as usual.

The GPU Debugger and Proler support is disabled now.

To enable GPU Debugger and Proler:

1. Back up the original DTB le, and convert it to the DTS format with this command:
dtc -I dtb -O dts <DTB> -o edit.dts

2. Edit edit.dts and set the support-gpu-tools device tree property in the GPU device
node to 1.

‣ For more information, see <top>/kernel/kernel-5.10/Documentation/
devicetree/bindings/gpu/nvidia,gv11b.txt.

‣ On NVIDIA DRIVE Orin, the GPU device node name is ga10b.
3. Save the edits and compile DTS back to DTB format with command:

dtc -I dts -O dtb edit.dts -o <DTB>

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 250

Embedded Software Components

4. Bind and ash the target as usual.

The GPU Debugger and Proler support is enabled now.

5.1.7 Building and Running Samples
Samples must be built on the host. In order to run the samples, you must be logged onto
the target system.

5.1.7.1 Building the OpenGL ES 2.0 Samples
The samples are provided with source code and a Makele.

5.1.7.1.1 To Build the Samples
 1. Make a copy of the default binaries.
 2. On the host system, execute these commands:

cd <top>/drive-linux/samples/opengles2/<sample>

make clean
make

Where <sample> is the name of the sample that you want to build, for example,
gears. By default, the preceding commands build X11 supported samples. For other
windowing system supported samples, see the Using NV_WINSYS when Building
Graphics Samples topic.

5.1.7.2 Using NV_WINSYS when Building Graphics
Samples
The platform includes a default window system, but additional window systems are
also supported. Each of the graphics samples may be built for all the supported window
systems for a given platform.

5.1.7.2.1 To switch to a dierent window system
Export NV_WINSYS with one of these values:
egldevice
wayland
x11
direct-to-display (For Vulkan samples only)

Binaries are saved in separate subdirectories depending on the window system with the
same name, so you can maintain the output for multiple window systems.

For example, building gears for all the window systems results in the following directories
being populated with gears executables:
<top>/samples/opengles2/gears/<window_system>/gears

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 251

Embedded Software Components

5.1.7.3 Copying the OpenGL ES 2.0 Samples to the
Target FS
Run the copytarget script, passing in the path to the targetfs to ensure that the new
binary is copied to the target:
<top>/drive-linux/utils/scripts/copytarget-samples <targetfs_dir>

5.1.7.4 Running the OpenGL ES 2.0 Samples
By default, if no command line arguments are supplied, the sample applications run at a
native resolution for the connected display.

The sample apps can be run directly on EGLDevice, or on top of a window system. To
run the samples on top of a window system, the window system must rst be started.
Supported window systems include:

‣ Wayland

‣ X11

For operating instructions, click on the link for your desired window system.

Using the egldevice version of gears as an example, run the sample with the following
commands:
cd /home/nvidia/drive-linux/samples/opengles2/gears/egldevice
./gears

5.1.7.4.1 Resolution Selection
Set the application's output resolution with the following ag:
-windowsize <xres> <yres>

This is the window size of the application.

Set the screen resolution with:
-screensize <xres> <yres>

Use this option to set the screen size when there is no window system running, as is the
case for egldevice. When a window system like X11 or Weston is running, the screen size is
already set, and this option is ignored.

To specify a desktop oset, use the ag:
-windowoffset <xoffset> <yoffset>

5.1.7.4.2 Layer Selection
When running egldevice versions of the graphics samples, applications can select the
overlay where to direct the sample output. Only one application can run per overlay, and
the number of overlays per display head varies depending on the hardware conguration.
-layer <depth>

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 252

Embedded Software Components

For example, on NVIDIA DRIVE AGX™ Platform, valid values are -layer [0|1] for -dispno
[0|1] and -layer 0 for -dispno [2|3].

Here, dispno is the display number that is assigned serially from 0 through 3 for the four
displays on a NVIDIA DRIVE AGX Orin™ Reference Board.

5.1.7.4.3 Antialiasing Specication
Specify multi-sample antialiasing (MSAA) with:
-msaa <numsamples>

The numsamples specied are platform dependent.

Valid values are 2, 4, or 8.

5.1.7.4.4 Program Binary Selection
Applications use this option to load the pre-compiled shader program binary from its
current execution path. The program binaries are generated for all supported architectures
when the make command is run. These binaries are generated into separate directories,
each with the supported architecture name. The correct directory name needs to be
specied when running the sample app.

If the program binaries are not present, the application creates the program binary from
shader source and saves the created program binary in the current execution path. The
application can then use these saved program binaries on the next run. The ag to control
use of program binary is:
-useprogbin <boolean>

Where <boolean> is either 0 or 1.

5.1.7.4.5 Display Selection
When running egldevice versions of the graphics samples, applications can select the
output device with the command:
-dispno <number>

Possible values for <number> are 0, 1, 2, etc. <number> corresponds to a display node. For
example:

‣ -dispno 0: sets the display on /dev/tegra_dc_0

‣ -dispno 1: sets the display on /dev/tegra_dc_1

‣ -dispno 2: sets the display on /dev/tegra_dc_2

Each /dev/tegra_dc_<number> can be a dierent display type.

5.1.7.5 Running the Vulkan Samples
Direct-to-display WSI, Wayland, and X11/XCB are the supported backends for the Vulkan
samples.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 253

Embedded Software Components

When running the Vulkan samples, you might need to temporarily disable other window
systems. For example, with X11 installations, run these commands:
sudo service gdm3 stop
<run sample>
sudo service gdm3 start

There are two Vulkan sample applications, vkfish and vkcube, which must be compiled
in the host and copied to the target. For compilation steps, see Building and Running
Samples.

The sample path for vksh:
$PDK_TOP/drive-linux/samples/vulkan/vkfish

The sample path for vkcube:
$PDK_TOP/drive-linux/samples/vulkan/vkcube

Running vksh

The vkfish application is a modied version of the NVIDIA threaded rendering Vulkan
sample. It has been modied to use the direct-to-display WSI and Wayland platforms, and
the interface has been stripped for simplication.

To run vksh with direct-to-display:

1. Disable other window systems.
2. Run the following commands:

cd $SAMPLE_APP/vkfish/direct-to-display
./vkfish

$SAMPLE_APP represents the application directory path of the target.
3. Restart window systems, if necessary.

To run vksh with Wayland:

1. Disable other window systems.
2. Install the driver module as follows:

sudo insmod /lib/modules/$(uname -r)/extra/opensrc-disp/nvidia-drm.ko modeset=1

3. Start Weston Wayland:
mkdir /tmp/xdg
chmod 700 /tmp/xdg
export XDG_RUNTIME_DIR=/tmp/xdg
weston-launch&

4. Run the following commands:
cd $SAMPLE_APP/vkfish/wayland
./vkfish

vkfish does not support command-line arguments and runs forever by default.

To run vksh with X11:

1. Disable other window systems.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 254

Embedded Software Components

2. Start X11 as follows:
export DISPLAY=:0.0
sudo -b X -ac -noreset -nolisten tcp

3. Run the following commands:
cd $SAMPLE_APP/vkfish/x11
./vkfish

The sample might be run with --c <framecount> to render a certain number of frames.
If started without arguments, the app will run forever.

Running vkcube

The vkcube application is a modied version of the LunarG Vulkan cube demonstration
available at:

https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/tree/master/demos

It has been modied to use the direct-to-display WSI and Wayland platforms.

To run vkcube with direct-to-display:

1. Disable other window systems.
2. Run the following commands:

cd $SAMPLE_APP/vkcube/direct-to-display
./vkcube

$SAMPLE_APP represents the application directory path of the target.
3. Restart window systems, if necessary.

The sample might be run with --c <framecount> to render a certain number of frames.
If started without arguments, the app will run forever.

To run vkcube with Wayland:

1. Disable other window systems.
2. Install the driver module as follows:

sudo insmod /lib/modules/$(uname -r)/extra/opensrc-disp/nvidia-drm.ko modeset=1

3. Start Weston Wayland:
mkdir /tmp/xdg
chmod 700 /tmp/xdg
export XDG_RUNTIME_DIR=/tmp/xdg
weston-launch&

4. Run the following commands:
cd $SAMPLE_APP/vkcube/wayland
./vkcube

The sample might be run with --c <framecount> to render a certain number of frames.
If started without arguments, the app will run forever.

To run vkcube with X11:

1. Disable other window systems.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 255

https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/tree/master/demos

Embedded Software Components

2. Start X11 as follows:
export DISPLAY=:0.0
sudo -b X -ac -noreset -nolisten tcp

3. Run the following commands:
cd $SAMPLE_APP/vkcube/x11
./vkcube

The sample might be run with --c <framecount> to render a certain number of frames.
If started without arguments, the app will run forever.

5.1.7.6 Vulkan SC Samples
Vulkan

®
 SC samples can be built on both the host and the target by using the cmake

command version 3.18 or later. The following topics describe how to build and run the
Vulkan SC samples:

5.1.7.6.1 Building the Vulkan SC Samples
To build the Vulkan® SC samples, you can use cross compilation, building on target, or host
x86 binary build.

Prerequisites:

‣ The cmake command version 3.18 or later

‣ The pkg-config tool

‣ The build-essential Linux package

To install, run the following command:
sudo apt-get install build-essential

Cross-Compiling

Cross compilation is supported only on a Linux host, such as desktop Linux (x86 Linux).
To build the samples using cross compilation, compile in the PDK/SDK directory with the
toolchain installed because all the required dependencies are in the PDK/SDK directory and
the cmake command in the samples uses the relative path to the root of SDK/PDK.

On a Linux host system, use the following commands to build the samples:
cd <NV_WORKSPACE>/drive-linux/samples/vulkan-sc-samples
mkdir build
cd build
cmake -DCMAKE_TOOLCHAIN_FILE=../cmake/embedded-linux.cmake ../
make

After successful build, copy the build/bin and vulkan-sc-samples/external/ktx folders
to the target device.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 256

Embedded Software Components

Building on the Target

To build the Vulkan SC samples on the target, copy the vulkan-sc-samples directory to
the target and then build the samples on the target by using the following commands:
cd vulkan-sc-samples
mkdir build
cd build
cmake ../
make

Binaries Description

After the build, the following binaries are generated under the build/bin directory:

‣ vksc_01tri

‣ vk_01tri

‣ vksc_computeparticles

‣ vk_computeparticles

‣ vulkanscinfo

Among those binaries, vksc_01tri, vksc_computeparticles, and vulkanscinfo are
VulkanSC samples, while vk_01tri and vk_computeparticles are Vulkan samples. Because
Vulkan SC API supports only oine pipeline cache, you must generate the pipeline cache
for each sample. The Pipeline Cache Compiler (PCC) tool is used to generate the pipeline
cache from the JSON les that describe the pipeline congurations. To help generate
the JSON les automatically, the Vulkan SC samples support generating the JSON
les with the Khronos JSON generation layer (VK_LAYER_KHRONOS_json_gen). However,
VK_LAYER_KHRONOS_json_gen is a Vulkan layer, those binaries with names prexed with
vk are built using Vulkan API with this layer enabled. You can run those Vulkan samples on
target to generate the JSON le automatically.

Host x86 Binary Build

Alternatively, you can generate the JSON les to run the Vulkan SC samples on the host. To
do this, you must build the x86_64 binaries on the host as follows:

Prerequisites:

‣ The desktop must have an NVIDIA dGPU.

‣ Desktop Vulkan (version 1.2 or later) SDK and driver (from NVIDIA) must be installed.

Use these commands to build:
cd <NV_WORKSPACE>/drive-linux/samples/vulkan-sc-samples
mkdir build_host
cd build_host
cmake -DHOST_BUILD=ON ../
make

After the build, the following binaries are generated under the build_host/bin directory:

‣ vk_01tri_host

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 257

Embedded Software Components

‣ vk_computeparticles_host

In addition, the data directory is also copied to the build_host/bin directory. The binaries
and the data directory must be in the same directory.

5.1.7.6.2 Running the Vulkan SC Samples
This topic describes how to display Vulkan

®
 SC information and how to run the Vulkan SC

samples. OpenWFD is supported as a display module for the Vulkan SC samples.

Components

Vulkan SC applications can be developed from Vulkan applications. To develop a Vulkan SC
application, you rst create a Vulkan application with similar functionality and then extract
the oine state needed for the Vulkan SC application. For running and developing Vulkan
SC applications, various components are involved:

‣ Vulkan application: The Vulkan application is used to develop the Vulkan SC application.

You use this application to extract the oine state needed for the Vulkan SC
application.

‣ JSON generation layer: This layer is used to generate the oine JSON pipeline state
and the spir-v les that are needed for the PCC tool.

The library name is libVkLayer_json_gen.so.

‣ Pipeline Cache Compiler (PCC): The PCC tool is used to generate the pipeline cache that
the VKSC application loads.

Workow

The following diagram outlines the workow:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 258

Embedded Software Components

Running the vulkanscinfo Sample (Target)

The vulkanscinfo command summarizes the core features of Vulkan SC API and saves the
output to the text/json/html le.

‣ To get a list of all available options for the vulkanscinfo command, specify the --help
option:
cd <VulkanSC-Samples>/build/bin
./vulkanscinfo –-help

‣ To save the output to an HTML le, specify the --html option:
cd <VulkanSC-Samples>/build/bin
./vulkanscinfo --html

Running the 01tri Sample (Target)

1. Generate pipeline cache by running vk_01tri.

a). Generate the JSON les.

The VK_LAYER_KHRONOS_json_gen layer is recommended to help automatically
generate the JSON les. However, this layer is only supported on Vulkan; therefore,
the Vulkan version of this vk_01tri sample with VK_LAYER_KHRONOS_json_gen
enabled is also built.

Run vk_01tri on target to generate the JSON les as follows:
cd <VulkanSC-Samples>/build/bin
export VK_LAYER_PATH=/etc/vulkansc/icd.d
export VK_JSON_FILE_PATH=$PWD/data/pipeline/vksc_01tri/
./vk_01tri

Upon successful execution, the following les are generated in VK_JSON_FILE_PATH:

‣ vk_01tri_pipeline_0.json

‣ vk_01tri_pipeline_0.vert.spv

‣ vk_01tri_pipeline_0.frag.spv

b). Generate the pipeline cache by running the host PCC tool.

The PCC tool provided in the PDK is an x86_64 binary; therefore, run the tool only on
x86_64 Linux host machine as follows:
cd <VulkanSC-Samples>/build/bin/data/pipeline/vksc_01tri
<NV_WORKSPACE>/drive-linux/vulkansc/pcc/Linux_x86-64/pcc -chip [gv11b|ga10b] -
path ./ -out pipeline_cache.bin

Upon successful execution, pipeline_cache.bin will be generated in the current
folder.

2. Run the vksc_01tri sample.

The vksc_01tri sample already contains a default pipeline cache generated for
gv11b and ga10b GPUs, and the cache binary in hex format is embedded in the
pipeline_cache.hpp le that is built with the vksc_01tri binary. Therefore, you can
run the sample directly by following these steps:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 259

Embedded Software Components

a). Save the o-screen rendering result to an image le.
cd <VulkanSC-Samples>/build/bin
./vksc_01tri -o

After you run commands, an image le tri.ppm is generated. You can use any image
viewer to open it.

b). Display the rendering result by using OpenWFD.
cd <VulkanSC-Samples>/build/bin
./vksc_01tri -w

To run the vksc_01tri sample with the external pipeline cache generated in step 1.
cd <VulkanSC-Samples>/build/bin
./vksc_01tri -c -o

Note: By specifying the -c option, the application will look for the
pipeline_cache.bin le in the ./data/pipeline/vksc_01tri directory. So
pipeline_cache.bin generated in step 1 must be copied to that directory.

Running the computeparticles Sample (Target)

To read the texture data, the vksc_computeparticles sample uses the libktx.so external
library that is located in <VulkanSC-Sample>/external/ktx. Therefore, you must specify
the path to the library before running the samples as follows:
export LD_LIBRARY_PATH=<VulkanSC-Sample>/external/ktx/Linux_aarch64:$LD_LIBRARY_PATH

1. Generate the pipeline cache by running vk_computeparticles.

a). Generate the JSON les.

The VK_LAYER_KHRONOS_json_gen layer is recommended to help to automatically
generate the JSON les. However, this layer is only supported on Vulkan,
therefore the Vulkan version of this sample vk_computeparticles with
VK_LAYER_KHRONOS_json_gen enabled is also built.

Run vk_computeparticles on target to generate the JSON les as follows:
cd <VulkanSC-Samples>/build/bin
export VK_LAYER_PATH=/etc/vulkansc/icd.d
export VK_JSON_FILE_PATH=$PWD/data/pipeline/computeparticles/
./vk_computeparticles

The following les are generated in VK_JSON_FILE_PATH:

‣ vk_computeparticles_pipeline_0.json

‣ vk_computeparticles_pipeline_0.frag.spv

‣ vk_computeparticles_pipeline_0.vert.spv

‣ vk_computeparticles_pipeline_1.json

‣ vk_computeparticles_pipeline_1.compute.spv

This sample uses two dierent pipelines, graphics pipeline and compute pipeline;
therefore, two JSON les are generated.

b). Generate the pipeline cache by using the host PCC tool.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 260

Embedded Software Components

The PCC tool provided in the PDK is an x86_64 binary, therefore it can only be run
on x86_64 Linux host machine as follows:
cd <VulkanSC-Samples>/build/bin/data/pipeline/computeparticles
<NV_WORKSPACE>/drive-linux/vulkansc/pcc/Linux_x86-64/pcc -chip [gv11b|ga10b] -
path ./ -out pipeline_cache.bin

Upon successful execution, pipeline_cache.bin will be generated in the current
folder.

2. Running the vksc_computeparticles sample.

The vksc_computeparticles sample already contains a default pipeline cache
generated for gv11b and ga10b GPUs, and the cache binary in hex format is embedded
in the pipeline_cache.hpp le that is built with the vksc_computeparticles binary.
Therefore, you can run the sample directly.

a). Save the o-screen rendering result to an image le.
cd <VulkanSC-Samples>/build/bin
./vksc_computeparticles -o

b). Display the rendering result by using OpenWFD.
cd <VulkanSC-Samples>/build/bin
./vksc_computeparticles -w

To run the vksc_computeparticles sample with the external pipeline cache generated
in step 1.
cd <VulkanSC-Samples>/build/bin
./vksc_computeparticles -c -o

Note: By specifying the -c option, the application will look for the
pipeline_cache.bin le in the ./data/pipeline/vksc_computeparticles directory,
so pipeline_cache.bin generated in step 1 must be copied to that directory.

Alternative Method to Generate JSON Files (Host)

Regarding generating the JSON les described in step 1.a (Generate the JSON les) ,
an alternative method can automatically generate the JSON les by using the x86_64
binaries that can be run on x86_64 Linux host machines. To use this method, follow the
instructions to build the x86_64 binaries as described in Host x86 Binary Build.

Prerequisites:

‣ Desktop Vulkan (version 1.2 or later) SDK and driver (from NVIDIA) must be installed.

‣ The VK_LAYER_KHRONOS_json_gen library must be available on the host.

To run the vk_01tri_host sample on host,
cd <VulkanSC-Samples>/build_host/bin
export VK_LAYER_PATH=<NV_WORKSPACE>/drive-linux/vulkansc/ecosystem/vulkan-sc-layers/
json_generation_layers/binaries/Linux_x86_64
export VK_JSON_FILE_PATH=$PWD/
./vk_01tri_host

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 261

Embedded Software Components

To run the vk_computeparticles_host sample on host,
cd <VulkanSC-Samples>/build_host/bin
export VK_LAYER_PATH=<NV_WORKSPACE>/drive-linux/vulkansc/ecosystem/vulkan-sc-layers/
json_generation_layers/binaries/Linux_x86_64
export VK_JSON_FILE_PATH=$PWD/
LD_LIBRARY_PATH=<VulkanSC-Sample>/external/ktx/Linux_x86_64 ./
vk_computeparticles_host

5.2 EGL Interoperability and EGLStream
EGL is a Khronos dened API consisting of a core specication and optional extensions
that provides an interface between APIs, as well as a connection to the window system or
other underlying platform. It provides mechanisms for creating surfaces that client APIs
can read and write, importing and exporting resources created by clients, and mapping
window system resources into clients. This allows it to serve as a centralized interop hub to
exchange shared resources, removing the need for specialized interops between individual
clients.

EGLStream is an EGL API extension that provides a mechanism that eciently transfers
a sequence of image frames from one API to another. EGLStream is supported on the
following NVIDIA supported APIs: OpenGL ES, CUDA, and NvMedia, allowing frames to be
shared between these APIs.

For additional details on EGL interoperability and EGLStream support, please consult the
relevant documentation as follows:

‣ OpenGL ES

‣ NvMedia

‣ CUDA Toolkit

5.3 Window Systems
This topic describes the three window systems for Linux:

‣ X11

‣ Wayland

‣ EGLDevice/EGLOutput

The following table lists the window system name and its main library.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 262

https://www.khronos.org/registry/EGL/specs/eglspec.1.5.pdf
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_stream.txt
https://docs.nvidia.com/cuda/index.html

Embedded Software Components

Window System Main Library

X11 Window System X Server

Wayland Window System Weston Compositor

EGLDevice/EGLOutput No main library.

5.3.1 Wayland Window System
Wayland is a protocol that a backend compositor uses to communicate with its clients. It is
also a C library implementation of that protocol. Weston is the reference implementation
of the Wayland compositor. The platform supports Wayland and Weston. Check the
Release Notes for specic versions supported.

For more information about Wayland, see the Wayland home page and documentation
page at:

 http://wayland.freedesktop.org/
 http://wayland.freedesktop.org/docs/html/

5.3.1.1 EGLOutput/EGLDevice Specications
NVIDIA denes extensions to enumerate and control devices and screens through EGL.
These are collectively referred to as EGLOutput/EGLDevice.

The EGLOutput/EGLDevice specications used by Weston are as follows:

Extension Link

EGL_EXT_device_base—Allows the
initialization of EGL displays directly on
top of native GPU or device objects.

https://www.khronos.org/registry/egl/extensions/
EXT/EGL_EXT_device_base.txt

EGL_EXT_device_drm—Allows mapping of
device between EGL and DRM/KMS.

https://www.khronos.org/registry/egl/extensions/
EXT/EGL_EXT_device_drm.txt

EGL_EXT_output_base—Allows rendering
to be directed to a screens or display
outputs.

https://www.khronos.org/registry/egl/extensions/
EXT/EGL_EXT_output_base.txt

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 263

http://wayland.freedesktop.org/
http://wayland.freedesktop.org/docs/html/
https://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_device_base.txt
https://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_device_base.txt
https://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_device_drm.txt
https://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_device_drm.txt
https://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_output_base.txt
https://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_output_base.txt

Embedded Software Components

Extension Link

EGL_EXT_output_drm— Allows mapping
of output handles between EGL and
DRM/KMS.

https://www.khronos.org/registry/egl/extensions/
EXT/EGL_EXT_device_drm.txt

EGL_EXT_stream_consumer_egloutput
— Allows the binding of
EGLOutputLayerEXTs as stream
consumers.

https://www.khronos.org/registry/egl/extensions/
EXT/EGL_EXT_stream_consumer_egloutput.txt

EGL_KHR_stream_consumer_gltexture
— Allows an OpenGL(ES) texture to
be connected to an EGLStream as its
consumer.

https://www.khronos.org/registry/egl/extensions/
KHR/EGL_KHR_stream_consumer_gltexture.txt

The Weston compositor uses EGLOutput/EGLDevice to display the composited Weston
desktop or individual Wayland applications on a physical display device.

5.3.1.2 Runtime Conguration
The platform provides utilities for changing the conguration and runtime parameters.

Note:

For binary and library paths, Ubuntu root lesystem is assumed in the following
sections. Other root lesystems (e.g., Yocto) may have dierent binary and library
paths.

The full source code to the NVIDIA implementation of Weston is in:
drive-linux/samples/wayland/weston

The NVIDIA implementation of Weston uses the Direct Rendering Manager (DRM) backend,
found in the target lesystem at:
/usr/local/lib/weston/drm-backend.so

There are two implementations of the DRM display backend. One is implemented on the
Linux KMS. The other is implemented on top of the EGLOutput series of extensions.

During the Weston startup, Weston creates an OpenGL ES EGLStream producer, if
option use-egldevice is enabled. Weston then creates EGLOutput. EGLOutput is the
EGLStream consumer that passes all the output frames from Weston to the display,
For more information, see EGLOutput Specications. If use-egldevice is not enabled,
the output method switches to drm/kms.Wayland buer sharing between EGL clients
and Weston is implemented using EGLStreams. The EGL client creates an EGLStream
producer and binds the EGLStream le descriptor to wl_buffer through the Wayland
protocol. Weston queries the EGLStream le descriptor from wl_buffer through a query of

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 264

https://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_device_drm.txt
https://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_device_drm.txt
https://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_stream_consumer_egloutput.txt
https://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_stream_consumer_egloutput.txt
https://www.khronos.org/registry/egl/extensions/KHR/EGL_KHR_stream_consumer_gltexture.txt
https://www.khronos.org/registry/egl/extensions/KHR/EGL_KHR_stream_consumer_gltexture.txt

Embedded Software Components

EGL_WAYLAND_BUFFER_WL to eglQueryWaylandBufferWL(). This functionality is provided
by the EGL_WL_bind_wayland_display extension.

Wayland buer sharing also supports dma-buf sharing based on the linux-dmabuf-
unstable-v1-protocol protocol. For more information, see Weston dma-buf Support.

The NVIDIA EGL implementation tries to detect what platform it is running on at runtime
(e.g., Wayland, etc.). It is possible to bypass this detection by setting the EGL_PLATFORM
environment variable. For Wayland, this variable must be set to "wayland". And do not set
the environment variable DISPLAY in case of the Wayland platform. If DISPLAY is set, you
are assumed to be running X11.

5.3.1.3 libdrm Support
The libdrm.so library is used to set display modes and to attach framebuer images to
display overlays. The platform custom implementation of libdrm.so is not implemented on
top of the DRM-KMS display driver. Instead, it is implemented on top of the NVIDIA NVDC
display driver.

Weston requires the NVIDIA custom libdrm.so and is not compatible with the default
Ubuntu libdrm.so.

The default Ubuntu libdrm libraries are located at:
/usr/lib/aarch64-linux-gnu/libdrm.so*

The SDKinstallation deletes those libraries and replaces them with libdrm.so at:
/usr/lib/libdrm.so

When installing 3rd party packages or new software with apt-get, you must make sure
that libdrm.so* shared objects are not recreated. If they exist, remove them from:
/usr/lib/aarch64-linux-gnu/

5.3.1.4 DRM backend

5.3.1.4.1 Supported renderers
‣ WESTON_DRM_BACKEND_RENDERER_PIXMAN

‣ Software rendering in composition.

‣ WESTON_DRM_BACKEND_RENDERER_HAL

‣ Use VIC and GPU in composition. It is not available on automotive platforms.

‣ WESTON_DRM_BACKEND_RENDERER_GL

‣ Use EGL/OpenGL in composition.

5.3.1.4.2 Supported Output methods
‣ DRM_OUTPUT_METHOD_EGLSTREAM

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 265

Embedded Software Components

‣ Use EGLOutput. EGLOutput is the EGLStream consumer that passes all the
output frames from Weston to the display. For more information, see EGLOutput
Specications.

‣ DRM_OUTPUT_METHOD_GBMSURFACE

‣ Default output method. If not enabled, use-egldevice.

‣ DRM_OUTPUT_METHOD_SWAPCHAIN

‣ Internal maintained framebuer swapchain if EGL does not support
platform_gbm.

5.3.1.5 Weston Common Options
Weston supports multiple backends. This section describes the core options that all
Weston backends support.

Command Parameter(s) Description

--version N/A Prints the Weston version.

-B, --backend

drm-backend.so

eglstream-backend.so (for
cross partition use cases)

Species the backend module.
Defaults to drm-backend.so.

Usage: --backend=<module>,
where module is one of the
parameters.

--shell
desktop-shell.so

ivi-shell.so

Species the shell module.
Defaults to desktop-
sheel.so.

Usage: --shell=<module>,
where module is one of the
parameters.

-S, --socket <socket name>

Listens to the specied socket
name.

Usage: --socket=<socket
name>for applications.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 266

Embedded Software Components

Command Parameter(s) Description

-i, --idle-time <seconds>
Species the idle time in
seconds.

--log <le name>

Displays the log for the given
le.

Usage: --log=<le name>

-h, --help N/A Displays the help message.

5.3.1.6 Weston Backend Options
Weston supports multiple backends and, depending on the backend used, accepts
dierent options. NVIDIA supports drm-backend.so, which allows Weston to support
NVIDIA graphics.

5.3.1.6.1 drm-backend.so options
The supported drm-backend.so options and the values they consume are as follows.

Command Parameter(s) Description

--seat <SEAT>
The seat that Weston should
run on, instead of the seat
dened in XDG_SEAT

--tty <TTY> Select which tty to use

--drm-device <CARD>
The DRM device to use, e.g.
"card0".

--use-pixman N/A Use the pixman (CPU) renderer

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 267

Embedded Software Components

Command Parameter(s) Description

--use-hal N/A Use the HAL renderer

--use-egldevice N/A
Use the EGLDevice and
EGLOutput with GL render

--current-mode N/A

Species that current DRM
mode is preferred over
EDID mode. If the display is
already turned on by any DRM
application other than Weston,
Weston uses the current DRM
mode instead of a new display
mode from the monitor EDID.

5.3.1.7 Weston Conguration File Location
Weston uses a conguration le called weston.ini for its setup. When Weston starts, it
will search for the weston.ini conguration le in one of the following places:

If $XDG_CONFIG_HOME is set, Weston searches in:
$XDG_CONFIG_HOME/weston.ini

If $HOME is set, Weston searches in:
$HOME/.config/weston.ini

If $XDG_CONFIG_DIRS is set, Weston searches in:
$XDG_CONFIG_DIR/weston/weston.ini

If $XDG_CONFIG_DIRS is not set, Weston searches in:
/etc/xdg/weston/weston.ini

If no variables are set, Weston searches in:
<current dir>/weston.ini

Where the environment variable:

‣ $HOME is your home directory.

‣ $XDG_CONFIG_HOME is your specic conguration directory.

‣ $XDG_CONFIG_DIRS is a colon ':' delimited list of conguration base directories, such as /
etc/xdg-foo:/etc/xdg.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 268

Embedded Software Components

5.3.1.8 Weston Display Conguration
Weston picks the default settings for display by itself. If the default settings are
insucient, the display settings can be dened in weston.ini.

To congure the display, add the following to weston.ini with the appropriate values for
output name, mode, and transform:
[output]
name=<output_name>
mode=<mode>
transform=<transformation>

Where name=<output_name> sets a name for the output string. The backend uses the
name to identify the output.

Output Name Description

LVDS1 Laptop internal panel number 1.

VGA1 VGA connector number.

The mode=<mode> assignment sets the output mode string. The mode parameter is handled
dierently depending on the backend. The DRM backend accepts dierent modes:

Mode Description

WIDTHxHEIGHT Resolution size width and height in pixels.

preferred Uses the preferred mode.

current Uses the current CRT controller mode.

o Disables the output.

Optionally, you can specify a modeline, for example:
173.00 1920 2048 2248 2576 1080 1083 1088 1120 -hsync +vsync

A modeline consists of the refresh rate in Hz, the horizontal and vertical resolution, and
options for horizontal and vertical synchronization. The cvt(1) program provides a suitable
modeline string.

The transform=<transformation> assignment applies the transformation to the screen
output string. The transform key must be one of the following 8 strings:

Transform string Description

normal Normal output.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 269

Embedded Software Components

Transform string Description

90 90 degrees clockwise.

180 Upside down.

270 90 degrees counter clockwise.

ipped Horizontally ipped.

ipped-90 Flipped and rotated 90 degrees clockwise.

ipped-180 Flipped upside down.

ipped-270 Flipped and 90 degrees counter clockwise.

The following is a weston.ini conguration example:
[output]
name=LVDS1
mode=1680x1050
transform=90
icc_profile=/usr/share/color/icc/colord/Bluish.icc

5.3.1.9 Prerequisites to Starting Weston
Weston creates its Unix socket le, for example wayland-0, in the directory specied by
the required environment variable $XDG_RUNTIME_DIR. $XDG_RUNTIME_DIR denes the base
directory relative to which user-specic non-essential runtime les and other le objects
(such as sockets, named pipes, etc.) are stored.

Check whether the $XDG_RUNTIME_DIR environment variable is set, if it is not set please set
it as follows.

5.3.1.9.1 Setting the $XDG_RUNTIME_DIR Directory
Use either of the following two methods to set the $XDG_RUNTIME_DIR directory before
running Weston:

‣ Set $XDG_RUNTIME_DIR manually

‣ Set $XDG_RUNTIME_DIR using your shell prole

5.3.1.9.2 To set the $XDG_RUNTIME_DIR directory manually
‣ Execute the following:

mkdir /tmp/xdgruntime
chmod 700 /tmp/xdgruntime
export XDG_RUNTIME_DIR=/tmp/xdgruntime

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 270

Embedded Software Components

At runtime, /tmp/xdgruntime looks like:
root@nvidia:/# ls -lt /tmp/xdgruntime
total 0
srwxr-xr-x 1 root root 0 May 12 11:31 wayland-0
-rw-r----- 1 root root 0 May 12 11:31 wayland-0.lock

5.3.1.9.3 To set the $XDG_RUNTIME_DIR directory using your
shell prole
‣ Modify your shell prole to perform the manual steps described above. For information

on modifying your shell, see the manual for your shell. Also see these important tips for
when modifying your shell prole to set up $XDG_RUNTIME_DIR:

‣ Determine the correct shell prole to modify.

Some shells read multiple les (Zshell). Others pick the rst available le, ignoring
the others (Bash). ~/.profile is generally a good guess for most Bourne-shell
compatible shells; ~/.zprofile is the Zshell equivalent. Use the prole le if there is
one; otherwise, use the login le. The software automatically uses the variable once
it is set. This is useful if you want to use your prole le on dierent systems.

‣ Put the following code in your shell prole and adapt it to your shell's internals. This
code is Bourne-shell compatible.
if test -z "${XDG_RUNTIME_DIR}"; then export
XDG_RUNTIME_DIR=/tmp/${UID}-runtime-dir
if ! test -d "${XDG_RUNTIME_DIR}"; then mkdir
"${XDG_RUNTIME_DIR}"
chmod 0700 "${XDG_RUNTIME_DIR}"

5.3.1.10 Starting Weston
Weston can be launched with root privileges or via weston-launch tool.

5.3.1.10.1 To start Weston with root privileges
‣ Execute the following command to switch to superuser:

sudo su

The default password is nvidia.

‣ Create symbol links:
sudo ln -sf /usr/lib/libnvgbm.so /usr/lib/aarch64-
linux-gnu/libgbm.so.1
sudo ln -sf /usr/lib/libdrm.so.2 /usr/lib/aarch64-
linux-gnu/libdrm.so.2

‣ Load Weston:
unset DISPLAY
mkdir /tmp/xdg
chmod 700 /tmp/xdg
export XDG_RUNTIME_DIR=/tmp/xdg
export WESTON_TTY=1
sudo insmod /lib/modules/$(uname -r)/extra/opensrc-disp/nvidia-drm.ko modeset=1

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 271

Embedded Software Components

sudo XDG_RUNTIME_DIR=/tmp/xdg weston --tty="$WESTON_TTY" --idle-time=0 &

Note: If you want to use the X11 environment, remove nvidia-drm driver (rmmod
nvidia_drm) or restart the board.

‣ Launch Weston as specied below.

5.3.1.10.2 To start Weston on desktop-shell
‣ Execute the following command:

weston --idle-time=0 &

By default, Weston runs using desktop-shell.

5.3.1.10.3 To start Weston with ivi-shell and hmi-controller
‣ Execute the following command:

weston --tty="$WESTON_TTY" --idle-time=0 --shell=ivi-shell.so --modules=hmi-
controller.so &

ivi-shell can pull dierent controllers that eectively take care of the window management.

Note:

By default, weston.ini sets the background-color to 0x000000 (ARGB color).
Therefore, a plain, dark background is expected.

5.3.1.10.4 To start Weston with ivi-shell and ivi-controller
weston --shell=ivi-shell.so --modules=ivi-controller.so

5.3.1.10.5 To start Weston with ivi-shell, ivi-controller and ivi-
input-controller.so
‣ Modify weston.ini to load ivi-input-controller:

[ivi-shell]
ivi-input-module=ivi-controller.so

‣ Execute the following command:
weston --shell=ivi-shell.so &

This starts Weston with IVI shell using the corresponding controller module. The display
should remain dark. The ivi-controller does not provide any desktop decorations, by default.

5.3.1.10.6 To start Weston without root privileges
Weston can be launched as non-root with the weston-launch binary. It is present in /usr/
local/bin for Ubuntu rootfs. Follow the steps below to launch Weston as non-root.

1. Add the non root user to weston-launch group:
sudo su

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 272

Embedded Software Components

usermod -a -G weston-launch <non_root_user_name>
chown root /usr/local/bin/weston-launch
chmod +s /usr/local/bin/weston-launch

2. Launch Weston with weston-launch binary as non-root:
su <non_root_user_name>
weston-launch [args...] [-- [weston args..]]

For example:

‣ Run weston-launch with desktop-shell:
weston-launch -- --shell=desktop-shell.so

‣ Run weston-launch with ivi-shell:

‣ weston-launch -- --shell=ivi-shell.so

5.3.1.11 Running Weston Samples
The instructions provided assume Weston and Wayland are running as superuser.

5.3.1.11.1 To start Weston-simple-egl with ivi-shell and hmi-
controller
‣ Execute the command:

weston-simple-egl &

5.3.1.11.2 To start Weston-simple-egl with ivi-shell and ivi-
controller
1. Execute the command:

weston-simple-egl -width 1920 -height 1080 -surface 10 &

2. Manually conguring the client surface:
LayerManagerControl set surface 10 source region 0 0 1920 1080
LayerManagerControl set surface 10 destination region 0 0 1920 1080
LayerManagerControl set surface 10 visibility 1

Nothing appears on the screen because the application surface is not linked to a layer.
3. Create a layer and attach the client surface to it:

LayerManagerControl create layer 1000 1920 1080
LayerManagerControl set layer 1000 render order 10
LayerManagerControl set layer 1000 visibility 1

4. Link your layer to a screen:
LayerManagerControl set screen 0 render order 1000

5.3.1.12 Compositing Mode in Weston
Weston supports mixed mode compositing using dma-buf. Weston collects all the overlay
planes and assigns one to the GFX as the primary plane. Others are available as overlay

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 273

Embedded Software Components

planes. Weston evaluates all surfaces and views on every frame, and chooses one of these
strategies to composite them:

‣ DRM_OUTPUT_PROPOSE_STATE_MIXED (Overlay + GL)

‣ DRM_OUTPUT_PROPOSE_STATE_RENDERER_ONLY (GL)

‣ DRM_OUTPUT_PROPOSE_STATE_PLANES_ONLY (Overlay only)

The weston-simple-dmabuf-egldevice demo application demonstrates mixed-mode
compositing path in weston, where some surfaces are assigned overlay planes and others
are composited with GL.

5.3.1.12.1 Display Hardware Compositing in Weston
The DRM compositor in Weston calls drmModeAddFB2WithModiers() to associate
a DRM framebuer ID with the dma-buf it receives via Linux DMA-BUF Unstable
V1 Protocol. It then uses the framebuer ID to present the dma-buf to one of the
available display hardware planes using drmModeSetPlane(), in the legacy path, or
drmModeAtomicCommit(), in the atomic modeset path. This takes the form of a ip, where
the reference to the new buer is swapped in during vblank.

5.3.1.13 weston-debug
The weston-debug client application receives and prints debug messages using the
weston-debug protocol. For example, when Weston is recompositing, it prints all surface
views and descriptions of the decision process regarding their assignment to overlays and
GL compositing.

For weston-debug to work, you must run Weston with the ‑‑debug switch. Do not use this
switch in production.

You can pass weston-debug additional parameters to choose categories of debug output
to display:
$ sudo XDG_RUNTIME_DIR=/tmp/xdg weston –debug
$ sudo XDG_RUNTIME_DIR=/tmp/xdg ./weston-debug -a

Alternatively, you can enable Weston debug output by setting the environment variable
WAYLAND_DEBUG=server, and Weston client debug by setting WAYLAND_DEBUG=1.

5.3.1.14 Weston dma-buf Support
Clients can post dma-buf buers to Weston using Wayland's Linux DMA-BUF Unstable V1
Protocol. Dma-buf support with Weston contains the following components.

5.3.1.14.1 Buer Allocation
GBM is commonly used to allocate buers, which are backed by the dma-buf le
descriptor.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 274

Embedded Software Components

This code snippet shows how to allocate a buer using GBM:
drm_fd = open("/dev/dri/card0", O_RDWR);
device = gbm_create_device(drm_fd);
bo = gbm_bo_create_with_modifiers(device, width, height,
 format, modifiers, modifiers_count);

Weston supports the DRM_FORMAT_XRGB8888 and DRM_FORMAT_ARGB8888 formats.

A modier is an encoding of vendor-specic buer layout parameters. Weston modiers
are supported by DRM (read the IN_FORMATS plane property blob) and by EGL (call
eglQueryDmaBufModifiersEXT()).

5.3.1.14.2 Buer Read/Write from CPU
You can use this API function to write data directly into a GBM buer:
gbm_bo_write(bo, user_buffer, sizeof user_buffer);

You can also memory map a GBM buer and get a CPU-accessible address to the data
written to or read from it:
uint32_t dst_stride = 0;
void *gbo_mapping = NULL;
// Map bo to CPU accessible address.
char *dst_ptr = gbm_bo_map(bo,
 0, 0,
 width,
 height,
 GBM_BO_TRANSFER_READ_WRITE,
 &dst_stride,
 &gbo_mapping);
// Write data to or read data from dst_ptr.
. . .
// Unmap bo.
gbm_bo_unmap(bo, gbo_mapping);

5.3.1.14.3 Wayland Protocol to Post dma-buf Buers to Weston
Weston uses the Generic Buer Management (GBM) library to allocate buers that
are backed by dma-buf le descriptors. Client applications must call the following
GBM functions to get the dma-buf le descriptor and associated parameters from the
GBM buer object. To post the dma-buf to a Wayland surface, the le descriptor and
parameters must be provided via Linux DMA-BUF Unstable V1 Protocol.

The following code snippet shows the main calls involved (assume gbm buer object
contains one plane only).
stride = gbm_bo_get_stride_for_plane(bo, 0);
offset = gbm_bo_get_offset(bo, 0);
handle = gbm_bo_get_handle_for_plane(bo, 0);
modifier = gbm_bo_get_modifier(bo);
drmPrimeHandleToFD(drm_fd, handle, 0, &dmabuf_fd);
zwp_linux_buffer_params_v1_add(params, dmabuf_fds, 0, offset,
 stride, modifier >> 32,
 modifier & 0xffffffff);
zwp_linux_buffer_params_v1_create(params, width, height,
 format, flags);

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 275

Embedded Software Components

5.3.1.14.4 GL Renderer in Weston
The GL renderer in Weston creates an eglImage from a dma-buf object that it receives
with Linux DMA-BUF Unstable V1 Protocol using the EGL_EXT_image_dma_buf_import and
EGL_EXT_image_dma_buf_import_modifiers extensions. Weston obtains the GL texture
target to be used with this eglImage by calling eglQueryDmaBufModifiersEXT(), and binds
the eglImage to the texture.

5.3.1.15 Gnome-Wayland Desktop Shell Support
To enable experimental Gnome-Wayland desktop shell support:

1. Install gdm3, mutter, and their dependencies:
sudo apt update
sudo apt install -y gdm3 mutter adwaita-icon-theme-full
sudo apt install -y --reinstall libdrm2 ubuntu-session

2. Repair the broken drm-nvdc soft link and rename the Ubuntu session le:
sudo ln -sf /usr/lib/libdrm.so.2 /usr/lib/aarch64-
linux-gnu/libdrm.so.2
sudo mv /usr/share/wayland-sessions/ubuntu-wayland.desktop
/usr/share/wayland-sessions/ubuntu.desktop

3. Add the gdm daemon to the video group:
sudo usermod -a -G video gdm

4. Congure gdm to use Wayland by setting the following ag in the [daemon] section of /
etc/gdm3/custom.conf:
[daemon]
WaylandEnable=true

5. Load the tegra-udrm kernel module:
sudo modprobe tegra-udrm modeset=1

6. Start gdm:
sudo systemctl start gdm3.service

7. Log in and verify the Wayland backend is running:
ps -e | grep wayland

8. Congure the tegra-udrm kernel module to load on boot:
sudo bash -c 'echo "options tegra-udrm modeset=1" > /lib/modprobe.d/tegra-
udrm.conf'
sudo bash -c 'echo "tegra-udrm" >> /etc/modules-load.d/modules.conf'

9. Reboot and repeat step 7 to verify the Wayland backend auto-started successfully.

5.3.2 EGLDevice
This topic describes EGL mechanisms that you can use to implement a pure EGL display.
Such a display does not use a window system.

EGLDevice

EGLDevice provides a mechanism to access graphics functionality in the absence of or
without reference to a native window system. It is a method to initialize EGL displays and

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 276

Embedded Software Components

surfaces directly on top of GPUs/devices rather than native window system objects. It is
a cross-platform method to discover media devices like displays, GPUs, etc. The set of
EGLDevice extensions boot strap EGL, without the use of any native APIs.

EGLOutput

EGLOutput is to graphical outputs what EGLDevice is to devices. It allows enumeration of
outputs on a device. EGLOutput allows rendering directly to a screen in the absence of a
window system. Additionally, it allows applications to bypass native window systems for
direct rendering. It denes certain EGL resources for referencing display control hardware
associated with an EGL device. EGLOutput provides a binding between GL, NVIDIA® CUDA®,
and multimedia rendering and the display output. In a typical Embedded setting, the
outputs are often initialized to a xed state at system startup. But in cases where they are
congurable, other interfaces such as DRM must be used.

EGLStream

EGLStream is a mechanism to share data eciently between dierent APIs without
copying data. APIs could be OpenGL, CUDA, Multimedia, etc. A producer and a consumer
are attached to two ends of a stream object:

‣ Producer adds content into the stream.

‣ Consumer retrieves this content.

EGLOutput instances can also be specied as consumers, allowing APIs to direct their
output to the screen.

5.3.2.1 EGLdevice Driver Loading Instructions
This section describes driver loading instructions to run EGLdevice samples.

Note: Ensure that no other Graphic samples are running on the target.

1. Load following driver modules:
sudo insmod /lib/modules/$(uname -r)/extra/opensrc-disp/nvidia.ko
 rm_firmware_active="all"
sudo insmod /lib/modules/$(uname -r)/extra/opensrc-disp/nvidia-modeset.ko
sudo insmod /lib/modules/$(uname -r)/extra/opensrc-disp/nvidia-drm.ko modeset=1

2. Change to the sample directory:
cd /opt/nvidia/drive-linux/samples/opengles2/bubble/egldevice

3. Note: This step only applies to OOBE-RFS lesystems.

Start the sample as root user:
#./bubble -windowsize 1920 1080 -sec 15

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 277

Embedded Software Components

These instructions are applicable to other EGLdevice samples. For other RFS and samples
binaries, compile in the host using the make command and copy the entire sample directory
into the target.

If you want to run X11 samples, remove nvidia_drm module (#rmmod nvidia_drm) and refer
to To Start the X Server.

5.3.2.2 Extensions
EGL extensions specify the behavior, procedures, and functions for these EGL mechanisms.

‣ EGLDevice

‣ EGL_EXT_device_base

‣ EGL_EXT_platform_base

‣ EGL_EXT_platform_device

‣ EGLOutput

‣ EGL_EXT_output_base

‣ EGLStream

‣ EGL_KHR_stream

‣ EGL_KHR_stream_producer_eglsurface

‣ EGL_EXT_stream_consumer_egloutput

For a description of these EGL extensions, see:

‣ EGL and EGL Extensions

‣ Khronos EGL extension specications at:

https://www.khronos.org/registry/egl

5.3.2.3 Runtime Conguration

5.3.2.3.1 Conditions Requiring a Stream Surface
In the absence of an underlying window system, the stream surface is necessary for on
screen rendering. Stream surfaces behave like any other EGLSurface. For example, the
eglSwapBuffers function must still be called to indicate the end of a frame. However,
stream surfaces are stream producers, so eglSwapBuffers submits rendering to the
stream rather than presenting it to a native window directly. Typically, an EGLOutput
consumer can use any producer attached to the stream but needs a surface producer
when rendering API is OpenGL. For more information, see Creating a Stream Surface in this
topic.

A common use case for stream producer surfaces is an application producing display
frames using OpenGL, attached as a producer to one end of an EGL stream. The stream
consumer on the other end is an EGLOutput layer sending frames directly to a display
device.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 278

../../../api_reference/group__ogl2__group.html
https://www.khronos.org/registry/egl

Embedded Software Components

5.3.2.4 Implementation
The following two sub-sections describe the steps to render to an EGL device using a
stream surface.

5.3.2.5 Rendering to EGLDevice
These are the steps to render to an EGL device (more detailed steps follow):

1. Create an EGL display from an EGL device.
2. Create an EGL context from the EGL display.
3. Create an EGL stream producer surface.
4. Bind a GL context to the stream surface, i.e. make current.
5. Post the surface contents to the stream using swap buers.

5.3.2.6 Creating a Stream Surface
Creating a stream surface uses the following functions:

Function Extension and Function Description

eglCreateStreamProducerSurfaceKHR

EGL_KHR_stream_producer_eglsurface

Creates an EGLSurface and connects it as the
producer of a stream.

eglStreamConsumerOutputEXT

EGL_EXT_stream_consumer_egloutput

Binds an EGLOutput layer as a stream
consumer to send rendering directly to a
display device.

According to the EGL_KHR_stream specication, the EGLStream cannot be used until it
has been connected to a consumer and producer. The consumer must be connected before
the producer is connected.

5.3.2.6.1 To render to an EGLDevice through stream
1. Query EGL extensions using eglGetProcAddress.
2. Query available EGLDevices with eglQueryDevicesEXT.
3. Obtain an EGL display from the EGL device using eglGetPlatformDisplayEXT.

This step creates an EGLDisplay that does not belong to any native platform.
4. Initialize/setup EGL using eglInitialize.
5. Setup an EGLOutput. For detailed steps, see Setting Up the Display with OpenWFD and

EGL Device.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 279

Embedded Software Components

‣ Selecting an output:

‣ Can be done by enumerating all outputs and selecting a known index.

‣ Can be done by looking up an output associated with a native (e.g. DRM) screen
handle.

‣ If necessary, initialize display settings using native interfaces
6. Direct rendering to an EGLOutput.

‣ Create an EGL stream using eglCreateStreamKHR.

‣ Connect the output layer to the stream. Bind consumer end of stream to
EGLOutput window object using eglStreamConsumerOutputEXT.

7. Set buer congurations by choosing an EGLCong
8. Create a stream producer surface to feed the stream using

eglCreateStreamProducerSurfaceKHR.
9. Create an EGL context, make it current by binding it to the stream surface using

eglMakeCurrent.
10. Post surface contents to the stream using eglSwapBuffers.

5.3.2.6.2 To use an EGLStream in cross-process mode
1. Make the following additions and changes to nvm_eglstream.int:

AddressSpace nvm_eglstream_producer
 Filename nvm_eglstream_as0
 Arguments -producer 0 -f /nfsmount/welcome_animation.264 -standalone 1
 MemoryPoolSize 32M
 ExtendedMemoryPoolSize 64M
 HeapExtensionReservedSize 64M
 Language C
 Task Initial
 StartIt false
 StackLength 2M
 EndTask
EndAddressSpace
AddressSpace nvm_eglstream_consumer
 Filename nvm_eglstream_as0
 Arguments -consumer 0 -d 2 -standalone 2
 MemoryPoolSize 32M
 ExtendedMemoryPoolSize 64M
 HeapExtensionReservedSize 64M
 Language C
 Task Initial
 StartIt false
 StackLength 2M
 EndTask
EndAddressSpace

2. Rebuild the application.
3. Load the application binary with the following command:

Load /nfsmount/nvm_eglstream_egldevice

4. Start the consumer with the following command:
rt nvm_eglstream_consumer Initial

5. Start the producer with the following command:
rt nvm_eglstream_producer Initial

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 280

Embedded Software Components

This procedure enables a video producer and video consumer combination. The same
procedure can also be extended for other producer/consumer combinations.

5.3.2.7 Cross-Process and Cross-Partition EGLStream
Applications
This release includes the simple cross-process EGLDevice consumer and producer
applications helloconsumer and helloproducer. The applications listen on 127.0.0.1, port
8888 by default. They can be used as cross-partition applications by passing –-crosspart
or -c to the consumer and –-crosspart [<consumer_ip>] or -c [<consumer_ip>] to the
producer.

The applications are built into demo_dd.

5.3.2.7.1 To use the applications
1. Load demo_dd.
2. Start helloconsumer on the target with the following command:

rt helloconsumer Initial

3. Start helloproducer on the target with the following command:
rt helloproducer Initial

If the applications run correctly, the upper-left corner of display 2 contains a ashing
square.

Using EGL_KHR_stream_consumer_gltexture functionality, the EGLStream can also be
bound to a gltexture consumer (requiring an EGLContext.) The consumer texture buer
can then be rendered to an EGLSurface, for example.

For more information on EGL_KHR_stream_consumer_gltexture see the
following website: https://www.khronos.org/registry/EGL/extensions/KHR/
EGL_KHR_stream_consumer_gltexture.txt

5.3.2.8 Connecting a Surface to a Screen
You must use an EGLStream to connect a surface (i.e., a stream surface) to a screen. The
surface is the stream producer, and the screen is the stream consumer.

‣ eglGetPlatformDisplayEXT returns an EGLDisplay handle belonging to a screen as
specied by platform argument in the function call.

‣ eglMakeCurrent attaches an EGL rendering context to draw and read an EGL surface. It
also binds a context and a surface to the current rendering thread.

‣ Steps 6 through 9 in Creating a Stream Surface are required for connecting a stream
surface to a screen.

‣ eglGetPlatformDisplayEXT returns a handle to screen.

‣ eglMakeCurrent binds the handle to the current context and surface.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 281

https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_stream_consumer_gltexture.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_stream_consumer_gltexture.txt

Embedded Software Components

5.3.2.9 Setting Up the Display with OpenWFD and EGL
Device
OpenWFD (Open Windowing Foundation – Display) is a Khronos specication that provides
a low-level hardware abstraction interface to use the display hardware. OpenWFD can be
used with an EGL device to interact with the display hardware.

Selecting a WFD Device, WFD Port, and WFD Pipeline

To select a WFD device, WFD port, and WFD pipeline,

1. Enumerate the IDs of the WFD devices with wfdEnumerateDevices() and select one of
them.

2. Create a WFD device with the ID selected from step 1 by calling wfdCreateDevice().
3. Enumerate the IDs of the WFD ports with wfdEnumeratePorts() and select one of

them.
4. Create a WFD port with the ID selected from step 3 by calling wfdCreatePort().
5. Query a list of wfdPortMode supported by the WFD port by calling wfdGetPortModes().
6. Choose the desired wfdPortMode.

You can query the properties of the desired wfdPortMode, such
as WFD_PORT_MODE_WIDTH and WFD_PORT_MODE_HEIGHT, by using
wfdGetPortModeAttrib*().

7. Set the chosen wfdPortMode to the WFD port.
8. Enumerate the IDs of the WFD pipelines with wfdEnumeratePipelines() and select one

of them.
9. Create a WFD pipeline with the ID selected from step 8 by calling

wfdCreatePipeline().
10. Commit the WFD pipeline with the WFD port by calling wfdBindPipelineToPort().
11. Commit the state of the WFD port with wfdDeviceCommit() and the

WFD_COMMIT_ENTIRE_PORT commit type.

Note: To exit SC7 mode (suspend to RAM), perform a modeset using wfdDeviceCommit()
on the same WFDPortMode used before entering SC7 mode.

More Information

‣ For details about APIs, see the OpenWFD Specication.

‣ For a list of addenda specic to NVIDIA, see the OpenWFD section of NvDisplay.

‣ For an example of using OpenWFD with an EGL device to interact with display, see the
sample openwfd_egldevice.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 282

https://www.khronos.org/registry/OpenWF/specs/OpenWF_Display_1_0_Specification.pdf

Embedded Software Components

5.3.2.10 Board-to-Display Connectors
For information about the connectors on your platform and the relationship between
connectors and displays, see the documentation for your hardware.

5.3.3 X11 Window System
X is an application that is used to manage input devices, like a mouse and a keyboard,
and the output devices like displays connected to a system. Any user application can
communicate with the display graphics interfaces using dierent service routines.

Ocial documentation is at:

https://www.x.org/wiki/Documentation/

In the context of running graphic applications on top of X, in previous releases you could
either have X running by default on the Ubuntu root lesystem started by the lightdm
or gdm3 service, or start it manually. In this release, lightdm or gdm3 is not enabled by
default. You must start X server manually.

5.3.3.1 Manually Starting X Server

5.3.3.1.1 To start the X server

Note:

The display conguration may be dened in xorg.conf before starting the server.
After the server starts, use xrandr to set runtime congurations. For more
information, see the Using xrandr for Runtime Conguration.

Execute the following command:
sudo -b X -ac -noreset -nolisten tcp

The command line arguments may vary depending on platform.

5.3.3.1.2 To kill the X server
To get the pid of the X server, use:
ps aux | grep "X"

Then execute:
sudo kill <X server pid>

5.3.3.2 Runtime Conguration
Xorg provides several mechanisms that provide conguration and run-time parameters:

‣ Command line options

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 283

https://www.x.org/wiki/Documentation/

Embedded Software Components

‣ Environment variables

‣ xorg.conf and xorg.conf.d conguration les

‣ Auto-detection

‣ Fallback defaults

The SDKprovides utilities for changing the conguration and run-time parameters:

‣ xrandr utility—changes runtime parameters

‣ nvidia-xconfig helper utility (tool)—assist in conguring xorg.conf

Note:

Customers who support hot plugging of an HDMI display must implement
an X11 client that recongures the HDMI display upon receipt of an
RRScreenChangeNotify X11 event. Typically, a gnome-settings-daemon is used for
that purpose.

This solution is required to work around the X11 response to a hot-plugged HDMI
display. During that response, X11 registers the HDMI output as connected but
does not perform an automatic mode-set.

5.3.3.3 Using xrandr for Runtime Conguration
The NVIDIA Orin Driver supports the XRandR 1.2 (X11 Rotate and Resize) extension. This
extension allows dynamic enabling, resizing, positioning, and orienting of displays. With the
xrandr command line utility, you can control XRandR. That utility is included in the x11-
xserver-utils package.

5.3.3.4 Querying Supported Monitors and Screen
Resolutions
You can use xrandr to get information about supported monitors and screen resolutions.

5.3.3.4.1 To query attached displays and detect available modes
‣ With the X server running, enter the following command in a terminal window:

xrandr

Output is similar to the following:
Screen 0: minimum 8 x 8, current 2560 x 1600, maximum 16384 x 16384
DP-0 connected primary 2560x1600+0+0 (normal left inverted right x axis y axis) 220mm
 x 140mm
 2560x1600 60.0*+
HDMI-0 disconnected (normal left inverted right x axis y axis)

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 284

Embedded Software Components

5.3.3.5 Obtaining Additional Help
The xrandr utility provides a help menu that lists all supported options and provides
guidance on their use.

5.3.3.5.1 To get further help and view all available options
‣ In a terminal window, enter:

xrandr --help

5.3.3.6 Modifying the Static Conguration (Optional)
The minimal xorg.conf is installed on the target in the following location:
/etc/X11/xorg.conf

Additionally, directories of *.conf fragment les are also located in the following locations:
/etc/X11/xorg.conf.d/
/usr/share/X11/xorg.conf.d/

By default, xorg.conf contains no specic settings for the screen resolution, virtual
desktop size, bit depth, and display select, but instead query's the driver for the optimum
settings based on displays enabled. It is the goal of the Tegra driver for the default settings
along with runtime xrandr commands and X command-line arguments to be sucient
for most needs. In cases where defaults are not sucient, appropriate settings for
screen resolution, bit depth, and monitor enablement can be congured to create custom
defaults. xrandr may still be used for runtime manipulation.

Note:

It is recommended that you use the nvidia-xcong conguration tool to edit the
xorg.conf le, rather than editing by hand. However, there may be circumstances
where hand-editing is required.

5.3.3.7 Using nvidia-xcong to Congure xorg.conf
The NVIDIA X conguration tool, nvidia-xcong, simplies the task of modifying your
xong.conf le. That tool parses the xorg.conf le, saves a backup, and then performs
modications to the conguration based on your choice of command-line options.

5.3.3.7.1 Getting Help on nvidia-xcong
The nvidia-xconfig tool provides basic and advanced help.

5.3.3.7.1.1 To get basic help for nvidia-xcong

‣ In a terminal window, enter:

nvidia-xconfig --help

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 285

Embedded Software Components

5.3.3.7.1.2 To get options for modifying xorg.conf

‣ In a terminal window, enter:

nvidia-xconfig --advanced-help

5.3.3.7.2 nvidia-xcong Usage Examples
The nvidia-xconfig tool provides many options. This section provides instructions on a
small subset of the supported options.

5.3.3.7.3 Specifying a Custom EDID for the Monitor

Note:

If X11 does not recognize the mode list of a particular model of monitor, you may
nd that the monitor has an invalid extended display identication data (EDID).
When that happens, the X driver cannot accurately determine the capabilities of
the monitor.

5.3.3.7.3.1 To specify a custom EDID for the monitor

‣ In a terminal window, enter:

nvidia-xconfig --custom-edid=HDMI-0:<path>

Where <path> is the complete path to edid.bin.

5.3.3.7.4 Setting Color Bit-Depth
You can use the nvidia-xcong tool to set color bit-depth in the xorg.conf le.

5.3.3.7.4.1 To start X11 with a particular color bit-depth

‣ In a terminal window, enter:
nvidia-xconfig --depth=<depth>

Where <depth> is one of the following supported color bit-depth values: 8, 15, 16, 24,
and 30. For example:
nvidia-xconfig --depth=16

5.3.3.7.5 Specifying Modes
You can use the nvidia-xcong tool to set display mode (resolution) in the xorg.conf le.

5.3.3.7.5.1 To add a mode to the mode list

‣ In a terminal window, enter:

nvidia-xconfig --mode=<mode>

Where <mode> is the display mode expressed as X and Y pixels. For example:
nvidia-xconfig --mode="1024x768"

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 286

Embedded Software Components

5.3.3.7.6 Enabling Debug Mode
You can use the nvidia-xconfig tool to specify a debug mode in the xorg.conf le. When
debug mode is enabled, the X driver logs verbose details about mode validation. The driver
logs these details in the X log le. You can use that information to troubleshoot mode
database issues.

5.3.3.7.6.1 To enable debugging

‣ In a terminal window, enter:

nvidia-xconfig --mode-debug

5.3.3.7.6.2 To disable debugging

‣ In a terminal window, enter:

nvidia-xconfig --no-mode-debug

5.3.3.7.7 Multi-Display X Server Layout
For single-display systems, the default server layout is sucient. However, for multi-display
systems you must specify how the monitors are related to one another in the virtual space
of the X11 desktop. Multi-Display is currently only supported with a single X screen at this
time.

5.3.3.7.7.1 Enabling the One X Screen Layout

In the one X Screen conguration, multiple monitors will work together by displaying
portions of the same X Screen, which is like a virtual desktop space. This is the default
mode. Both mirroring and spanning layouts can be specied using one X Screen. The size
of the X Screen is determined by the smallest rectangle that covers the extents of all the
enabled displays in the chosen layout.

5.3.3.7.7.2 To enable one X Screen (default for span)

‣ In a terminal window, enter:

nvidia-xconfig --only-one-x-screen

Here is a graphical depiction of a one X Screen side-by-side layout:
DISPLAY=:0.0
Screen is 3200x1080
(0,0) (1920,0)

HDMI-0	DP-0
(1920x1080)	(1280x1024

___________________	_ _ _ _ _ _ _ _

The xrandr command that produces the above settings is:
xrandr --output HDMI-0 --mode 1920x1080 --output DP-0 --mode 1280x1024 --right-of
 HDMI-0

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 287

Embedded Software Components

5.3.3.7.7.3 To enable screen mirroring

‣ In a terminal window, enter:

nvidia-xconfig --metamode-orientation=clone

5.3.3.7.7.4 To enable screen spanning

‣ In a terminal window, enter:

nvidia-xconfig --metamode-orientation=<value>

Where <value> can be:

‣ RightOf (the default)

‣ LeftOf

‣ Above

‣ Below

5.3.3.8 Modifying xorg.conf
This section describes xorg.conf changes that require you to make manual modications,
such as for enabling screen saver features, EDID polling, blending, and video overlays.

5.3.3.8.1 Enabling Screen Saver Features
By default, X11 features for screen blanking, suspending, and disabling display are all
disabled. However, you can enable those features.

5.3.3.8.1.1 To re-enable any of these screen saver related features

‣ Modify or remove the following le:

/etc/X11/xorg.conf.d/disable_screensaver.conf

5.3.3.8.2 Enabling EDID Polling and Native Resolution
Instead of statically setting the resolution used in the conguration le, the EDID modes
can be polled by the driver and the native resolution of the display will be used. EDID polling
is always enabled in the Tegra driver. The information in the Specifying Modes subtopic
can still be used to manually add specic modes. Remove these modes to only use EDID
modes.

5.3.3.8.3 Enabling Blending and Video Overlays
TegraOverlayPriority is a 32-bit integer that is used to control overlay stacking order.
The overlay with the lowest depth is in front of all others. This value has meaning only when
multiple overlays are present on a display. This value can range between 0 and 255 (both
values inclusive), where the default is 255.

TegraOverlayBlendmode determines how the X overlay is combined with the overlay behind
it during scanout. Available modes are:

‣ Opaque (default)

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 288

Embedded Software Components

‣ SourceAlphaBlend

‣ PremultSourceAlphaBlend

This value has meaning only when an external process has created a display that is behind
the X server.

5.3.3.8.3.1 To set these overlay attributes

‣ In the "Device" section, add the following line (with desired values):

Option "MetaModes" "nvidia-auto-select {
TegraOverlayBlendmode = PremultSourceAlphaBlend,
TegraOverlayPriority = 0 }"

Here nvidia-auto-select is the default mode name and can be replaced with the desired
mode name.

These properties are per-output and can also be queried/modied during run-time via
xrandr.

5.3.3.8.3.2 To query the current values

‣ Execute the following command:

xrandr --prop

5.3.3.8.3.3 To modify these properties

‣ Execute the following commands:

xrandr --output HDMI-0 --set TegraOverlayPriority 0
xrandr --output HDMI-0 --set TegraOverlayBlendmode PremultSourceAlphaBlend

Note:

X does not have a notion of alpha blending, so all alpha blending on the enabled
display must go through OpenGL ES rendering. Alpha blending for natively
rendered pixels is undened.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 289

Embedded Software Components

5.4 MCU Software Modules

5.4.1 High-Level Architecture
Here is a high-level Architecture diagram, which shows the dierent functionalities
provided by NvMCU_SwModules from NVIDIA DRIVE® OS release, and the static
architecture of customer developed software components.

Figure 1. NVIDIA DRIVE OS MCU Software High-Level Architecture

Figure 2. Example Interaction Between the NvMCU_SwModules and the
Error Handler Software Component

The green blocks shown in the pictures above are safety certied software components
and the blue boxes are the software components provided as reference code. The

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 290

Embedded Software Components

gray boxes indicate placeholder software components used to evaluate the software
architecture of NvMCU_SwModules. You must develop the complete functionality of
reference software components and the placeholder software modules. The following
topics describe the functionality provided by the NvMCU_SwModules and Reference
software components.

5.4.2 Platform (Board) Power State Management
‣ Platform Power Manager decides the complete power-on/o sequence for the board,

and implements the steps recommended by the HW design.

‣ Invokes the interfaces and services provided by other software modules of
NvMCU_SwModules in the required order as per the system requirements. As a part
of the Power sequence, it triggers IST, programs the VMON and TMON thresholds, and
executes safety related checks using the interfaces provided by NvMCU_SwModules.

‣ Provides interfaces to power on and power o the board from customer applications.
The interfaces are used by shell commands, which execute the power-on/o based on
the user inputs on MCU serial console.

‣ Provides interfaces for mode change requests, such as Orin-Reset, MCU-reset, force-
shutdown, and so on.

‣ Detects failures during board power sequence and reports to Error Handler module.

‣ NVIDIA reference code will NOT include the following features:

‣ MCU shut-down and wake-up using TLF

‣ SW_PlatfPwrMgr (Application), which implements a high-level state-machine for the
power management function. SW_PltfPwrMgr facilitates power-on, power-o, and
force shutdown of NVIDIA DRIVE Orin™ SoCs based on events triggered by Hardware
(wake-up, KL15 …) and software (IST, Safe shutdown, User commands…) inputs. It also
supports the platform reset through MCU reset.

‣ PltfPwrMgr_IoHwAbs (CDD), which provides the services to SW_PltfPwrMgr primarily
related to platform power control, Ethernet initialization, network communication, and
so on.

Safe shutdown: The safe shutdown sequence is provided as a reference implementation.
When requested for safe-shutdown of the board, this module waits for safe shutdown
indicator signal over GPIO from NVIDIA Orin and continues to power-o the board. If the
GPIO is not asserted, a congurable timeout is provided to avoid indenite waiting.

SC7: NVIDIA Orin suspend mode is supported with a few shell commands from MCU. Entry
and Exit SC7 commands are provided for verication of the functionality.

5.4.3 NVIDIA Orin Power Management
‣ Provides an interface to power on and power o the NVIDIA DRIVE Orin™ SoC.

‣ Provides an interface to set the GPIO pins for Boot-chain of NVIDIA Orin SoC while
powering on.

‣ This is a stateless (independent of IST, SC7) Component as it acts on the commands
from other SWCs on MCU, which might hold the states and state management.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 291

Embedded Software Components

‣ Detects HW Error scenarios like HW power-up failure detection via PG Signal from
VRS10/11/12 and NVIDIA Orin rails, and the power-on is aborted.

‣ Implements safety-related latent fault detection requirements for VRS10 and VRS11.

‣ Supports safe shutdown of NVIDIA Orin.

‣ During power-O/ Reset request, Power Manager waits for Handshake GPIO to be
set before powering o the VRS10.

‣ A timeout of 20 seconds is provided in case the GPIO is not asserted.

‣ Needs a Platform Power Management Software Component (provided as a reference
code), which invokes the APIs provided by NVIDIA Orin Power Manager. The same
requests are provided by the shell commands also.

‣ Provides interfaces for SC7 entry and exit transitions. Implements the hardware-level
triggers to manage the SC7 entry and exit sequence of NVIDIA Orin.

5.4.4 NVIDIA Orin Voltage Monitoring via VRS12
(VMON)
‣ Initial conguration and set up for VMON, executing the HW BIST provided by VMON

‣ Programming the VMON Chip with thresholds for UV/OV detection

‣ Continuous monitoring of VMON Reset pin indicating UV/OV and reporting the
detected errors to Error handler module

‣ Implements safety measures like toggle check for VMON NIRQ pin, ACT/SHDN and ACT/
SLP signals.

‣ Monitors the power-up and power-down sequences for NVIDIA DRIVE Orin™ SoC rails.

‣ The following error scenarios are detected

‣ VMON Chip internal errors are detected via BIST failure

‣ I2C communication failure while read/write operations are detected via CRC

‣ Errors during the programming of VMON chip are detected by reading back the
values written to the VMON registers.

‣ In the current SW functionality, VMON error are notied to Error handler module, and
the board is powered o.

5.4.5 NVIDIA Orin Temperature Monitoring
NVIDIA MCU software modules in NVIDIA DRIVE Orin™ supports NVIDIA Orin temperature
monitoring by the SoC TMON temperature sensor (TMP451).

Note:: Board temperature monitor (External ECU TMON) via TMP451 sensor on the board
is not provided by NvMCU_SwModules. On NVIDIA DRIVE Orin™ boards, the scope is limited
to Orin Temperature monitoring only.

‣ Programs the ALERT and SHUTDOWN thresholds for SoC TMON.

‣ Monitors the THERM_ALERT and THERM_SHDN signals from NVIDIA Orin SoC
temperature sensor over GPIO lines.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 292

Embedded Software Components

‣ Any thermal events detected will send a notication to the Error Handler module.

‣ Detects the following hardware error scenarios:

‣ Errors in TMON conguration via I2C are detected by read-back after write
mechanism.

‣ Thermal failures of NVIDIA Orin SoC are detected via the THERM_SHDN and
THERM_ALERT signals.

‣ Stuck-at fault problems are detected by performing toggle check for
THERM_ALERT and THERM_SHDN GPIO lines.

‣ MCU software should not read the temperature or status registers from TMP451 over
I2C, after the Orin boots-up. This is due to the restrictions from multimaster I2C.

5.4.6 NVIDIA Orin Boot Chain Conguration
Support
‣ In NVIDIA DRIVE AGX Orin™, NVIDIA DRIVE

®
 Update application running on Orin

manages software updates of NVIDIA Orin reliably by maintaining multiple Boot Chains
(Boot Chain A, B,C,D). Boot Chain Cong module facilitates GPIO based Boot Chain
selection and reboots Orin in selected Boot Chain.

‣ Boot Chain Cong module is decomposed into two sub modules-Boot Chain Cong
Library Source and Boot Chain Cong Selector and they run on Orin and MCU,
respectively.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 293

Embedded Software Components

‣ The following diagram gives overview of interfaces and positioning of Boot Chain
Cong modules in the system.

Figure 3. Overview of Bootchain Conguration Functionality

On NVIDIA Orin, submodule Boot Chain Cong Library Source oers API to facilitate the
following features:

‣ Select default Boot Chain conguration.

‣ Select next Boot Chain.

‣ Get Default Boot Chain conguration.

‣ Get Active boot Chain conguration.

‣ Perform reboot of Orin and MCU to boot in selected Boot Chain.

Each of the preceding features needs support of BootChain Cong Selector running on
MCU to complete operations behind.

Implementation on NVIDIA Orin Side

NVIDIA DRIVE Update/user applications intending to use these features shall link to Boot
Chain Cong Library (libmcu_common_if.so).

Boot Chain Cong Library (libmcu_common_if.so) formulates the Request-command,
forwards to MCU, and wait for the Response-command. On receipt of the Response-
command from MCU, the Boot Chain library processes the response and returns to caller.

The library (libmcu_common_if.so) uses Socket Wrapper library for transmission and
reception of commands over UDP protocol.

The following parameters are congurable and are maintained in tacp conguration le.
Appropriate changes must be made at MCU if the parameter values are altered

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 294

Embedded Software Components

IP address of MCU: AURIX_IP_ADDRESS=10.42.0.146

IP address of Tegra A: TEGRA_A_IP_ADDRESS=10.42.0.28

Server Port on MCU: AURIX_BOOTCHAIN_PORT=5001

VLAN ID: e3550_t194a=eth0.200

Implementation at MCU Side

On MCU, UDP packet is evaluated to check if the received packet is Boot Chain Request-
command. API from Boot Chain Cong Selector is invoked to further process the packet
and perform appropriate operation.

Boot Chain Cong Selector validates Request-command, performs appropriate operation
on valid request, and triggers Response-command transmission.

Boot Chain Cong Selector depended on the following modules to perform requested
operation.

‣ NvM (persistent memory) : To store Boot Chain conguration data

‣ Customer SWC: To handle reboot/reset request

‣ NVIDIA Orin power control: To get active boot chain (Chain A/B/C/D)

These are the Socket properties for Boot Chain Cong.

MCU IP Address: 10.42.0.146

Orin-A IP Address: 10.42.0.28

VLAN Id: 200

Port: 5001

5.4.7 NVIDIA Orin IST Manager
NVIDIA DRIVE Orin™ IST Manager

‣ Provides an interface to set the IST Conguration. Communicates the conguration set
by the user application to NVIDIA DRIVE Orin™ software (IST Client) over Ethernet (for
Key-On/OFF Orin IST).

‣ Provides an interface to read the IST results.

‣ Provides interfaces using which the Platform Power manager can query if a Keyon/
KeyO IST must be executed, and query whether IST is completed.

‣ During bootup, decides whether NVIDIA Orin should be in IST Mode or Normal mode.

‣ Triggers IST by GPIO assertion, monitors the execution of IST on NVIDIA Orin and
detects IST stuck scenarios through timeouts.

‣ Provides an interface to abort the IST execution.

‣ Detects and handles the following HW Error scenarios.

‣ IST stuck is detected by a GPT-based HW timer with a congurable timeout.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 295

Embedded Software Components

‣ Communication with NVIDIA DRIVE Orin™ SoC is monitored by a software timer
with a congurable timeout.

‣ Depends on an active Ethernet (VLAN200) connection between MCU and NVIDIA Orin.

‣ The customer application is expected to set a valid IST conguration during every
power-cycle, using the interfaces provided by NvMCU_ISTManager. This is done using
the Serial console Shell Commands.

5.4.8 Failover Handler on MCU
‣ Monitors the SOC_ERROR pin (operated in Toggle mode) used to assert NVIDIA DRIVE

Orin™ Safety Status and reports any detected error to Error Handler module.

‣ Communicates with FSI on NVIDIA Orin over SPI 2 as initiator to get Orin Failure
information

‣ Noties the MCU error handler module to initiate Fail-Over, when a critical error is
reported by NVIDIA Orin FSI.

‣ Passes on the error status received in the periodic SPI frames to Customer application
for persistent storage.

‣ Provides an interface to notify periodic failure status received from System Error
Handler of Orin-FSI, along with Key of Seed from FSI

‣ Provides an interface to notify Orin SOC Error Pin Status

‣ Provides an interface to send periodic Seed to FSI

‣ Handles the following HW Error scenarios

‣ SOC_ERROR stuck at in Toggle mode

‣ SPI Channel errors

5.4.9 Fan Control and Monitoring
Fan-control functionality is provided as a reference software to demonstrate the control
of Fan speed based on the temperature of NVIDIA DRIVE Orin™ SoC. Measured Orin
temperature values are sent to MCU over Ethernet. The Fan Control reference SW
component on MCU computes the PWM duty cycle required to drive the Fan, based on
the temperature data using a characteristic curve. In addition, the Fan-Tach sensor signal

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 296

Embedded Software Components

from the Fan is read by MCU software periodically and fan speed is monitored against the
requested RPM to detect faults in Fan.

Figure 4. Fan Control Overview

The following functionalities are provided by the Fan-Control reference SW component -

‣ Receives the Ethernet frames with Orin temperature data and selects the temperature
for controlling Fan speed. The reference design chooses the maximum of the three
values received over Ethernet. The Customer can extend this feature in the function
MCU_SWC_ForFanControl_ChooseTemperature().

‣ When the data is not available over Ethernet, or if the data is corrupted, another
application on MCU can set the temperature over an AUTOSAR interface. If the
temperature is provided by the SW component on MCU, this value will be used to
control the Fan PWM for the rest of the power-cycle.

‣ The temperature value is converted into the desired PWM duty cycle using the
characteristic curve and sent to the HW.

Note:: When the FanCtl software functionality is disabled or not yet integrated, there is a
shell command set_fanpwm which directly sets the PWM duty-cycle value on the Fan PWM
hardware. The shell command show_fanrpm is provided to readout the Fan speed and the
duty-cycle from MCU serial console.

‣ During initialization, the Fan is operated at full speed, by applying 100% PWM signal
(MCU_SWC_FANCTRL_MAX_PWM) and maximum possible Fan speed is measured. It
is compared with the rated speed of Fan as per the Manufacturer’s specications and
large deviations are considered as permanent degradation of Fan.

‣ During normal operation, the actual speed of Fan measured from the Tach sensor
is compared with the desired speed. Large deviations are considered as failures and
reported on the MCU console. Because the desired speed of operation depends on

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 297

Embedded Software Components

many external parameters such as ambient temperature, altitude, and so on, it cannot
be computed precisely. For monitoring, an approximated value calculated based on the
maximum speed of operation measured during that power-on cycle, is used.

Receiving Temperature Values from NVIDIA Orin
A sample application on Orin CCPLEX sends the Temperature values periodically (1 second)
to MCU over Ethernet VLAN200. This application is packaged in On Standard build only
safety build will operate Fan from MCU side software

The temperature data received over Ethernet will have the following structure.

‣ The temperature values have a resolution of millidegree Celsius. For example, a 78.527
degree Celsius is sent as 78,527 decimals, which is 0x000132BF (hex). The receiving
module shall convert the data into actual temperature by dividing the data by 1000U.

‣ After power-on, the FanControl software waits for Orin temperature data over Ethernet
for a congurable time duration. If Ethernet packets are not received, a safe PWM duty
cycle is applied to prevent the board from overheating.

‣ The communication over Ethernet is protected by a checksum. During runtime, if
Ethernet frames are not received or received with invalid data, the fan control switches
to a safe PWM duty cycle.

5.4.10 Common Interface
In NVIDIA DRIVE AGX Orin™ platform, NVIDIA Orin communicates with MCU using UDP
protocol over Ethernet for update of MCU rmware and its conguration.

Conguration of MCU and rmware update includes:

‣ Setting/Reading network conguration

‣ Reading current version information of MCU FW

‣ Reading InfoROM content (If supported by HW)

‣ Compatibility validation of MCU FW to be ashed

‣ Flash programing update and production MCU FW

‣ Triggering SC7 entry

All these functionalities are realized under module Common Interface.

The following diagram provides positioning of Common Interface modules in the system:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 298

Embedded Software Components

Implementation on NVIDIA Orin Side

NVIDIA Orin initiates request for conguration update using APIs oered by Common
Interface.

User applications intending to use these features shall link to Common Interface Library
(libmcu_common_if.so).

Common Interface Library (libmcu_common_if.so) formulates Request-command, forwards
to MCU, and waits for Response-command. On receiving the Response-command from
MCU, the common interface library processes the response and return to caller.

The library (libmcu_common_if.so) uses Socket Wrapper library for transmission and
reception of commands over UDP protocol.

The following parameters are congurable and are maintained in tacp conguration le.
Appropriate changes must be made at MCU if the parameter values are altered.

IP address of MCU: AURIX_IP_ADDRESS=10.42.0.146

IP address of Tegra A: TEGRA_A_IP_ADDRESS=10.42.0.28

Server Port on MCU: AURIX_BOOTCHAIN_PORT=5001

VLAN ID : 200

Note:: As library (libmcu_common_if.so) is common for both BootChain APIs and
CommonIf APIs, the preceding conguration is common for both.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 299

Embedded Software Components

Implementation at MCU Side

Common Interface on MCU is realized as an unmodeled CDD and it leverages interface of
SWC Boot Chain Cong for transmission of message. API from Common Interface is called
from Boot Chain Cong if received data belongs to common interface. Common Interface
further processes the received data and perform appropriate operation.

These are the Socket properties for Common Interface:

MCU IP Address : 10.42.0.146

Orin-A IP Address : 10.42.0.28

Vlan Id: 200

Port: 5001

5.4.11 MCU Communication Coordinator Daemon
This is the MCU communication coordinator (MCC) daemon sample application.

Note:: It is a sample implementation and uses Socket APIs for communication with MCU.
Because the MCC Daemon and libraries are sample implementation, users of NVIDIA
DRIVE

®
 OS is expected to implement safety and security provisions for it based on the

chosen medium of communication.

Functionalities
These are the functionalities of the MCU communication coordinator daemon process
(MCC daemon):

‣ Relays the messages and responses among IST Client, DRIVE Update, and Common IF
clients on NVIDIA DRIVE Orin™ SoC and MCU.

‣ Communicates with clients on NVIDIA DRIVE Orin™ SoC using NvSciIpc.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 300

Embedded Software Components

‣ Communicates with the MCU side using UDP socket communication.

Figure 5. Overview of NVIDIA Orin MCU Communication

Design Aspects

Implementation on NVIDIA DRIVE Orin™ SoC

IST Client, DRIVE Update, and Common IF clients can send a message to the MCC daemon
over their respective NvSciIpc channels, and the daemon relays the message over the
corresponding UDP socket. For DRIVE Update and Common IF client messages, it waits for
a response from the UDP socket. Upon receipt of the response, the daemon writes it to the
corresponding NvSciIpc channel.

Another thread of the MCC daemon is dedicated to waiting for messages on UDP socket
for any communication from IST Manager on MCU. Once received, it writes the message to
NvSciIpc channel corresponding to IST Client.

In case of timeout or errors, xed number of retries are done.

The following are the conguration parameters:

‣ UDP socket parameters taken from the tacp.cfg le:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 301

Embedded Software Components

‣ AURIX_IP_ADDRESS=10.42.0.146

‣ AURIX_SERVER_PORT=5000

‣ AURIX_BOOTCHAIN_PORT=5001

‣ CLIENT_IP_ADDRESS=10.42.0.28

‣ Default timeout: 1 second

‣ Default number of retries during init time: 120

‣ Default number of retries during the runtime: 5

‣ Note that clients should wait for more than 5 * 1 seconds to assume request might
have failed. For example, 7 retries with 1 second timeout.

‣ NvSciIpc channels:

‣ For IST: nvmcc_ist_ipc_0, nvmcc_ist_ipc_1

‣ For DU: nvmcc_du_ipc_0, nvmcc_du_ipc_1

‣ For Common IF: nvmcc_cif_ipc_0, nvmcc_cif_ipc_1

‣ As a convention: The daemon should open <nvsciipc_ep_name>_0 endpoint and
clients should open corresponding <nvsciipc_ep_name>_1 endpoint.

Linux-Specic Settings

Ensure that NvSciIpc and socket (tacp) services are marked as dependency before
launching the MCC daemon.

Source Path
<PDK>/samples/mcc_daemon

5.4.12 MCU Communication Coordinator for IST
Client
The IST client MCU communication coordinator (ist_client_mcc) provides APIs enabling the
IST client to communicate with IST manager.

Functionalities

‣ Provide an interface for communication between the IST client running on NVIDIA
DRIVE Orin™ SoC and IST manager running on MCU.

‣ Communication frame format and protocol to pass messages between MCU and IST
client are dened in this module.

APIs

The following APIs must be implemented and exported in libist_client_mcc.so:
/**
 * Allocate and initialize MCC lib instance
 *
 * @param [in] argc: argc param passed to ist_client

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 302

Embedded Software Components

 * @param [in] argv: argv param passed to ist_client - mcc lib opts follow '--mcc'
 param
 * @returns void * : On success, mcc_handle : On error, NULL
 */
extern void *ISTClient_mcc_init(int argc, char *argv[]);

/**
 * Deinitialize and cleanup MCC lib instance
 *
 * @param [in] mcc_handle: handle returned by ISTClient_mcc_init()
 * @returns 0 on success
 */
extern int ISTClient_mcc_deinit(void *mcc_handle);

/**
 * Register ISTClient callback functions
 *
 * @param [in] mcc_handle: handle returned by ISTClient_mcc_init()
 * @param [in] mcc_client: ist_client callbacks and context to be registered with mcc
 * @returns 0 on success
 */
extern int ISTClient_mcc_register(void *mcc_handle,
 ISTClient_mcc_client_t *mcc_client);

/**
 * Start ISTClient/ISTManager communication and process IST requests
 *
 * @param [in] mcc_handle: handle returned by ISTClient_mcc_init()
 * @returns 0 on success
 */
extern int ISTClient_mcc_start(void *mcc_handle);

Types

Types dened in ist_client_mcc.h:
/**
 * IST diagnostic result structure
 */
typedef struct ist_client_result {
 uint8_t hw_result; /**< hw_result value (opaque to mcc) */
 uint8_t reserved_0; /**< reserved_0 value (opaque to mcc) */
 uint8_t sw_rpl_status; /**< sw_rpl_status value (opaque to mcc) */
 uint8_t sw_preist_status; /**< sw_preist_status value (opaque to mcc) */
} ist_client_result_t;

/**
 * ISTClient GetResult function type
 *
 * @returns 0 on success
 */
typedef int (*ISTClient_GetResult_fn_t)(
 void *ctx, /**< [in] ISTClient_mcc_client_t::ctx */
 ist_client_result_t *result /**< [out] IST diagnostic result */
);

/**
 * Structure containing ISTClient callback functions which gets registered with MCC
 lib
 */
typedef struct {
 ISTClient_GetResult_fn_t ISTClient_GetResult; /**< GetResult callback */
 void *ctx; /**< (optional) Context that is passed when calling ISTClient callbacks
 */
} ISTClient_mcc_client_t;

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 303

Embedded Software Components

Usage

The following pseudo code is provided to illustrate how the ist_client uses the APIs
provided by the ist_client_mcc library.
/* ISTClient_GetResult() should be called when IST manager requests IST results */
ISTClient_GetResult(void *ctx, ist_client_result_t *rlt) {...}

int ist_client_main(int argc, char *argv[])
{
 void *mcc_handle = NULL;
 ISTClient_mcc_client_t mcc_client = {0};

 /* Initialize the MCC lib passing along argc/argv so MCC can consume MCC specific
 opts */
 mcc_handle = ISTClient_mcc_init(argc, argv);

 /* Register with MCC lib */
 mcc_client.ISTClient_GetResult = ISTClient_GetResult;
 ISTClient_mcc_register(mcc_handle, &mcc_client);

 /* Start processing requests from IST manager running on MCU */
 ISTClient_mcc_start(mcc_handle);
 /* ... MCC message processing loop is now running on ist_client main thread */

 /* Cleanup MCC */
 ISTClient_mcc_deinit(mcc_handle);
 mcc_handle = NULL;

 return 0;
}

5.5 NvDisplay
NvDisplay is the display architecture supported on Linux starting in NVIDIA DRIVE

®
 OS 6.0.

5.5.1 Components
The following are NvDisplay components and their libraries:

‣ OpenWFD (libtegrawfd.so)

‣ NvKms (nvidia-modeset.ko)

‣ Serializer (maxim_gmsl_dp_serializer.ko/ti_fpdlink_dp_serializer.ko)

5.5.2 OpenWFD
OpenWFD (Open Windowing Foundation Display) is a Khronos API that provides a low-level
hardware abstraction interface for windowing systems and applications to make use of
display hardware.

Applications that need to interact with NvDisplay should do so via the OpenWFD API.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 304

Embedded Software Components

The specication of the OpenWFD API is available at Khronos' registry at https://
www.khronos.org/registry/OpenWF/specs/OpenWF_Display_1_0_Specication.pdf (hereby
referred to as the spec).

The NvDisplay architecture on NVIDIA DRIVE
®
 OS includes an OpenWFD driver

(libtegrawfd.so – hereby referred to as the WFD driver) that supports a subset of the
core OpenWFD APIs listed in the spec along with additional NVIDIA specic extensions.

Usage guidelines for the core OpenWFD APIs can be obtained from the spec and any
deviations from the spec or additional details will be described in this document.

5.5.2.1 Supported OpenWFD APIs
The following table lists all the core OpenWFD APIs and the available support for them on
the WFD driver.

API Support in libtegrawfd.so

wfdGetStrings Supported on Linux build

wfdIsExtensionSupported Supported on Linux build

wfdGetError Supported on Linux build

wfdEnumerateDevices Supported on Linux build

wfdCreateDevice Supported on Linux build

wfdDestroyDevice Supported on Linux build

wfdDeviceCommit Supported on Linux build

wfdGetDeviceAttribi Supported on Linux build

wfdSetDeviceAttribi Supported on Linux build

wfdCreateEvent Not supported

wfdDestroyEvent Not supported

wfdGetEventAttribi Not supported

wfdDeviceEventAsync Not supported

wfdDeviceEventWait Not supported

wfdDeviceEventFilter Not supported

wfdEnumeratePorts Supported on Linux build

wfdCreatePort Supported on Linux build

wfdDestroyPort Supported on Linux build

wfdGetPortModes Supported on Linux build

wfdGetPortModeAttrib{i/f} Supported on Linux build

wfdSetPortMode Supported on Linux build

wfdGetCurrentPortMode Supported on Linux build

wfdGetPortAttribi Supported on Linux build

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 305

https://www.khronos.org/registry/OpenWF/specs/OpenWF_Display_1_0_Specification.pdf
https://www.khronos.org/registry/OpenWF/specs/OpenWF_Display_1_0_Specification.pdf

Embedded Software Components

API Support in libtegrawfd.so

wfdGetPortAttribf Supported on Linux build

wfdGetPortAttribiv Supported on Linux build

wfdGetPortAttribfv Supported on Linux build

wfdSetPortAttribi Supported on Linux build

wfdSetPortAttribf Supported on Linux build

wfdSetPortAttribiv Supported on Linux build

wfdSetPortAttribfv Supported on Linux build

wfdBindPipelineToPort Supported on Linux build

wfdGetDisplayDataFormats Not supported

wfdGetDisplayData Not supported

wfdEnumeratePipelines Supported on Linux build

wfdCreatePipeline Supported on Linux build

wfdDestroyPipeline Supported on Linux build

wfdCreateSourceFromImage Supported on Linux build

wfdCreateSourceFromStream Not supported

wfdDestroySource Supported on Linux build

wfdCreateMaskFromImage Not supported

wfdCreateMaskFromStream Not supported

wfdDestroyMask Not supported

wfdBindSourceToPipeline Supported on Linux build

wfdBindMaskToPipeline Not supported

wfdGetPipelineAttribi Supported on Linux build

wfdGetPipelineAttribf Supported on Linux build

wfdGetPipelineAttribiv Supported on Linux build

wfdGetPipelineAttribfv Supported on Linux build

wfdSetPipelineAttribi Supported on Linux build

wfdSetPipelineAttribf Supported on Linux build

wfdSetPipelineAttribiv Supported on Linux build

wfdSetPipelineAttribfv Supported on Linux build

wfdGetPipelineTransparency Supported on Linux build

wfdSetPipelineTSColor Not supported

wfdGetPipelineLayerOrder Supported on Linux build

The following OpenWFD attributes have limited support for querying:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 306

Embedded Software Components

‣ WFD_PORT_BACKGROUND_COLOR – Cannot be queried via wfdGetPortAttribi API.
wfdGetPortAttribiv and wfdGetPortAttribfv APIs can still be used for querying
WFD_PORT_BACKGROUND_COLOR.

5.5.2.2 Supported OpenWFD Extensions
The following OpenWFD extensions are supported by the OpenWFD Driver.
WFD_NVX_create_source_from_nvscibuf
WFD_NVX_commit_non_blocking
WFD_NVX_nvscisync
WFD_NVX_port_mode_timings

These extensions are described in the NVIDIA DRIVE
®
 OS 6.0 SDK API Reference.

5.5.2.3 OpenWFD Usage Guidelines
‣ The macro WFD_NVX_create_source_from_nvscibuf must be dened

before including the headers wfd.h and wfdext.h for enabling the
WFD_NVX_create_source_from_nvscibuf extension.

‣ The macro WFD_WFDEXT_PROTOTYPES must be dened before including the wfd.h and
wfdext.h headers.

‣ To clear the contents on a WFDPipeline (performing a null ip),
wfdBindSourceToPipeline must be called with 0 as the argument for WFDSource
before calling wfdDeviceCommit on the WFDPipeline. This is demonstrated in the
openwfd_nvsci_sample application present in the SDK.

‣ During the deinitialization of OpenWFD applications, you must follow these steps:

1. Perform a null ip on all WFDPorts and WFDPipelines that were previously bound to
a WFDSource.

‣ If nonblocking commits are being used and
WFD_PIPELINE_POSTFENCE_SCANOUT_BEGIN_NVX is set to WFD_TRUE, the post-ip
fence of the null ip commit should be waited on.

‣ If nonblocking commits are being used and
WFD_PIPELINE_POSTFENCE_SCANOUT_BEGIN_NVX is set to WFD_FALSE, the post-ip
fence of the wfdDeviceCommit call before the null ip commit should be waited
on.

2. Destroy all WFDSource objects by invoking wfdDestroySource on them only after
all null ip commits are complete. Blocking wfdDeviceCommit calls ensures that
the null ip is complete when the wfdDeviceCommit call returns. For nonblocking
wfdDeviceCommit calls, synchronization must be handled by the OpenWFD client as
described previously.

3. Destroy all WFDPipeline and WFDPort objects by using wfdDestroyPipeline and
wfdDestroyPort, respectively, before nally destroying the WFDDevice object using
wfdDestroyDevice.

‣ For committing to multiple WFDPipeline handles bound to the same WFDPort,
it is recommended to call wfdDeviceCommit* with WFDCommitType set to
WFD_COMMIT_ENTIRE_PORT.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 307

Embedded Software Components

‣ When you use WFD_COMMIT_ENTIRE_PORT in a wfdDeviceCommit call, all the
WFDPipeline objects part of the commit must either have a surface bound(normal
ip) or have no surfaces bound (null ip). A mix of normal and a null ip in one
WFD_COMMIT_ENTIRE_PORT wfdDeviceCommit call is not allowed due to a limitation on the
NvDisplay resource manager. To ensure that any errors are caught, the OpenWFD API
wfdGetError must be invoked after calls to the following OpenWFD APIs that take in a
WFDDevice handle as one of the inputs and return void:

‣ wfdDeviceCommit

‣ wfdDeviceCommitWithNvSciSyncFenceNVX

‣ wfdDestroyPort

‣ wfdSetPortMode

‣ wfdGetPortAttrib{iv/fv}

‣ wfdSetPortAttrib{i/v/iv/fv}

‣ wfdBindPipelineToPort

‣ wfdDestroyPipeline

‣ wfdDestroySource

‣ wfdBindSourceToPipeline

‣ wfdGetPipelineAttrib{iv/fv}

‣ wfdSetPipelineAttrib{i/v/iv/fv}

‣ When ipping to display, you should use a minimum of two WFDSource handles (double
buering) to prevent tearing or corruption.

For more details, see section 8.1 in the OpenWF Display Specication.

‣ The following prerequisites must be fullled for use cases to suspend to RAM (SC7
mode):

‣ Before entering suspend-to-RAM (SC7) mode, it is recommended to perform a null
ip to display.

‣ To exit SC7 mode, a modeset must be performed before ipping to display.

‣ On Linux platforms, the following restriction applies when you invoke wfdDeviceCommit
or wfdDeviceCommitWithNvSciSyncFenceNVX:

‣ A main WFDPipeline of a WFDPort refers to the WFD pipeline that is represented
by the rst WFD pipeline ID returned by wfdEnumeratePipelines. An overlay
WFDPipeline refers to the WFD pipelines represented by the remaining WFD
pipeline IDs enumerated by wfdEnumeratePipelines. On Linux, calling the
wfdDeviceCommit or wfdDeviceCommitWithNvSciSyncFenceNVX API involving
the overlay WFD pipelines is supported only if the main WFDPipeline already
has a WFDSource bound. Similarly, null ip commit on main WFD pipelines is only
supported when all overlay WFD pipelines are also bound to null surfaces.

‣ To minimize ip latency, you should set WFD_PIPELINE_POSTFENCE_SCANOUT_BEGIN_NVX
to WFD_FALSE.

5.5.3 Display Serializer
The following sections describe the display serializer.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 308

https://www.khronos.org/registry/OpenWF/specs/OpenWF_Display_1_0_Specification.pdf

Embedded Software Components

Conguring Video Timings

For both SST and MST mode, the mode timings that are used for each stream must be
congured in Device Tree. Only one mode timing can be specied at a time for each
video stream. The timings that are exposed in the EDIDs of the serializer and the panels
connected to the downstream deserializer are completely ignored.

An example Device Tree fragment is shown below. In this example, a standard 1920x1080
at 60 Hz timing is specied for the rst video stream, and a 1280x720 at 60 Hz timing is
specied for the second video stream:

\ {
 display@13800000 {
 display-timings {
 display-connector-0 {
 dcb-index = <0>;

 stream-0 {
 timings-phandle = <&mode0>;
 };

 stream-1 {
 timings-phandle = <&mode1>;
 };
 };
 };

 mode0: 1920-1080-60Hz {
 clock-frequency-khz = <148500>;
 hactive = <1920>;
 vactive = <1080>;
 hfront-porch = <88>;
 hback-porch = <148>;
 hsync-len = <44>;
 vfront-porch = <4>;
 vback-porch = <36>;
 vsync-len = <5>;
 rrx1k = <60000>;
 pps-data = [
 11 00 00 89 30 80 04 38
 07 80 04 38 03 c0 03 c0
 02 00 03 58 00 20 73 3e
 00 0d 00 0f 00 1d 00 0e
 18 00 10 f0 03 0c 20 00
 06 0b 0b 33 0e 1c 2a 38
 46 54 62 69 70 77 79 7b
 7d 7e 01 02 01 00 09 40
 09 be 19 fc 19 fa 19 f8
 1a 38 1a 78 22 b6 2a b6
 2a f6 2a f4 43 34 63 74
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00];
 };

 mode1: 1280-720-60Hz {
 clock-frequency-khz = <74250>;
 hactive = <1280>;
 vactive = <720>;
 hfront-porch = <110>;

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 309

Embedded Software Components

 hback-porch = <220>;
 hsync-len = <40>;
 vfront-porch = <5>;
 vback-porch = <20>;
 vsync-len = <5>;
 rrx1k = <60000>;
 };
 };
};

In the preceding example:

‣ "display@13800000" is the overall parent node for the entire display device. This node
already exists today.

‣ "display-timings" is used to specify which timings are used for each stream.

‣ "display-connector-0" species the timing information for the rst display
connector. If there are multiple display connectors present on the board that
require xed timings, then a new "display-connector" node must be created for
each connector.

‣ "dcb-index" species the logical index X of the DCB -> Display Devices ->
Display Device X entry in the display DCB blob that this connector entry
applies to. If there is only one display connector on the board, then "dcb-
index" defaults to 0.

‣ The "stream" nodes specify the phandle of the mode timing node that
applies to the given video stream.

‣ Each "mode" node contains the actual mode timing parameters that will be used for
a given video stream.

‣ "clock-frequency-khz": Pixel clock frequency in KHz

‣ "hactive": Horizontal active

‣ "vactive": Vertical active

‣ "hfront-porch": Horizontal front porch

‣ "hback-porch": Horizontal back porch

‣ "hsync-len": Horizontal sync width

‣ "vfront-porch": Vertical front porch

‣ "vback-porch": Vertical back porch

‣ "vsync-len": Vertical sync width

‣ "rrx1k": Refresh rate in units of 0.001Hz

‣ "pps-data": All 128B of the DSC PPS

This property should be specied if DSC will be enabled for the given timing.

Each "display-connector" can only have up to two (2) "stream" nodes. Note that it is ne to
specify two (2) "stream" nodes even if the display serializer operates in SST mode because
only the rst "stream" node is consumed by the display driver. The extra node is ignored.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 310

Embedded Software Components

Conguring the Maxim Serializer Driver

If you are using the NVIDIA reference Maxim serializer driver, there are various ways to
congure the driver by using Device Tree. As shown in the following example, a Device Tree
fragment congures the Maxim serializer chip in MST mode:

i2c@31e0000 {
 status = "okay";
 maxim_ser: max_gmsl_dp_ser@40 {
 compatible = "maxim,max_gmsl_dp_ser";
 reg = <0x40>;
 status = "okay";
 max_gmsl_dp_ser-pwrdn = <&tegra_main_gpio TEGRA234_MAIN_GPIO(G, 3)
 GPIO_ACTIVE_HIGH>;
 ser-errb = <&tegra_main_gpio TEGRA234_MAIN_GPIO(G, 7) 0>;
 dprx-link-rate = <0x1e>;
 dprx-lane-count = <0x4>;
 enable-mst;
 mst-payload-ids = <0x1 0x3 0x2 0x4>;
 gmsl-stream-ids = <0x0 0x1 0x2 0x3>;
 gmsl-link-select = <0x0 0x0 0x1 0x1>;
 enable-dp-fec;
 enable-dsc = <1 0>;
 enable-gmsl-fec = <1 0>;
 enable-gmsl3 = <0 1>;

 };
};

A description of each of the preceding properties:

‣ Required properties:

‣ compatible: Must be "maxim,max_gmsl_dp_ser".

‣ reg: I2C address of the Maxim display serializer.

‣ max_gmsl_dp_ser-pwrdn: GPIO pin number of the PWRDN pin. This pin is used to
power up the Maxim display serializer chip.

‣ gmsl-link-select: This property is an array of four unsigned 8-bit values that
determines the GMSL output link to enable for each video pipe X, Y, Z, and U. The
possible values for each pipe are:

‣ 0x0 (Link A)

‣ 0x1 (Link B)

‣ 0x2 (Link A + B)

‣ Optional properties:

‣ dprx-link-rate: Congures the DP link rate of the serializer chip.

The default value is 0x1E (HBR3). The possible values are:

‣ 0xA (HBR)

‣ 0x14 (HBR2)

‣ 0x1E (HBR3)

‣ dprx-lane-count: Congures the DP lane count of the serializer chip.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 311

Embedded Software Components

The default value is 0x4. The possible values are:

‣ 0x1

‣ 0x2

‣ 0x4

‣ ser-errb: GPIO pin number of the ERRB pin. This pin is used for error and fault
reporting by the serializer chip.

‣ enable-mst: This is a Boolean property. If this property is present, the driver will
enable MST mode.

‣ mst-payload-ids: This property is an array of four unsigned 8-bit values, which
represent MST payload IDs of pipe X, Y, Z, U. This property is mandatory if the
enable-mst property is mentioned in dt.

‣ gmsl-stream-ids: This property is an array of four unsigned 8-bit values, which
represent GMSL stream IDs of pipe X, Y, Z, U. This property is mandatory if enable-
mst property is mentioned in dt.

‣ enable-dp-fec: This is a Boolean property. When this property is present, the driver
will enable FEC on the DP link if the serializer chip supports it.

‣ enable-dsc: This property is an array of two 32-bit values, where each value
indicates whether DSC is enabled or not. The rst entry corresponds to video pipe
X, and the second entry corresponds to video pipe Y. DSC is only supported on pipe
X currently.

‣ enable-gmsl-fec: This property is an array of two 32-bit values, where each value
indicates whether FEC is enabled on the GMSL link. The rst entry corresponds to
GMSL Link A, and the second entry corresponds to GMSL Link B.

‣ enable-gmsl3: This is a boolean property. When this property is set, GMSL3
capabilities are enabled.

Modeset Limitations

The Maxim display serializers do not support dynamic mode changes in MST mode without
requiring a reset of the serializer chip in-between. In this context, a mode change refers
to changing the number of video streams and/or the display timings that are used for
each stream. As such, if the Maxim display serializers are congured in MST mode, it is
recommended to always enable all video streams that will be used at once.

Conguring the TI Serializer Driver

If you use the NVIDIA reference TI serializer driver, there are several ways to congure the
driver by using the device tree. The following example shows a device tree fragment that
congures the TI serializer chip in SST mode:
 i2c@31e0000 { /* i2c8 */
 status = "okay";
 ti_ser: ti_fpdlink_dp_ser@18 {
 compatible = "ti,ti_fpdlink_dp_ser";
 reg = <0x18>;
 status = "okay";
 ti_fpdlink_dp_ser-pwrdn = <&tegra_main_gpio TEGRA234_MAIN_GPIO(G, 3)
 GPIO_ACTIVE_HIGH>;

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 312

Embedded Software Components

 dprx-link-rate = <0x0A>;
 dprx-lane-count = <0x4>;
 timings-phandle = <&mode0>;
 fpd-link-select = <0x1 0x0>;
 };

The properties of the preceding example are described as follows:

‣ Required properties:

‣ compatible: Must be ti,ti_fpdlink_dp_ser.

‣ reg: I2C address of the TI display serializer.

‣ ti_fpdlink_dp_ser-pwrdn: GPIO pin number of the PWRDN pin. This pin is used to
power up the TI display serializer chip.

‣ timings-phandle: This property should be set as mode0 or mode1 to reect raster or
display timings used by the NVIDIA reference platforms.

‣ fpd-link-select: This property is an array of two unsigned 8-bit values that
represent FPDlink port IDs. First eld is for link A and the second is for link B. Value
0 indicates that the link is disabled and value 1 indicates that the link is enabled. At
any given time, only one link is supported.

‣ Optional properties:

‣ dprx-link-rate: Congures the DP link rate of the serializer chip.

The default value is 0x1E (HBR3). The possible values are:

‣ 0xA (HBR)

‣ 0x14 (HBR2)

‣ 0x1E (HBR3)

‣ dprx-lane-count: Congures the DP lane count of the serializer chip.

The default value is 0x4. The possible values are:

‣ 0x1

‣ 0x2

‣ 0x4

To enable to TI Maxim Serializer driver conguration on Nvidia Reference Platform p3710,
the bind partition command should be executed as follows:
bind_partitions -b p3710-12-a01 linux DISP_SER_MODULE=TI983

5.5.4 Head to Window Assignment
The following sections describe head to window assignment.

Conguring Head to Window Assignment

Congure head to window assignment in the Device Tree. If an assignment is not specied
in the DT, the driver assigns windows (2N) and (2N + 1) to HEAD N. In DT, specify the
assignment using 64 bit mask, which is interpreted as:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 313

Embedded Software Components

Head-Bitmask Window-Number

BITMASK(0-7) 0

BITMASK(8-15) 1

BITMASK(16-23) 2

BITMASK(24-31) 3

BITMASK(32-39) 4

BITMASK(40-47) 5

BITMASK(48-55) 6

BITMASK(56-63) 7

The display driver fails to load if an invalid assignment is specied in the DT. The specied
assignment must adhere to the conditions below:

1. The specied window number must be supported by hardware.
2. The specied head number must be supported by hardware.
3. The same window must not be assigned simultaneously for multiple heads.
4. At least one window must be assigned to at least one head (that is, specied window-

head mask should not be 0).

The display driver culls the head with no windows assigned, and all the heads above it. For
example, if hardware supports three heads and the user uses the assignment mask to
assign valid windows to head-0 and head-2 but no windows to head-1, then head-1 and
head-2 is culled.

An example Device Tree fragment is shown below. In this example, window-0, window-1,
and window-2 is assigned to head-0 and window-3 is assigned to head-1.

\ {
 display@13800000 {
 nvidia,window-head-mask = <0x00000000 0x02010101>;
 };
};

In the preceding example:

‣ display@13800000 is the overall parent node for the entire display device. This node
already exists today.

‣ nvidia,window-head-mask is used to specify the 64-bit window head assignment
mask.

5.5.5 Restrictions
NvDisplay architecture has the following restrictions:

‣ Only one NvDisplay client process can be active at a time on the NVIDIA DRIVE Orin™

platforms.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 314

Embedded Software Components

‣ On the NVIDIA DRIVE AGX Orin™ Platforms, nvidia-drm should not be installed when
you run non-DRM applications.

‣ NVIDIA DRIVE
®
 OS does not support passive DP-to-HDMI (DP++) cables, dongles, or

adapters.

5.5.6 Display State Manager
Drive Setmode

When driver setmode is enabled, display setup and modeset will happen during the resmgr
init phase instead of deferring this to when the rst display client comes up. So, enabling
driver setmode can improve "power-on to rst pixel visible on screen" latency. Driver
setmode can be enabled only for the conguration, which uses DP Serializer, on other
congurations enabling it will fail to load display driver.

An example Device Tree fragment is shown below. In this example, driver setmode is
enabled.
\ {
 display@13800000 {
 nvidia,driver-setmode;
 };
};

OpenWFD Modeset

OpenWFD mode setting happens in the following way:

‣ When a OpenWFD client rst initializes the WFD library, OpenWFD queries NvKms for
the current mode using NVKMS_IOCTL_GET_CURRENT_MODE

‣ If current mode is not NULL,

‣ OpenWFD exposes the sole active mode to clients and skips invoking the NvKms
APIs for mode query and verication.

‣ Any client request for modesets (via wfdSetPortMode) will be ignored by
the OpenWFD driver, but a message will be logged in slog2info (not an error
message).

‣ This enables existing client apps to work as-is without any changes.

‣ If current mode is NULL,

‣ OpenWFD uses NvKms' mode query and validation IOCTLs to build a list of
available modes and then sets a preferred mode out of these modes (this is
usually reported by NvKms).

‣ At runtime, OpenWFD performs a modeset i the WFD client invokes
wfdSetPortMode followed by a wfdDeviceCommit. This is the legacy way of
doing modesets and all current WFD apps are already following this approach.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 315

Embedded Software Components

5.5.7 Enabling HDMI
The NVIDIA Orin™ SoC can support both the DisplayPort (DP) and HDMI connectors, but
not sending display output on both connectors at the same time on a given platform. By
default, only DisplayPort is enabled for NVIDIA DRIVE AGX Orin™ platform in NVIDIA DRIVE

®

OS 6.0.

To enable HDMI on your reference platforms with HDMI output, the following platform-
specic changes are required:

‣ Modifying Pinmux Conguration for the DPAUX HPD Pin

‣ Modifying DCB Blob to Enable HDMI

‣ Enabling HDMI Hot Plug GPIO in the Device Tree

After making all the preceding platform-specic changes to bring up HDMI, you must
perform a full build of the image followed by a full ash of the board for the changes to
take eect.

Modifying Pinmux Conguration for the DPAUX HPD Pin

By default, the DPAUX HPD pin is set to SFIO mode for the DisplayPort functionality. For
HDMI, the DPAUX HPD pin should be set to GPIO mode.

The following example shows that the DPAUX HPD pin is set to GPIO mode depending on
your board schematics:
dp_aux_ch0_hpd_pm0 {
 nvidia,pins = "dp_aux_ch0_hpd_pm0";
 nvidia,function = "rsvd1";
 nvidia,pull = <TEGRA_PIN_PULL_UP>;
 nvidia,tristate = <TEGRA_PIN_ENABLE>;
 nvidia,enable-input = <TEGRA_PIN_ENABLE>;
 nvidia,io-high-voltage = <TEGRA_PIN_DISABLE>;
 nvidia,lpdr = <TEGRA_PIN_DISABLE>;
};

For information on the pinmux conguration for the DPAUX HPD pin on a specic platform,
see Conguring the Pinmux and GPIO.

Modifying DCB Blob to Enable HDMI

Display DCB blob has only the DisplayPort connector enabled by default. HDMI connector
must also be enabled on the platform with the HDMI output by using the DCB tool as
described in Display Device Tree. The following example shows the DCB blob output on
reading the DCB blob with HDMI enabled by using the DCB tool.
=== Reading DCB blob ===

########## Tegra DCB BLOB ###############
########### Display Devices #############
Display Devices::
 Display Devices : [0]
 Type : [DP]
 CCB : [0]
 Heads : 0:[Y] 1:[Y]
 Sor : [0]

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 316

Embedded Software Components

 DP Lane Count : [4]
 DP Link Rate : [8.1GHz]
 Connector : [0]
 Bus : [0]
 Display Devices : [1]
 Type : [TMDS]
 CCB : [0]
 Heads : 0:[Y] 1:[Y]
 Sor : [0]
 HDMI capable : [1]
 Connector : [1]
 Bus : [0]
############### CCB Entries ###############
CCB::
*CCB entries that have both I2C and AUX ports unused (value = 31) are not displayed
 CCB Index : 0
 I2C Port : [6]
 AUX Port : [0]
########### Connector entries #############
Connectors::
 Connector Index : 0x0
 Type : [DP]
 Hotplug : A:[Y]
 Connector Index : 0x1
 Type : [HDMI]
 Hotplug : A:[Y]

################# ******* #################

Enabling HDMI Hot Plug GPIO in the Device Tree

The following example shows a display device tree fragment that contains the HDMI hot
plug GPIO DT property as per display device tree bindings, where the HDMI hot plug GPIO
pin is from Tegra Main GPIO controller and Port M and Pin 0 with the GPIO_ACTIVE_HIGH
GPIO ags set. For more information, refer to GPIO device tree bindings. The actual GPIO
pin used for HDMI hot plug and the default state of the GPIO pin should be determined
based on the corresponding platform schematics.
\{
 display@13800000 {
 os_gpio_hotplug_a = <&tegra_main_gpio TEGRA234_MAIN_GPIO(M, 0)
 GPIO_ACTIVE_HIGH>;
 };
};

5.6 NvStreams
The NVIDIA SDK provides several dierent libraries (NvMedia, CUDA, OpenGL) for
generating and processing various types of images and higher dimensional data. The
interfaces used by these libraries were written independently to serve dierent needs, and
each has its own means of representing memory and synchronization resources. There is
no direct way to exchange data between them. Furthermore, most of the details of how
and when resources used by these libraries are allocated is hidden from the application(s).

The NvStreams libraries serve two primary purposes:

‣ They allow resources to be allocated up front, with access restrictions dened by the
application(s), and with details of their overall requirements well understood. This is

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 317

Embedded Software Components

vital for safety-critical systems that must ensure the availability of resources and
proper encapsulation of information.

‣ They allow resources to be exchanged between libraries that otherwise do not have
knowledge of each other.

This document describes three libraries. NvSciBuf allows applications to allocate and
exchange buers in memory. NvSciSync allows applications to manage synchronization
objects that coordinate when sequence of operations begin and end. NvSciStream layers
on NvSciBuf and NvSciSync to provide utilities for streaming sequences of data packets
between multiple application modules to support a wide variety of use cases. These
libraries also make use of NvSciIpc for inter-process/partition/system communication. This
library is described in a separate chapter.

5.6.1 Comparison with EGL
Developers familiar with the NVIDIA non-safety SDK may have experience with EGL,
which also provides objects (EGLImage, EGLSync, and EGLStream) for sharing resources
between libraries. NVIDIA continues to support EGL, but EGL is not suitable for the rigorous
requirements of a safety-certied system. Some reasons:

‣ Resources are allocated using one library. That library has no knowledge that resources
will be shared with another library. There is therefore no guarantee that resources will
be allocated in a way that meets the requirements of the other library. Mapping them
may not be possible.

‣ EGL understands only two-dimensional image data. It cannot handle tensors or other
non-image sensor data.

‣ The EGL interfaces were not designed with safety in mind and have failure modes not
allowed in a safety-certied system.

Porting EGL applications to NvStreams requires more than a simple one-to-one
replacement of functions. NvStreams requires the application to be more directly involved
than EGL in determining resource requirements, allocating resources, and exchanging
resources.

5.6.2 NvStreams Libraries
For more information about NvStreams libraries, see:

‣ NvSciBuf

‣ NvSciSync

‣ NvSciStream

5.6.3 Buer Allocation
Every hardware engine inside NVIDIA hardware can have a dierent buer constraint
depending on how the buer is interpreted by the engine. Hence, sharing a buer across
various engines requires that the allocated buer satisfy the constraints of all engines
that will access that buer. The existing allocation APIs provided by NvMedia or CUDA only
consider the constraints of the engines managed by them.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 318

Embedded Software Components

NvSciBuf is a buer allocation module that can enable applications to allocate a buer
shareable across various hardware engines that are managed by dierent engine APIs.

5.6.3.1 Buer Allocation
Every hardware engine inside NVIDIA hardware can have a dierent buer constraint
depending on how the buer is interpreted by the engine. Hence, sharing a buer across
various engines requires that the allocated buer satisfy the constraints of all engines
that will access that buer. The existing allocation APIs provided by NvMedia or CUDA only
consider the constraints of the engines managed by them.

NvSciBuf is a buer allocation module that can enable applications to allocate a buer
shareable across various hardware engines that are managed by dierent engine APIs.

5.6.3.2 Memory Buer Basics
The buer allocation model of NvSciBuf is summarized as follows:

If two or more hardware engines want to access a common buer (for example, one engine
is writing data into the buer and the other engine is reading from the buer), then:

Allocation Model

1. Applications create an attribute list for each accessor.
2. Set the attributes to dene the properties of the buer they intend to create in the

respective attribute list.

‣ Applications must set all datatypes (such as Image datatype, etc.) attributes using
NvSciBuf/UMD APIs. Applications must also set the NvSciBuf General attributes
directly in the attribute list.

‣ For CUDA, applications must set all the required attributes.

Note:

Applications must ensure they set the NvSciBufGeneralAttrKey_GpuId
attribute on the CUDA side to specify the IDs of all the GPUs that access the
buer.

3. Reconcile these multiple attribute lists. The process of reconciliation guarantees that a
common buer is allocated that satises the constraints of all the accessors.

4. Allocate the buer using the reconciled attribute list. The reconciled attribute list used
for allocating the object is associated with the object until the lifetime of the object.

5. Share the buer with all the accessors.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 319

Embedded Software Components

Types of Buers

The hardware engine constraints depend on the type of buer allocated. The dierent
types of buers supported by NvSciBuf (applications can choose to allocate one of the
following types):

‣ RawBuer: Raw memory that is used by an application for storing data.

‣ Image: Memory used to store image data.

‣ ImagePyramid: Memory used to store ImagePyramid, a group of images arranged in
multiple levels, with each level of image scaled to a specic scaling factor.

‣ NvSciBufArray: Memory used to store a group of units, where each unit represents data
of various basic types such as int, oat etc.

‣ Tensor: Memory used to store Tensor data.

Memory Domain Allocation

Applications can choose to allocate the memory from the following domains:

‣ System memory

‣ Vidmem of a specic dGPU (on the standard build)

Types of Buer Attributes

The NvSciBuf attribute can be categorized into the following types:

Datatype attributes: Attributes that are specic to one of the buer types mentioned in
the previous section. If the buer type in the attribute list is one type, then setting the
attributes of another type returns an error.

General attributes: Attributes that are not specic to any buer type and describes the
general properties of the buer. Some of the examples:

‣ NvSciBufGeneralAttrKey_Types: Denes the type of the buer.

‣ NvSciBufGeneralAttrKey_NeedCpuAccess: Denes whether the CPU accesses the
buer.

‣ NvSciBufGeneralAttrKey_RequiredPerm: Denes the access permissions expected by
this buer accessor.

5.6.3.2.1 NvSciBuf Module
You must open an NvSciBufModule before invoking other NvSciBuf API. The NvSciBuf
module is the library's instance created for that application. All NvSciBuf resources created
within an application are associated with the NvSciBufModule of the application.

5.6.3.2.1.1 NvSciBufModule

 NvSciBufModule module = NULL;
 NvSciError err;
 err = NvSciBufModuleOpen(&module);
 if (err != NvSciError_Success) {
 goto fail;

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 320

Embedded Software Components

 }
 /* ... */
 NvSciBufModuleClose(module);

5.6.3.2.2 Attribute Lists
NvSciBuf attribute lists are categorized into the following types:

‣ Unreconciled Attribute List

‣ An application can create an unreconciled attribute list and perform get/set
operations for each attribute in an unreconciled attribute list.

Note:

The ‘set' operation is allowed only once per attribute.

‣ Both the NvSciBufAttrListCreate and NvSciBufAttrListIpcImportUnreconciled
APIs return an unreconciled attribute list.

‣ Applications cannot use unreconciled attribute lists to allocate an NvSciBuf object.

‣ Reconciled Attribute List

‣ A reconciled attribute list is the outcome of reconciliation (i.e., merging and
validation) of various unreconciled lists that dene nal layout/allocation properties
of the buer. The application can use this list to allocate an NvSciBuf object.
Refer to the Reconciliation section below for more details about the reconciliation
process.

‣ A successful call to NvSciBufAttrListReconcile,
NvSciBufAttrListIpcImportReconciled, or NvSciBufObjGetAttrList APIs returns
a reconciled attribute list.

‣ Applications are not allowed to perform set operations on a reconciled attribute list.

‣ Conict Attribute List

‣ An attribute list returned by an unsuccessful reconciliation process
of NvSciBufAttrListReconcile API is a conict attribute list.

‣ Applications are not allowed to perform get/set operations on a conict attribute
list.

‣ Applications can only use conict attribute lists to dump its content using the
NvSciBufAttrListDump API.

5.6.3.3 Multi Datatype Attribute Lists
To support the use cases where applications can perceive a buer with distinct datatypes,
NvSciBuf supports either creating attribute lists with multiple datatypes or reconciling
attribute lists of distinct datatypes. For example, if an application wants to create a buer
that is perceived as image by one engine and perceived as tensor by another engine, then
the application can create an attribute list with NvSciBufGeneralAttrKey_Types attribute
set to both image and tensor, reconcile the list and allocate the object. Alternatively, the
application can create two dierent attribute lists, one with image attributes and the other
with tensor attributes, reconcile both and allocate the object.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 321

Embedded Software Components

5.6.3.3.1 Limitations
‣ NvSciBuf supports attribute lists to be either created or reconciled only with image and

tensor attributes. Rest of the NvSciBuf datatypes doesn't support co-existence with
other datatypes.

‣ The reconciliation of image & tensor attributes will be successful only if tensor
attributes are lled using NvMedia APIs.

5.6.3.4 Reconciliation
An application can initiate the process of reconciliation on one or more attribute lists
by invoking NvSciBufAttrListReconcile API. The process of NvSciBuf attribute list
reconciliation:

1. Merging: Values from multiple attribute lists are merged. The process of merging is
explained in the ow-chart below.

‣ Datatype(List): Datatype of the attribute list list.

‣ List[i]: Attribute key named i of the attribute list list.

‣ Value(List[i]): Value corresponding to attribute key i in the attribute list list.

‣ UNSPECIFIED: Value of an attribute key is ignored and hence unspecied.

‣ KEYCOUNT(datatype): Number of attribute keys for the given datatype.

‣ MERGEVALUES(value1, value2): This function merges value1 and value2.

‣ For most attributes, merging is successful only if value1 equals value2.

‣ For attributes like alignment, if value1 is not equal to value 2, then the maximum
of both is used as the merged value, provided both of them are a power of 2.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 322

Embedded Software Components

2. Validation: After merging attributes from multiple lists successfully, validation of
merged attributes occurs on the reconciled attribute list, which validates whether
all the required attributes are set and the values of all the attributes are valid. For
example, after the merging of attributes, if plane-count is set to 2 but the reconciled
list contains more values for plane color-format, then validation is unsuccessful.

3. Output Attributes Computation: Post validation, output attributes like size, alignment,
etc. are computed in the reconciled attribute list.

5.6.3.4.1 NvSciBufAttrLists
 NvSciBufType bufType = NvSciBufType_RawBuffer;
 uint64_t rawsize = (128 * 1024); // Allocate 128K Raw-buffer
 uint64_t align = (4 * 1024); //Buffer Alignment of 4K
 bool cpuaccess_flag = false;
 NvSciBufAttrKeyValuePair rawbuffattrs[] = {
 { NvSciBufGeneralAttrKey_Types, &bufType, sizeof(bufType) },
 { NvSciBufRawBufferAttrKey_Size, &rawsize, sizeof(rawsize) },
 { NvSciBufRawBufferAttrKey_Align, &align, sizeof(align) },

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 323

Embedded Software Components

 { NvSciBufGeneralAttrKey_NeedCpuAccess, &cpuaccess_flag,
 sizeof(cpuaccess_flag) },
 };
 /* Created attrlist1 will be associated with bufmodule */
 err = NvSciBufAttrListCreate(bufmodule, &attrlist1);
 if (err != NvSciError_Success) {
 goto fail;
 }
 err = NvSciBufAttrListSetAttrs(umd1attrlist, rawbuffattrs,
 sizeof(rawbuffattrs)/sizeof(NvSciBufAttrKeyValuePair));
 /*......*/
 NvSciBufAttrListFree(attrlist1);

5.6.3.4.2 NvSciBuf Reconciliation
 NvSciBufAttrList unreconciledList[2] = {NULL};
 NvSciBufAttrList reconciledList = NULL;
 NvSciBufAttrList ConflictList = NULL;

 unreconciledList[0] = AttrList1;
 unreconciledList[1] = AttrList2;

 /* Reconciliation will be successful if and only all the
 * unreconciledLists belong to same NvSciBufModule and the
 * outputs of this API(i.e either reconciled attribute list
 * or conflict list will also be associated with the same
 * module with which input unreconciled lists belong to.
 */
 err = NvSciBufAttrListReconcile(
 unreconciledList, /* array of unreconciled lists */
 2, /* size of this array */
 &reconciledList, /* output reconciled list */
 &ConflictList); /* conflict description filled
 in case of reconciliation failure */

 if (err != NvSciError_Success) {
 goto fail;
 }
 /* ... */
 NvSciBufAttrListFree(AttrList1);
 NvSciBufAttrListFree(AttrList2);
 NvSciBufAttrListFree(reconciledList); //
 In case of successful reconciliation.
 NvSciBufAttrListFree(ConflictList); //
 In case of failed reconciliation.

5.6.3.4.3 Multi Datatype Attribute Lists Reconciliation
 /* ... */
 NvMediaStatus status;
 NvMediaTensor *tensor;
 NVM_TENSOR_DEFINE_ATTR(tensorAttr);
 uint32_t numTensorAttr = NVM_TENSOR_ATTR_MAX;
 /* ... */
 NvSciBufType bufType = NvSciBufType_Image;
 NvSciBufAttrValImageLayoutType layout = NvSciBufImage_PitchLinearType;
 uint64_t lrpad = 0, tbpad = 0, imageCount = 1;
 bool cpuaccess_flag = true;
 bool vpr = false;
 uint32_t planecount = 1;
 NvSciBufAttrValColorFmt planecolorfmts[] = { NvSciColor_A8B8G8R8 };

 NvSciBufAttrValColorStd planecolorstds[] = { NvSciColorStd_SRGB };

 NvSciBufAttrValImageScanType planescantype[] = { NvSciBufScan_ProgressiveType };

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 324

Embedded Software Components

 uint32_t plane_widths[] = { 1920 };
 uint32_t plane_heights[] = { 1080 };
 NvSciBufAttrKeyValuePair imagebuffattrs[] = {
 { NvSciBufGeneralAttrKey_Types,
 &bufType,
 sizeof(bufType) },
 { NvSciBufGeneralAttrKey_NeedCpuAccess,
 &cpuaccess_flag,
 sizeof(cpuaccess_flag) },
 { NvSciBufImageAttrKey_Layout,
 &layout,
 sizeof(layout) },
 { NvSciBufImageAttrKey_TopPadding,
 &tbpad,
 sizeof(tbpad) },
 { NvSciBufImageAttrKey_BottomPadding,
 &tbpad,
 sizeof(tbpad) },
 { NvSciBufImageAttrKey_LeftPadding,
 &lrpad,
 sizeof(lrpad) },
 { NvSciBufImageAttrKey_RightPadding,
 &lrpad,
 sizeof(lrpad) },
 { NvSciBufImageAttrKey_VprFlag,
 &vpr,
 sizeof(vpr) },
 { NvSciBufImageAttrKey_PlaneCount,
 &planecount,
 sizeof(planecount) },
 { NvSciBufImageAttrKey_PlaneColorFormat,
 planecolorfmts,
 sizeof(planecolorfmts) },
 { NvSciBufImageAttrKey_PlaneColorStd,
 planecolorstds,
 sizeof(planecolorstds) },
 { NvSciBufImageAttrKey_PlaneWidth,
 plane_widths,
 sizeof(plane_widths) },
 { NvSciBufImageAttrKey_PlaneHeight,
 plane_heights,
 sizeof(plane_heights) },
 { NvSciBufImageAttrKey_ScanType,
 planescantype,
 sizeof(planescantype) },
 { NvSciBufImageAttrKey_ImageCount,
 &imageCount,
 sizeof(imageCount) },
 };
 err = NvSciBufModuleOpen(&bufModule);
 if (err != NvSciError_Success) {
 goto fail;
 }
 err = NvSciBufAttrListCreate(bufModule, &app1AttrList);
 if (err != NvSciError_Success) {
 goto fail;
 }
 err = NvSciBufAttrListSetAttrs(app1AttrList,
 imagebuffattrs,
 sizeof(imagebuffattrs)/sizeof(NvSciBufAttrKeyValuePair));
 if (err != NvSciError_Success) {
 goto fail;
 }

 /* Need to fill NvMediaTensor attributes using Nvmedia APIs */
 /* Initialize tensorAttrs as required */
 NVM_TENSOR_SET_ATTR_4D(tensorAttr, n, c, h, w, NCHW, INT, 8, UNCACHED, NONE, x);

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 325

Embedded Software Components

 status = NvMediaTensorFillNvSciBufAttr(NULL, tensorAttr, numTensorAttr, 0,
 app2AttrList);

 /* */
 unreconciledLists[0] = app1AttrList;
 unreconciledLists[1] = app2AttrList;
 err = NvSciBufAttrListReconcileAndObjAlloc(unreconciledLists,
 &nvscibufObj, &conflictList);
 if (err != NvSciError_Success) {
 goto fail;
 }

 /* Create NvMediaTensor from NvSciBufObj */
 status = NvMediaTensorCreateFromNvSciBuf(NULL, nvscibufObj, &tensor);
 /* */

5.6.3.5 Buer Management

5.6.3.5.1 Objects
Applications can use the reconciled attribute list to create any number of NvSciBufObj
objects. Each NvSciBufObj represents a buer and the reconciled attribute list is
associated with each object until the object is freed. Applications can create NvMedia/
CUDA datatypes out of the allocated buer using NvMedia/CUDA API and can
operate on the buers by submitting to the NvMedia/CUDA hardware engine using
appropriate APIs. Applications wanting to access the buer from the CPU can set the
NvSciBufGeneralAttrKey_NeedCpuAccess attribute to true and get the CPU address using
either NvSciBufObjGetCpuPtr or NvSciBufObjGetConstCpuPtr API.

Note:

Invoking NvSciBufObjGetCpuPtr on a read-only buer or a buer that does not
have CPU access returns an error.

5.6.3.5.1.1 NvSciBuf Object

 /* Allocate a Buffer using reconciled attribute list and the
 * created NvSciBufObj will be associated with the module to
 * which reconciledAttrlist belongs to.
 */
 err = NvSciBufAttrListObjAlloc(reconciledAttrlist,
 &nvscibufobj);
 if (err != NvSciError_Success) {
 goto fail;
 }
 /* */
 /* Get the associated reconciled attrlist of the object. */
 err = NvSciBufObjGetAttrList(nvscibufobj,
 &objReconciledAttrList);
 if (err != NvSciError_Success) {
 goto fail;
 }
 /* */
 err = NvSciBufObjGetCpuPtr(nvscibufobj, &va_ptr);
 if (err != NvSciError_Success) {
 goto fail;
 }
 /* */

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 326

Embedded Software Components

 NvSciBufAttrListFree(objReconciledAttrList);
 NvSciBufObjFree(nvscibufobj);

5.6.3.6 VidMem Buers
NvSciBuf support allocation of buer from the Vidmem of a specic dGPU. Applications
can set the UUID of the specic dGPU to NvSciBufGeneralAttrKey_VidMem_GpuId key and
NvSciBuf allocates the buer from that specic dGPU.

Note:

If one of the unreconciled list sets NvSciBufGeneralAttrKey_VidMem_GpuId key
and if any other unreconciled attribute list is lled by NvMedia, then reconciliation
of such attribute lists will fail, because NvMedia engines cannot access any dGPU's
Vidmem.

5.6.3.6.1 Vidmem Allocation
 NvSciBufType bufType = NvSciBufType_RawBuffer;
 uint64_t rawBufSize = (8U * 1024U);
 uint64_t alignment = (4U * 1024U);
 bool cpuAccessFlag = false;
 NvSciBufAttrKeyValuePair rawBufAttrs[] = {
 {
 NvSciBufGeneralAttrKey_Types,
 &bufType,
 sizeof(bufType)
 },
 {
 NvSciBufRawBufferAttrKey_Size,
 &rawBufSize,
 sizeof(rawBufSize)
 },
 {
 NvSciBufRawBufferAttrKey_Align,
 &alignment,
 sizeof(alignment)
 },
 {
 NvSciBufGeneralAttrKey_NeedCpuAccess,
 &cpuAccessFlag,
 sizeof(cpuAccessFlag)
 },
 {
 NvSciBufGeneralAttrKey_VidMem_GpuId,
 &uuId,
 sizeof(uuId)
 }
 };
 err = NvSciBufModuleOpen(&bufModule);
 if (err != NvSciError_Success) {
 goto fail;
 }
 err = NvSciBufAttrListCreate(bufModule, appAttrList);
 if (err != NvSciError_Success) {
 goto fail;
 }
 err = NvSciBufAttrListSetAttrs(appAttrList,
rawBufAttrs,
 sizeof(rawBufAttrs)/sizeof(NvSciBufAttrKeyValuePair));

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 327

Embedded Software Components

 err = NvSciBufAttrListReconcileAndObjAlloc(appAttrlist,
 &nvscibufObj, &conflictList);
 if (err != NvSciError_Success) {
 goto fail;
 }

5.6.3.7 Inter-Application
If applications involve multiple processes, the exchange of NvSciBuf structures must only
go through NvSciIpc channels. Each application must open its own NvSciIpc endpoint.

5.6.3.7.1 NvSciIpc Init
 NvSciIpcEndpoint ipcEndpoint = 0;
 err = NvSciIpcInit();
 if (err != NvSciError_Success) {
 goto fail;
 }
 err = NvSciIpcOpenEndpoint("ipc_endpoint", &ipcEndpoint);
 if (err != NvSciError_Success) {
 goto fail;
 }
 /* ... */
 NvSciIpcCloseEndpoint(ipcEndpoint);
 NvSciIpcDeinit();

Applications connected through an NvSciIpcEndpoint can exchange NvSciBuf structures
(NvSciBufAttrList or NvSciBufObj) using the export/import APIs provided by NvSciBuf.

‣ NvSciBuf Export APIs return an appropriate export descriptor for the specied
NvSciIpcEndpoint.

‣ Applications are responsible for transporting the export descriptor returned by
NvSciBuf using the same NvSciIpcEndpoint.

‣ NvSciBuf Import APIs return the respective NvSciBuf structure for the specied export
descriptor.

‣ NvSciBuf provides dierent APIs for transporting reconciled and unreconciled attribute
lists. For reconciled attribute lists, applications can optionally validate the reconciled list
against one or more unreconciled attribute lists to ensure that the reconciled attribute
list satises the parameters of the importing process' unreconciled lists. This can be
done by either passing unreconciled lists to NvSciBufAttrListIpcImportReconciled
API while importing or by invoking NvSciBufAttrListValidateReconciled API after
importing.

5.6.3.7.2 NvSciBufObj Permissions
‣ Applications have two options to specify their intended permissions on the

NvSciBufObj:

‣ Option 1: Set the intended permissions to NvSciBufGeneralAttrKey_RequiredPerm
attribute in the unreconciled attribute-list. If no permissions are specied by the
application, NvSciBufAccessPerm_Readonly becomes default value.

‣ Option 2: Set the intended permissions in the object export/import APIs.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 328

Embedded Software Components

‣ The nal permissions of the NvSciBufObj for an application is computed by NvSciBuf
based on multiple factors explained below:

‣ Applications that allocates the NvSciBufObj using NvSciBufObjAlloc or
NvSciBufAttrListReconcileAndObjAlloc APIs will always get Read/Write permissions.

‣ For applications importing the NvSciBufObj, the permissions are computed based
the following:

5.6.3.7.3 Notations
‣ ReconList.Perm – The value of NvSciBufGeneralAttrKey_ActualPerm key in

the reconciled attribute list. In simple cases, this value is same as the value of
NvSciBufGeneralAttrKey_RequiredPerm key set by the application in its unreconciled
attribute list. In cases where an application has multiple unreconciled lists,
the NvSciBufGeneralAttrKey_ActualPerm value is the maximum value of the
NvSciBufGeneralAttrKey_RequiredPerm key of all the unreconciled lists.

‣ ExportAPI.Perm – The value of export permissions argument used by application
with object export APIs such as NvSciBufIpcExportAttrListAndObj or
NvSciBufObjIpcExport API.

‣ ImportAPI.Perm – The value of import permissions argument used by application
with object import APIs such as NvSciBufIpcImportAttrListAndObj or
NvSciBufObjIpcImport API.

‣ ObjExport.Perm – The value of nal computed permissions with which NvSciBufObj
is exported from the export application.

‣ ObjImport.Perm – The value of nal permissions with which NvSciBufObj is imported
by the import application.

5.6.3.7.4 Computation of Object Export Permissions
‣ Case-1: ExportAPI.Perm = NvSciBufAccessPerm_Auto. Export Application invoked the

Export API with NvSciBufAccessPerm_Auto option. In this case:

ObjExport.Perm = ReconList.Perm

‣ Case-2: ExportAPI.Perm = explicit permissions. Export Application invoked the Export
API by explicitly specifying the permissions. In this case, ObjExport.Perm is computed
as shown below:

INPUT OUTPUT

ReconList.Perm ExportAPI.Perm ObjExport.Perm

RO RO RO

RO RW RW

RW RO RW

RW RW RW

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 329

Embedded Software Components

5.6.3.7.5 Computation of Imported NvSciBufObj Permissions
‣ Case-1: ImportAPI.Perm = NvSciBufAccessPerm_Auto. Import Application invoked the

Import API with NvSciBufAccessPerm_Auto option. In this case:

ObjImport.Perm = ObjExport.Perm

‣ Case-2: ImportAPI.Perm = explicit permissions. Import Application invoked the Import
API by explicitly specifying the permissions. In this case,ObjImport.Perm is computed as
shown below:

INPUT OUTPUT

ObjExport.Perm ImportAPI.Perm ObjImport.Perm

RO RO RO

RO RW Import Fail

RW RO RW

RW RW RW

Note:

While computing the imported NvSciBufObj permissions, the
permissions in the reconciled list are ignored. In fact, the value of
NvSciBufGeneralAttrKey_ActualPerm in the reconciled list is updated to the
value of ObjImport.Perm.

Note:

NvSciBufObj Import APIs return a failure if the export descriptors are imported
using a wrong ipcEndpoint or inappropriate permissions.

5.6.3.7.6 Export/Import NvSciBuf AttrLists
/* --------------------------App Process1 ----------------------------------*/
 NvSciBufAttrList AttrList1 = NULL;
 void* ListDesc = NULL;
 size_t ListDescSize = 0U;
 /* creation of the attribute list, receiving other lists from other listeners */
 err = NvSciBufAttrListIpcExportUnreconciled(
 &AttrList1, /* array of unreconciled lists to be exported */
 1, /* size of the array */
 ipcEndpoint, /* valid and opened NvSciIpcEndpoint intended to
send the descriptor through */
 &ListDesc, /* The descriptor buffer to be allocated and
 filled in */
 &ListDescSize); /* size of the newly created buffer */
 if (err != NvSciError_Success) {
 goto fail;

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 330

Embedded Software Components

 }
 /* send the descriptor to the process2 */
 /* wait for process 1 to reconcile and export reconciled list */
 err = NvSciBufAttrListIpcImportReconciled(
 module, /* NvSciBuf module using which this attrlist to
 be
imported */
 ipcEndpoint, /* valid and opened NvSciIpcEndpoint on which the
descriptor is received */
 ListDesc, /* The descriptor buffer to be imported */
 ListDescSize, /* size of the descriptor buffer */
 &AttrList1, /* array of unreconciled lists to be used for
validating the reconciled list */
 1, /* Number or unreconciled lists */
 &reconciledAttrList, /* Imported reconciled list */
 if (err != NvSciError_Success) {
 goto fail;
 }
 /* --------------------------App Process2 ----------------------------------*/
 void* ListDesc = NULL;
 size_t ListDescSize = 0U;
 NvSciBufAttrList unreconciledList[2] = {NULL};
 NvSciBufAttrList reconciledList = NULL;
 NvSciBufAttrList newConflictList = NULL;
 NvSciBufAttrList AttrList2 = NULL;
 NvSciBufAttrList importedUnreconciledAttrList = NULL;
 /* create the local AttrList */
 /* receive the descriptor from the other process */
 err = NvSciBufAttrListIpcImportUnreconciled(module, ipcEndpoint,
 ListDesc, ListDescSize,
 &importedUnreconciledAttrList);
 if (err != NvSciError_Success) {
 goto fail;
 }
 /* gather all the lists into an array and reconcile */
 unreconciledList[0] = AttrList2;
 unreconciledList[1] = importedUnreconciledAttrList;
 err = NvSciBufAttrListReconcile(unreconciledList, 2, &reconciledList,
 &newConflictList);
 if (err != NvSciError_Success) {
 goto fail;
 }
 err = NvSciBufAttrListIpcExportReconciled(
 &AttrList1, /* array of unreconciled lists to be
exported */
 ipcEndpoint, /* valid and opened NvSciIpcEndpoint
intended to send the descriptor through */
 &ListDesc, /* The descriptor buffer to be
allocated and filled in */
 &ListDescSize); /* size of the newly created
buffer */
 if (err != NvSciError_Success) {
 goto fail;
 }

5.6.3.7.7 Export/Import NvSciBufObj
 /* process1 */
 void* objAndList;
 size_t objAndListSize;
 err = NvSciBufIpcExportAttrListAndObj(
 bufObj, /* bufObj to be exported
(the reconciled list is inside it) */
 NvSciBufAccessPerm_ReadOnly, /* permissions we want the
receiver to have */
 ipcEndpoint, /* IpcEndpoint via which the

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 331

Embedded Software Components

object is to be exported */
 &objAndList, /* descriptor of the object
and list to be communicated */
 &objAndListSize); /* size of the descriptor */
 /* send via Ipc */
 /* process2 */
 void* objAndList;
 size_t objAndListSize;
 err = NvSciBufIpcImportAttrListAndObj(
 module, /* NvSciBufModule use to
create original unreconciled lists in the waiter */
 ipcEndpoint, /* ipcEndpoint from which the
descriptor was received */
 objAndList, /* the desciptor of the buf obj
and associated reconciled attribute list received from the signaler */
 objAndListSize, /* size of the descriptor */
 &AttrList1, /* the array of original
unreconciled lists prepared in this process */
 1, /* size of the array */
 NvSciBufAccessPerm_ReadOnly, /* permissions expected by
this process */
 10000U, /* timeout in microseconds.
Some primitives might require time to transport all needed resources */
 &bufObj); /* buf object generated from
the descriptor */
 /* use the buf object */
 NvSciBufObjFree(bufObj);

5.6.3.7.8 Secure Sharing of NvSciBufObj
NvSciBuf supports secure sharing on x86 with the aid of nvsci_mm and nvsciipc KMD
(Kernel Mode Drivers). NvSciBuf will fall back to non-secure sharing of buers if any of the
two KMDs are not installed.

nvsci_mm KMD

Nvsci_mm facilitates secure sharing of NvSciBufObj by mutually authenticating the import
using NvSciIpcEndpoint as identier. Without nvsciipc KMD, nvsci_mm cannot perform
mutual authentication of the importer process and will fall back to no authentication.

nvsci_mm has three congurable settings that can be adjusted during installation of KMD.

1. Maximum pending exports: During installation of nvsci_mm KMD, you can set an upper
limit of the number of pending NvSciBufObj exports. Any export request above the
maximum congured limit will fail.

This setting protects against a malicious process trying to export a NvSciBufObj
multiple times, overwhelming the nvsci_mm KMD, and aecting all kernel system
resources.

2. User group authorization: During installation of nvsci_mm KMD, you can restrict access
to nvsci_mm device node /dev/nvsci_mm to certain Linux users within the allowed
Linux user group. Applications run by Linux users that are part of the allowed Linux user
group can import and export buers. Applications run by the Linux users that are not
part of the allowed Linux user group will fail to import or export buers.

3. Mutual authentication of importer: This feature is active if nvsciipc KMD is installed.
During export, nvsci_mm stores the authentication data of the NvSciIpcEndpoint,
which is paired to the exporter's NvSciIpcEndpoint. During import, nvsci_mm veries

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 332

Embedded Software Components

authentication, and then importing of buers is allowed. This ensures that the buer
can be imported by the NvSciIpcEndpoint to which the exporter intended to export.

5.6.3.8 NvSciBuf API
For information about NvSciBuf API, see Buer Allocation APIs.

5.6.3.9 UMD Access

5.6.3.9.1 cuDLA
cuDLA supports importing an NvSciBufObj into DLA as cuDLA external memory of type
NvSciBuf. Users can use cuDLA APIs to import memory objects and get the pointer to
be passed while submitting DLA tasks. If the NvSciBuf object is imported into DLA using
cuDLA and also mapped by other drivers, then the application must use cuDLA external
semaphore APIs described in this section as appropriate barriers to maintain coherence
between cuDLA and the other drivers.

5.6.3.9.1.1 Importing a NvSciBufObj into cuDLA

Following are the steps required to use NvSciBufObj as a pointer.

1. Allocate NvSciBufObj.

The application creates NvSciBufAttrList. If the same object is used by other UMDs,
the corresponding attribute lists must be created and reconciled. The reconciled list
must be used to allocate the NvSciBufObj.

Note: The attribute list and NvSciBuf objects must be maintained by the application.

2. Query NvSciBufObj attributes to ll cuDLA descriptors.

The application must query the allocated NvSciBufObj for required attributes to ll the
cuDLA external memory descriptor.

3. NvSciBuf objects registration with cuDLA.

cudlaImportExternalMemory() must be used to register the allocated NvSciBuf object
with DLA by lling up cudlaExternalMemoryHandleDesc. This API will return a pointer
that can be used to submit cuDLA tasks.

4. Deregistration of NvSciBuf objects from cuDLA.

cudlaMemUnregister() API must be used to unregister the NvSciBuf from DLA.

5.6.3.9.2 2D/DLA/LDC/SIPL/Multimedia
2D/DLA/LDC/SIPL/Multimedia supports dierent datatypes, such as Image, Tensor, Array,
etc. Each provides a set of interfaces for each data type to interact with NvSciBuf.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 333

../../../api_reference/group__nvsci__buf.html

Embedded Software Components

5.6.3.9.2.1 2D/LDC/SIPL/Multimedia and NvSciBuf Interaction

This section describes 2D/LDC/SIPL/Multimedia and NvSciBuf interaction. The following
steps show the typical ow to allocate and register an NvSciBuf object:

1. The application creates a NvSciBufAttrList.
2. The application queries 2D/LDC/SIPL/Multimedia to ll in the

NvSciBufAttrList by calling the relevant APIs (NvMedia2DFillNvSciBufAttrList/
NvMediaLdcFillNvSciBufAttrList/INvSIPLCamera::GetImageAttributes/
NvMediaIEPFillNvSciBufAttrList/NvMediaIJPDFillNvSciBufAttrList/
NvMediaIJPEFillNvSciBufAttrList/NvMediaIOFAFillNvSciBufAttrList/
NvMediaIDEFillNvSciBufAttrList/etc.) on the NvSciBufAttrList

3. The application may choose to set any of the public NvSciBuf attributes, which are not
set by those APIs.

4. If the same NvSciBuf object is shared with other UMDs, then the application can get
the corresponding NvSciBufAttrList from the respective UMD.

5. The application asks NvSciBuf to reconcile all the lled NvSciBufAttrLists and then
allocates an NvSciBuf object.

6. The allocated NvSciBufObj is then registered with 2D/LDC/SIPL/Multimedia

5.6.3.9.3 CUDA
CUDA supports the import of an NvSciBufObj into CUDA as CUDA external memory
of type NvSciBuf. Once imported, use CUDA API to get a CUDA pointer/array from the
imported memory object, which can be passed to CUDA kernels. Applications must query
NvSciBufObj for the attributes required to ll descriptors, which are passed as parameters
to the import/map APIs.

If the NvSciBuf object imported into CUDA is also mapped by other drivers, then the
application must use CUDA external semaphore APIs described here as appropriate
barriers to maintain coherence between CUDA and the other drivers.

5.6.3.9.3.1 NvSciBufObj as a CUDA Pointer / Array

The following section describes the steps required to use NvSciBufObj as a CUDA pointer/
array.

1. Allocate NvSciBufObj.

‣ The application creates NvSciBufAttrList and sets the
NvSciBufGeneralAttrKey_GpuId attribute to specify the ID of the GPU that shares
the buer, along with other attributes.

‣ If the same object is used by other UMDs, the corresponding attribute lists
must be created and reconciled. The reconciled list must be used to allocate the
NvSciBufObj.

Note:

The attribute list and NvSciBuf objects must be maintained by the
application.

2. Query NvSciBufObj attributes to ll CUDA descriptors.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 334

Embedded Software Components

‣ The application must query the allocated NvSciBufObj for required attributes to ll
the CUDA external memory descriptor.

3. NvSciBuf object registration with CUDA.

‣ cudaImportExternalMemory() must be used to register the allocated NvSciBuf
object with CUDA by lling up cudaExternalMemoryHandleDesc for type
cudaExternalMemoryHandleTypeNvSciBuf.

‣ cudaDestroyExternalMemory() API must be used to free the CUDA external
memory. CUDA mappings created from external memory must be freed before
invoking this API.

4. Getting CUDA pointer/array from imported external memory.

‣ cudaExternalMemoryGetMappedBuffer() maps a buer onto an imported memory
object and returns a CUDA device pointer. The properties of the buer must be
described in the CUDA ExternalMemory buer description by querying attributes
from NvSciBufObj. The returned pointer device pointer must be freed using
cudaFree.

‣ cudaExternalMemoryGetMappedMipmappedArray() maps a CUDA mipmapped array
onto an external object and returns a handle to it. The properties of the buer
must be described in the CUDA ExternalMemory MipmappedArray desc by querying
attributes from NvSciBufObj. The returned CUDA mipmapped array must be freed
using cudaFreeMipmappedArray.

Note:

All the APIs mentioned in the sections above are CUDA-runtime APIs. Each of
them has an equivalent driver API. The syntax and usage of both versions are the
same.

5.6.3.9.3.2 NvSciBuf-CUDA Interop

 /*********** Allocate NvSciBuf object ************/
 // Raw Buffer Attributes for CUDA
 NvSciBufType bufType = NvSciBufType_RawBuffer;
 uint64_t rawsize = SIZE;
 uint64_t align = 0;
 bool cpuaccess_flag = true;
 NvSciBufAttrValAccessPerm perm = NvSciBufAccessPerm_ReadWrite;
 uint64_t gpuId[] = {};
 cuDeviceGetUuid(&uuid, dev));
 gpuid[0] = (uint64_t)uuid.bytes;
 // Fill in values
 NvSciBufAttrKeyValuePair rawbuffattrs[] = {
 { NvSciBufGeneralAttrKey_Types, &bufType, sizeof(bufType) },
 { NvSciBufRawBufferAttrKey_Size, &rawsize, sizeof(rawsize) },
 { NvSciBufRawBufferAttrKey_Align, &align, sizeof(align) },
 { NvSciBufGeneralAttrKey_NeedCpuAccess, &cpuaccess_flag,
 sizeof(cpuaccess_flag) },
 { NvSciBufGeneralAttrKey_RequiredPerm, &perm, sizeof(perm) },
 { NvSciBufGeneralAttrKey_GpuId, &gpuid, sizeof(gpuId) },

 };
 // Create list by setting attributes
 err = NvSciBufAttrListSetAttrs(attrListBuffer, rawbuffattrs,
 sizeof(rawbuffattrs)/sizeof(NvSciBufAttrKeyValuePair));
 NvSciBufAttrListCreate(NvSciBufModule, &attrListBuffer);

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 335

Embedded Software Components

 // Reconcile And Allocate
 NvSciBufAttrListReconcile(&attrListBuffer, 1, &attrListReconciledBuffer,
&attrListConflictBuffer)
 NvSciBufObjAlloc(attrListReconciledBuffer, &bufferObjRaw);
 /*************** Query NvSciBuf Object **************/
 NvSciBufAttrKeyValuePair bufattrs[] = {
 {NvSciBufRawBufferAttrKey_Size, NULL, 0},
 };
 NvSciBufAttrListGetAttrs(retList, bufattrs, sizeof(bufattrs)/
sizeof(NvSciBufAttrKeyValuePair)));
 ret_size = *(static_cast<const uint64_t*>(bufattrs[0].value));
 /*************** NvSciBuf Registration With CUDA **************/
 // Fill up CUDA_EXTERNAL_MEMORY_HANDLE_DESC
 cudaExternalMemoryHandleDesc memHandleDesc;
 memset(&memHandleDesc, 0, sizeof(memHandleDesc));
 memHandleDesc.type = cudaExternalMemoryHandleTypeNvSciBuf;
 memHandleDesc.handle.nvSciBufObject = bufferObjRaw;
 memHandleDesc.size = ret_size;
 cudaImportExternalMemory(&extMemBuffer, &memHandleDesc);
 /************** Mapping to CUDA ******************************/
 cudaExternalMemoryBufferDesc bufferDesc;
 memset(&bufferDesc, 0, sizeof(bufferDesc));
 bufferDesc.offset = offset = 0;
 bufferDesc.size = ret_size;
 cudaExternalMemoryGetMappedBuffer(&dptr, extMemBuffer, &bufferDesc);
 /************** CUDA Kernel ***********************************/
 // Run CUDA Kernel on dptr
 /*************** Free CUDA mappings *****************************/
 cudaFree();
 cudaDestroyExternalMemory(extMemBuffer);
 /***************** Free NvSciBuf **********************************/
 NvSciBufAttrListFree(attrListBuffer);
 NvSciBufAttrListFree(attrListReconciledBuffer)
 NvSciBufAttrListFree(attrListConflictBuffer);
 NvSciBufObjFree(bufferObjRaw);

5.6.3.10 Late Attach
NvSciBuf provides a mechanism for an application to allocate an NvSciBufObj that
is shared with other peer NvSciIpcEndpoints after allocation of NvSciBufObj, without
requiring each peer NvSciIpcEndpoint to send an unreconciled NvSciBufAttrList during
initial reconciliation of unreconciled NvSciBufAttrList and allocation of NvSciBufObj.

To ensure that the allocated NvSciBufObj satises the memory requirements of the late
peer NvSciIpcEndpoint, Application must create a proxy unreconciled NvSciBufAttrList
representing the memory requirements of the late peer NvSciIpcEndpoint. This
proxy unreconciled NvSciBufAttrList must be involved during initial reconciliation
of the unreconciled NvSciBufAttrList. NvSciBuf provides attribute keys such as
NvSciBufAttrKey_PeerLocationInfo and NvSciBufGeneralAttrKey_PeerHwEngineArray
that should be specied in the proxy unreconciled NvSciBufAttrList during initial
reconciliation.

NvSciBuf also allows remote late peer NvSciIpcEndpoint to gain access to already
allocated NvSciBufObj, provided the allocated NvSciBufObj satises the constraints of
the unreconciled NvSciBufAttrList, received from remote late peer NvSciIpcEndpoint,
through the NvSciBufObjAttachPeer() API.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 336

Embedded Software Components

If the NvSciBufGeneralAttrKey_PeerHwEngineArray attribute is not specied in the proxy
unreconciled NvSciBufAttrList, thenNvSciBuf allocates a buer of greater than the
requested size to compensate for hardware engines that gain access to memory after
allocation of NvSciBufObj. NvSciBuf also chooses the appropriate carveout memory
location, which is accessible to hardware engines that gain access to memory after
allocation of NvSciBufObj.

Note:

‣ Detailed descriptions of the attribute keys and the APIs are in the NVIDIA DRIVE® OS
API Reference.

‣ Application needs to refer to User Mode Driver (UMD) documentation for details of
how to specify theNvSciBufGeneralAttrKey_PeerHwEngineArray key.

‣ The NvSciBufGeneralAttrKey_PeerHwEngineArray attribute is experimental in NVIDIA
DRIVE OS 6.0.7 and should not be used in a production environment.

5.6.4 Streaming
Combining the buer and synchronization functions from the previous chapters allows
you to develop applications that stream sequences of data from one rendering component
to another, building an ecient processing pipeline. For developers who wish to have
complete control over the process, no additional functionality is required.

However, use cases for streaming can become quite complex, making the details
dicult to manage. This is particularly true when portions of the pipeline are provided by
independent developers who must coordinate the stream management. NVIDIA therefore
provides an additional NvSciStream library layered on NvSciBuf and NvSciSync with utilities
for constructing streaming application suites.

5.6.4.1 A Simple Stream
This section illustrates how streaming works with an example application that directly uses
NvSciBuf and NvSciSync to take images from a camera controlled by NvMedia and sends
the images to CUDA for processing. This application is so simple that there is no need to
involve the added NvSciStream layer. It uses a single buer that NvMedia can write to and
CUDA can read from, and a pair of sync objects. One sync object is for NvMedia to write
and CUDA to read, and the other is for CUDA to write and NvMedia to read.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 337

Embedded Software Components

‣

5.6.4.1.1 Setup
The initial setup for the application is shown in the following topic. Much of this should
already be familiar from the earlier chapters on buers and synchronization objects. (For
brevity, we assume everything succeeds and omit error checking.)

5.6.4.1.1.1 Simple Stream Setup

/* Initialize NvMedia (not all steps are shown) */
NvMedia2D* nvmedia2D;
NvMedia2DCreate(nvmedia2D, NULL);

/* Initialize CUDA (not all steps are shown) */
CUdevice cudaDevice;
cuDeviceGet(&cudaDevice, IGPU);
CUcontext cudaContext;
cuCtxCreate(&cudaContext, CU_CTX_MAP_HOST, dev);
cuCtxPushCurrent(&cudaContext);
CUstream cudaStream;
cuStreamCreate(&cudaStream, CU_STREAM_DEFAULT);

/* Initialize NvSci buffer and sync modules */
NvSciBufModule bufModule;
NvSciBufModuleOpen(&bufModule);
NvSciSyncModule syncModule;
NvSciSyncModuleOpen(&syncModule);

/* Obtain NvMedia buffer requirements */
NvSciBufAttrList nvmediaBufAttrs;NvSciBufAttrListCreate(bufModule, &nvmediaBufAttrs);
NvMedia2DFillNvSciBufAttrList(nvmedia2D, nvmediaBufAttrs);

/*
 * Set more buffer attributes using NvSciBufAttrListSetAttrs.
 * Detail skipped.
 */

/* Obtain NvMedia sync requirements */
NvSciSyncAttrList nvmediaWriteSyncAttrs,
nvmediaReadSyncAttrs;
NvSciSyncAttrListCreate(syncModule,
&nvmediaWriteSyncAttrs);
NvMedia2DFillNvSciSyncAttrList(nvmediaWriteSyncAttrs,
NVMEDIA_SIGNALER)
NvSciSyncAttrListCreate(syncModule,
&nvmediaReadSyncAttrs);
NvMedia2DFillNvSciSyncAttrList

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 338

Embedded Software Components

(nvmediaReadSyncAttrs, NVMEDIA_WAITER)

/* Obtain CUDA buffer requirements */
NvSciBufAttrList cudaBufAttrs;
NvSciBufAttrListCreate(bufModule, &cudaBufAttrs);
<Fill in with CUDA raw buffer attributes>

/* Obtain CUDA sync requirements */
NvSciSyncAttrList cudaWriteSyncAttrs,
cudaReadSyncAttrs;
NvSciSyncAttrListCreate(syncModule,
&cudaWriteSyncAttrs);
cuDeviceGetNvSciSyncAttributes(cudaWriteSyncAttrs,
cudaDevice, CUDA_NVSCISYNC_ATTR_SIGNAL);
NvSciSyncAttrListCreate(syncModule,
&cudaReadSyncAttrs);
cuDeviceGetNvSciSyncAttributes(cudaReadSyncAttrs,
cudaDevice, CUDA_NVSCISYNC_ATTR_WAIT);

/* Combine buffer requirements and allocate buffer */
NvSciBufAttrList allBufAttrs[2], conflictBufAttrs;
NvSciBufAttrList combinedBufAttrs;
allBufAttrs[0] = nvmediaBufAttrs;
allBufAttrs[1] = cudaBufAttrs;
NvSciBufAttrListReconcile(allBufAttrs, 2,
&combinedBufAttrs, &conflictBufAttrs);
NvSciBufObj buffer;
NvSciBufObjAlloc(combinedBufAttrs, &buffer);

/* Combine sync requirements and allocate
nvmedia to cuda sync object */
NvSciSyncAttrList allSyncAttrs[2], conflictSyncAttrs;
allSyncAttrs[0] = nvmediaWriteSyncAttrs;
allSyncAttrs[1] = cudaReadSyncAttrs;
NvSciSyncAttrList nvmediaToCudaSyncAttrs;
NvSciSyncAttrListReconcile(allSyncAttrs, 2,
&nvmediaToCudaSyncAttrs, &confictSyncAttrs);
NvSciSyncObj nvmediaToCudaSync;
NvSciSyncObjAlloc(nvmediaToCudaSyncAttrs,
&nvmediaToCudaSync);

/* Combine sync requirements and allocate cuda
to nvmedia sync object */
allSyncAttrs[0] = cudaWriteSyncAttrs;
allSyncAttrs[1] = nvmediaReadSyncAttrs;1
NvSciSyncAttrList cudaToNvmediaSyncAttrs;
NvSciSyncAttrListReconcile(allSyncAttrs, 2,
&cudaToNvmediaSyncAttrs, &confictSyncAttrs);
NvSciSyncObj cudaToNvmediaSync;
NvSciSyncObjAlloc(cudaToNvmediaSyncAttrs, &cudaToNvmediaSync);

/* Map objects into NvMedia */
NvMedia2DRegisterNvSciBufObj(nvmedia2D, buffer);
NvMedia2DRegisterNvSciSyncObj(nvmedia2D, NVMEDIA_EOFSYNCOBJ, nvmediaToCudaSync);
NvMedia2DRegisterNvSciSyncObj(nvmedia2D, NVMEDIA_PRESYNCOBJ, cudaToNvmediaSync);

/* Map objects into CUDA */
cudaExternalMemoryHandleDesc
cudaMemHandleDesc;
memset(&cudaMemHandleDesc, 0, sizeof
(cudaMemHandleDesc));
cudaMemHandleDesc.type =
cudaExternalMemoryHandleTypeNvSciBuf;
cudaMemHandleDesc.handle.nvSciBufObject =
buffer;
cudaMemHandleDesc.size = <allocated size>;
cudaImportExternalMemory(&cudaBuffer,

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 339

Embedded Software Components

&cudaMemHandleDesc);
CUDA_EXTERNAL_SEMAPHORE_HANDLE_DESC
cudaSemDec;
CUexternalSemaphore nvmediaToCudaSem,
cudaToNvmediaSem;
cudaSemDesc.type =
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_NVSCISYNC;
cudaSemDesc.handle.nvSciSyncObj =
(void*)nvmediaToCudaSync;
cuImportExternalSemaphore(&nvmediaToCudaSem,
&cudaSemDesc);
cudaSemDesc.type =
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_NVSCISYNC;
cudaSemDesc.handle.nvSciSyncObj =
(void*)cudaToNvmediaSync;
cuImportExternalSemaphore(&cudaToNvmediaSem,
&cudaSemDesc);

First, the buer and sync object requirements are queried from NvMedia, the producer of
the stream, and from CUDA, the consumer. These requirements are combined and used to
allocate the objects, which are then mapped into NvMedia and CUDA so that they can be
used for processing.

Two sync objects are required instead of one because synchronization is required in both
directions. It is important that the CUDA consumer does not begin reading from the buer
until the NvMedia producer is done writing to it. It is equally as important that the NvMedia
producer does not begin writing a new image to the buer until the CUDA consumer is
done reading the previous image. Otherwise, it overwrites data that is still in use.

5.6.4.1.2 Streaming
Once initialized, the streaming loop looks like this:
/* Initialize empty fences for each direction*/
NvSciSyncFence nvmediaToCudaFence = NV_SCI_SYNC_FENCE_INITIALIZER;
NvSciSyncFence cudaToNvmediaFence = NV_SCI_SYNC_FENCE_INITIALIZER;

/* Main rendering loop */
while (!done) {
 NvMedia2DComposeresult result;
 NvMedia2DComposeParameters params;
 NvMedia2DGetComposeParameters(nvmedia2D, ¶ms);

 /* Generate a fence when rendering finishes */
 NvMedia2DSetNvSciSyncObjforEOF(nvmedia2D, params, nvmediaToCudaSync);

 /* Instruct NvMedia pipeline to wait for the fence from CUDA */
 NvMedia2DInsertPreNvSciSyncFence(nvmedia2D, params, cudaToNvmediaFence)
 /* Generate NvMedia image */
 NvMedia2DSomeRenderingOperation(...);
 NvMedia2DCompose(nvmedia2D, params, &result);

 NvMedia2DGetEOFNvSciSyncFence(nvmedia2D, result, &nvmediaToCudaFence);

 /* Instruct CUDA pipeline to wait for fence from NvMedia */
 CUDA_EXTERNAL_SEMAPHORE_WAIT_PARAMS cudaWaitParams;
 cudaWaitParams.params.nvSciSync.fence = (void*)&nvmediaToCudaFence;
 cudaWaitParams.flags = 0;
 cudaWaitExternalSemaphoresAsync(&nvmediaToCudaSem, &cudaWaitParams, 1,
 cudaStream);

 /* Process the frame in CUDA */

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 340

Embedded Software Components

 cudaSomeProcessingOperation(..., cudaBuffer, ...);

 /* Generate a fence when processing finishes */
 CUDA_EXTERNAL_SEMAPHORE_SIGNAL_PARAMS cudaSignalParams;
 cudaSignalParams.params.nvSciSync.fence = (void*)&cudaToNvmediaFence;
 cudaSignalParams.flags = 0;
 cudaSignalExternalSemaphoresAsync(&cudaToNvmediaSem, &cudaSignalParams, 1,
 cudaStream);
}

For each frame of data, the application instructs NvMedia to write the image to the buer,
and then issues a fence that indicates when writing nishes. CUDA is instructed to wait
for that fence before it proceeds with any subsequent operations, then the commands to
process the frame are issued to CUDA. Lastly, CUDA is told to generate a fence of its own,
which indicates when all its operations nish. This fence is fed back to NvMedia, which
waits for it before starting to write the next image to the buer. "Ownership" of the buer
cycles back and forth between producer and consumer.

‣

5.6.4.1.2.1 NvStreams Rawstream Sample Application

The NVIDIA SDK provides a sample application to demonstrate how to use the
NvSciStream API to build simple and complex streams, see the NvSciStream Sample
Application chapter. This Rawstream Sample Application doesn’t use NvSciStream. Instead,

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 341

Embedded Software Components

it builds a simple inter-process stream from CUDA to CUDA using NvSciBuf, NvSciSync and
NvSciIpc APIs directly.

Prerequisites

NvSciIpc

The sample applications stream packets between a producer process and a consumer
process via an inter-process communication (NvSciIpc) channel.

The NvSciIpc channels are congured via the device tree (DT) on QNX and via a plain text
le, /etc/nvsciipc.cfg, on Linux. For more information on NvSciIpc conguration data,
see NvSciIpc Conguration Data. The recommended NvSciIpc channels for this sample
application is as follows:

INTER_PROCESS nvscisync_a_0 nvscisync_a_1 16 24576

CUDA

This sample application uses the CUDA toolkit. Ensure the CUDA toolkit is installed. For
more information, see Installing CUDA Debian Packages

Building the Rawstream Sample Application

The Rawstream sample includes source code and a Makele.

On the host system, navigate to the sample application directory:

cd <top>/drive-linux/samples/nvsci/rawstream/

Build the sample application:

make clean

make

Running the Rawstream Sample Application

Copy the sample application to the target lesystem:

cp <top>/drive-linux/samples/nvsci/rawstream/rawstream <top>/drive-linux/
targetfs/home/nvidia/

Run the sample application:

./rawstream -p &

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 342

Embedded Software Components

./rawstream -c

Note:

The rawstream application must be run as root user (with sudo).

If the rawstream application fails to open the IPC channel, cleaning up NvSciIpc
resources may help.

sudo rm -rf /dev/mqueue/*

sudo rm -rf /dev/shm/*

5.6.4.2 More Complex Streams
All the basic steps in the previous example to set up buers and sync objects, and to
generate and wait for fences must be performed for all streaming applications, regardless
of whether they use NvSciStream. For a simple situation like that, there is no need for
anything more.

What NvSciStream provides is the ability to manage more complex cases, such as cycling
between multiple buers, streaming to multiple consumers at once, and streaming
between applications. It also provides a uniform set of interfaces for setting up streams
for which independent developers can design modular producers and consumers without
needing to directly coordinate and then plug their products together. This section
describes some of those use cases Adding NvSciStreams for these use cases relieves the
developer of many burdensome details.

5.6.4.2.1 Multiple Buers
NvMedia and CUDA use dierent portions of the NVIDIA hardware. In the example above,
the compute hardware is idle during 2D processing, and the 2D hardware is idle during
compute processing. The pipeline can be made more ecient by allocating one (1) or more
additional buers and cycling between them, creating a queue of frames. This way, CUDA
can process one image while NvMedia prepares the next one. No additional sync objects
are needed, but it is necessary to generate a fence for each frame, and therefore you
must keep track of which fence is associated with the current contents of each buer.
Once a stream has multiple buers available, there are several dierent possible modes of
operation to consider.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 343

Embedded Software Components

5.6.4.2.2 FIFO Mode
If the use case requires that all data in the sequence be processed, the stream application
operates in FIFO mode. When the producer lls a buer with new data, it must wait for
the consumer to process it. If the consumer requires more time than the producer, the
producer is slowed to the consumer's speed to wait for buers to become available for
reuse.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 344

Embedded Software Components

‣

5.6.4.2.3 Mailbox Mode
In other use cases, it is more important that the consumer always have the most recent
input available. In this case, the stream application operates in mailbox mode. If the
consumer has not started processing a previous frame when a new one becomes available,
it is skipped, and its buer immediately returned to the producer for reuse. This means

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 345

Embedded Software Components

that the order in which the producer and consumer cycle through buers is subject to
change at any time, and the streaming system must manage this.

5.6.4.2.4 Multiple Acquired Frames
Some processing algorithms must compare data from multiple frames in a sequence. In
this case, the consumer may hold multiple buers at once. These buers may be released
for reuse in an order other than they arrive. The streaming system must manage this.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 346

Embedded Software Components

5.6.4.2.5 Multiple Consumers
In some cases, the output of a single producer must be sent to multiple consumers. This
means that during initialization, the requirements from all of the consumers must be
gathered, and sync objects from all of the consumers must be mapped into the producer.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 347

Embedded Software Components

‣

During streaming, the system must track each buer's state with regards to all the
consumers and wait for fences from all of them to complete before the producer can reuse
it. This can be further complicated if one consumer requires FIFO behavior and another
requires mailbox. They might return buers in dierent orders.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 348

Embedded Software Components

‣

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 349

Embedded Software Components

5.6.4.2.6 Limit Acquired Frames
In the multiple consumers case, there is a security and robustness concern that if one of
the consumer applications either maliciously or through some bug stops returning packets
for reuse, it will bring the producer and all other consumers to a halt because they will run
out of space for the new data payloads. One way to mitigate this risk is to place an optional
cap on the number of packets that will be allowed to be sent downstream to the unreliable
application.

During streaming, if a new packet is available but an untrusted application is already at its
cap, the packet will immediately be returned upstream without the consumer ever seeing
it.

5.6.4.2.7 Cross-Application
Having producers and consumers in separate applications requires inter-process
communication during every step of the process. At setup, all the requirements must
be transmitted between the endpoints, and then the allocated objects must be shared
between the processes. During streaming, every time the producer generates a frame, a
message letting the consumer know it is ready, which includes the fence, must be sent
to the other side. When the consumer is done reading from the frame, a similar message
must be sent back in the other direction. Each application must be prepared to read and
process these messages so streaming can occur in a timely fashion.

5.6.4.2.8 Chip to Chip (C2C)
Producers and consumers running on separate applications on dierent SoCs requires
inter-SoC communication. The data transmission is across memory boundary. The
streaming is no longer a copyless operation. In addition to the requirements for cross-
application use cases, the buer data of each frame is copied from the producer system
to the consumer system. The receiving end (not necessarily the consumer process) of the
inter-SoC communication requires allocation of buers as the destination of C2C data
copy.

5.6.4.2.9 Forced Sychronization of Payloads
Certain sections in a stream may require the data passing through be synchronous,
meaning when the payloads arrive in those sections all producers or consumers have done
writing to or reading from the buer data in the payloads. Before reaching those sections
in the stream, payloads that are accompanied with fences have to be blocked until the
fences expire.

5.6.4.2.10 Late-Attach Consumers
In a use case with multiple consumers, if the consumer is on the same SoC as the
producer, it can connect to the stream quickly. However, some consumers on another
SoC may be launched late and connected to the stream late. The application may want to
start transmitting payloads to the early-connected consumers and only attach the late
consumers once they are ready.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 350

Embedded Software Components

5.6.4.2.11 Re-Attach Consumers
In some use cases, one consumer process may crash or hang unexpectedly. The application
may want to restart this consumer process and re-attach it to the same stream without
impacting other consumers.

5.6.4.3 Data Packets
In the previous examples, only 2D buers containing single frames of image data are
considered. For many use cases, that is all that is required. However, NvSciStream supports
more arbitrary data. In the sections below, "buers" are generalized to "packets", and
"frames" to "payloads".

A packet is a set of indexed buers that contains images, tensors, metadata, or other
information. These buers are referred to as the "elements" of a packet. Each stream
may use one or more packets. For a given stream, all packets have the same number
of elements, and the ith element of all packets is allocated with the same NvSciBuf
attributes. As a result, all packets have uniform memory requirements and signatures.
Producers and consumers send and receive entire packets at a time, along with associated
fences to indicate when the payloads they contain are ready.

In addition to the NvSciBuf attributes used to allocate them, the elements of each packet
also have a type and NvSciSync attributes associated with them, which help applications
coordinate how the elements are used. These are described in the next sections.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 351

Embedded Software Components

5.6.4.3.1 Element Type
In a complex modular application suite, a given producer may know how to produce many
dierent types of data, and the various consumers may only require a subset of them.
NvSciStream provides mechanisms to help applications negotiate the data that is required
for a given stream. The top-level system integrator must dene a set of integer values to
associate with each type of data that the application suite supports. Any non-zero value
may be used for these types, and developers are advised to plan for future types and
backwards compatibility.

As an example, the following table is a subset of the types that are available in an
automotive system. These may not all be supplied by a single producer. For instance,
one producer might be responsible for front-facing sensors, and another for rear-facing
sensors. Dierent consumers make use of dierent sets of sensors to generate their
output. The types listed in the table below all correspond to raw inputs, but a pipe-lined
application may have a series of producers and consumers with additional types to

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 352

Embedded Software Components

represent intermediate processed data. The following table describes the sample data
packet types:

Data Type Assigned Enum

Front left camera 0x1101

Front-center camera 0x1102

Front-right camera 0x1103

Rear-left camera 0x1201

Rear-center camera 0x1202

Rear-right camera 0x1203

Front radar 0x2110

Front lidar 0x2120

Rear radar 0x2210

Rear lidar 0x2220

GPS 0x3010

IMU 0x3020

At initialization, a producer declares all the types of data it can provide. Consumers
indicate the types of data they are interested in. The part of the application responsible for
allocating the buers takes this information and collates it to determine the packet layout
and passes the packet attributes back to the producer and consumers. The producer
checks this layout to see what elements it needs to provide. The consumers check it to
determine where in the packets to nd the elements they care about. Any element that a
given consumer does not require can be ignored.

In simple applications that only deal with a single type of data such as images, producers
and consumers can simply specify a value of 1 for the type. These type exchange
mechanisms are only intended to aid integration of larger suites.

5.6.4.3.2 Element Mode
Payload data generated and processed by NVIDIA hardware is usually written and read
asynchronously and requires waiting for a fence before it can be accessed. But in some use
cases, auxiliary data may be generated synchronously by the CPU and must be read before
the commands to process the rest of the data are issued. An example is a camera producer
that generates images asynchronously, but also includes a synchronously generated

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 353

Embedded Software Components

metadata eld that contains the camera's focal length, exposure time, and other settings.
A consumer synchronously reads in the metadata rst and uses the values it contains
when issuing the commands to asynchronously process the image.

The endpoint that requires an element to be synchronous must provide the NULL waiter
sync attribute to the opposing endpoint for that element.

5.6.4.4 Building Block Model
NvSciStream is designed to make implementing complex stream use cases easier by
providing a uniform set of interfaces for exchanging requirements and sending and
receiving frames. At the top level, an application suite determines the overall structure
of the stream. At the lower application component level, each producer and consumer
performs its own function, without needing to know the details of the full stream. They can
be developed independently in a modular fashion and plugged together as needed.

In order to support this wide variety of use cases, NvSciStream itself takes a modular
approach. It denes a set of building blocks, each with a specic purpose, which
applications create and connect together to suit their needs. This section describes the
available building blocks and their behavior.

5.6.4.4.1 Endpoints
Each stream begins with a producer block and ends with one or more consumer blocks.
These are referred to as the "endpoints" of the stream, with the producer being the
"upstream" end and the consumers being the "downstream" end. For each stream
endpoint, there is an application component responsible for interacting with it. The
endpoints and their corresponding application components may all reside in a single
process or be distributed across multiple processes, partitions, or systems.

5.6.4.4.2 Producer
A producer block provides the following interactions with the application producer
component:

‣ During setup phase:

‣ Synchronization:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 354

Embedded Software Components

‣ Accepts producer synchronization requirements.

‣ Reports consumer synchronization requirements.

‣ Accepts producer allocated sync objects.

‣ Reports consumer allocated sync objects.

‣ Buers

‣ Accepts list of element attributes producer can generate.

‣ Reports consolidated packet attribute list.

‣ Reports all allocated packets.

‣ During streaming phase:

‣ Signals availability of packets for reuse.

‣ Retrieves next packet to reuse with fence to wait for before writing.

‣ Accepts lled packet with fence to wait for before consumer should read.

‣ In non-safety builds, during streaming phase:

‣ Accepts limited changes to requested element attributes (e.g., to modify the image
size).

‣ Reports updated packet attributes.

‣ Reports removal of buers allocated for old attributes and addition of new ones.

Note:

Reallocation of buers in non-safety builds are not supported in this release.

5.6.4.4.3 Consumer
A consumer block provides the following interactions with its corresponding application
consumer component:

‣ During setup phase:

‣ Synchronization:

‣ Accepts consumer synchronization requirements.

‣ Reports producer synchronization requirements.

‣ Accepts consumer allocated sync objects.

‣ Reports producer allocated sync objects.

‣ Buers:

‣ Accepts list of element attributes consumer requires.

‣ Reports consolidated packet attribute list.

‣ Reports all allocated packets.

‣ During streaming phase:

‣ Signals availability of packets for reading.

‣ Retrieves next payload with fence to wait for before reading.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 355

Embedded Software Components

‣ Accepts packet, which can be reused with fence to wait for before the produce
writes new data.

‣ In non-safety builds, during streaming phase:

‣ Reports updated packet attributes.

‣ Reports removal of buers allocated for old attributes and addition of new ones.

Note:

Reallocation of buers in non-safety builds are not supported in this release.

5.6.4.4.4 Multicast
When a stream has more than one consumer, a multicast block is used to connect the
separate pipelines. This block distributes the producer's resources and actions to the
consumers, who are unaware that each other exist. It combines the consumers' resources
and actions, making them appear to the producer as a single virtual consumer. The block
does not directly provide any mechanisms to safeguard any of its consumers against faulty
or malicious behavior in its other consumers. Additional blocks can be used to isolate
individual consumer pipelines from others when there are safety or security concerns.

Once created and connected, no direct interaction by the application with a multicast block
is required. It automatically performs the following operations as events arrive from up and
downstream:

‣ During setup phase:

‣ Synchronization:

‣ Passes producer synchronization requirements to all consumers.

‣ Combines consumer synchronization requirements and passes to producer.

‣ Passes producer allocated sync objects to all consumers.

‣ Passes sync objects allocated by all consumers to producer.

‣ Buers:

‣ Combines lists of element attributes from all consumers into a single list and
passes upstream.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 356

Embedded Software Components

‣ Passes consolidated packet attribute list to all consumers.

‣ Passes allocated packets to all consumers.

‣ During streaming phase:

‣ Passes available payloads to all consumers.

‣ Tracks packets returned for reuse by the consumers and returns them to the
producer when all consumers are done with them. All fences are combined into one
list.

‣ In non-safety builds, during streaming phase:

‣ Distributes changes in packet attributes and buers to all consumers.

Note:

Reallocation of buers in non-safety builds are not supported in this release.

5.6.4.4.5 IPC
When the endpoints of a stream reside in separate processes, IPC blocks are used to
bridge the gaps. They are created in pairs, with a source IPC block in the upstream process
and a destination IPC block in the downstream process. The communication must rst be
established by the application using NvSciIpc, and then the channel endpoints are passed
to the two IPC blocks. They take ownership of the channel and use it to coordinate the
exchange of requirements and resources and signal the availability of packets.

There are two types of IPC pairs available, depending on whether the upstream and
downstream portions share memory.

5.6.4.4.5.1 Memory Sharing IPC

When the two halves of the stream access the same physical memory, memory sharing IPC
blocks can be used. These coordinate the sharing of resources between the two ends but
do not need to access the payload data. They perform the following actions when events
arrive from up and downstream:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 357

Embedded Software Components

‣ During setup phase:

‣ Synchronization:

‣ Exports synchronization requirements from the producer and consumer(s) and
imports them on the other side.

‣ Exports sync objects from the producer and consumer(s) and imports them on
the other side.

‣ Buers:

‣ Exports consumer element attributes from downstream and imports them
upstream.

‣ Exports consolidated packet attribute list and packets from upstream and
imports them downstream.

‣ During streaming phase:

‣ Source IPC block signals availability of new payloads to destination block, passing
the fence.

‣ Destination IPC block signals availability of packets for reuse to source block,
passing the fence.

‣ In non-safety builds, during streaming phase:

‣ Signals changes in packet attributes and buers from source to destination.

Note:

Reallocation of buers in non-safety builds are not supported in this release.

5.6.4.4.5.2 Memory Boundary IPC

When the two processes do not share memory, memory boundary IPC blocks must be
used. Each half of the stream must provide a separate set of packets. When new payloads
arrive, the source block transmits all the data to the destination block, where it is copied
into a new packet. Auxiliary communication channels may be set up for this purpose. Once
transmission is done, the original packet is returned upstream for reuse, without waiting
for the consumer to nish reading the data, since it accesses a dierent set of buers.

These IPC blocks can also be used to create virtual memory boundaries between portions
of a stream. If one consumer operates at a lower level of safety and/or security than the
rest of the stream, then even if it can share memory with the rest of the stream, it may not
be desirable to do so. Requiring this consumer to use its own set of buers ensures that
if it fails, it will not prevent the rest of the stream from continuing, and if it falls prey to a
security issue, it won't be able to modify the buer data seen by the other consumers.

‣ During setup phase:

‣ Synchronization:

‣ Synchronization objects are not exchanged across the memory boundary.

‣ Source and destination blocks provide their synchronization requirements for
the producer and consumer, respectively.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 358

Embedded Software Components

‣ If necessary, creates sync objects to be used to coordinate the data copy, and
passes to the local endpoint.

‣ Accesses sync objects from the local endpoint to coordinate data copy.

‣ Buers:

‣ Exports a subset of the consumer element attributes from downstream and
imports them upstream, replacing attributes related to memory access with
those needed for the data transfer mechanism to access the memory.

‣ Exports a subset of the consolidated packet attribute list from upstream and
imports them downstream, again replacing attributes related to memory access
with those needed for the copy engine.

‣ On destination side, receives and maps buers used for copy from downstream.

‣ During streaming phase:

‣ Source IPC block transmits payload data to the destination block.

‣ Destination IPC block reads the payload data into an available packet and passes it
downstream.

‣ In non-safety builds, during streaming phase:

‣ Signals changes in packet attributes and buers from source to destination.

5.6.4.4.6 Pool
Pool blocks are used to introduce packets to the stream and track packets available for
reuse. All streams must have at least one pool attached to the producer block. If a stream
contains memory boundaries, then additional pools are needed for each section of the
stream that uses its own set of packets, attached to the IPC block. For each pool block,
there is an application component responsible for deciding the packet layout based on the
requirements and allocating the buers.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 359

Embedded Software Components

NvSciStream supports two kinds of pools: static and dynamic.

5.6.4.4.6.1 Static Pool

Static pools provide a set of packets that remain xed for the life of the stream. The
number of buers must be specied at creation time, and the buers are added during
the setup phase. A static pool provides the following interactions with the application
component that manages it:

‣ During setup phase:

‣ Buers:

‣ Reports list of element attributes producer can generate.

‣ Reports list of element attributes consumers require.

‣ Accepts consolidated packet attribute list, and sends to producer and
consumers.

‣ Accepts allocated packets and sends to producer and consumers.

‣ During streaming phase:

‣ Receives and queues packets returned to the producer for reuse.

‣ Provides an available packet to the producer or IPC block it supports when
requested.

5.6.4.4.6.2 Dynamic Pool

Dynamic pools are only available in non-safety builds. They allow buers to be added and
removed at any time. This supports use cases where the producer may need to change
some of the buer attributes, such as the size or pixel format of the data. Video playback

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 360

Embedded Software Components

is a typical example where such changes may occur. A dynamic pool provides all the
interactions of a static pool, plus the following:

‣ In non-safety builds, during streaming phase:

‣ Reports requested element attribute changes from the producer.

‣ Accepts updated element attributes and sends it to the producer and consumers.

‣ Accepts instructions to remove packets from the stream and sends it to the
producer and consumers.

‣ Accepts new allocated packets and sends it to the producer and consumers.

Note:

Dynamic blocks are not supported in this release.

5.6.4.4.7 Queue
Queue blocks attached to consumer blocks keep track of payloads waiting to be acquired
by the consumer. Each consumer block must have an attached queue block to manage
available packets. Queue blocks attached to memory boundary Source IPC blocks keep
track of payloads waiting to be copied across memory boundary. Each memory boundary
Source IPC block must have an attached queue block to manage available packets.

NvSciStream supports two types of queue blocks: FIFOs and mailboxes. A FIFO block is
used when all data must be processed. Payloads always wait in FIFO until the consumer
acquires them. Mailboxes are used when the consumer always acts on the most recent
data. If a new payload arrives in the mailbox when one is already waiting, the previous one
is skipped and immediately returned to the producer for reuse.

5.6.4.4.8 Limiter
A limiter block places a cap on the number of packets allowed to be sent downstream at
any given time. It is usually inserted between a Multicast block and a Consumer block (and
in general before any IPC blocks transmitting to the consumer).

If a new packet arrives and the current number of downstream packets is at the capacity,
the packet is returned upstream immediately without reaching the consumer. This is
similar to frame-skipping that can be invoked by a Mailbox queue block attached to the
consumer. However, in this case the skipping can occur in the producer application rather

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 361

Embedded Software Components

than in the consumer. When a consumer at capacity returns a packet for reuse it can then
receive a new packet.

A Limiter block does not interact with any other Limiter blocks used with other consumers.
Each independently imposes its own limit on what is downstream and not aected by the
operations of any other limiter.

In addition, when using a mailbox queue, the consumer application must be capable of
dealing with skipped frames. Typical consumers may not be aware of skipped frames and
operate on the frame they receive without regard to previous frames. Where consumers
need to know that a frame is missed the application suite must include a sequence
number, timestamp, or other identifying information in the packet data.

Since faulty consumers may take some packets out of service, the application may need
to allocate additional total packets to ensure that there are enough left for the producer
and remaining consumers to use if one consumer reaches its cap and never returns any
packets again.

5.6.4.4.9 ReturnSync
A ReturnSync block addresses security and robustness with multicast streams. A
ReturnSync block can be inserted anywhere in the stream between the Producer and
Consumer blocks, but its primary intent is to be inserted between a Multicast block
and a Consumer block, downstream of a Limiter block for that consumer. If a producer
application must consider one or more consumer applications generating unreliable fences,
it can add ReturnSync blocks to safeguard against them. This isolates packets with bad
fences in the branch for an untrusted consumer, which prevents the producer from getting
stuck waiting for them.

A ReturnSync block waits for fences for each received packet from downstream before
sending it upstream. If fences for the received packet are expired or empty, then it returns
the packet upstream immediately. If not, it places the packet in the queue, and then
triggers a thread spawned by this block to manage the waiting fence before sending the
packet upstream. This block is useful if blocks upstream require synchronous access of
packet data.

5.6.4.4.10 PresentSync
For symmetry, a PresentSync block is added, which does the waiting for fences for each
received packet from upstream before sending it downstream. The block spawns a thread
that waits for fences in the order of the packets received and send them downstream once
fences are reached. This block is useful if blocks downstream require synchronous access
of packet data.

For example, a PresentSync block can be inserted between the Producer and the memory
boundary IPC block to keep packets from queuing for sending until their contents are
ready; primarily when the memory boundary IPC block uses a mailbox queue.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 362

Embedded Software Components

5.6.4.4.11 Example
The following diagram shows a complete stream. It has three (3) consumers. One
resides in the same process as the producer, the second resides in another process
on the same system and shares memory with the producer process, and the third
resides on another system and uses its own set of packets. The rst uses a FIFO queue
and the other two use mailbox queues. The producer application is concerned about
the consumer in another process generating unreliable fences, it adds a return sync
block to safeguard against it and places a cap on the number of packets held by the
consumer in another processthis consumer using the limiter block. It also chooses to
add a present sync block before the memory boundary source IPC block, which uses a
mailbox queue, to keep packets from being queued for sending until their contents are

ready.

5.6.4.5 Stream Creation
The modular nature of NvSciStream allows producer and consumer components, or entire
applications, to be developed independently by dierent providers, but some planning is
required to ensure proper inter-operation. System integrators must make several decisions
before assembling a stream.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 363

Embedded Software Components

‣ Determine which consumers reside in the same process as the producer and which
are separated in other processes, partitions, or systems. Factors that inuence this
decision include modularity of development, management of computational resources,
and freedom from interference.

‣ Determine which consumers require physical or virtual memory boundaries to
safeguard critical consumers from less robust or secure consumers.

‣ Determine which consumers must process every payload and which only require the
most recent data.

‣ Determine which consumers cannot be fully trusted and should have their packet
access limited.

‣ Determine how communication between the processes is established.

‣ Provide a uniform set of packet element types with associated data layout denitions
for designing all endpoints.

‣ Based on the complexity of the stream, determine how many packets are required to
keep the pipeline operating at desired eciency.

Once these decisions are made, use NvSciStream to assemble the desired stream(s).

5.6.4.5.1 NvSciBuf and NvSciSync Initialization
All NvSci buer and sync object handles are associated with a particular NvSciBufModule
and NvSciSyncModule, respectively. Any streaming application must begin by creating one
of each of these modules. In general, an application may create more than one of each type
of module, but there is rarely any reason to do so. However, all buer and sync objects used
with a given stream within a single process must be associated with the same modules.
Dierent streams may use dierent modules.

5.6.4.5.2 NvSciIpc Initialization
For cross-process streams, the applications must rst establish communication with each
other using NvSciIpc. Refer to Inter-Process Communicationfor more information on how
to set up the connections.

Once an NvSciIpc channel is created, the applications may use it to do any required
initial validation and coordination. Once that is complete, ensure no unprocessed
messages remain in the channel, reset the channel, and pass the channel endpoint
o to NvSciStream. NvSciStream then takes the ownership of the channel and uses it
to coordinate stream operations between the two processes. From this point on, the
application must not directly operate on the channel. Doing so leads to unpredictable
behavior and will cause the stream to fail. After streaming is complete, the application
should close the channel endpoint after deleting the NvSciStream blocks and freeing all
the NvSciBuf/NvSciSync resources obtained from NvSciStream.

5.6.4.5.3 NvSciEventService Initialization
NvSciStream can optionally use NvSciEventService for event notication. For each
NvSciStream block, applications can request an NvSciEventNotier object on which
applications can wait for new events in the block.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 364

Embedded Software Components

Refer to the NvSciEventService API Usage section on how to set up NvSciEventService and
wait on an NvSciEventHandler object.

5.6.4.5.4 Block Creation
Each application is responsible for creating the NvSciStream blocks that reside in that
process. The block creation functions all take a pointer parameter in. When successful,
a block handle of type NvSciStreamBlock is returned. This handle is used for all further
operations on the block. Some require additional parameters. For those that require a
NvSciBufModule and/or NvSciSyncModule, the same module must be provided as those
used to access the buers and sync objects. Blocks may be created in any order.

5.6.4.5.4.1 Pool

NvSciError
NvSciStreamStaticPoolCreate(
 uint32_t const numPackets,
 NvSciStreamBlock *const pool
)

‣ Pool blocks have no inputs and outputs used with the connection function.

‣ Pools are attached directly to a producer or Memory Boundary IPC block during that
block's creation.

‣ For static pools, the number of packets the pool provides must be specied at creation.

5.6.4.5.4.2 Producer

NvSciError
NvSciStreamProducerCreate(
 NvSciStreamBlock const pool,
 NvSciStreamBlock *const producer
)

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 365

Embedded Software Components

‣ A pool block must be provided for each producer block at creation.

‣ Producer blocks have a single output connection and no input connections.

5.6.4.5.4.3 Multicast

NvSciError
NvSciStreamMulticastCreate(
 uint32_t const outputCount,
 NvSciStreamBlock *const multicast
)

‣ Multicast blocks have a single input connection and a xed number of output
connections specied at creation.

‣ During the connection process described in the following section, the order in which
outputs are connected doesn't matter.

5.6.4.5.4.4 Queues

NvSciError
NvSciStreamFifoQueueCreate(
 NvSciStreamBlock *const queue
)
NvSciError
NvSciStreamMailboxQueueCreate(
 NvSciStreamBlock *const queue

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 366

Embedded Software Components

)

‣ Queue blocks have no inputs and outputs used with the connection function.

‣ Queues are attached directly to a consumer block or a memory boundary source IPC
block during that block's creation.

5.6.4.5.4.5 Consumer

NvSciError
NvSciStreamConsumerCreate(
 NvSciStreamBlock const queue,
 NvSciStreamBlock *const consumer
)

‣ A queue block must be provided for each consumer block at creation.

‣ Consumer blocks have a single input connection and no output connections.

5.6.4.5.4.6 IPC

NvSciError
NvSciStreamIpcSrcCreate(
 NvSciIpcEndpoint const ipcEndpoint,
 NvSciSyncModule const syncModule,
 NvSciBufModule const bufModule,
 NvSciStreamBlock *const ipc
)

NvSciError

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 367

Embedded Software Components

NvSciStreamIpcSrcCreate2(
 NvSciIpcEndpoint const ipcEndpoint,
 NvSciSyncModule const syncModule,
 NvSciBufModule const bufModule,
 NvSciStreamBlock const queue,
 NvSciStreamBlock *const ipc
)

NvSciError
NvSciStreamIpcDstCreate(
 NvSciIpcEndpoint const ipcEndpoint,
 NvSciSyncModule const syncModule,
 NvSciBufModule const bufModule,
 NvSciStreamBlock *const ipc
)

NvSciError
NvSciStreamIpcDstCreate2(
 NvSciIpcEndpoint const ipcEndpoint,
 NvSciSyncModule const syncModule,
 NvSciBufModule const bufModule,
 NvSciStreamBlock const pool,
 NvSciStreamBlock *const ipc
)

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 368

Embedded Software Components

‣ IPC blocks are created in pairs, each using one end of an NvSciIpc channel.

‣ The caller must complete any of its own communication over the channel before
passing it to NvSciStream and must not subsequently read from or write to it.

‣ The NvSciBuf and NvSciSync modules must be those used for all buer and sync object
associated with the stream in the calling process. The block uses them when importing
objects from the other endpoint.

‣ The source (upstream) block has one input connection, and the destination
(downstream) block has one output connection. Together with the channel between
them, they are viewed as a single virtual block with one input and one output, spanning
the two processes.

5.6.4.5.4.7 Limiter

NvSciError
NvSciStreamLimiterCreate(
 uint32_t const maxPackets,
 NvSciStreamBlock *const limiter
)

‣

‣ Limiter blocks have one input and one output.

‣ The number of packets allowed to be sent downstream to a consumer block is specied
at creation.

5.6.4.5.4.8 PresentSync

NvSciError
NvSciStreamPresentSyncCreate(
 NvSciSyncModule const syncModule,
 NvSciStreamBlock *const presentSync
)

‣ PresentSync block has one input and one output.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 369

Embedded Software Components

‣ The NvSciSyncModule used to create the block must be the module endpoints use to
allocate NvSciSyncObj.

5.6.4.5.4.9 ReturnSync

NvSciError
NvSciStreamReturnSyncCreate(
 NvSciSyncModule const syncModule,
 NvSciStreamBlock *const returnSync
)

‣ ReturnSync block has one input and one output.

‣ The NvSciSyncModule used to create the block must be the module endpoints use to
allocate NvSciSyncObj.

5.6.4.5.5 Congure Block to Use NvSciEventService
As an optional setup, applications can congure a block to use NvSciEventService for
event notication.

NvSciError
NvSciStreamBlockEventServiceSetup(
 NvSciStreamBlock const block,
 NvSciEventService *const eventService,
 NvSciEventNotifier **const eventNotifier
)

The function returns a NvSciEventNotifier object that applications can use to wait
for new events on the block. It is the responsibility of the application to delete the
NvSciEventNotifier objects when they are no longer needed. Event-notication behavior
of a block is undened after its associated NvSciEventNotifier object is deleted.

If any NvSciStream API, including block connection, is called on a block before this
function, the block will automatically be congured to use the default event-notication
method, described in the following Event Handling section. The event-notication method
of a block cannot be changed once it is determined.

5.6.4.5.6 User-dened Endpoint Information
As an optional setup, before the blocks are connected, applications can
supply user-dened data to the endpoint blocks (Producer and Consumer)
with NvSciStreamBlockUserInfoSet(). After the blocks are connected,
applications can query the data from every block in the connected stream with
NvSciStreamBlockUserInfoGet(). All applications that operate the blocks should

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 370

Embedded Software Components

understand the userType value. Endpoint applications can use the information from
opposed endpoints to make choices in resource creation or streaming.

NvSciError
NvSciStreamBlockUserInfoSet(
 NvSciStreamBlock const block,
 uint32_t const userType,
 uint32_t const dataSize,
 void const* const data
)

NvSciError
NvSciStreamBlockUserInfoGet(
 NvSciStreamBlock const block,
 NvSciSreamBlockType const queryBlockType,
 uint32_t const queryBlockIndex,
 uint32_t const userType,
 uint32_t* const dataSize,
 void* const data
)

5.6.4.5.7 Block Connection
Once blocks are created, they can be connected in pairs. The connection can be done in
any order and can be intermingled with creation of the blocks.
NvSciError
NvSciStreamBlockConnect(
 NvSciStreamBlock const upstream,
 NvSciStreamBlock const downstream
)

An available output of the upstream block is connected to an available input of the
downstream block. If there is no available output or input, the function fails. Each input and
output block can be connected only once. A new block cannot be connected in place of an
old one, even if the old one is destroyed.

5.6.4.5.8 Comparison with EGL
Those familiar with EGL will notice that this process is more involved than the creation
of an EGLStream. For an EGLStream, all the desired features are encoded into an array of
attributes, and then a single stream object (or two in the case of cross-process) is created.
The details of setting up all the stream management are left to the EGL implementation.
But a simple attribute array cannot convey all the possible stream feature permutations
and use cases that an application may desire. In fact, multicasting to more than one
consumer cannot be handled by EGLStream at all without additional extensions dening
new objects.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 371

Embedded Software Components

The modular approach used by NvSciStream requires applications to perform separate
creation calls for each feature of the desired stream, and then connect them together.
This is more eort, but aords greater control over the stream's behavior, and allows
for features not originally anticipated or readily supported by EGLStreams, such as
multicasting. It allows the development of new block types to support new features in the
future, which are harder to add to a monolithic stream object.

5.6.4.5.9 Simple Example
The following example assembles a simple cross-process stream with a producer and
pool in one process, and a FIFO and consumer in another process. The cross-process
communication channel is assumed to be established before this code executes.

5.6.4.5.9.1 Sample Producer Creation

// We'll use triple buffering for this stream
const uint32_t numPackets = 3;
// Stream variables
NvSciIpcEndpoint srcIpc;
NvSciBufModule bufModule = 0;
NvSciSyncModule syncModule = 0;
NvSciStreamBlock producerBlock = 0;
NvSciStreamBlock poolBlock = 0;
NvSciStreamBlock srcIpcBlock = 0;
NvSciError err;
// Setting up communication is outside the scope of this guide
srcIpc = <something>;
// Set up buffer and sync modules
// (If using multiple streams, or doing other non-stream NvSci
// operations, these might be passed in from some global setup.)
err = NvSciBufModuleOpen(&bufModule);
if (NvSciError_Success != err) {
 <handle failure>
}
err = NvSciSyncModuleOpen(&syncModule);
if (NvSciError_Success != err) {
 <handle failure>
}
// Create all the stream blocks
err = NvSciStreamStaticPoolCreate(numPackets, &poolBlock);
if (NvSciError_Success != err) {
 <handle failure>
}
err = NvSciStreamProducerCreate(poolBlock, &producerBlock);
if (NvSciError_Success != err) {
 <handle failure>
}
err = NvSciStreamIpcSrcCreate(srcIpc, syncModule, bufModule, &srcIpcBlock);
if (NvSciError_Success != err) {
 <handle failure>
}
// Connect the blocks
err = NvSciStreamBlockConnect(producerBlock, srcIpcBlock);
if (NvSciError_Success != err) {
 <handle failure>
}

5.6.4.5.9.2 Sample Consumer Creation

// Stream variables
NvSciIpcEndpoint dstIpc;
NvSciBufModule bufModule = 0;
NvSciSyncModule syncModule = 0;

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 372

Embedded Software Components

NvSciStreamBlock consumerBlock = 0;
NvSciStreamBlock fifoBlock = 0;
NvSciStreamBlock dstIpcBlock = 0;
NvSciError err;
// Setting up communication is outside the scope of this guide
dstIpc = <something>;
// Set up buffer and sync modules
// (If using multiple streams, or doing other non-stream NvSci
// operations, these might be passed in from some global setup.)
err = NvSciBufModuleOpen(&bufModule);
if (NvSciError_Success != err) {
 <handle failure>
}
err = NvSciSyncModuleOpen(&syncModule);
if (NvSciError_Success != err) {
 <handle failure>
}
// Create all the stream blocks
err = NvSciStreamFifoQueueCreate(&fifoBlock);
if (NvSciError_Success != err) {
 <handle failure>
}
err = NvSciStreamConsumerCreate(fifoBlock, &consumerBlock);
if (NvSciError_Success != err) {
 <handle failure>
}
err = NvSciStreamIpcDstCreate(dstIpc, syncModule, bufModule, &dstIpcBlock);
if (NvSciError_Success != err) {
 <handle failure>
}
// Connect the blocks
err = NvSciStreamBlockConnect(dstIpcBlock, consumerBlock);
if (NvSciError_Success != err) {
 <handle failure>
}

5.6.4.6 Event Handling
NvSciStream is designed so that, once a stream is created and connected, applications can
follow an event-driven model. Operations on one block in a stream trigger events in other
blocks. These events are dequeued by the applications, which act in response, performing
new block operations that trigger new events, and so on. Every block supports an event
queue, although some types of blocks may only generate events during the initial setup
phase.

5.6.4.6.1 Event Query
Events can be queried from each block:
NvSciError
NvSciStreamBlockEventQuery(
 NvSciStreamBlock const block,
 int64_t const timeoutUsec,
 NvSciStreamEventType *const eventType
)

‣ If the block is not congured to use NvSciEventService:

‣ ‣ If no events are pending in the block's queue, a non-zero timeout causes it to wait
the specied number of microseconds for an event to arrive. If a negative value is
used, the call waits forever.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 373

Embedded Software Components

‣ If the block is congured to use NvSciEventService:

‣ ‣ Non-zero timeout causes it to return an NvSciError_BadParameter error.

On success, a pending event is removed from the block's queue, the output parameter
is lled with the type of the event, and NvSciError_Success is returned. If no event is
available before the timeout period ends, an NvSciError_Timeout error is returned.

After an event is queried from a block, certain NvSciStream APIs become operational
on the block. Refer to the API Reference for NvSciStreamEventType for additionally
information about the functions that become operational for each event type queried.

5.6.4.6.2 Event Notication
NvSciStream provides two event-notication methods. This is a per-block conguration,
and it is not required that all blocks in a stream be congured to use the same event-
notication method.

‣ Without NvSciEventService

Applications wait for events by calling NvSciStreamBlockEventQuery() with non-zero
timeout value.

‣ With NvSciEventService

Applications wait for events by waiting on the NvSciEventNotier objects bound to the
blocks, using the event-waiting API of NvSciEventService. Applications should query
all the events pending in the block after waking up from waiting on the associated
NvSciEventNotier object. Note it is possible that NvSciEventNotier objects be signaled
by spurious events, in which case the event query will return NvSciError_Timeout error.

The event-waiting API of NvSciEventService waits on NvSciEventNotier objects, regardless
of the UMD they are associated. It enables applications to simultaneously wait for
NvSciStream events and events from other UMDs.

Refer to the NvSciEventService API Usage section for how to wait on a single or multiple
NvSciEventNotier objects.

5.6.4.6.3 Connection and Disconnection Events
Assuming no failures occur during setup, the rst event type each block receives
is NvSciStreamEventType_Connected. This indicates that the block has a complete
connection path to the producer and consumers, respectively. After connecting, no
operations are allowed on any block until this event is received. Applications must wait for
it before proceeding with the resource setup described in the next section.

If a block is destroyed or, in the cross-process case, communication with a process is
lost, an NvSciStreamEventType_Disconnected event is sent to connected blocks. If other

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 374

Embedded Software Components

events are pending, such as available payloads, they are processed rst. Once this event is
received, no further events arrive, and operations to send events fail.

Note:

In safety-certied systems, failures and teardown are never supposed to occur.
Although disconnect events are currently supported in the current safety release,
they will be removed in later safety releases, and only supported for non-safety
platforms.

5.6.4.6.4 Error Events
If the event queried is of type NvSciStreamEventType_Error, an error not directly
triggered by user action occurred in the block. Applications can retrieve the error code by
NvSciStreamBlockErrorGet(). If multiple errors occur before this retrieval, only the rst
error code is available. All subsequent errors are ignored until the error code is retrieved,
with the assumption that they are related to the rst error.

NvSciError
NvSciStreamBlockErrorGet(
 NvSciStreamBlock const block,
 NvSciError* const status
)

5.6.4.7 Resource Creation
Once the stream blocks are fully created, the next step is to create synchronization and
buer resources. The process of determining resource requirements and allocating them
is much like that described in the simple single-buer example at the beginning of this
chapter. But all coordination between the producer and consumers is done through the
stream, which automatically deals with any translations required to share the resources
between processes, partitions, or systems.

Creation of synchronization and buer resources can be done in either order or can be
intermingled. The two are similar, but the process for synchronizing objects is a little
simpler.

Progression of Resource Creation

Various setup operations are divided into key groups. Data for each group is gathered and
sent together at once when the application indicates that it is done with the setup. This
completion is signaled with a call to NvSciStreamBlockSetupStatusSet(). The completed
parameter to this function is for future support of dynamically modifying streams (for non-
safety usecases) and currently must always be true.
NvSciError
NvSciStreamBlockSetupStatusSet(
 NvSciStreamBlock const block,
 NvSciStreamSetup const setupType,
 bool const completed
)

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 375

Embedded Software Components

5.6.4.7.1 Buer Resources
To allocate buers, the producer and consumer blocks communicate their requirements to
a third block, the pool. The application component that owns this pool block is responsible
for performing the allocations. For many use cases, this is the same application that
manages the producer. But keeping this functionality in a separate block from the
producer serves several purposes.

It allows NvSciStream to provide dierent types of pools for dierent use cases while
sharing a common set of interfaces. For instance, you may choose a static pool with a xed
set of buers for safety-certied builds, a dynamic pool that allows buers to be added
and removed in cases where the producers may change the data layout over time, or a
remote pool managed by a central server process that doles out buers to all streams in
the application suite.

Furthermore, a stream may require additional pools beyond the one which feeds buers
to the producer. For instance, in cross-system use cases where memory is not shared
between the producer and consumer, the IPC block on the consumer side also requires
a pool to provide buers into which data is copied. Keeping the pool as a separate block
allows generic application components to be written that do not need to know whether the
pool is used with a producer or another block.

Before reading this section, refer to Buer Management to understand how buer
requirements are specied and how buers are created. This section assumes familiarity
with the commands used there and does not explain them in detail. This section covers
how to coordinate buers through a stream.

5.6.4.7.1.1 Buer Requirements

Specifying Requirements

Buer data ows from the producer to the consumer(s). The producer must query the
NVIDIA drivers they use for buer attribute lists that provide write capability, while
consumers must query for buer attributes that provide read capability. If the buer
memory is written or read directly with the CPU, attribute lists can be manually created,
requesting CPU access.

A packet may consist of multiple buer elements containing dierent types of data. The
producer must obtain a buer attribute list for each type of data it can generate, and
consumers must obtain attribute lists for each type of data they require.

Once a producer knows all the elements it can provide, or a consumer
knows all the elements it requires, it can inform the stream by calling
NvSciStreamBlockElementAttrSet()(operational after NvSciStreamEventType_Connected
is queried) for each element. The userType parameter is an application-dened value to
identify the element, understood by both the producer and consumer. The userType should
be unique for each element. The bufAttrList eld contains a handle for the element's
attribute list. Ownership of this handle remains with the caller, and it deletes it when it is
no longer needed after the function returns. NvSciStream creates a duplicate.

After specifying all of the elements, the application indicates it nished
element setup by calling NvSciStreamBlockSetupStatusSet() with a value of

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 376

Embedded Software Components

NvSciStreamSetup_ElementExport. NvSciStream automatically determines the indices and
count.

Asynchronous elements data is not available to the consumer until the fences complete.
This generally indicates data written using NVIDIA hardware. Synchronous elements data
is available to be read as soon as the packet is acquired by the consumer, without waiting
for a fence. This generally indicates data written directly with the CPU. Sync requirements
setup steps determine whether an element is asynchronous or synchronous.

A typical use case is that a packet contains both asynchronous and synchronous
elements: a packet containing a large primary data element accompanied by a smaller
metadata element. The smaller element contains information to program the hardware
for processing the primary element. Upon acquiring the packet, the CPU must read the
metadata immediately so that instructions for the NVIDIA drivers can be issued. The
primary data is read later once the fence has been reached.

NvSciError
NvSciStreamBlockElementAttrSet(
 NvSciStreamBlock const block,
 uint32_t const userType,
 NvSciBufAttrList const bufAttrList
)

Receiving Requirements

Pool, producer, and consumer each receive a single NvSciStreamEvent_Elements event.
The pool receives the event after the producer and all consumers nish specifying their
element support. After the pool nishes specifying the nal packet element layout, the
producer and consumers receive this event. After this event is queried from pool, the
following functions become operational on the pool block:

 NvSciStreamBlockElementCountGet()
 NvSciStreamBlockElementAttrGet()
 NvSciStreamBlockElementAttrSet()

After the producer and consumers query the event, the following functions become
operational on the producer and consumer blocks:

 NvSciStreamBlockElementCountGet()
 NvSciStreamBlockElementAttrGet()
 NvSciStreamBlockElementUsageSet() (consumer only)
 NvSciStreamBlockElementWaiterAttrSet()

As with synchronization requirements, the attributes received by the pool may not exactly
match those sent by the producer and consumer endpoints. For the multicast case, the
pool receives a combined list with one element for each type of attribute the consumers
requested. Elements with the same type arrive as a single event with their attribute lists
merged. The stream may also transform attributes to handle cross-process or cross-
system cases. When querying the elements, consumers can choose not to use all of
them. A consumer can inform NvSciStream that an element will not be used by calling
NvSciStreamBlockElementUsageSet() with <used> set to false. This will allow NvSciStream
to optimize by not sharing the relevant buers with the consumer. This function can
be called with <used> set to true, but this is the default, and the call is not necessary.
Therefore, most existing applications will not need to add this call.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 377

Embedded Software Components

After querying element information and (for the consumer) indicating which elements they
will support, the producer and consumer(s) must call NvSciStreamBlockSetupStatusSet()
function with a value of NvSciStreamSetup_ElementImport. This allows them to begin
receiving packets from the pool.

Any secondary pools connected to IPC blocks also receive events for the producer and
consumer elements. However, the producer events are delayed until the primary pool
determines the nal packet layout (discussed below). The producer element attributes the
secondary pools receive are those sent by the primary pool.
NvSciError
NvSciStreamBlockElementCountGet(
 NvSciStreamBlock const block,
 NvSciStreamBlockType const queryBlockType,
 uint32_t* const numElements
)

NvSciError
NvSciStreamBlockElementAttrGet(
 NvSciStreamBlock const block,
 NvSciStreamBlockType const queryBlockType,
 uint32_t const elemIndex,
 uint32_t* const userType,
 NvSciBufAttrList* const bufAttrList
)

NvSciError
NvSciStreamBlockElementUsageSet(
 NvSciStreamBlock const block,
 uint32_t const elemIndex,
 bool const used
)

Reconciling Requirements

For the pool attached to the producer:

The application managing the pool must take the capabilities provided by the producer and
the requirements provided by the consumer(s) and determine the nal packet layout. For
each element type provided by the producer and required by a consumer, it should merge
their attribute lists to obtain the attribute list to use in allocating the buer. If there is an
element type provided by the producer but not required by any of the consumers, omit
it from the packets. If there is a type required by a consumer that the producer cannot
provide, the application can trigger an error. However, there may be cases understood by
the application suite where the consumer requirements represent several options, and
only one of the requested element types is needed. If the producer can provide one of
them, streaming can proceed. It is to support possible complex situations like this that the
reconciliation process is left to applications, rather than being done automatically by the
stream.

As in producer and consumer(s) applications, pool application calls
the NvSciStreamBlockSetupStatusSet() function with a value of
NvSciStreamSetup_ElementImport to inform NvSciStream it has nished element import.

Once the application has determined the nal layout, it calls
NvSciStreamBlockElementAttrSet() to inform NvSciStream the reconciled element
attributes. It also must call NvSciStreamBlockSetupStatusSet() function with
a value of NvSciStreamSetup_ElementExport to inform NvSciStream it nished

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 378

Embedded Software Components

exporting element attributes. Producer and consumer(s) application(s) query event
NvSciStreamEventType_Elements and get the element attributes by the function
described above. Applications use this information to interpret the data layout and prepare
to receive the packets.

For the pool attached to the memory-boundary destination IPC:

The application retrieves the element attributes reconciled by the producer’s
pool after querying event NvSciStreamEventType_Elements. The application
calls the NvSciStreamBlockSetupStatusSet() function with a value of
NvSciStreamSetup_ElementImport to inform NvSciStream it nished element import.

5.6.4.7.1.2 Buer Exchange

Specifying Buers

Once the element attributes are specied, the application can allocate buers from
NvSciBuf using the attribute lists. It creates packets using the pool object, allocates a
buer for each element of each packet, and then assigns them to their proper places in
the packets.

To create a new packet, the application calls NvSciStreamPoolPacketCreate(). The
cookie is any non-zero value that the application chooses to look up data structures for
the packet. Typically, the cookie is either a 1-based index into an array of structures or
a pointer directly to the structure. Any events received on the pool object related to the
packet references this cookie. On success, the function returns a new handle that the
application stores in its data structure for the packet and uses whenever it needs to tell
the stream to operate on the packet.

After creating a packet, the application assigns a buer to each element by calling
NvSciStreamPoolPacketInsertBuffer(). The packet handle is returned at packet creation,
and the index of the element is assigned the buer handle, which NvSciStream duplicates.
Ownership of the original remains with the caller, and once the function returns, it may
safely free the buer.

The application calls NvSciStreamPacketComplete() to inform NvSciStream nished
assigning buers for a packet.

When the application nished creating all packets and assigned all buers,
it calls the NvSciStreamBlockSetupStatusSet() function with a value of
NvSciStreamSetup_PacketExport to indicate completion of packet creation.

For static pools, the number of packets is specied when the pool is created. Streaming
won't start until this number of packets is created. If the application tries to create more
than this number of packets, an error occurs.
NvSciError
NvSciStreamPoolPacketCreate(
 NvSciStreamBlock const pool,
 NvSciStreamCookie const cookie,
 NvSciStreamPacket *const handle
)

NvSciError
NvSciStreamPoolPacketInsertBuffer(

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 379

Embedded Software Components

 NvSciStreamBlock const pool,
 NvSciStreamPacket const handle,
 uint32_t const index,
 NvSciBufObj const bufObj
)

NvSciError
NvSciStreamPoolPacketComplete(
 NvSciStreamBlock const pool,
 NvSciStreamPacket const handle
)

Receiving Buers

When a pool completes a new packet, any producer or consumers that pool serves is
notied with a NvSciStreamEventType_PacketCreate event.

Upon receiving this event, the endpoint calls NvSciStreamBlockPacketNewHandleGet() to
dequeue the handle of the new packet and then NvSciStreamBlockPacketBufferGet()
to get the buers for the elements in the packet. After checking whether it can map
in all the buers for a given packet, the endpoint signals status back to the pool by
NvSciStreamBlockPacketStatusSet(). The status parameter indicates if the application
was successful in setting up the new packet. If so, the value is NvSciError_Success.
Otherwise, it can be any value the application chooses. NvSciStream does not interpret the
value except to check for success, and then passes it back to the pool. If successful, the
cookie parameter provides the endpoint cookie for the packet. Each endpoint can provide
its own cookie for each packet, which is used in subsequent events.

The producer and consumers may assign the same cookies as the pool but are not required
to do so.

NvSciError
NvSciStreamBlockPacketNewHandleGet(
 NvSciStreamBlock const block,
 NvSciStreamPacket* const handle
)

NvSciError
NvSciStreamBlockPacketBufferGet(
 NvSciStreamBlock const block,
 NvSciStreamPacket const handle,
 uint32_t const elemIndex,
 NvSciBufObj* const bufObj
)

NvSciError
NvSciStreamBlockPacketStatusSet(
 NvSciStreamBlock const block,
 NvSciStreamPacket const handle,
 NvSciStreamCookie const cookie,
 NvSciError const status

After the pool nishes exporting the packets, the endpoints receive an
NvSciStreamEventType_PacketsComplete event. They can complete setup related to
packet resources and call the NvSciStreamBlockSetupStatusSet() function with a value
of NvSciStreamSetup_PacketImport to indicate they nished importing the packets.

If a pool deletes a packet, when the producer or consumer receives the
NvSciStreamEventType_PacketDelete event it can determine the identity of the deleted
packet by calling NvSciStreamBlockPacketOldCookieGet(), which retrieves the cookie

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 380

Embedded Software Components

of a packet pending deletion. The handle of the returned packet becomes invalid for
subsequent function calls.
NvSciError
NvSciStreamBlockPacketOldCookieGet(
 NvSciStreamBlock const block,
 NvSciStreamCookie* const cookie
)

Completing Buer Setup

When the producer and consumers accept a packet, a the pool receives
the NvSciStreamEventType_PacketStatus event. The pool application calls
NvSciStreamPoolPacketStatusAcceptGet() for the acceptance status of a packet.
If the packet is not accepted by producer or consumers, the pool application can call
NvSciStreamPoolPacketStatusValueGet() to get the error code.

After receiving the acceptance status of all packets, the pool application
calls the NvSciStreamBlockSetupStatusSet() function with a value of
NvSciStreamSetup_PacketImport to complete the buer setup.

NvSciError
NvSciStreamPoolPacketStatusAcceptGet(
 NvSciStreamBlock const pool,
 NvSciStreamPacket const handle,
 bool* const acccepted
)

NvSciError
NvSciStreamPoolPacketStatusValueGet(
 NvSciStreamBlock const pool,
 NvSciStreamPacket const handle,
 NvSciStreamBlockType const queryBlockType,
 uint32_t const queryBlockIndex,
 NvSciError* const status
)

5.6.4.7.1.3 Comparison with EGL

When using EGLStreams, back-and-forth coordination of buer attributes between the
endpoints is not required. Buers are created through the producer rendering interface
and are communicated to the consumer when inserted in the stream. The downside is that,
in most cases, the producer has no awareness of the consumer for which the buers are
intended. There is no way to ensure that the buers the producer allocates are compatible
with the consumer at the time they are created. If they are not, then either streaming
fails when the consumer receives the buers, or a costly conversion process must occur
for every frame. The NvSciStream model puts more burden on the application when
establishing the buers but ensures optimal allocation settings for compatibility between
producer and consumers.

Additionally, EGLStreams are far more restricted in the kinds of buers they support.
They allow two-dimensional image buers rendered by the GPU and video, along with a
limited set of metadata buers generated by the CPU. NvSciStream allows multiple buers
of data rendered by either source. These buers can contain images, arrays, tensors, or
anything else the user requires.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 381

Embedded Software Components

5.6.4.7.2 Synchronization Resources
Before reading this section, be sure to read the full chapter on Synchronization to
understand how synchronization requirements are specied and synchronization objects
are created. This section assumes familiarity with the commands used there and does not
explain them in detail. The following sections cover how to coordinate synchronization
objects through a stream.

5.6.4.7.2.1 Synchronization Requirements

Setting up synchronization resources begins by determining the requirements of each
endpoint. The producer and consumers must query the NVIDIA drivers they are going to
use with the appropriate APIs to obtain separate NvSciSyncAttrList handles representing
the requirements for signaling (writing to) and waiting for (reading from) synchronization
objects.

If an endpoint directly writes to or reads from the stream packets with the CPU instead
of using an NVIDIA API, it does not generate any fences, and therefore does not need
synchronization signaling requirements. It needs to perform CPU waits for fences from
the other endpoint, and therefore must create a waiting requirement attribute list with the
NeedCpuAccess ag set.

In some use cases, an application endpoint may require that packets it receives be available
immediately, without waiting for any fence. In this case, it does not need to provide any
synchronization waiting requirement attributes. Instead, it indicates to the other endpoint
that it must do a CPU wait before sending the packets. This is not common but is provided
to support these cases when they arise.

Once an endpoint has determined its signal and wait requirements for synchronization
objects, it stores the signal requirements locally, and passes the wait requirements, one
NvSciSyncAttrList per packet element, to the other endpoint through the stream. It
passes an NvSciSyncAttrList with the wait requirement attribute if fences are supported
into the endpoint block by calling NvSciStreamBlockElementWaiterAttrSet(). If the
waiter for the element referenced by elemIndex does not support fences, NULL pointer
is passed. The function call is the same for both producer and consumer endpoints.
Ownership of the sync attributes' handle remains with the caller. The stream creates a
duplicate before the function returns.

After indicating their waiter requirements for all the elements, the producer and consumer
applications call the NvSciStreamBlockSetupStatusSet() function with a value of
NvSciStreamSetup_WaiterAttrExport to inform NvSciStream they are done specifying
waiter requirements.
NvSciError
NvSciStreamBlockElementWaiterAttrSet(
NvSciStreamBlock const block,
Uint32_t const elemIndex,
NvSciSyncAttrList const waitSyncAttrList
)

Specifying Requirements

Buer data ows in only one direction, from the producer to the consumer(s). With
synchronization objects, fences are generated at both endpoints and ow in both

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 382

Embedded Software Components

directions. Setting up synchronization resources begins by determining the requirements
of each endpoint. The producer and consumers must query the NVIDIA drivers they
will use with the appropriate APIs to obtain separate NvSciSyncAttrList handles. The
handles represent the requirements for signaling (writing to) and waiting for (reading from)
synchronization objects.

If an endpoint directly writes to or reads from the stream packets with the CPU instead
of using an NVIDIA API, it does not generate fences and does not need synchronization
signaling requirements. The endpoint must perform CPU waits for fences from the other
endpoint and must create a waiting requirement attribute list with the NeedCpuAccess ag
set.

In some cases, an application endpoint may require that packets it receives are available
immediately, without waiting for a fence. This does not require synchronization waiting
requirement attributes. Instead, the other endpoint is notied of CPU wait before sending
the packets.

Once an endpoint determines its signal and wait requirements for synchronization
objects, it stores the signal requirements locally and passes the wait requirements, one
NvSciSyncAttrList per packet element, to the other endpoint through the stream. It
passes an NvSciSyncAttrList with the wait requirement attribute, if fences are supported,
into the endpoint block by calling NvSciStreamBlockElementWaiterAttrSet(). If the
waiter for the element referenced by elemIndex does not support fences, NULL pointer
is passed. The function call is the same for both producer and consumer endpoints.
Ownership of the sync attribute handle remains with the caller. The stream creates a
duplicate before the function returns.

After indicating the waiter requirements for all elements, the producer and consumer
applications call the NvSciStreamBlockSetupStatusSet() function with a value of
NvSciStreamSetup_WaiterAttrExport to inform NvSciStream that specifying waiter
requirements is complete.
NvSciError
NvSciStreamBlockElementWaiterAttrSet(
 NvSciStreamBlock const block,
 Uint32_t const elemIndex,
 NvSciSyncAttrList const waitSyncAttrList
)

Receiving Requirements

When the producer and consumer specify their synchronization requirements,
the other endpoints receive a NvSciStreamEventType_WaiterAttr event.
NvSciStreamBlockElementWaiterAttrGet() is operational on the endpoints receiving the
event.

NvSciError
NvSciStreamBlockElementWaiterAttrGet(
 NvSciStreamBlock const block,
 Uint32_t const elemIndex,
 NvSciSyncAttrList* const waitSyncAttrList
)

If NvSciStreamBlockElementWaiterAttrGet() sets the output parameter to NULL, the
element referenced by elemIndex synchronization objects cannot be used to coordinate

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 383

Embedded Software Components

with the other endpoint. The application must not allocate synchronization objects for the
element. This case is rare, but producer and consumer application components designed to
be fully modular must recognize and handle this situation.

Otherwise, the output parameter waitSyncAttrList is set to a synchronization attribute
list handle. Ownership of this handle belongs to the application calling the function, and
it must free the handle when it is no longer needed. The attributes in this list may not
exactly match those specied by the originating endpoint. For more than one consumer,
the stream combines their requirements into a single attribute list for the element. The
stream itself may also perform transformations on the attributes to handle cross-process
or cross-system cases.

The application must merge these wait requirements with its own signal requirements to
form the nal reconciled synchronization attribute list for the element. It can then use
the nal list to allocate a synchronization object from NvSciSync. A synchronization object
is allocated per asynchronous element. The application must map these synchronization
objects into the drivers and use them to generate fences passed into the stream.

After receiving all the sync attribute lists they care about, the endpoint
applications call the NvSciStreamBlockSetupStatusSet function with a value of
NvSciStreamSetup_WaiterAttrImport.

5.6.4.7.2.2 Synchronization Objects

Sending Objects

After allocating the synchronization objects, the application must inform the stream.

For each asynchronous element, it calls NvSciStreamBlockElementSignalObjSet(),
which is operational after event NvSciStreamEventType_WaiterAttr is queried from the
block. Ownership of the synchronization object handle remains with the caller. The stream
creates a duplicate before the function returns.

After specifying all the synchronization objects, the endpoint applications
call the NvSciStreamBlockSetupStatusSet() function with a value of
NvSciStreamSetup_SignalObjExport

NvSciError
NvSciStreamBlockElementSignalObjSet(
 NvSciStreamBlock const block,
 Uint32_t const elemIndex,
 NvSciSyncObj const SignalSyncObj
)

Receiving Objects

On the other endpoint receives the NvSciStreamEventType_SignalObj.

NvSciStreamBlockElementSignalObjGet() is operational on the endpoint receiving the
event.

NvSciError
NvSciStreamBlockElementSignalObjGet(
 NvSciStreamBlock const block,
 Uint32_t const queryBlockIndex,
 Uint32_t const elemIndex,

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 384

Embedded Software Components

 NvSciSyncObj* const SignalSyncObj
)

Ownership of the retrieved NvSciSyncObj handle belongs to the application calling the
function, and it must free the sync object when it is no longer required. The application
must map these into the drivers and use them to interpret fences received from the
stream.

As with the requirements, the synchronization objects received may not match those sent.
If there is more than one consumer, the stream combines their synchronization objects
into a single list per element before passing it to the producer. The stream may also replace
the synchronization objects with its own if it must perform intermediate copy operations
to pass the data from one endpoint to the other.

Synchronization specied for each element requires care. If a consumer
requires synchronous access (Producer receives NULL NvSciSyncObj handle by
NvSciStreamBlockElementSignalObjGet()) but the producer normally generates this
data asynchronously, then an extra burden is placed on the producer application. During
streaming the producer application waits for that element to nish being generated before
it inserts the payload into the stream.

After receiving all the synchronization objects they care about, the endpoint
applications call the NvSciStreamBlockSetupStatusSet() function with a value of
NvSciStreamSetup_SignalObjImport.

5.6.4.7.2.3 Comparison with EGL

When using EGLStreams, there is never any need to explicitly deal with synchronization
objects. They are present in the NVIDIA EGL implementation, but require no action on the
application's part. This is possible because the producer and consumer rendering libraries
connect directly to an EGLStream and are able to coordinate synchronization setup
themselves through the stream without the user being aware of it. In the NvSciStream
model, the rendering libraries do not access the stream. Resources must be transferred
between them and the stream. Therefore, these additional steps are required to initialize
synchronization.

5.6.4.8 Frame Production
Once setup is complete, the producer application enters a cycle of receiving empty packets
for reuse, writing to them, and inserting them back into the stream to be sent to the
consumer(s).

When the pool indicates it exported all the packets, and the endpoints indicate they
nished importing the packets and importing and exporting the sync objects, all blocks will
receive a NvSciStreamEventType_SetupComplete event in the stream. This indicates that

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 385

Embedded Software Components

all necessary setup steps are complete. Applications that divide their event handling into
separate initialization and runtime phases can use this to trigger the transition.

Note:

Resizing or otherwise replacing buers during streaming is supported for non-
safety builds and is described in a later section when it becomes available. It is not
supported in the current release.

5.6.4.8.1 Obtaining Packets
When setup completes, the pool begins releasing the packets to the producer block for
rendering. Subsequently, as payloads are returned from downstream because they were
skipped or the consumer no longer needs them, they become available to the producer
again. The order in which packets are received by the producer depends on various stream
settings and is not deterministic, but the pool tries to optimize so that buers with the
least wait time until it is safe to write to them are available rst.

When a packet becomes available for writing, a NvSciStreamEventType_PacketReady
event is received by the producer block. The packet info is retrieved by a subsequent call. If
multiple packets are available, the producer receives separate events for each of them.

After a packet becomes available, a producer application may call
NvSciStreamProducerPacketGet() to obtain it. The cookie eld is lled in with the cookie
the producer assigned to the packet. With the packet handle, the producer application
calls NvSciStreamBlockPacketFenceGet() to obtain the prefences for the packet
elements. The prefence eld points to the location that will be lled with the fence value
indicating when the consumer indexed by queryBlockIndex is no longer using the data in
the packet element’s buer.

NvSciError
NvSciStreamProducerPacketGet(
 NvSciStreamBlock const producer,
 NvSciStreamCookie *const cookie)

NvSciError
NvSciStreamBlockPacketFenceGet(
 NvSciStreamBlock const block,
 NvSciStreamPacket const handle,
 uint32_t const queryBlockIndex,
 uint32_t const elemIndex,
 NvSciSyncFence* const prefence
)

5.6.4.8.2 Writing Packets
Upon obtaining a packet, the producer application must ensure that the consumers are
done reading from it before modifying their contents. If it is writing to the buers using
NVIDIA API, it must use the appropriate API-specic operation to insert a wait for each of
the fences into the hardware command sequence. Then it looks up the API-specic buer
handle(s) for the packet and makes those buers the current rendering targets. It may
then proceed to issue rendering commands.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 386

Embedded Software Components

If instead the application writes directly to the buer memory, it performs a CPU wait for
the fences of the element buers it wants to write to. Then it can begin writing the new
data.

A producer application may retrieve multiple packets at once from the pool. It may operate
on them at the same time and may insert the completed packets into the stream in any
order, not necessarily in which they were retrieved.

5.6.4.8.3 Presenting Packets
When it nishes issuing its rendering instructions, the producer application must provide
synchronization for their completion. For synchronous elements the producer must
perform a CPU wait for rendering to nish on those synchronous elements before
inserting the packet in the stream. For asynchronous elements, it instructs the APIs
it used to generate fences to trigger when rendering nishes. The application sets
the fences for the elements of the packet that is going to be presented by calling
NvSciStreamBlockPacketFenceSet().

The application can now insert the packet back into the stream along with the fences by
calling NvSciStreamProducerPacketPresent() with the handle of the packet. The stream
makes the packet available to consumers, performing any necessary copy or translations
steps along the way to make the data and fences accessible. Once a packet is presented,
the application must not attempt to modify its contents until it is returned for reuse.
NvSciError
NvSciStreamBlockPacketFenceSet(
 NvSciStreamBlock const block,
 NvSciStreamPacket const handle,
 uint32_t const elemIndex,
 NvSciSyncFence const* const postfence
)

NvSciError
NvSciStreamProducerPacketPresent(
 NvSciStreamBlock const producer,
 NvSciStreamPacket const handle
)

5.6.4.8.4 Comparison with EGL
With EGLStreams, the process for rendering and presenting frames varies depending
on the rendering API chosen. For EGLSurface producers, the application never directly
interacts with the individual image buers. It simply issues rendering instructions for the
surface and a swap command when it is done with each frame. The NvSciStream process
therefore requires more hands-on interaction.

By contrast, use of CUDA and NvMedia producers for EGLStreams follows a very similar
pattern to NvSciStream. After the rst time a buer is used, it is obtained from the stream
when the consumer returns it. The application renders to the buer, and then once again
inserts it into the stream. The only real dierence in buer access is that with EGLStreams,
the API's buer handles are returned directly, whereas with NvSciStream the application
receives a cookie and must look up the corresponding API handle.

For all EGLStream producers, a key dierence in NvSciStream is the need to manage
fences. In EGLStreams, the act of presenting a frame triggers automatic fence generation

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 387

Embedded Software Components

based on internal tracking of the last instructions issued for the buer. Similarly, when
buers are returned, a fence from the consumer is internally associated with the buer
and the API waits for it the next time that buer is used. In NvSciStream, the application
must take control of requesting fences from the APIs to be inserted in the stream and
waiting for fences received from the stream. This is necessary to support the more general
variety of usage models that NvSciStream can handle that EGLStream cannot.

5.6.4.9 Frame Consumption
The consumer side cycle mirrors that of the producer, receiving packets full of data,
reading from them, and returning them to the producer to be reused.

5.6.4.9.1 Acquiring Packets
Just as the producer block receives a NvSciStreamEventType_PacketReady event when a
packet is available for reuse, the consumer block receives one when a packet containing
new data arrives. If multiple packets are available, the consumer receives separate events
for each of them.

After a packet becomes available, a consumer application may call
NvSciStreamConsumerPacketAcquire() to obtain it. The cookie eld is lled in with the
cookie that the consumer assigned to the packet. With the packet handle, the consumer
application calls NvSciStreamBlockPacketFenceGet() to obtain the prefences for the
packet elements. The prefence eld points to the location that will be lled with the
fence value indicating when the producer indexed by queryBlockIndex (always 0 for one
producer) is no longer using the data in the packet element buer.

Consumer packets are always received in the order that the producer sends them, but
depending on the stream settings (such as if a mailbox queue is used) some packets may
be skipped. The consumer may acquire and hold multiple packets at once.
NvSciError
NvSciStreamConsumerPacketAcquire(
 NvSciStreamBlock const consumer,
 NvSciStreamCookie *const cookie,
 NvSciSyncFence *const prefences
)

5.6.4.9.2 Reading Packets
Upon obtaining a packet, the consumer must wait until the contents are ready before
reading from it. Any synchronous elements can be accessed right away. For all other
elements, it must wait for the fences provided.

If it reads from the buers using NVIDIA API, it must use the appropriate API-specic
operation to insert a wait for each of the fences into the hardware command sequence.
Then it can look up the API-specic buer handles for the packet and make those buers
the current read sources. It can then issue commands that use the data.

If the application reads directly from the buer memory, it must perform a CPU wait for all
of the fences in the array. Then it can read the new data.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 388

Embedded Software Components

5.6.4.9.3 Releasing Packets
When it nishes issuing instructions to read from a packet, the consumer must return the
packet to the producer for reuse. Packets may be returned in any order, regardless of the
order they were acquired.

Before sending the frame back, the consumer provides synchronization to indicate when
its operations complete. For synchronous elements, the consumer must perform a CPU
wait for reading to nish before inserting the packet in the stream. For asynchronous
elements, it must instruct the APIs it used to generate fences, which trigger when
rendering nishes. The application sets the fences for the elements of the packet that is
going to be released by calling NvSciStreamBlockPacketFenceSet().

The application can now insert the packet back into the stream along with the fences by
calling NvSciStreamConsumerPacketRelease() with the handle of the packet. The stream
returns the packet to the producer, performing any necessary copy or translations steps to
make the fences accessible. When a packet is released, the application must not attempt
to read its contents until a new payload using the packet arrives.
NvSciError
NvSciStreamConsumerPacketRelease(
 NvSciStreamBlock const consumer,
 NvSciStreamPacket const handle,
 NvSciSyncFence const *const postfences
)

5.6.4.9.4 Comparison with EGL
As with the producer, consumer similarities between EGLStreams and NvSciStream
depend on the rendering API chosen. For GL texture consumers, acquired buers are
bound directly to a selected texture, without the application knowing their details. CUDA
and NvMedia consumers are closer to NvSciStream. The application receives individual
buers to read from and returns those to the stream when they are no longer required.

Again, the key dierence in NvSciStream is the need to manage fences. Just as with the
producer, EGLStreams handles all synchronization on behalf of the application, while with
NvSciStream, the application is responsible for generating and waiting for fences.

5.6.4.10 Special Note Regarding Cache Coherence
The main application of NvSciStream is to produce data in one hardware engine and
consume the data in another using dierent communication channels. Care must be taken
in maintaining caching coherence for the buers accessed by the engines. A memory-
modifying operation made by one engine API may be outside of the knowledge of the
engine API consuming the data. As a result, the engine consuming the data may be
reading stale cached data. For example, memory-boundary IPC updates the GPU buer
without the knowledge of a CUDA consumer. Without proper cache invalidation, the CUDA
consumer reading the GPU buer using CUDA API may receive stale data. Consult with the
documentation for the respective engine API for proper ways of invalidating the cache.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 389

Embedded Software Components

5.6.4.11 Disconnect Dead Consumer
In multicast streams, if a consumer is dead at runtime (either through abnormal
termination or because it is stuck and unable to return the consumed packets), it can drain
the packets in the pool and cause the entire stream to stop.

The application can monitor all consumers and disconnect the dead consumer process to
continue streaming buers to other consumers. After disconnecting the dead consumer,
the stream can reuse the packets even if they are not released by the dead consumer. The
fences generated by the dead consumer may never be expired. The application should wait
on fences with a proper timeout value and skip waiting on fences from dead consumer.

NvSciError
NvSciStreamBlockDisconnect(
 NvSciStreamBlock const block
)

This API can only be used to disconnect the IpcSrc block connected to the dead consumer
process after the stream setup complete.

5.6.4.12 Late-attach/Re-attach Consumer
In a multicast stream, late consumers can connect to the stream that is already in the
streaming phase. Any consumer disconnected from the stream can also re-connect, which
is treated as a new late-attach consumer.

Start Streaming with Early-connected Consumers

The stream can proceed to the streaming phase, even if not all consumers are
connected, by calling NvSciStreamBlockSetupStatusSet() with a value of
NvSciStreamSetup_Connect on the multicast block. This API can be called multiple times
when a new consumer is connected to the multicast block.

The producer and early connected consumers perform the initialization steps as usual. To
ensure all consumers can use the NvSciBuf/NvSciSync objects allocated by the producer,
the producer applications must allocate these objects satisfying the constraints of both
early-connected and late-attach consumers.

The producer can get the total number of supported consumers by calling
NvSciStreamBlockConsumerCountGet(). The producer does not need to know which
consumer is connected. It just queries the NvSciSync objects and fences from all
consumers as usual. A NULL NvSciSync object or an empty fence is returned if the
consumer is not connected. The producer can skip those NULL objects or empty fences.

Attach Late Consumers

Upon the completion of the stream initialization with all the connected consumers,
the multicast block is ready to handle new connected consumers after querying
the NvSciStreamEventType_SetupComplete event. The producer can call
NvSciStreamBlockSetupStatusSet() with a value of NvSciStreamSetup_Connect again to

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 390

Embedded Software Components

start initialization with the late-attached consumers. The early-connected consumers can
continue streaming without being aected or even aware of those late-attach consumers.

The late-attached consumers perform the same initialization steps as early connected
consumers.

The producer only receives NvSciStreamEventType_SignalObj event from the late-attach
consumers. Because it does not know which consumer is newly connected, it needs to
query the NvSciSync objects from all consumers. A NULL NvSciSync object is returned if it
is not from the newly connected consumer.

‣ If the retrieved sync object is NULL, then the producer can ignore it.

‣ If the retrieved sync object is not NULL, then the producer should unregister the old
sync object associated with this indexed consumer if any, and then register the new
one.

After importing and mapping the sync objects from all late-attached consumers,
the producer must call NvSciStreamBlockSetupStatusSet() with a value of
NvSciStreamSetup_SignalObjImport.

Once the late-attach consumers complete all initialization steps, they can start streaming
with the early-connected consumers.

Restrictions for Late-attach/Re-attach Consumer

‣ Only one multicast block is allowed in the stream and must reside in the producer
process.

‣ No IpcSrc or IpcDst block can be connected between the producer block and the
multicast block.

‣ The new consumers can only be connected after all the existing consumers are in the
streaming phase, not in the middle of initialization steps.

‣ Late/re-attached consumers cannot send user-dened endpoint information to the
producer.

‣ If any late-attach consumer encounters an error or hangs during the initialization,
all the late consumers that are involved in the initializations at that point must be
disconnected and reconnected.

5.6.4.13 Teardown
In safety-certied builds, destruction of NvSciStream blocks and packets is not supported.
Once created, all objects persist until the application shuts down. In non-safety builds,
streams can be dynamically torn down at any time, and new streams can be created.

5.6.4.13.1 Packet Destruction
Packets can be destroyed one by one with the function:
NvSciError
NvSciStreamPoolPacketDelete(
 NvSciStreamBlock const pool,
 NvSciStreamPacket const handle

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 391

Embedded Software Components

)

This API schedules an existing packet to be removed from the pool. If the packet is
currently in the pool, it is removed right away. Otherwise, this is deferred until the packet
returns to the pool. When the specied packet is returned to the pool, the pool releases
resources associated with it and sends a NvSciStreamEventType_PacketDelete event to
the producer and consumer. Once deleted, the packet may no longer be used for pool
operations.

5.6.4.13.2 Block Destruction
Regardless of type, all blocks are destroyed with the same function:
NvSciError
NvSciStreamBlockDelete(
 NvSciStreamBlock const block
)

When called, the block handle immediately becomes invalid, making it an error to use in
any function call unless it is reused for a new block. Any blocks connected to this one is
informed that the stream has disconnected, if they have not already, so that they may do
an orderly cleanup. (It is not possible to connect a new block in place of a destroyed one.)
Any resources associated with the block are scheduled for deletion, although this may
not happen immediately if they are still in use by some part of the pipeline. If there is an
NvSciEventNotier bound to the block, it is unbound.

5.6.4.14 NvSciStream Sample Application
The NVIDIA SDK provides a single sample application to demonstrate how to use the
NvSciStream API to build simple and complex streams. This application combines all the
features of the multiple separate samples provided in previous versions of the SDK and
illustrates some new ones. This includes:

‣ Both single- and multi-cast streaming

‣ Both intra-process, inter-process, and inter-chip streaming, or a combination of the
three when multicasting

‣ Waiting for events on single blocks using the NvSciStream functions directly or on all
blocks at once using an NvSciEventService

‣ CUDA to CUDA streaming and NvMedia to CUDA streaming

Migration

Those familiar with previous samples should be aware of several changes:

The complex C++ classes are eliminated, using atter C code instead. The top-level setup
to connect all the NvSciStream blocks can be found in the main.c le, while all other block
operations are split into separate les for each block type. This provides a clearer example
of the required function calls for each kind of block.

Instead of performing a specic sequence of operations and waiting for specic events
to arrive at each block, this application supports a general event loop driven model. The

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 392

Embedded Software Components

recommended approach is to use NvSciEventNotiers generated for each block, and a
single main thread which can wait for events on all blocks simultaneously. When an event
arrives on a block, it is directed to an appropriate block-specic function to handle it.
Events not associated with NvSciStream can also be bound to NvSciEventNotiers and be
handled in the same loop. This makes for a more robust application design.

Those preferring to handle each NvSciStream block separately can still wait for events on
individual blocks. The sample illustrates this approach as well.

Prerequisites

NvSciIpc

With inter-process streaming, the sample applications stream packets between a producer
process and a consumer process via inter-process communication (NvSciIpc) channels.

The NvSciIpc channels are congured via a plain text le, /etc/nvsciipc.cfg. For more
information, see NvSciIpc Conguration Data. The recommended NvSciIpc channels for
these sample applications are as follows:
INTER_PROCESS nvscistream_0 nvscistream_1 16 24576
INTER_PROCESS nvscistream_2 nvscistream_3 16 24576
INTER_PROCESS nvscistream_4 nvscistream_5 16 24576
INTER_PROCESS nvscistream_6 nvscistream_7 16 24576

Where inter-chip streaming is used, the sample application streams packets between
dierent chips via NvSciIpc (INTER_CHIP, PCIe) channels. For more information, see Chip to
Chip Communication.

CUDA

This sample application uses the CUDA toolkit. Ensure CUDA toolkit is installed. See
Installing CUDA Debian Packages.

Building the NvSciStream Event-Driven Sample Application

The NvSciStream sample includes source code and a Makele.

1. On the host system, navigate to the sample application directory:
cd <top>/drive-linux/samples/nvsci/nvscistream/event/

2. Build the sample application:
make clean

make

Running the NvSciStream Event-Driven Sample Application

By default, the event-driven sample application will create a single-process unicast stream
from CUDA to CUDA, using a mailbox queue for the consumer, and handling all events in a
single loop.

This behavior can be modied with the following command line switches. If running in
multiple processes, “-p” and “-c” must be specied for the producer and all consumers

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 393

Embedded Software Components

or the stream will not fully connect. Producer and consumers do not all need to reside
in separate processes and can be combined. Some options only aect the setup of the
producer or one of the consumers and are ignored if specied in the wrong process.

Option Meaning Default

-m <count>
Species the number of
consumers.

Set in the producer process.

1

-f <count>
Species the number of packets
to create.

Set in the producer process.

3

-l <index> <limit>
Add a limiter block between
the producer and the indexed
consumer, with the specied
packet limit.

Set in the producer process.

-q <index> {f|m}
Use a fo (f) or mailbox (m) queue
for the indexed consumer.

Set in the consumer process.

f

-e {s|t}
Handle events through a single
event service (s) or through
separate per-thread event loops
for each block (t).

Set in each process.

s

-u <index>
Use case index:

1: CUDA to CUDA

2: NvMedia to CUDA

Must be set the same in all
processes.

1

-i
Optional. Set endpoint info by
producer and consumers in this
process and query info from other
endpoints.

Set in each process.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 394

Embedded Software Components

Option Meaning Default

For inter-process operation:

-p Producer resides in this process

-c <index> Indexed consumer resides in this
process

For inter-chip operation:

-P <index> <Ipc endpoint> Producer resides in this process.
NvSciIpc endpoint used by this
producer to communicate with the
indexed consumer in another chip.

-C <index> <Ipc endpoint>
Indexed consumer resides in
this process but in a dierent
chip from the producer, and the
NvSciIpc endpoint used by this
consumer.

“-C” and “-c” can't be used
simultaneously in one process.

-F <index> <count>
Specify the number of packets in
the pool attached to the memory
boundary IpcDst block of indexed
C2C consumer.

Set in the consumer process.

3

-Q <index> {f|m}
Specify a fo (f) or mailbox (m)
queue attached to the memory
boundry IpcSrc block associated
with the indexed consumer.

Set in the producer process.

1. Copy the sample application to the target lesystem:
cp <top>/drive-linux/samples/nvsci/nvscistream/event/nvscistream_event_sample
 <top>/drive-linux/filesystem/targetfs/home/nvidia/

2. The following are several examples of how to run the sample application with dierent
congurations:

‣ Single-process unicast with default setup:
./nvscistream_event_sample

‣ Single-process with three consumer multicast, NvMedia to CUDA streaming, and
per-block event threads:
./nvscistream_event_sample –m 3 –u 2 –e t

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 395

Embedded Software Components

‣ Two consumers, with one in the same processes as the producer and the other in a
separate process. Both enable the endpoint info option:
./nvscistream_event_sample -m 2 -p -c 0 -i &

./nvscistream_event_sample -c 1 -i &

‣ Three consumers, with one in the same process as the producer and two in a
separate process, and a mailbox queue for one of them:
./nvscistream_event_sample –m 3 –p –c 0 &

./nvscistream_event_sample –c 1 –c 2 –q 2 m &

‣ Multi-process cuda/cuda stream with one consumer on another SoC. A FIFO queue
is attached to the memory boundary IpcSrc block, and a 3-packet pool is attached
to the memory boundary IpcDst block. It uses the NvSciIpc channel <pcie_s0_1>
<pcie_s1_1>.

On chip s0:
./nvscistream_event_sample -P 0 pcie_s0_1 -Q 0 f

On chip s1:
./nvscistream_event_sample -C 0 pcie_s1_1 -F 0 3

‣ Four consumers, with one in the same process as the producer, one in another
process but on the same chip as the producer, and two in another process on
another chip.

Both the 3rd and 4th consumers have mailbox queue attached to the memory
boundary IpcSrc block and 5-packet pool attached to the memory boundary IpcDst
block.

Inter-chip NvSciIpc channels used by the 3rd and 4th consumers:

‣ <pcie_s0_1> <pcie_s1_1>

‣ <pcie_s0_2> <pcie_s1_2>

On chip s0:
./nvscistream_event_sample -m 4 -c 0 -q 0 m -Q 2 m -Q 3 m -P 2 pcie_s0_1 -P 3
 pcie_s0_2 &
./nvscistream_event_sample -c 1 -q 1 m &

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 396

Embedded Software Components

On chip s1:
./nvscistream_event_sample -C 2 pcie_s1_1 -q 2 f -F 2 5 -C 3 pcie_s1_2 -q 3 m -
F 3 5

Note:

The nvscistream_event_sample application must be run as root user (with sudo).

If the nvscistream_event_sample application fails to open the IPC channel,
cleaning up NvSciIpc resources may help.
sudo rm -rf /dev/mqueue/*

sudo rm -rf /dev/shm/*

For inter-chip use cases:

Ensure dierent SoCs are set with dierent Soc IDs. See the "Bind Options for
SOC ID for C2C in GOS-DT" section in the NVIDIA DRIVE OS Linux PDK Developer
Guide.

5.6.4.15 NvSciStream Performance Test Application
NvSciStream provides a test application to measure KPIs when streaming buers between
a CPU producer and CPU consumers. This test focuses on NvSciStream performance,
which does not use CUDA, NvMedia, or other hardware engines. To simplify measuring
packet-delivery latency for each payload, the stream uses FIFO mode.

This test application is for performance testing purposes. It may simplify some setup
steps and set unnecessary synchronization objects or fences to the CPU endpoints to
include the fence transport latency in the measurement. To see how to create a stream
with NvSciStream API, refer to NvSciStream Sample Application

This test uses the NvPlayFair library (see Benchmarking Library) to record timestamps, set
the rate limit, save raw latency data, and calculate the latency statistics (such as the min,
max, and mean value) on dierent platforms and operating systems.

The test app supports a variety of test cases:

‣ Single-process, inter-process, and inter-chip streaming

‣ Unicast and multicast streaming

The test can set dierent stream congurations:

‣ Number of packets allocated in pool.

‣ Number of payloads transmitted between producer and consumers.

‣ Buer size for each element.

‣ Number of synchronization objects used by each endpoint.

‣ Frame rate, frequency of the payloads presented by the producer.

‣ Memory type, vidmem, or sysmem.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 397

Embedded Software Components

The test measures several performance KPIs:

‣ Latency for each process:

‣ Total initialization time

‣ Stream setup time

‣ Streaming time

‣ Latency for each payload:

‣ Duration to wait for an available or ready packet

‣ End-to-end packet-delivery latency

‣ PCIe bandwidth in inter-chip stream

The README le in the test folder explains these KPIs with more details.

Prerequisites

NvSciIpc

Where inter-process streaming is used, the performance test application streams packets
between a producer process and a consumer process using inter-process communication
(NvSciIpc) channels.

The NvSciIpc channels are congured using /etc/nvsciipc.cfg, on Linux. For more
information on NvSciIpc conguration data, see NvSciIpc Conguration Data. The NvSciIpc
channels used by the performance test application are as follows:
INTER_PROCESS nvscistream_0 nvscistream_1 16 24576
INTER_PROCESS nvscistream_2 nvscistream_3 16 24576
INTER_PROCESS nvscistream_4 nvscistream_5 16 24576
INTER_PROCESS nvscistream_6 nvscistream_7 16 24576

Where inter-chip streaming is used, the sample application stream packets between
dierent chips via NvSciIpc (INTER_CHIP, PCIe) Channels. For more information, see Chip to
Chip Communication.

NvPlayFair

This performance test application uses the performance utility functions in the NvPlayFair
library.

Time Sync

For inter-chip use cases, accurate packet-delivery latency requires synchronizing time on
two SoCs using PTP. For more information, refer to "AVNU PTP for Development" in Orin
Time Sync. The process uses NvPPS APIs to get the synced PTP time.

Building the NvSciStream Performance Test Application

The NvSciStream performance test includes source code, README, and a Makele.

On the host system, navigate to the test directory:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 398

Embedded Software Components

cd <top>/drive-linux/samples/nvsci/nvscistream/perf_tests/

Build the performance test application:
make clean
make

Running the NvSciStream Performance Test Application

Option Meaning Default

-h Prints supported test options

-n <count>
Species the number of
consumers.

Set in the producer process.

1

-k <count>
Species the number of
packets in pool.

Set in the producer process for
primary pool.

Set in the consumer process
for c2c pool.

1

-f <count>
Species the number of
payloads.

Set in all processes.

100

-b <size> Species the buer size (MB)
per packet.

1

-s <count>
Species the number of sync
objects per client.

Set by each process.

1

-r <count> Species the producer frame-
present rate (fps)

-t <0|1> Species the memory type. 0
for sysmem and 1 for vidmem.
Pass dGPU UUID using -u, if
using vidmem.

0

-u
Required for vidmem buers.

Can be retrieved from 'nvidia-
smi -L' command on x86

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 399

Embedded Software Components

Option Meaning Default

-l
Measure latency.

Skip if vidmen is used.

Set in all processes.

False

-v
Save the latency raw data in csv
le.

Ignored if not measuring
latency.

False

-a <target>
Species the average KPI
target (us) for packet-delivery
latency. Compare the test result
with the input target with 5%
tolerance.

Ignored if not measuring
latency.

-m <target>
Species the 99.99 percentile
KPI target (us) for packet-
delivery latency. Compare the
test result with the input target
with 5% tolerance.

Ignored if not measuring
latency.

For inter-process operation:

-p Inter-process producer.

-c <index> Inter-process indexed
consumer.

For inter-chip operations:

-P <index> <Ipc endpoint> Inter-SoC producer, NvSciIpc
endpoint name connected to
indexed consumer.

-C <index> <Ipc endpoint> Inter-SoC consumer, NvSciIpc
endpoint used by this indexed
consumer.

Copy the sample application to the target lesystem:
cp <top>/drive-
linux/samples/nvsci/nvscistream/perf_tests/test_nvscistream_perf
<top>/drive-linux/targetfs/home/nvidia/

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 400

Embedded Software Components

Following are examples of running the performance test application with dierent
congurations:

‣ Measure latency for single-process unicast stream with default setup:

./test_nvscistream_perf -l

‣ Measure latency for single-process unicast stream with three packets in pool:

./test_nvscistream_perf -l -k 3

‣ Measure latency for single-process multicast stream with two consumers:

./test_nvscistream_perf -n 2 -l

‣ Measure latency for inter-process unicast stream with default setup:

./test_nvscistream_perf -p -l &

./test_nvscistream_perf -c 0 -l

‣ Measure latency for inter-process unicast stream with a xed producer-present rate at
100 fps, which transmits 10,000 payloads:

./test_nvscistream_perf -p -f 10000 -l -r 100 &

./test_nvscistream_perf -c 0 -f 10000 -l

‣ Measure latency and save raw latency data in nvscistream_*.csv le for inter-process
unicast stream, which transmits 10 payloads:

./test_nvscistream_perf -p -f 10 -l -v &

./test_nvscistream_perf -c 0 -f 10 -l -v

‣ Measure PCIe bandwidth for the inter-chip unicast stream with 12.5 MB buer size per
packet, which transmits 10,000 frames. The two commands are run on dierent SoCs
with <pcie_s0_1> <pcie_s1_1> PCIe channel:

On chip s0:

./test_nvscistream_perf -P 0 pcie_s0_1 -l -b 12.5 -f 10000

On chip s1:

./test_nvscistream_perf -C 0 pcie_s1_1 -l -b 12.5 -f 10000

Note:

The test_nvscistream_perf application must run as root user (with sudo).

For the inter-process use case:

If it fails to open the IPC channel, cleaning up NvSciIpc resources may help.
sudo rm -rf /dev/mqueue/*
sudo rm -rf /dev/shm/*

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 401

Embedded Software Components

Note: For inter-chip use cases:

Ensure dierent SoCs are set with dierent SoC IDs. For Tegra-x86 use cases, set
a non-zero SoC ID on the NVIDIA Tegra side, because x86 uses 0 as the SoC ID. For
more information, refer to the "Bind Options" section in the AV PCT Conguration
chapter of the NVIDIA DRIVE OS 6.0 Developer Guide.

5.6.5 Synchronization
This section describes how to set up synchronization objects required by an application or
a set of applications, and how to use them to control the order of operations by NVIDIA
hardware. The basic setup process is similar to the process used for allocating buers
described in the previous chapter:

‣ Specify the restrictions imposed by the hardware components that signal the sync
objects.

‣ Specify the restrictions imposed by the hardware components that wait on the sync
fences.

‣ Gather the information for each set of sync objects into one application, which
allocates them.

‣ Share the allocated sync objects with other applications.

‣ Map the sync objects into UMD-specic interfaces.

The streaming process issues commands to update the sync objects, and commands to
wait for those updates, so that dierent sets of operations remain in sync with each other.

5.6.5.1 Terminology
Agent: An entity in the system that executes instructions. An agent may be a CPU thread
and also a hardware engine. An agent is the entity that interacts with actual hardware
primitives abstracted by NvSciSync. The goal of NvSciSync is to synchronize agents.

5.6.5.2 Synchronization Basics
In an NVIDIA hardware system, there are typically multiple execution agents running
simultaneously. For example: CPU, GPU, and other engines. Task interfaces to engines
behave asynchronously. The CPU prepares a job for it and queues it in the interface. There
might be multiple jobs pending on an engine and they are scheduled automatically in the
hardware. CPU and applications don't know upfront the order in which jobs are executed.

This creates a need for job synchronization with dependencies between them, like a
pipeline of several engines working on the same data, which preferably should not involve
expensive CPU intervention.

NVIDIA hardware supports multiple synchronization mechanisms that solve this problem.
They are context sensitive and not every engine understands all the mechanisms.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 402

Embedded Software Components

NvSciSync provides an abstraction layer that hides details of synchronization primitives
used in a concrete situation. One of the most basic concepts of NvSciSync is a sync
object. It abstracts a single instance of a specic synchronization primitive. A sync object
has a current state and can be signaled. Signaling a sync object moves it to the next
state. Normally, an application developer associates a sync object with a chain of events
that must occur in the same order. For example, a video input engine may always signal
the same sync object after producing a camera frame. This way, the sync object can be
inspected at any time to check which frames were already written. A sync object must only
be signaled by a single agent. An agent that signals (at the request of an application) is
called a signaler.

Another basic concept of NvSciSync is a sync fence. A sync fence is associated with a
specic sync object and contains a snapshot of that object's state. A fence is considered
expired if its snapshot is behind or equal to the current state of the object. A fence whose
state has not yet been reached by the object is said to be pending. Usually, multiple fences
are associated with a single sync object and might correspond to dierent states of that
object. A sync fence is generated by the signaler application and shared with others. An
application can make an agent wait on a fence. An agent waiting on a sync fence is called a
waiter in the context of the given sync object.

5.6.5.3 NvSciSync Module
To use NvSciSync you must rst open an NvSciSyncModule. This module represents the
library's instance created for that application and acts as a container for other NvSciSync
resources. Typically, there is only a single NvSciSyncModule in an application but having
all resources contained in NvSciSyncModule allows multiple threads or other libraries to
use NvSciSync in an isolated manner. All other NvSciSync resources are associated with an
NvSciSyncModule on creation.

5.6.5.3.1 NvSciSyncModule
NvSciSyncModule module = NULL;
NvSciError err;
err = NvSciSyncModuleOpen(&module);
if (err != NvSciError_Success) {
 goto fail;
}
/* ... */
NvSciSyncModuleClose(module);

5.6.5.4 Inter-Application
If there are multiple processes involved, all communication of NvSciSync structures should
go via NvSciIpc channels. Each application needs to open its own Ipc endpoints.

5.6.5.4.1 NvSciIpc init
NvSciIpcEndpoint ipcEndpoint = 0;
NvSciError err;
err = NvSciIpcInit();
if (err != NvSciError_Success) {

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 403

Embedded Software Components

 goto fail;
}
err = NvSciIpcOpenEndpoint("ipc_endpoint", &ipcEndpoint);
if (err != NvSciError_Success) {
 goto fail;
}
/* ... */
NvSciIpcCloseEndpoint(ipcEndpoint);
NvSciIpcDeinit();

5.6.5.5 NvSciSync Attributes
NvSciSync clients must supply the properties and constraints of an NvSciSync object to
NvSciSync before allocating the object. This is expressed with attributes. An attribute is
a key - value pair. You can view all supported keys in the header les together with value
types that can be used with them.

Each application wanting to use a sync object indicates its needs in the form of various
attributes before the sync object is created. Those attributes are then communicated to
the signaler, who gathers all applications' attributes and has NvSciSync reconcile them.
Successful reconciliation creates a new attribute list satisfying all applications constraints.
The signaler then allocates a sync object using resources described by those attributes.
This sync object, together with reconciled attributes list, is then shared with all waiters
that need access to this sync object.

5.6.5.5.1 NvSciSync Attributes List
Attributes coming from a single source are kept in an attribute list structure.

5.6.5.5.1.1 NvSciSyncAttrList

NvSciSyncAttrList attrList = NULL;
NvSciError err;
/* create a new, empty attribute list */
err = NvSciSyncAttrListCreate(module, &signalerAttrList);
if (err != NvSciError_Success) {
 goto fail;
}
/*
 * fill the list - this example corresponds to a CPU signaler
 * that only needs to signal but not wait
*/
NvSciSyncAttrKeyValuePair keyValue[2] = {0};
bool cpuSignaler = true;
keyValue[0].attrKey = NvSciSyncAttrKey_NeedCpuAccess;
keyValue[0].value = (void*) &cpuSignaler;
keyValue[0].len = sizeof(cpuSignaler);
NvSciSyncAccessPerm cpuPerm = NvSciSyncAccessPerm_SignalOnly;
keyValue[1].attrKey = NvSciSyncAttrKey_RequiredPerm;
keyValue[1].value = (void*) &cpuPerm;
keyValue[1].len = sizeof(cpuPerm);
err = NvSciSyncAttrListSetAttrs(list, keyValue, 2);
if (err != NvSciError_Success) {
 goto fail;
}
/* ... */
NvSciSyncAttrListFree(signalerAttrList);

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 404

Embedded Software Components

5.6.5.5.1.2 Reconciliation

After gathering all attribute lists, the signaler application must reconcile them. Successful
reconciliation results in a new, reconciled attribute list that satises all applications'
requirements. If NvSciSync cannot create such a list because attributes contradict, it
instead creates an attribute list that describes the conicts in more detail. In the example
below, assume that waiterAttrList1 and waiterAttrList2 were created in the same process,
so the variables are visible.
NvSciSyncAttrList unreconciledList[3] = {NULL};
NvSciSyncAttrList reconciledList = NULL;
NvSciSyncAttrList newConflictList = NULL;
NvSciError err;
unreconciledList[0] = signalerAttrList;
unreconciledList[1] = waiterAttrList1;
unreconciledList[2] = waiterAttrList2;
err = NvSciSyncAttrListReconcile(
 unreconciledList, /* array of unreconciled lists */
 3, /* size of this array */
 &reconciledList, /* output reconciled list */
 &newConflictList); /* conflict description filled in case of
 reconciliation failure */
if (err != NvSciError_Success) {
 goto fail;
}
/* ... */
NvSciSyncAttrListFree(reconciledList);
NvSciSyncAttrListFree(newConflictList);

NvSciSync recognizes which attribute lists are reconciled and which are not. Some
NvSciSync APIs that take NvSciSyncAttrList expect the list to be reconciled.

5.6.5.5.2 Inter-Application
The above example assumes that waiterAttrList1 and waiterAttrList2 were received from
the waiter applications. Hence, no cross-process semantics were required. If a waiter
lives in another process, then the attributeList must be exported to a descriptor rst,
communicated via NvSciIpc, and then imported on the receiver's end. In some cases, there
are multiple lists traveling through multiple NvSciIpc channels.

5.6.5.5.2.1 Export/Import NvSciSyncattrList

/* waiter */
NvSciSyncAttrList waiterAttrList = NULL;
void* waiterListDesc = NULL;
size_t waiterListDescSize = 0U;
NvSciError err;
/* creation of the attribute list, receiving other lists from other waiters */
err = NvSciSyncAttrListIpcExportUnreconciled(
 &waiterAttrList, /* array of unreconciled lists to be
exported */
 1, /* size of the array */
 ipcEndpoint, /* valid and opened NvSciIpcEndpoint
intended to send the descriptor through */
 &waiterListDesc, /* The descriptor buffer to be allocated
and filled in */
 &waiterListDescSize); /* size of the newly created buffer */
if (err != NvSciError_Success) {
 goto fail;
}
/* send the descriptor to the signaler */
NvSciSyncAttrListFreeDesc(waiterListDesc);

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 405

Embedded Software Components

/* signaler */
void* waiterListDesc = NULL;
size_t waiterListDescSize = 0U;
NvSciSyncAttrList unreconciledList[2] = {NULL};
NvSciSyncAttrList reconciledList = NULL;
NvSciSyncAttrList newConflictList = NULL;
NvSciSyncAttrList signalerAttrList = NULL;
NvSciSyncAttrList importedUnreconciledAttrList = NULL;
/* create the local signalerAttrList */
/* receive the descriptor from the waiter */
err = NvSciSyncAttrListIpcImportUnreconciled(module, ipcEndpoint,
 waiterListDesc, waiterListDescSize,
 &importedUnreconciledAttrList);
if (err != NvSciError_Success) {
 goto fail;
}
/* gather all the lists into an array and reconcile */
unreconciledList[0] = signalerAttrList;
unreconciledList[1] = importedUnreconciledAttrList;
err = NvSciSyncAttrListReconcile(unreconciledList, 2, &reconciledList,
 &newConflictList);
if (err != NvSciError_Success) {
 goto fail;
}
/* ... */
NvSciSyncAttrListFree(importedUnreconciledAttrList);
NvSciSyncAttrListFree(reconciledList);

5.6.5.6 Sync Management

5.6.5.6.1 NvSciSync Objects
The NvSciSyncObj structure represents a sync object. It can be allocated after successful
reconciliation. The reconciled attribute list contains all information about resources needed
for the allocation.

5.6.5.6.1.1 NvSciSyncObj

/* Create NvSciSync object and get the syncObj */
NvSciError err;
err = NvSciSyncObjAlloc(reconciledList, &syncObj);
if (err != NvSciError_Success) {
 goto fail;
}
/* using the object, sharing it with others */
NvSciSyncAttrListFree(reconciledList);
NvSciSyncObjFree(syncObj);

5.6.5.6.2 Inter-Application
In the cross-process case, the reconciled list and object must be shared with all the
waiters.

5.6.5.6.2.1 Export/Import NvSciSyncObj

/* signaler */
void* objAndList;
size_t objAndListSize;
NvSciError err;
err = NvSciSyncIpcExportAttrListAndObj(
 syncObj, /* syncObj to be exported

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 406

Embedded Software Components

(the reconciled list is inside it) */
 NvSciSyncAccessPerm_WaitOnly, /* permissions we want the
receiver to have. Setting this to NvSciSyncAccessPerm_Auto allows
NvSciSync to automatically determine necessary permissions */
 ipcEndpoint, /* IpcEndpoint via which the
object is to be exported */
 &objAndList, /* descriptor of the object
and list to be communicated */
 &objAndListSize); /* size of the descriptor */
/* send via Ipc */
NvSciSyncAttrListAndObjFreeDesc(objAndList);
/* waiter */
void* objAndList;
size_t objAndListSize;
err = NvSciSyncIpcImportAttrListAndObj(
 module, /* NvSciSyncModule use to create
original unreconciled lists in the waiter */
 ipcEndpoint, /* ipcEndpoint from which the
descriptor was received */
 objAndList, /* the desciptor of the sync obj and
associated reconciled attribute list received from the signaler */
 objAndListSize, /* size of the descriptor */
 &waiterAttrList, /* the array of original unreconciled
lists prepared in the waiter */
 1, /* size of the array */
 NvSciSyncAccessPerm_WaitOnly, /* permissions expected by the waiter.
Setting this to NvSciSyncAccessPerm_Auto allows NvSciSync to automatically
determine necessary permissions */
 10000U, /* Recommended timeout in microseconds.
Some primitives might require time to transport all needed resources. */
 &syncObj); /* sync object generated from the
descriptor on the waiter's side */
/* use the sync object, perhaps export it to more peers... */
NvSciSyncObjFree(syncObj);

5.6.5.6.3 Cpu Wait Contexts
NvSciSync can be used to wait on a fence from the CPU but it might require some
additional resources to perform this wait. Allocating those resources is controlled by
the application and encapsulated in the NvSciSyncCpuWaitContext structure. In the
initialization phase a waiter allocates this structure. It can then be used to wait on any
number of sync fences but it cannot be used from multiple threads at the same time:

5.6.5.6.3.1 NvSciSyncCpuWaitContext

/* waiter */
NvSciSyncCpuWaitContext waitContext = NULL;
NvSciError err;
/* initialize module */
err = NvSciSyncCpuWaitContextAlloc(module, &waitContext);
if (err != NvSciError_Success) {
 goto fail;
}
/* more initialization, using the context for fence waiting */
NvSciSyncCpuWaitContextFree(waitContext);

5.6.5.6.4 NvSciSyncFence Operations
After successfully allocating an object and exporting it to all the waiters, the application
can proceed to the runtime phase. Typically, it is a loop where the signaler prepares its job,
associates its completion with a sync fence, and shares the fence with a waiter. The waiter
constructs its job in such a way that it only starts after the fence expires. Both waiter and

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 407

Embedded Software Components

signaler than enqueue their jobs, and the use of fences establishes ordering: the waiter's
job only starts when the signaler's job is complete.

5.6.5.6.4.1 NvSciSyncFence Cpu operations

/* signaler*/
NvSciSyncFence sharedFence = NvSciSyncFenceInitializer;
NvSciSyncFence localFence = NvSciSyncFenceInitializer; /* always
initialize with the Initializer */
NvSciError err;
err = NvSciSyncObjGenerateFence(syncObj, &localFence);
if (err != NvSciError_Success) {
 goto fail;
}
/* duplicate fence before sharing */
err = NvSciSyncFenceDup(&localFence, sharedFence);
if (err != NvSciError_Success) {
 goto fail;
}
/* create more duplicates if necessary */
/* communicate the fence to the waiter. */
/* local copy no longer necessary, so dispose of it */
NvSciSyncFenceClear(&localFence); /* this call cleans references to
sync object and is needed for proper freeing */
/* do something else, like some CPU job */
err = NvSciSyncObjSignal(syncObj);
if (err != NvSciError_Success) {
 goto fail;
}
/* waiter */
/* receive the sharedFence from the signaler */
err = NvSciSyncFenceWait(sharedFence,
 waitContext, NV_WAIT_INFINITE);
if (err != NvSciError_Success) {
 return err;
}
NvSciSyncFenceClear(sharedFence);

5.6.5.6.5 Inter-Application
The above examples assume an inter thread case but in an inter process case the fence
must be exported and imported, similar to how the attribute lists were packaged.

5.6.5.6.5.1 Export/Import NvSciSyncFence

/* signaler*/
NvSciSyncFenceIpcExportDescriptor fenceDesc;
NvSciError err;
/* generate sharedFence */
err = NvSciSyncIpcExportFence(
 &sharedFence, /* fence to be exported */
 ipcEndpoint, /* should be the same ipcEndpoint used for
communicating the attribute lists */
 &fenceDesc); /* fence descriptor has a fixed size and
is only filled in this call */
if (err != NvSciError_Success) {
 return err;
}
NvSciSyncFenceClear(&sharedFence);
/* send the descriptor via Ipc */
/* waiter */
/* receive the descriptor fenceDesc */
err = NvSciSyncIpcImportFence(syncObj,
 fenceDesc,
 &syncFence);

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 408

Embedded Software Components

if (err != NvSciError_Success) {
 return err;
}

Fences are designed to be small, xed sized objects, and interactions with them do not
involve any runtime allocation. All fence structures and fence descriptors are allocated
once at initialization. During runtime, NvSciSync only updates the fence and related
structures, as needed.

5.6.5.7 Timestamps
NvSciSync supports timestamps in fences. They represent the time of a fence's expiration.
This can help proling the timing of streaming and debugging performance issues. This
feature can be enabled during the initialization of the sync object. Then the waiter can call
NvSciSyncFenceGetTimestamp to obtain the timestamp data in the streaming phase.

To enable this feature, the waiter should set NvSciSyncAttrKey_WaiterRequireTimestamps
to true in its attribute list.

5.6.5.7.1 Waiter requires timestamp
bool requireTimestamps = true;
NvSciSyncAttrKeyValuePair keyValue[] = {
 ... // other attributes
 { .attrKey = NvSciSyncAttrKey_WaiterRequireTimestamps,
 .value = (void*) &requireTimestamps,
 .len = sizeof(bool),
 },
};

During reconciliation, if the signaler supports timestamp, this feature is enabled. If the
waiter doesn't require timestamp, then this feature is disabled. If the waiter requires a
timestamp but the signaler doesn't support it, then the reconciliation fails.

During the streaming phase, the waiter can obtain the timestamp value by calling
NvSciSyncFenceGetTimestamp on an expired fence.

5.6.5.7.2 Waiter gets timestamp
uint64_t timestamp;
err = NvSciSyncFenceWait(&fence, waitContext, NV_WAIT_INFINITE);
if (err != NvSciError_Success) {
 return err;
}
err = NvSciSyncFenceGetTimestamp(&fence, ×tamp);
if (err != NvSciError_Success) {
 return err;
}

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 409

Embedded Software Components

5.6.5.8 Task Status in Fences
NvSciSync supports task status in fences. It provides the status of the task associated
with the fence expiration. After waiting on a fence, a waiter can ask for task status with
NvSciSyncFenceGetTaskStatus().
NvSciSyncTaskStatus taskStatus;
err = NvSciSyncFenceWait(&fence, waitContext, NV_WAIT_INFINITE);
if (err != NvSciError_Success) {
return err;
}
err = NvSciSyncFenceGetTaskStatus(&fence, &taskStatus);
if (err != NvSciError_Success) {
return err;
}

5.6.5.9 UMD Access

5.6.5.9.1 NvMedia
NvMedia provides a set of interfaces to submit tasks to each of the hardware engines it
supports. For example, the NvMedia2D* set of APIs provide the functionality to submit
tasks to the VIC engine. Similarly, the NvMediaISP* set of APIs provide the functionality to
submit tasks to the ISP hardware engine. An engine specic set of APIs are extended to
support NvSciSync. They provide the following functionalities:

‣ Takes in an NvSciSyncFence as input when the engine acts as a waiter.

‣ Gives out an NvSciSyncFence as output when the engine acts as a signaler.

The following section uses NvMedia2D-NvSciSync APIs to demonstrate the usage of
NvMedia-NvSciSync APIs. A similar set of APIs for other engines can be used in the same
way.

5.6.5.9.1.1 Denitions

EOF Fence: End of frame fence. A fence whose expiry indicates that the output image is
written.

PREFence: Start of engine operation is blocked until this fence expires.

5.6.5.9.2 NvMedia2D-NvSciSync
‣ Query NvSciSyncObj attributes (for waiting or signaling) from NvMedia2D

Use NvMedia2DFillNvSciSyncAttrList API to query the NvSciSync attributes from
NvMedia2D. NvSciSync objects allocated with such NvSciSyncAttrLists are only
accepted by NvMedia2D-NvSciSync APIs.

‣ NvSciSync object registration/unregistration with NvMedia2D.

Use NvMedia2DRegisterNvSciSyncObj API to register the NvSciSync objects with
NvMedia2D. Every NvSciSyncObj used by NvMedia2D must be registered upfront with
NvMedia2D.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 410

Embedded Software Components

During tear down, use NvMedia2DUnRegisterNvSciSyncObj API to unregister the
registered NvSciSyncObjs with NvMedia2D.

‣ Set NvSciSyncObj for end of frame (EOF) event usage with NvMedia2D.

‣ Use NvMedia2DSetNvSciSyncObjforEOF API to tell NvMedia2D which NvSciSyncObj to
use to signal the EOF event of the NvMedia2DBlitEx operation. A NvSciSyncObj must be
set before calling NvMedia2DBlitEx API.

‣ Wait for an NvSciSyncFence.

‣ Get an NvSciSyncFence.

Use NvMedia2DGetEOFNvSciSyncFence API to get an NvSciSyncFence whose
expiry indicates that the last submitted NvMedia2DBlitEx task has completed.
NvMedia2DGetEOFNvSciSyncFence API can be called only after an NvMedia2DBlitEx
API call.

Use NvMedia2DInsertPreNvSciSyncFence API to tell NvMedia2D to wait on a
NvSciSyncFence before actually starting the VIC engine to work on the task submitted by
NvMedia2DBlitEx API.

5.6.5.9.2.1 NvMedia2D NvSciSync API Usage

/* ************ Init-time **********/
NvSciSyncModule nvscisyncModule;
NvSciError nverr;
NvSciSyncAttrList nvscisyncattr_w;
NvSciSyncAttrList nvscisyncattr_s;
NvSciSyncAttrList nvscisyncattr_unreconciled_h[2];
NvSciSyncAttrList nvscisyncattr_reconciled;
NvSciSyncAttrList ConflictAttrList;
NvSciSyncFence eofnvscisyncfence = NV_SCI_SYNC_FENCE_INITIALIZER;
NvSciSyncObj nvscisyncEOF, nvscisyncpre;
nvm2dhdl = NvMedia2DCreate(nvmdevice);
nverr = NvSciSyncModuleOpen(&nvscisyncModule);
/**********NvMedia 2D as signaler ************/
nverr = NvSciSyncAttrListCreate(nvscisyncModule, &nvscisyncattr_s);
nvmstatus = NvMedia2DFillNvSciSyncAttrList(nvscisyncattr_s, NVMEDIA_SIGNALER);
nvscisyncattr_unreconciled_h[0] = nvscisyncattr_s;
nvscisyncattr_unreconciled_h[1] = get attribute list from the appropriate waiter;
nverr = NvSciSyncAttrListReconcile(nvscisyncattr_unreconciled_h[],
 2 , &nvscisyncattr_reconciled, &ConflictAttrList);
nverr = NvSciSyncObjAlloc(nvscisyncattr_reconciled, &nvscisyncEOF);
 /**********NvMedia 2D as waiter ************/
nverr = NvSciSyncAttrListCreate(&nvscisyncattr_w);
nvmstatus = NvMedia2DFillNvSciSyncAttrList(nvscisyncattr_w, NVMEDIA_WAITER);
/*If the signaler is also in the same process as the 2D Waiter, then
NvSciSyncAttrListReconcileAndObjAlloc or NvSciSyncAttrListReconcile and
NvSciSyncObjAlloc API pair has/have to be used to allocate nvscisyncpre
 NvSciScynObject.
If the signaler is in a different process/VM than the 2D Waiter, then
NvSciSyncAttrList export/import APIs and NvSciSyncObjIpc Export/Import APIs
have to be used allocate a NvSciSyncObject on signaler and waiter sides.
nvscisyncpre is the imported NvSciSyncObject on the waiter side */
/*All the NvSciSyncObjects(NvSciSyncObjects associated with PreFences, EOFFence
) which will be used by NvMedia2D must be registered upfront. */
 /* **********Start of Registration of NvSciSync Objects ************/
 nvmstatus = NvMedia2DRegisterNvSciSyncObj(nvm2dhdl, NVMEDIA_EOFSYNCOBJ,
 nvscisyncEOF);
/* Register all the NvSciSync objects which will be used to generate prefences for
NvMedia2DBlit operation. nvscisyncpre is one such Pre NvSciSync object */

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 411

Embedded Software Components

nvmstatus = NvMedia2DRegisterNvSciSyncObj(nvm2dhdl, NVMEDIA_PRESYNCOBJ,
 nvscisyncpre);
 **********End of Registration of NvSciSync Objects ************
/*Allocate a NvMediaImage for input, say inputimg */
/*Allocate a NvMediaImage for output, say outputimg */
 ******End of Init-time and Start of Run-time *********
 nvmstatus = NvMedia2DSetNvSciSyncObjforEOF(nvm2dhdl, nvscisyncEOF);
 /*Get a nvscisyncfence from somewhere(maybe a eofnvscisyncfence of
some other engine operation) which neeeds to be inserted as prefence
for 2DBlit operation. prenvscisyncfence is one such NvSciSyncFence. */
nvmstatus = NvMedia2DInsertPreNvSciSyncFence(nvm2dhdl, prenvscisyncfence);
nvmstatus = NvMedia2DBlitEx(nvm2dhdl, outputimg, NULL, inputimg, NULL,
 2dblitparams, paramsout);
nvmstatus = NvMedia2DGetEOFNvSciSyncFence(nvm2dhdl, nvscisyncEOF,
 &eofnvscisyncfence);
 /*eofnvscisyncfence may be used as prefence for some other engine operation
 or application can decide to wait on CPU till their expiry using NvSciSyncWait API.
 */
 /* ************* End of Run time ****************
 /*Unregister all of the registered NvSciSync objects */
nvmstatus = NvMedia2DUnRegisterNvSciSyncObj(nvm2dhdl, nvscisyncEOF);
nvmstatus = NvMedia2DUnRegisterNvSciSyncObj(nvm2dhdl, nvscisyncpre);
NvSciSyncAttrListFree(nvscisyncattr_w);
NvSciSyncAttrListFree(nvscisyncattr_s);
NvSciSyncAttrListFree(nvscisyncattr_reconciled);
NvSciSyncObjFree(nvscisyncEOF);
NvSciSyncObjFree(nvscisyncpre);
NvSciSyncModuleClose(nvscisyncModule);

5.6.5.9.3 cuDLA
cuDLA supports NvSciSync by enabling applications to signal and wait for them. cuDLA
treats NvSciSync as an external semaphore object, which can be imported into the DLA
address space. The application can use the existing cudlaImportExternalSemaphore API to
build dependencies between an NvSciSync object and cuDLA tasks, and vice-versa.

5.6.5.9.3.1 Importing a NvSciSync Object into cuDLA

1. Query NvSciSyncObj attributes (for waiting or signaling) from cuDLA.

Use cudlaGetNvSciSyncAttributes API to query the NvSciSync attributes from cuDLA
for a given cuDLA device. NvSciSyncAttrLists passed to this API must be created and
managed by the application.

2. NvSciSync objects registration/unregistration with cuDLA.

‣ Use cudlaImportExternalSemaphore API to register/import an NvSciSync object
into the DLA address space. This API accepts a valid NvSciSyncObject as a
parameter to cudlaExternalSemaphoreHandleDesc.

‣ On completion, the pointer returned by the above API internally holds a reference to
the NvSciSyncObject passed earlier and can be used during DLA task submission to
create wait events or signal events accordingly.

‣ Use cudlaMemUnregister to unregister/destroy an already registered/imported
NvSciSync Object from the DLA address space.

3. Wait for an NvSciSyncFence.

All events that the application wishes to wait on must be specied in the waitEvents
eld for a particular task. The corresponding task would wait for all the wait

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 412

Embedded Software Components

dependencies to be met before beginning execution on the DLA HW. Such wait
happens asynchronously on the DLA (i.e., the calling thread returns immediately).

4. Get an NvSciSyncFence.

‣ cudlaSignalEvents takes a valid NvSciSyncFence. This is passed in cudlaTask when
the task is triggered.

‣ Upon return, the fence tracks the completion of all work submitted on that cuDLA
task.

‣ Waiting on a fence is equivalent to waiting for the completion of that cuDLA task.
The NvSciSyncFence is ignaled by the DLA when the task nishes, and any potential
waiters waiting on the NvSciSyncFence are unblocked.

Note: Previous content of the passed NvSciSyncFence will be overwritten.

5.6.5.9.3.2 SampleUsage

/******************************Initialize NvSciSync
 Parameters**/
 NvSciSyncObj syncObj1, syncObj2;
 NvSciSyncModule syncModule;
 NvSciSyncAttrList syncAttrListObj1[2];
 NvSciSyncAttrList syncAttrListObj2[2];
 NvSciSyncCpuWaitContext nvSciCtx;
 NvSciSyncAttrList waiterAttrListObj1 = NULL;
 NvSciSyncAttrList signalerAttrListObj1 = NULL;
 NvSciSyncAttrList waiterAttrListObj2 = NULL;
 NvSciSyncAttrList signalerAttrListObj2 = NULL;
 NvSciSyncAttrList nvSciSyncConflictListObj1;
 NvSciSyncAttrList nvSciSyncReconciledListObj1;
 NvSciSyncAttrList nvSciSyncConflictListObj2;
 NvSciSyncAttrList nvSciSyncReconciledListObj2;

 NvSciSyncModuleOpen(&syncModule);

 // Create Attribute list for NvSciSyncObj1
 NvSciSyncAttrListCreate(syncModule, &signalerAttrListObj1);

 NvSciSyncAttrListCreate(syncModule, &waiterAttrListObj1);

 cudlaGetNvSciSyncAttributes(reinterpret_cast<uint64_t*>(waiterAttrListObj1),
 CUDLA_NVSCISYNC_ATTR_WAIT);

 // Fill CPU signaller Attribute list for NvSciSyncObj1 here
 {
 bool cpuSignaler = true;
 NvSciSyncAttrKeyValuePair keyValue[2];
 memset(keyValue, 0, sizeof(keyValue));
 keyValue[0].attrKey = NvSciSyncAttrKey_NeedCpuAccess;
 keyValue[0].value = (void*) &cpuSignaler;
 keyValue[0].len = sizeof(cpuSignaler);

 NvSciSyncAccessPerm cpuPerm = NvSciSyncAccessPerm_SignalOnly;
 keyValue[1].attrKey = NvSciSyncAttrKey_RequiredPerm;
 keyValue[1].value = (void*) &cpuPerm;
 keyValue[1].len = sizeof(cpuPerm);

 NvSciSyncAttrListSetAttrs(signalerAttrListObj1, keyValue, 2);
 }

 // Reconcile attribute list for NvSciSyncObj1

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 413

Embedded Software Components

 syncAttrListObj1[0] = signalerAttrListObj1;
 syncAttrListObj1[1] = waiterAttrListObj1;
 NvSciSyncAttrListReconcile(syncAttrListObj1, 2, &nvSciSyncReconciledListObj1,
 &nvSciSyncConflictListObj1);

 // Allocate NvSciSyncObj1 here
 NvSciSyncObjAlloc(nvSciSyncReconciledListObj1, &syncObj1);

 NvSciSyncCpuWaitContextAlloc(syncModule, &nvSciCtx);

 // Create Attribute list for NvSciSyncObj2
 NvSciSyncAttrListCreate(syncModule, &signalerAttrListObj2);

 NvSciSyncAttrListCreate(syncModule, &waiterAttrListObj2);

 cudlaGetNvSciSyncAttributes(reinterpret_cast<uint64_t*>(signalerAttrListObj2),CUDLA_NVSCISYNC_ATTR_SIGNAL);

 // Fill CPU signaller Attribute list for NvSciSyncObj1 here
 {
 bool cpuWaiter = true;
 NvSciSyncAttrKeyValuePair keyValue[2];
 memset(keyValue, 0, sizeof(keyValue));
 keyValue[0].attrKey = NvSciSyncAttrKey_NeedCpuAccess;
 keyValue[0].value = (void*) &cpuWaiter;
 keyValue[0].len = sizeof(cpuWaiter);

 NvSciSyncAccessPerm cpuPerm = NvSciSyncAccessPerm_WaitOnly;
 keyValue[1].attrKey = NvSciSyncAttrKey_RequiredPerm;
 keyValue[1].value = (void*) &cpuPerm;
 keyValue[1].len = sizeof(cpuPerm);

 NvSciSyncAttrListSetAttrs(waiterAttrListObj2, keyValue, 2);
 }

 // Reconcile attribute list for NvSciSyncObj1
 syncAttrListObj2[0] = signalerAttrListObj2;
 syncAttrListObj2[1] = waiterAttrListObj2;
 NvSciSyncAttrListReconcile(syncAttrListObj2, 2, &nvSciSyncReconciledListObj2,
 &nvSciSyncConflictListObj2);

 // Allocate NvSciSyncObj1 here
 NvSciSyncObjAlloc(nvSciSyncReconciledListObj2, &syncObj2);

 /********************Registration of NvSciSync with
 cuDLA******************************/
 uint64_t* nvSciSyncObjRegPtr1 = NULL;
 uint64_t* nvSciSyncObjRegPtr2 = NULL;

 cudlaExternalSemaphoreHandleDesc semaMemDesc = { 0 };
 // Fill up cudlaExternalSemaphoreHandleDesc
 memset(&semaMemDesc, 0, sizeof(semaMemDesc));
 semaMemDesc.extSyncObject = syncObj1;
 // Import NvSciSync objects into cuDLA
 cudlaImportExternalSemaphore(cudlaDevHandle, &semaMemDesc, &nvSciSyncObjRegPtr1,
 0);

 // Fill up cudlaExternalSemaphoreHandleDesc
 memset(&semaMemDesc, 0, sizeof(semaMemDesc));
 semaMemDesc.extSyncObject = syncObj2;
 // Import NvSciSync objects into cuDLA
 cudlaImportExternalSemaphore(cudlaDevHandle, &semaMemDesc, &nvSciSyncObjRegPtr2,
 0);

 // Create Wait events for which cuDLA is waiter
 NvSciSyncFence preFence = NvSciSyncFenceInitializer;
 NvSciSyncObjGenerateFence(syncObj1, &preFence);

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 414

Embedded Software Components

 cudlaWaitEvents* waitEvents;
 waitEvents = (cudlaWaitEvents *)malloc(sizeof(cudlaWaitEvents));
 waitEvents->numEvents = 1;
 CudlaFence* preFences = (CudlaFence *)malloc(waitEvents->numEvents *
 sizeof(CudlaFence));
 preFences[0].fence = &preFence;
 preFences[0].type = CUDLA_NVSCISYNC_FENCE;
 waitEvents->preFences = preFences;

 // Create Signal events for which cuDLA is signaller
 cudlaSignalEvents* signalEvents;
 signalEvents = (cudlaSignalEvents *)malloc(sizeof(cudlaSignalEvents));
 signalEvents->numEvents = 1;
 uint64_t** devPtrs = (uint64_t **)malloc(signalEvents->numEvents *
 sizeof(uint64_t *));
 devPtrs[0] = nvSciSyncObjRegPtr2;
 signalEvents->devPtrs = devPtrs;
 NvSciSyncFence eofFence = NvSciSyncFenceInitializer;
 signalEvents->eofFences = (CudlaFence *)malloc(signalEvents->numEvents *
 sizeof(CudlaFence));
 signalEvents->eofFences[0].fence = &eofFence;
 signalEvents->eofFences[0].type = CUDLA_NVSCISYNC_FENCE;

 /**************************** Task Submission to DLA
 **************************************/
 // Creation of Task with wait and Signal events and submit it to DLA
 cudlaTask task;
 task.moduleHandle = moduleHandle;
 task.outputTensor = &outputBufObjRegPtr; // DLA will write results into this
 memory on completion of the task
 task.numOutputTensors = 1;
 task.numInputTensors = 1;
 task.inputTensor = &inputBufObjRegPtr; // DLA will read the input data from
 this memory.
 task.waitEvents = waitEvents;
 task.signalEvents = signalEvents;
 cudlaSubmitTask(cudlaDevHandle, &task, 1, NULL, 0);

 /****************************Signalling of NvSciSyncObj1 from
 CPU**********************/
 NvSciSyncObjSignal(syncObj1);

 /****************************Waiting on NvSciSyncObj2 waiter is
 cuDLA******************/
 NvSciSyncFenceWait(reinterpret_cast<NvSciSyncFence*>(signalEvents-
>eofFences[0].fence), nvSciCtx, -1);

 /****************************Tear Down phase for
 NvSciSync*****************************/
 // Unregister nvSciSync from cuDLA
 cudlaMemUnregister(devHandle, nvSciSyncObjRegPtr1);
 cudlaMemUnregister(devHandle, nvSciSyncObjRegPtr2);

 // Free NvSciSync
 vSciSyncObjFree(syncObj1);
 NvSciSyncObjFree(syncObj2);
 NvSciSyncAttrListFree(signalerAttrListObj1);
 NvSciSyncAttrListFree(waiterAttrListObj1);
 NvSciSyncAttrListFree(signalerAttrListObj2);
 NvSciSyncAttrListFree(waiterAttrListObj2);
 NvSciSyncAttrListFree(nvSciSyncConflictListObj1);
 NvSciSyncAttrListFree(nvSciSyncReconciledListObj1);
 NvSciSyncAttrListFree(nvSciSyncConflictListObj2);
 NvSciSyncAttrListFree(nvSciSyncReconciledListObj2);
 NvSciSyncCpuWaitContextFree(nvSciCtx);
 NvSciSyncModuleClose(syncModule);
 free(waitEvents);

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 415

Embedded Software Components

 free(preFences);
 free(signalEvents->eofFences);
 free(signalEvents);
 free(devPtrs);
 NvSciSyncFenceClear(&preFence);
 NvSciSyncFenceClear(&eofFence);

5.6.5.9.4 CUDA
CUDA supports NvSciSync by enabling applications to signal and wait for them on
a CUDA stream. (Signaling an NvSciSync is similar to cudaEventRecord and waiting
for an NvSciSync is similar to issuing cudaStreamWaitEvent). CUDA treats NvSciSync
as an external semaphore object of type cudaExternalSemaphoreHandleType, which
can be imported into the CUDA address space. The application can use existing
cudaExternalSemaphore API to build dependencies between an NvSciSync object and
CUDA streams, and vice-versa. Since cudaExternalSemaphore APIs are treated as regular
stream operations, CUDA-NvSciSync interop follows regular stream semantics.

5.6.5.9.4.1 CUDA APIs

Query NvSciSyncObj attributes (for waiting or signaling) from CUDA

Use cudaDeviceGetNvSciSyncAttributes API to query the NvSciSync attributes from CUDA
for a given CUDA device. NvSciSyncAttrLists passed to this API must be allocated and
managed by the application.

NvSciSync object registration/unregistration with CUDA

Use cudaImportExternalSemaphore API to register/import an NvSciSync Objects into
the CUDA address space. This API accepts a valid NvSciSyncObject as a parameter to
semHandleDesc. On completion, the extSem_out returned internally holds a reference to
the NvSciSyncObject passed earlier and must be sent to the APIs listed below.

Use cudaDestroyExternalSemaphore (for runtime) to unregister/destroy an already
registered/imported NvSciSync Object from the CUDA address space.

Wait for an NvSciSyncFence.

Use cudaWaitExternalSemaphoresAsync to make all operations enqueued
on the CUDA stream (passed as a parameter to this API) wait until the
NvSciSyncFence (sent as a parameter to this API via paramsArray) is signaled
by the relevant signaler. Such a wait happens asynchronously on the GPU (i.e.,
the calling thread returns immediately). Applications can also optionally set ag
CUDA_EXTERNAL_SEMAPHORE_WAIT_SKIP_NVSCIBUF_MEMSYNC to indicate that memory
synchronization operations are disabled over all CUDA-NvSciBufs imported into CUDA
(in that process), which are normally performed by default to ensure data coherency
with other importers of the same NvSciBuf memory objects. Use this ag when CUDA-
NvSciSync is used to build only control-dependencies (i.e., no data sharing between the
signaler and waiter).

Get an NvSciSyncFence.

cudaSignalExternalSemaphoresAsync takes a valid NvSciSyncFence as input. Upon return,
the fence tracks the completion of all work submitted to the same CUDA stream on

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 416

Embedded Software Components

which the API was invoked. Waiting on a fence is equivalent to waiting for the completion
of all the work on the stream. This API ensures that when the dependent work (in the
stream) completes, the NvSciSyncFence is signaled, and any potential waiters waiting
on the NvSciSyncFence are unblocked. The signal happens asynchronously in the GPU
(i.e., the calling thread returns immediately). Applications can also optionally set ag
CUDA_EXTERNAL_SEMAPHORE_SIGNAL_SKIP_NVSCIBUF_MEMSYNC to indicate that memory
synchronization operations are disabled over all CUDA-NvSciBufs imported into CUDA
(in that process), which are normally performed by default to ensure data coherency
with other importers of the same NvSciBuf memory objects. Use this ag when CUDA-
NvSciSync is used to build only control-dependencies (i.e., no data sharing between the
signaler and waiter).

Note:

cudaWait|SignalExternalSemaphoresAsync API takes an array of
cudaExternalSemaphore_t and cudaExternalSemaphoresWait|SignalParams.
This allows the application to enqueue one or more external semaphore objects,
each being one of the cudaExternalSemaphoreHandleType types. This option is an
ecient way to describe a dependency between a CUDA stream and more than
one NvSciSyncFence as a single operation.

cudaSignalExternalSemaphoresAsync overwrites the previous contents of
NvSciSyncFence passed to it.

CUDA-NvSciSync API Usage
NvSciSyncFence *signalerFence = NULL;
NvSciSyncFence *waiterFence = NULL;
NvSciIpcEndpoint signalerIpcEndpoint = 0;
NvSciIpcEndpoint waiterIpcEndpoint = 0;
NvSciSyncAttrList unreconciledList[2] = {NULL};
NvSciSyncAttrList reconciledList = NULL;
NvSciSyncAttrList newConflictList = NULL;
NvSciSyncAttrList signalerAttrList = NULL;
NvSciSyncAttrList waiterAttrList = NULL;
NvSciSyncAttrList importedWaiterAttrList = NULL;
NvSciSyncObjIpcExportDescriptor objDesc;
NvSciSyncFenceIpcExportDescriptor fenceDesc;
NvSciSyncObj signalObj;
NvSciSyncObj waitObj;
NvSciSyncModule module = NULL;
void* objAndList;
size_t objAndListSize = 0;
void* waiterListDesc;
size_t waiterAttrListSize = 0;
CUcontext signalerCtx = 0;
CUcontext waiterCtx = 0;
int iGPU = 0;
int dGPU = 1;
cudaStream_t signalerCudaStream;
cudaStream_t waiterCudaStream;
cudaExternalSemaphore_t signalerSema, waiterSema;
cudaExternalSemaphoreHandleDesc semaDesc;
cudaExternalSemaphoreSignalParams sigParams;
cudaExternalSemaphoreWaitParams waitParams;
/*****************INIT PHASE**************************/
err = NvSciSyncModuleOpen(&module);
err = NvSciIpcInit();
err = NvSciIpcOpenEndpoint("ipc_test", &signalerIpcEndpoint);

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 417

Embedded Software Components

err = NvSciIpcOpenEndpoint("ipc_test", &waiterIpcEndpoint);
err = NvSciSyncAttrListCreate(module, &signalerAttrList);
err = NvSciSyncAttrListCreate(module, &waiterAttrList);
signalerFence = (NvSciSyncFence *)calloc(1, sizeof(*signalerFence));
waiterFence = (NvSciSyncFence *)calloc(1, sizeof(*waiterFence));
cudaFree(0);
cudaSetDevice(iGPU);// Signaler will be on Device-1/iGPU
cuCtxCreate(&signalerCtx, CU_CTX_MAP_HOST, iGPU);
cudaSetDevice(dGPU);// Waiter will be on Device-0/dGPU
cuCtxCreate(&waiterCtx, CU_CTX_MAP_HOST, dGPU);
cuCtxPushCurrent(signalerCtx);
cudaStreamCreate(&signalerCudaStream);
cuCtxPopCurrent(&signalerCtx);
cuCtxPushCurrent(waiterCtx);
cudaStreamCreate(&waiterCudaStream);
cuCtxPopCurrent(&waiterCtx);
cuCtxPushCurrent(waiterCtx);
cudaDeviceGetNvSciSyncAttributes(waiterAttrList, dGPU, cudaNvSciSyncAttrWait);
err = NvSciSyncAttrListIpcExportUnreconciled(&waiterAttrList, 1, waiterIpcEndpoint,
 &waiterListDesc, &waiterAttrListSize);
// Allocate cuda memory for the signaler, if needed
cuCtxPopCurrent(&waiterCtx);
cuCtxPushCurrent(signalerCtx);
cudaDeviceGetNvSciSyncAttributes(signalerAttrList, iGPU, cudaNvSciSyncAttrSignal);
// Allocate cuda memory for the waiter, if needed
err = NvSciSyncAttrListIpcImportUnreconciled(module, signalerIpcEndpoint,
 waiterListDesc, waiterAttrListSize, &importedWaiterAttrList);
cuCtxPopCurrent(&signalerCtx);
unreconciledList[0] = signalerAttrList;
unreconciledList[1] = importedWaiterAttrList;
err = NvSciSyncAttrListReconcile(unreconciledList, 2, &reconciledList,
 &newConflictList);
err = NvSciSyncObjAlloc(reconciledList, &signalObj);
// Export Created NvSciSyncObj and attribute list to waiter
err = NvSciSyncIpcExportAttrListAndObj(signalObj, NvSciSyncAccessPerm_WaitOnly,
 signalerIpcEndpoint, &objAndList, &objAndListSize);
// Import already created NvSciSyncObj into a new NvSciSyncObj
err = NvSciSyncIpcImportAttrListAndObj(module, waiterIpcEndpoint, objAndList,
 objAndListSize, &waiterAttrList, 1, NvSciSyncAccessPerm_WaitOnly, 1000000,
 &waitObj);
cuCtxPushCurrent(signalerCtx);
semaDesc.type = cudaExternalSemaphoreHandleTypeNvSciSync;
semaDesc.handle.nvSciSyncObj = (void*)signalObj;
cudaImportExternalSemaphore(&signalerSema, &semaDesc);
cuCtxPopCurrent(&signalerCtx);
cuCtxPushCurrent(waiterCtx);
semaDesc.type = cudaExternalSemaphoreHandleTypeNvSciSync;
semaDesc.handle.nvSciSyncObj = (void*)waitObj;
cudaImportExternalSemaphore(&waiterSema, &semaDesc);
cuCtxPopCurrent(&waiterCtx);
/**/
/*****************STREAMING PHASE**************************/
cuCtxPushCurrent(signalerCtx);
sigParams.params.nvSciSync.fence = (void*)signalerFence;
sigParams.flags = 0; //Set flags = cudaExternalSemaphoreSignalSkipNvSciBufMemSync if
 needed
// LAUNCH CUDA WORK ON signalerCudaStream
cudaSignalExternalSemaphoresAsync(&signalerSema, &sigParams, 1, signalerCudaStream);
err = NvSciSyncIpcExportFence(signalerFence, signalerIpcEndpoint, &fenceDesc);
NvSciSyncFenceClear(signalerFence);
cuCtxPopCurrent(&signalerCtx);
cuCtxPushCurrent(waiterCtx);
err = NvSciSyncIpcImportFence(waitObj, &fenceDesc, waiterFence);
waitParams.params.nvSciSync.fence = (void*)waiterFence;
waitParams.flags = 0; //Set flags = cudaExternalSemaphoreWaitSkipNvSciBufMemSync if
 needed
cudaWaitExternalSemaphoresAsync(&waiterSema, &waitParams, 1, waiterCudaStream);

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 418

Embedded Software Components

// LAUNCH CUDA WORK ON waiterCudaStream
cudaStreamSynchronize(waiterCudaStream);
cuCtxPopCurrent(&waiterCtx);
/**/
/*****************TEAR-DOWN PHASE**************************/
NvSciSyncObjFree(signalObj);
NvSciSyncObjFree(waitObj);
NvSciSyncAttrListFree(reconciledList);
NvSciSyncAttrListFree(newConflictList);
NvSciSyncAttrListFree(signalerAttrList);
NvSciSyncAttrListFree(waiterAttrList);
NvSciSyncAttrListFree(importedWaiterAttrList);
NvSciSyncModuleClose(module);
NvSciIpcCloseEndpoint(signalerIpcEndpoint);
NvSciIpcCloseEndpoint(waiterIpcEndpoint);
cudaStreamSynchronize(signalerCudaStream);
cudaStreamSynchronize(waiterCudaStream);
cudaStreamDestroy(waiterCudaStream);
cudaStreamDestroy(signalerCudaStream);
cudaDestroyExternalSemaphore(signalerSema);
cudaDestroyExternalSemaphore(waiterSema);
cuCtxDestroy(signalerCtx);
cuCtxDestroy(waiterCtx);
free(signalerFence);
free(waiterFence);
/**/

5.6.5.10 Late Attach
NvSciSync provides a mechanism for an application to allocate an NvSciSyncObj that will
be shared with other peers, without requiring each peer to have sent an unreconciled
NvSciSyncAttrList during initial reconciliation. The constraints of late attach waiter
peers, however, should be passed using unreconciled NvSciSyncAttrList during the
reconciliation process by the application to ensure the NvSciSyncObj is allocated to satisfy
the constraints of the late peers.

NvSciSync also allows remote peer NvSciIpcEndpoint to gain access to already
allocated NvSciSyncObj, provided the already allocated NvSciSyncObj satises
the constraints of the unreconciled NvSciSyncAttrList, received from that peer,
through the NvSciSyncObjAttachPeer() API. NvSciSync provides attribute keys
such as NvSciSyncAttrKey_PeerLocationInfo, NvSciSyncAttrKey_PrimitiveInfo
and NvSciSyncAttrKey_PeerHwEngineArray that needs to be specied in the proxy
unreconciled NvSciSyncAttrList during initial reconciliation.

Note:

‣ Detailed descriptions of the attribute keys and the APIs are in the NVIDIA DRIVE® OS
API Reference.

‣ Application needs to refer to User Mode Driver (UMD) documentation
for details of how to specify the NvSciSyncAttrKey_PrimitiveInfo and
NvSciSyncAttrKey_PeerHwEngineArray keys.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 419

Embedded Software Components

5.6.5.11 Sample Application

5.6.5.11.1 CPU Signaler Usage
NvSciSyncAttrList unreconciledList[2] = {NULL};
NvSciSyncAttrList reconciledList = NULL;
NvSciSyncAttrList newConflictList = NULL;
NvSciSyncAttrList signalerAttrList = NULL;
NvSciSyncModule module = NULL;
NvSciSyncObj syncObj = NULL;
NvSciSyncAttrList importedUnreconciledAttrList = NULL;
NvSciSyncFence syncFence = NvSciSyncFenceInitializer;
NvSciIpcEndpoint ipcEndpoint = 0;
NvSciSyncFenceIpcExportDescriptor fenceDesc;
void* waiterAttrListDesc;
size_t waiterAttrListSize;
void* objAndListDesc;
size_t objAndListSize;
NvSciSyncAttrKeyValuePair keyValue[2] = {0};
bool cpuSignaler = true;
NvSciSyncAccessPerm cpuPerm;
/* Initialize NvSciIpc */
err = NvSciIpcInit();
if (err != NvSciError_Success) {
 goto fail;
}
err = NvSciIpcOpenEndpoint("example", &ipcEndpoint);
if (err != NvSciError_Success) {
 goto fail;
}
/* Signaler Setup/Init phase */
/* Initialize the NvSciSync module */
err = NvSciSyncModuleOpen(&module);
if (err != NvSciError_Success) {
 goto fail;
}
/* create local attribute list */
err = NvSciSyncAttrListCreate(module, &signalerAttrList);
if (err != NvSciError_Success) {
 goto fail;
}
err = largs->fillSignalerAttrList(signalerAttrList);
if (err != NvSciError_Success) {
 goto fail;
}
cpuSignaler = true;
keyValue[0].attrKey = NvSciSyncAttrKey_NeedCpuAccess;
keyValue[0].value = (void*) &cpuSignaler;
keyValue[0].len = sizeof(cpuSignaler);
cpuPerm = NvSciSyncAccessPerm_SignalOnly;
keyValue[1].attrKey = NvSciSyncAttrKey_RequiredPerm;
keyValue[1].value = (void*) &cpuPerm;
keyValue[1].len = sizeof(cpuPerm);
err = NvSciSyncAttrListSetAttrs(list, keyValue, 2);
if (err != NvSciError_Success) {
 goto fail;
}
/* receive waiterAttrListSize; */
/* receive waiterAttrListDesc */
err = NvSciSyncAttrListIpcImportUnreconciled(
 module, ipcEndpoint,
 waiterAttrListDesc, waiterAttrListSize,
 &importedUnreconciledAttrList);
if (err != NvSciError_Success) {
 goto fail;
}

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 420

Embedded Software Components

unreconciledList[0] = signalerAttrList;
unreconciledList[1] = importedUnreconciledAttrList;
/* Reconcile Signaler and Waiter NvSciSyncAttrList */
err = NvSciSyncAttrListReconcile(
 unreconciledList, 2, &reconciledList,
 &newConflictList);
if (err != NvSciError_Success) {
 goto fail;
}
/* Create NvSciSync object and get the syncObj */
err = NvSciSyncObjAlloc(reconciledList, &syncObj);
if (err != NvSciError_Success) {
 goto fail;
}
/* Export attr list and obj and signal waiter*/
err = NvSciSyncIpcExportAttrListAndObj(
 syncObj,
 NvSciSyncAccessPerm_WaitOnly, ipcEndpoint,
 &objAndListDesc, &objAndListSize);
/* send objAndListSize */
/* send objAndListDesc */
/* signaler's streaming phase */
err = NvSciSyncObjGenerateFence(syncObj, &syncFence);
if (err != NvSciError_Success) {
 return err;
}
err = NvSciSyncIpcExportFence(&syncFence, ipcEndpoint, &fenceDesc);
if (err != NvSciError_Success) {
 goto fail;
}
NvSciSyncFenceClear(&syncFence);
/* do job that the waiter is supposed to wait on */
NvSciSyncObjSignal(syncObj);
/* cleanup */
fail:
/* Free descriptors */
free(objAndListDesc);
free(waiterAttrListDesc);
/* Free NvSciSyncObj */
NvSciSyncObjFree(syncObj);
/* Free Attribute list objects */
NvSciSyncAttrListFree(reconciledList);
NvSciSyncAttrListFree(newConflictList);
NvSciSyncAttrListFree(signalerAttrList);
NvSciSyncAttrListFree(importedUnreconciledAttrList);
/* Deinitialize the NvSciSync module */
NvSciSyncModuleClose(module);
/* Deinitialize NvSciIpc */
NvSciIpcCloseEndpoint(ipcEndpoint);
NvSciIpcDeinit();

5.6.5.11.2 CPU Waiter Usage
NvSciSyncAttrKeyValuePair keyValue[2] = {0};
NvSciSyncModule module = NULL;
NvSciSyncAttrList waiterAttrList = NULL;
void* waiterAttrListDesc;
size_t waiterAttrListSize;
NvSciSyncObj syncObj = NULL;
void* objAndListDesc = NULL;
size_t objAndListSize = 0U;
NvSciSyncCpuWaitContext waitContext = NULL;
NvSciSyncFenceIpcExportDescriptor fenceDesc;
NvSciIpcEndpoint ipcEndpoint = 0;
bool cpuWaiter = true;
NvSciSyncAttrKeyValuePair keyValue[2] = {0};

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 421

Embedded Software Components

NvSciSyncAccessPerm cpuPerm = NvSciSyncAccessPerm_WaitOnly;
err = NvSciIpcInit();
if (err != NvSciError_Success) {
 goto fail;
}
err = NvSciIpcOpenEndpoint("example", &ipcEndpoint);
if (err != NvSciError_Success) {
 goto fail;
}
/* Waiter Setup/Init phase */
/* Initialize the NvSciSync module */
err = NvSciSyncModuleOpen(&module);
if (err != NvSciError_Success) {
 goto fail;
}
err = NvSciSyncCpuWaitContextAlloc(module, &waitContext);
if (err != NvSciError_Success) {
 goto fail;
}
/* Get waiter's NvSciSyncAttrList from NvSciSync for CPU waiter */
err = NvSciSyncAttrListCreate(module, &waiterAttrList);
if (err != NvSciError_Success) {
 goto fail;
}
cpuWaiter = true;
keyValue[0].attrKey = NvSciSyncAttrKey_NeedCpuAccess;
keyValue[0].value = (void*) &cpuWaiter;
keyValue[0].len = sizeof(cpuWaiter);
cpuPerm = NvSciSyncAccessPerm_WaitOnly;
keyValue[1].attrKey = NvSciSyncAttrKey_RequiredPerm;
keyValue[1].value = (void*) &cpuPerm;
keyValue[1].len = sizeof(cpuPerm);
err = NvSciSyncAttrListSetAttrs(list, keyValue, 2);
if (err != NvSciError_Success) {
 goto fail;
}
/* Export waiter's NvSciSyncAttrList */
err = NvSciSyncAttrListIpcExportUnreconciled(
 &waiterAttrList, 1,
 ipcEndpoint,
 &waiterAttrListDesc, &waiterAttrListSize);
if (err != NvSciError_Success) {
 goto fail;
}
/* send waiterAttrListSize */
/* send waiterAttrListDesc */
/* receive objAndListDesc */
err = NvSciSyncIpcImportAttrListAndObj(
 module, ipcEndpoint,
 objAndListDesc, objAndListSize,
 &waiterAttrList, 1,
 NvSciSyncAccessPerm_WaitOnly, 10000U, &syncObj);
if (err != NvSciError_Success) {
 goto fail;
}
/* Waiter streaming phase */
/* receive fenceDesc */
err = NvSciSyncIpcImportFence(
 syncObj,
 &fenceDesc,
 &syncFence);
if (err != NvSciError_Success) {
 goto fail;
}
err = NvSciSyncFenceWait(
 &syncFence,
 waitContext, 30000U);

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 422

Embedded Software Components

if (err != NvSciError_Success) {
 goto fail;
}
NvSciSyncFenceClear(&syncFence);
/* cleanup */
fail:
free(waiterAttrListDesc);
free(objAndListDesc);
NvSciSyncAttrListFree(waiterAttrList);
NvSciSyncObjFree(syncObj);
NvSciSyncCpuWaitContextFree(waitContext);
/* Deinitialize the NvSciSync module */
NvSciSyncModuleClose(module);
/* Deinitialize NvSciIpc */
NvSciIpcCloseEndpoint(ipcEndpoint);
NvSciIpcDeinit();

5.6.5.12 NvSciSync Proling
NvSciSync supports visualizing of NvSciSyncFence execution on Nsight systems.

The following information can be collected and presented on the timeline in the report:

‣ CPU Signaling of NvSciSyncObj

‣ CPU Waiting of NvSciSyncFence

The previous events are only supported for NvSciSyncObj(s), which has
NvSciSyncAttrValPrimitiveType_Syncpoint as NvSciSyncAttrKey_PrimitiveInfo.

This feature is supported on AV+L standard, AV+Q standard, and AV+Q safety with
prod_debug_extra variant.

5.6.6 Inter-Process Communication
The NvSciIpc library provides API for any two (2) entities in a system to communicate with
each other irrespective of where they are placed. Entities can be:

‣ in dierent threads in the same process.

‣ in the same process.

‣ in dierent processes in the same VM.

‣ in dierent VMs on the same SoC.

‣ in dierent SoCs.

Each of these dierent boundaries are abstracted by a library that provides unied
communication (read/write) API to entities.

Terminology

Channel: An NvSciIpc channel connection allows bidirectional exchange of xed-length
messages between exactly two NvSciIpc endpoints.

Endpoint: A software entity that uses NvSciIpc channel to communicate with another
software entity.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 423

Embedded Software Components

Frame: A message that consists of a sequence of bytes that is sent along an NvSciIpc
channel from one of the two NvSciIpc endpoints of the NvSciIpc channel to the other
NvSciIpc endpoint.

Frame Size: The size, in bytes, of every message exchanged along an NvSciIpc channel.
Each NvSciIpc channel may have a distinct frame size.

Frame Count: The maximum number of NvSciIpc frames that may simultaneously be
queued for transfer in each direction along an NvSciIpc channel.

Backend: An NvSciIpc backend implements NvSciIpc functionality for a particular class of
NvSciIpc channels. For example, for NvSciIpc communication conned to SoCs, there are
ve dierent classes of NvSciIpc channels depending on the maximum level of separation
between NvSciIpc endpoints that is supported by the NvSciIpc channel.

‣ INTER_THREAD: Handles communication between entities that may be in dierent
threads in the same process.

‣ INTER_PROCESS: Handles communication between entities that may be in dierent
processes in the same VM.

‣ INTER_VM: Handles communication between entities that may be in dierent VMs in
the same SoC.

‣ INTER_CHIP_PCIE: Handles communication between entities that may be in dierent
SoCs.

Endpoint Handle: Abstract data type that is passed to all NvSciIpc channel communication.

Channel Reset: Denes the abrupt end of communication by one of the NvSciIpc
endpoints. In case of reset, no communication is allowed over NvSciIpc channel until both
endpoints reset their internal states and are ready for communication. NvSciIpc relies on
its backend to implement the channel reset mechanism. It may require cooperation from
both endpoints where two endpoints have to wait for conrmation that the other has reset
its local state.

Notication: An asynchronous signal along an NvSciIpc channel through which one of the
two endpoints of the NvSciIpc channel indicates to the other NvSciIpc endpoint that there
may be an event for the latter NvSciIpc endpoint to process.

5.6.6.1 NvSciIpc Conguration Data
NvSciIpc conguration data is used to dene all the channels present for a given Guest
VM. Currently these details are provided via the plain text conguration le, where each
line contains details about a single NvSciIpc channel in the system.

Each channel entry is added to the plain text conguration le in string list form.

For INTER_THREAD and INTER_PROCESS backend, the format is :
<Backend-Name>, <Endpoint-Name>, <Endpoint-Name>, <Backend-Specific-Data>,

For INTER_VM and INTER_CHIP backend, the format is :
<Backend-Name>, <Endpoint-Name>, <Backend-Specific-Data>,

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 424

Embedded Software Components

<Endpoint-Name> is unique string that is used to tag/identify a single NvSciIpc endpoint in
a system. Ideally it should describe the purpose for which the NvSciIpc endpoint is created.

For INTER_THREAD and INTER_PROCESS backends, two endpoint names must be dened.

<Backend-Name> must be one of the following:

‣ INTER_THREAD

‣ INTER_PROCESS

‣ INTER_VM

‣ INTER_CHIP_PCIE

‣ INTER_CHIP

<Backend-Specific-Data> may span multiple elds.

The INTER_THREAD and INTER_PROCESS backend contains two (2) integer elds that
describe <No-of-Frames Frame-Size> tuple. <Frame-Size> must be multiples of 64 bytes.

INTER_VM contains a single integer eld that denotes the IVC queue ID.

INTER_CHIP_PCIE contains a SGID of C2C device node.

INTER_CHIP contains a single integer eld that denotes the inter-chip device number.

5.6.6.1.1 Example NvSciIpc cong le format
<Backend_name> <Endpoint-name1> <Endpoint-name2>
 <backend-specific-info>
INTER_PROCESS ipc_test_0 ipc_test_1 64 1536
INTER_PROCESS ipc_test_a_0 ipc_test_a_1 64 1536
INTER_PROCESS ipc_test_b_0 ipc_test_b_1 64 1536
INTER_PROCESS ipc_test_c_0 ipc_test_c_1 64 1536
INTER_THREAD itc_test_0 itc_test_1 64 1536
INTER_VM ivm_test 255
INTER_VM loopback_tx 256
INTER_VM loopback_rx 257

5.6.6.2 Adding a New Channel

5.6.6.2.1 Adding a New INTER_THREAD and INTER_PROCESS
Channel
INTER_THREAD and INTER_PROCESS channels are implemented using POSIX shared
memory, and POSIX mqueue for notications. You must add a new line in the /etc/
nvsciipc.cfg le describing the new channel.

Reboot the Linux VM if the added endpoint is for the secure memory use case;
otherwise, there is no need to boot the Linux VM . Restart the NvSciIpc application once
nvsciipc.cfg is updated.

There is no specic limitation of Intra-VM channel capacity for now.

The inter-VM backend has 512 max channel entries for the entire NVIDIA DRIVE OS.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 425

Embedded Software Components

The inter-Chip backend has 16 max channel entries for the entire NVIDIA® DRIVE OS.

NvSciIpc supports up to 500 endpoints per NvSciIpc client process. (equal to 250
INTER_THREAD channels, or 500 INTER_PROCESS/INTER_VM channels)

5.6.6.2.2 Adding a New INTER_VM Channel
The INTER_VM channel relies on Hypervisor to set up the shared area details between two
(2) VMs. At present, it is done via IVC queues that are described in the PCT. For any new
INTER_VM channel:

1. Add a new IVC queue between two (2) VMs to the PCT le (platform_config.h) of the
corresponding platform. The VM partition IDs are dened in the server-partitions.mk
makele. The frame_size value is in multiples of 64 bytes. The maximum IVC queue
entries are 512 (the value imposed by the NVIDIA DRIVE® OS Hypervisor kernel). The
location of the conguration le and makele are as follows:

‣ drive-foundation/platform-config/hardware/nvidia/platform/t23x/automotive/pct/
drive_av/platform_config.h

‣ drive-foundation/virtualization/pct/make/t23x/server-partitions.mk

2. When INTER_VM IVC notication latency is critical between dierent PCPUs, the user
can choose the MSI-based (Message Signaled Interrupt) IVC notication by adding
use_msi = 1 option in the IVC queue table. The user should contact NVIDIA to use the
MSI-based IVC notication since the total MSI-based IVC channel count is limited in the
NVIDIA DRIVE OS® system. TRAP-based IVC notication is used by default if you don’t
specify the use_msi ag.

3. If the INTER_VM channel is dened in the conguration data of the cfg le but its IVC
queue ID is NOT available in the PCT, that channel is ignored.

4. If the INTER_VM channel is dened in the conguration data of the cfg le but its IVC
queue ID is NOT available in the PCT, that channel is ignored.

Example: IVC queue table format of PCT
.ivc = {
.queue = {
 ... skipped ...
 [queue id] = { .peers = {VM1_ID, VM2_ID}, .nframes = ##, .frame_size =
 ##, .use_msi = # },
 ... skipped ...
},
... skipped ...
}

/* example */
[255] = { .peers = {GID_GUEST_VM, GID_UPDATE}, .nframes = 64, .frame_size = 1536 },

or

[255] = { .peers = {GID_GUEST_VM, GID_UPDATE}, .nframes = 64, .frame_size =
 1536, .use_msi = 1 },

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 426

Embedded Software Components

5.6.6.3 Update System Resources
NvSciIpc must open endpoint-related resources such as shared memory, message queues,
and device node. When the number of endpoints increases, the number of resources to
open also increases, and it can exceed the system resource limit, which leads to NvSciIpc
failure at initialization.

The following two system resources are updated to support max endpoint count:

‣ RLIMIT_NOFILE–maximum number of les to open

‣ RLIMIT_MSGQUEUE–maximum number bytes to be allocated for message queue

The resources can be increased in /etc/security/limits.d/driveos-limits.conf.
$cat /etc/security/limits.d/driveos-limits.conf
* hard nofile 131072
* soft nofile 131072
root hard nofile 131072
root soft nofile 131072
* hard msgqueue 134217728
* soft msgqueue 134217728
root hard msgqueue 134217728
root soft msgqueue 134217728

#Check your current resource limits using "ulimit -a" command then compare it to
 above settings.
#If your limits are lower than recommended values, you have to update them.

Note:

Existing sessions still have old limit values.

To apply new limits, reboot the system or use a new session (login).

/etc/security/limits.d/driveos-limits.conf overrides the settings in the /
etc/security/limits.conf during boot time.

Regarding msgqueue, NvSciIpc has one more tuning point in /etc/sysctl.conf.

$cat /etc/sysctl.conf
fs.mqueue.msg_max=256
fs.mqueue.queues_max=16384

#Check your current resource limits using "sysctl fs.mqueue.msg_max" and "sysctl
 fs.mqueue.queues_max" command, and compare it to upper setting.
#If your limits are lower than recommended values, you have to update them.

Note:

To apply new limits, reboot the system or execute the sudo sysctl -p command.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 427

Embedded Software Components

5.6.6.4 NvSciIpc API Usage
Each application rst has to call NvSciIpcInit() before using any of the other NvSciIpc
APIs. This initializes the NvSciIpc library instance for that application.

Note:

NvSciIpcInit() must be called by application only once at startup..

Initializing the NvSciIpc Library
NvSciError err;
err = NvSciIpcInit();
if (err != NvSciError_Success) {
 return err;
}

5.6.6.4.1 Prepare an NvSciIpc Endpoint for read/write
To enable read/write on an endpoint, the following steps must be completed.

1. The application must open the endpoint.
2. Get the endpoint information, such as the number of frames and each frame size. This

is important as only single frames can be read/written at a given time.
3. Get the FD associated with the endpoint. This is required to handle event notications.
4. Reset the endpoint. This is important as it ensures that the endpoint is not reading/

writing any stale data (for example, from the previous start or instance).

Prepare an NvSciIpc Endpoint for read/write
NvSciIpcEndpoint ipcEndpoint;
struct NvSciIpcEndpointInfo info;
int32_t fd;
NvSciError err;
err = NvSciIpcOpenEndpoint("ipc_endpoint", &ipcEndpoint);
if (err != NvSciError_Success) {
 goto fail;
}
err = NvSciIpcGetLinuxEventFd(ipcEndpoint, &fd);
if (err != NvSciError_Success) {
 goto fail;
}
err = NvSciIpcGetEndpointInfo(ipcEndpoint, &info);
if (err != NvSciError_Success) {
 goto fail;
}
printf("Endpointinfo: nframes = %d, frame_size = %d\n", info.nframes,
 info.frame_size);
err = NvSciIpcResetEndpointSafe(ipcEndpoint);
if (err != NvSciError_Success) {
 goto fail;
}

5.6.6.4.2 Writing to the NvSciIpc Endpoint
The following example shows how to write to the NvSciIpc endpoint.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 428

Embedded Software Components

Write to NvSciIpc Channel
NvSciIpcEndpoint ipcEndpoint;
struct NvSciIpcEndpointInfo info;
int32_t fd;
fd_set rfds;
uint32_t event = 0;
void *buf;
uint32_t buf_size, bytes;
int retval;
NvSciError err;
FD_ZERO(&rfds);
FD_SET(fd, &rfds);
buf = malloc(info.frame_size);
if (buf == NULL) {
 goto fail;
}
while (1) {
 err = NvSciIpcGetEventSafe(ipcEndpoint, &event);
 if (err != NvSciError_Success) {
 goto fail;
 }
 if (event & NV_SCI_IPC_EVENT_WRITE) {
 /* Assuming buf contains the pointer to data to be written.
 * buf_size contains the size of data. It should be less than
 * Endpoint frame size.
 */
 err = NvSciIpcWrite(ipcEndpoint, buf, buf_size, &bytes);
 if(err != NvSciError_Success) {
 printf("error in writing endpoint\n");
 goto fail;
 }
 } else {
 retval = select(fd + 1, &rfds, NULL, NULL, NULL);
 if ((retval < 0) & (retval != EINTR)) {
 exit(-1);
 }
 }
}

5.6.6.4.3 Reading from the NvSciIpc Endpoint
Read from NvSciIpc channel
NvSciIpcEndpoint ipcEndpoint;
struct NvSciIpcEndpointInfo info;
int32_t fd;
fd_set rfds;
uint32_t event = 0;
void *buf;
uint32_t buf_size, bytes;
int retval;
NvSciError err;
FD_ZERO(&rfds);
FD_SET(fd, &rfds);
buf = malloc(info.frame_size);
if (buf == NULL) {
 goto fail;
}
while (1) {
 err = NvSciIpcGetEventSafe(ipcEndpoint, &event);
 if (err != NvSciError_Success) {
 goto fail;
 }
 if (event & NV_SCI_IPC_EVENT_READ) {

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 429

Embedded Software Components

 /* Assuming buf contains pointer to area where frame is read.
 * buf_size contains the size of data. It should be less than
 * Endpoint frame size.
 */
 err = NvSciIpcReadSafe(ipcEndpoint, buf, buf_size, &bytes);
 if(err != NvSciError_Success) {
 printf("error in reading endpoint\n");
 goto fail;
 }
 } else {
 retval = select(fd + 1, &rfds, NULL, NULL, NULL);
 if ((retval < 0) & (retval != EINTR)) {
 exit(-1);
 }
 }
}

5.6.6.4.4 Cleaning-up an NvSciIpc Endpoint
Once read/write is completed, you must free and clean the resources that were allocated
by NvSciIpc endpoints.

Clean up the Endpoint
NvSciIpcEndpoint ipcEndpoint;
bool clear = false;
err = NvSciIpcCloseEndpointSafe(ipcEndpoint, clear);
if (err != NvSciError_Success) {
 goto fail;
}

5.6.6.4.5 De-Initialize NvSciIpc Library
NvSciIpcDeinit();

5.6.6.5 NvSciEventService API Usage
NvSciEventService is an event-driven framework that provides OS-agnostic APIs to send
events and wait for events. The framework enables you to build portable event-driven
applications and simplies the steps required to prepare endpoint connections.

Initializing the NvSciEventService Library

Each application must call NvSciEventLoopServiceCreateSafe() before using any of the
other NvSciEventService and NvSciIpc APIs. This call initializes the NvSciEventService
library instance for the application.

Note:

NvSciEventLoopServiceCreateSafe() must be called by the application only once
at startup. Only single loop service is currently supported.

NvSciEventLoopService *eventLoopService;
NvSciError err;
err = NvSciEventLoopServiceCreateSafe(1, NULL, &eventLoopService);
if (err != NvSciError_Success) {
 goto fail;

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 430

Embedded Software Components

}
err = NvSciIpcInit();
if (err != NvSciError_Success) {
 return err;

Update System Resource

NvSciIpc must open endpoint-related resources, such as shared memory, message queues,
and device node. When the number of endpoints increases, the number resources to open
also increases, which can exceed the system resource limit, leading to NvSciIpc failure at
initialization.

These two system resources matter:

‣ RLIMIT_NOFILE – maximum number of les to open

‣ RLIMIT_MSGQUEUE – maximum number bytes to be allocated for message queue

They can be increased in /etc/security/limits.conf.

$cat /etc/security/limits.conf
* hard nofile 32768
* soft nofile 32768
* hard msgqueue 18874368
* soft msgqueue 18874368
root hard msgqueue 18874368
root soft msgqueue 18874368

#Check your current resource limits using "ulimit -a" command then compare it to
 above settings.
#If your limits are lower than recommended values, you have to update them.
$sudo sed -i '$ a * hard nofile 32768' /etc/security/limits.conf
$sudo sed -i '$ a * soft nofile 32768' /etc/security/limits.conf
$sudo sed -i '$ a * hard msgqueue 18874368' /etc/security/limits.conf
$sudo sed -i '$ a * soft msgqueue 18874368' /etc/security/limits.conf
$sudo sed -i '$ a root hard msgqueue 18874368' /etc/security/limits.conf
$sudo sed -i '$ a root soft msgqueue 18874368' /etc/security/limits.conf

Note:

Existing sessions retain old limit values.

To apply new limits, reboot the system or use a new session (login).

/etc/security/limits.d/nofile.conf overrides settings in the /etc/security/
limits.conf during booting time.

5.6.6.5.1 Waiting for a Single Event for Read/Write
Before reading data, a connection must be established between two endpoint processes.
This can be done by calling NvSciIpcGetEventSafe().

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 431

Embedded Software Components

Basic event handling mechanism is already described in Writing to the NvSciIpc Endpoint
section. (The only dierence is calling WaitForEvent() instead of select()).

Note:

WaitForEvent() is an event-blocking call. It must be called from a single thread only.

To process the write event in a loop, add the WRITE event check routine and
NvSciIpcWriteSafe().

Wait for a single event for read
NvSciEventLoopService *eventLoopService;
NvSciIpcEndpoint ipcEndpoint;
NvSciEventNotifier *eventNotifier;
struct NvSciIpcEndpointInfo info;
int64_t timeout;
uint32_t event = 0;
void *buf;
int32_t buf_size, bytes;
int retval;
NvSciError err;
timeout = NV_SCI_EVENT_INFINITE_WAIT;
buf = malloc(info.frame_size);
if (buf == NULL) {
 goto fail;
}
buf_size = info.frame_size;
while (1) {
 err = NvSciIpcGetEventSafe(ipcEndpoint, &event);
 if (err != NvSciError_Success) {
 goto fail;
 }
 if (event & NV_SCI_IPC_EVENT_READ) {
 /* Assuming buf contains pointer to area where frame is read.
 * buf_size contains the size of data. It should be less than
 * Endpoint frame size.
 */
 err = NvSciIpcReadSafe(ipcEndpoint, buf, buf_size, &bytes);
 if(err != NvSciError_Success) {
 printf("error in reading endpoint\n");
 goto fail;
 }
 } else {
 err = eventLoopService->WaitForEvent(eventNotifier, timeout);
 if(err != NvSciError_Success) {
 printf("error in waiting event\n");
 goto fail;
 }
 }
}

5.6.6.5.2 Waiting for Multiple Events for Read/Write
In this scenario, multiple endpoints are opened, and multiple event notiers are created

A connection must be established between two endpoint processes before reading the
data. This can be done by calling NvSciIpcGetEventSafe().

The event handling mechanism is similar to waiting for a single event, but it can wait for
multiple events.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 432

Embedded Software Components

Check the newEventArray boolean array returned by WaitForMultipleEvents() or
WaitForMultipleEventsExt() to determine which event is notied.

WaitForMultipeEventsExt() has the same functionality as WaitForMultipeEvents() and
extends to be used in case no notier array is available but events want to be serviced with
the event handler when the event arrives.

Note:

WaitForEvent() is an event-blocking call. It must be called from a single thread only.

To process the write event in a loop, add WRITE event check routine and
NvSciIpcWriteSafe().

Following is a list of supported events:

‣ Multiple native events

‣ Multiple local events

‣ Multiple native and local events

Wait for multiple events for read/write
#define NUM_OF_EVENTNOTIFIER 2
NvSciEventLoopService *eventLoopService;
NvSciIpcEndpoint ipcEndpointArray[NUM_OF_EVENTNOTIFIER];
NvSciEventNotifier *eventNotifierArray[NUM_OF_EVENTNOTIFIER];
bool newEventArray[NUM_OF_EVENTNOTIFIER];
struct NvSciIpcEndpointInfo infoArray; /* Assuming two endpoints have the same info
 */
int64_t timeout;
uint32_t event = 0;
void *buf;
int32_t buf_size, bytes, inx;
int retval;
NvSciError err;
bool gotEvent;
timeout = NV_SCI_EVENT_INFINITE_WAIT;
buf = malloc(info.frame_size);
if (buf == NULL) {
 goto fail;
}
buf_size = info.frame_size;
for (inx = 0; inx < NUM_OF_EVENTNOTIFIER; inx++) {
 newEventArray[inx] = true;
}
while (1) {
 gotEvent = false;
 for (inx = 0; inx < NUM_OF_EVENTNOTIFIER; inx++) {
 if (newEventArray[inx]) {
 err = NvSciIpcGetEventSafe(ipcEndpointArray[inx], &event);
 if (err != NvSciError_Success) {
 goto fail;
 }
 if (event & NV_SCI_IPC_EVENT_READ)) {
 /* Assuming buf contains pointer to area where frame is read.
 * buf_size contains the size of data. It should be less than
 * Endpoint frame size.
 */
 err = NvSciIpcReadSafe(ipcEndpointArray[inx], buf, buf_size,
 &bytes);
 if(err != NvSciError_Success) {

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 433

Embedded Software Components

 printf("error in reading endpoint\n");
 goto fail;
 }
 gotEvent = true;
 }
 }
 }
 if (gotEvent) {
 continue;
 }
 err = eventLoopService->WaitForMultipleEvents(eventNotifierArray,
 NUM_OF_EVENTNOTIFIER, timeout, newEventArray);
 if(err != NvSciError_Success) {
 printf("error in waiting event\n");
 goto fail;
 }
}

5.6.6.5.3 Creating a Local Event
A local event does not require an associated endpoint. It uses two threads of a process.
When creating a local event, use NvSciEventLoopServiceCreateSafe() instead of
NvSciIpcInit.

One thread called a sender is for sending a signal and the other called receiver is for
waiting for the signal.

The application must rst create a local event by calling
EventService.CreateLocalEvent(). This call also creates an event notier and associates
the notier with the local event.

Create local event
NvSciEventLoopService *eventLoopService;
NvSciLocalEvent *localEvent;
NvSciError err;
err = eventLoopService->EventService.CreateLocalEvent(
 &eventLoopService->EventService,
 &localEvent);
if (err != NvSciError_Success) {
 goto fail;
}

5.6.6.5.4 Sending a Signal with a Local Event
A sender in the same or dierent thread can send a signal to a receiver by calling
Signal().

Send a signal with local event
NvSciLocalEvent *localEvent;
NvSciError err;
err = localEvent->Signal(localEvent);
if (err != NvSciError_Success) {
 goto fail;
}

5.6.6.5.5 Waiting for a Local Event
A sender can send a signal to a receiver in the same or dierent thread.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 434

Embedded Software Components

A receiver in the same or a dierent thread can be notied of the signal from sender.

The receiver uses WaitForEvent for a single signal or WaitForMultipleEvents/
WaitForMultipleEventsSafe for multiple signals or mixed events associated with an
endpoint.

Note:

WaitForEvent() is an event-blocking call. It must be called from a single thread only.

Here is a list of supported events:

‣ Single native event

‣ Single local events

Wait for a Local Event
NvSciEventLoopService *eventLoopService;
NvSciLocalEvent *localEvent;
NvSciError err;
int64_t timeout;
timeout = NV_SCI_EVENT_INFINITE_WAIT;
while (1) {
 err = eventLoopService->WaitForEvent(localEvent->eventNotifier, timeout);
 if(err != NvSciError_Success) {
 printf("error in waiting event\n");
 goto fail;
 }
 }
 /* Do something with the local event notified */
}

5.6.6.5.6 Cleaning Up Event Notier and Local Event
Event notiers for local events and for native events are deleted when they are no longer
used. A local event is deleted explicitly by an application while a native event is deleted
implicitly by an event notier.

When deleting events, the application must delete the event notier before the local event.

Clean up an event notier and a local event
NvSciEventNotifier *nativeEventNotifier; /* Assume
this is event notifier for native event */
NvSciLocalEvent *localEvent;
nativeEventNotifier->Delete(nativeEventNotifier);
local->eventNotifier->Delete(local->eventNotifier);
local->Delete(local);

5.6.6.5.7 De-Initializing NvSciEventService Library
The application must call EventService.Delete() after de-initializing the NvSciIpc library.

De-initialize NvSciEventService library
NvSciIpcEndpoint ipcEndpoint;
NvSciEventLoopService *eventLoopService;

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 435

Embedded Software Components

NvSciIpcCloseEndpoint(ipcEndpoint);
NvSciIpcDeinit();

eventLoopService->EventService.Delete
(&eventLoopService->EventService);

5.6.7 Chip to Chip Communication
The NVIDIA® Software Communication Interface for Chip to Chip over direct PCIe
connection (NvSciC2cPcie) provides the ability for user applications to exchange data
across two NVIDIA DRIVE AGX Orin™DevKits interconnected on a direct PCIe connection.
The direct PCIe connection is between the rst/one NVIDIA DRIVE AGX Orin Developer
Kits as a PCIe Root Port with the second/other NVIDIA DRIVE AGX Orin DevKit as a PCIe
Endpoint.

Supported Platform Congurations

Platform

‣ NVIDIA DRIVE® AGX Orin DevKit

‣ NVIDIA DRIVE Recorder

SoC

‣ NVIDIA DRIVE Orin as PCIe Root Port

‣ NVIDIA DRIVE Orin as PCIe Endpoint

Topology

‣ NVIDIA DRIVE AGX Orin DevKit as PCIe Root Port <> NVIDIA DRIVE AGX Orin DevKit as
PCIe Endpoint

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 436

Embedded Software Components

‣ NVIDIA DRIVE Recorder Orin A as PCIe Endpoint <> NVIDIA DRIVE Recorder Orin B as
Root Port

Platform Setup

The following platform congurations are required for NvSciC2cPcie communication with
NVIDIA DRIVE AGX Orin DevKit. Similar connections are required for other platforms.

‣ miniSAS Port-A of NVIDIA DRIVE AGX Orin DevKit -1 connected to miniSAS Port-B of
NVIDIA DRIVE AGX Orin DevKit - 2 with a PCIe miniSAS cable.

‣ The PCIe controllers of the two NVIDIA DRIVE AGX Orin DevKits when interconnected
back-to-back have PCIe re-timers, and the PCIe re-timer rmware must be ashed for
the appropriate PCIe lane conguration.

‣ For custom platform PCIe controllers used, congure lane and clock accordingly.

‣ Each PCIe contoller in NVIDIA DRIVE AGX Orin Devkit has PCIe EDMA engine.
NvSciC2cPcie uses only one DMA Write channel of the assigned PCIe controller for all
the NvSciC2cPcie transfers.

‣ NvSciC2cPcie transfer is in the FIFO mechanism, and there is no load balancing or
scheduling policy to prioritize the specic request.

Execution Setup

Linux Kernel Module Insertion

NvSciC2cPcie only runs on select platforms: NVIDIA DRIVE AGX Orin DevKit and NVIDIA
DRIVE Recorder. Before user applications can exercise NvSciC2cPcie interface, you must
insert the Linux kernel modules for NvSciC2cPcie. They are not loaded by default on NVIDIA
DRIVE® OS Linux boot. To insert the required Linux kernel module:

‣ On rst/one Orin congured as PCIe Root Port

sudo modprobe nvscic2c-pcie-epc

‣ On second/other Orin DevKit congured as PCIe Endpoint

sudo modprobe nvscic2c-pcie-epf

A recommendation is to load nvscic2c-pcie-ep* kernel modules immediately after boot.
This allows the nvscic2c-pcie software stack to allocate contiguous physical pages for its
internal operation for each of the nvscic2c-pcie endpoints congured.

PCIe Hot-Plug

Once loaded, Orin DevKit enabled as PCIe Endpoint is hot-plugged and enumerated as
a PCIe device with Orin DevKit congured as PCIe Root Port (miniSAS cable connected
to miniSAS port-A). The following must be executed on Orin DevKit congured as PCIe
Endpoint (miniSAS cable connected to miniSAS port-B):
sudo -s
cd /sys/kernel/config/pci_ep/
mkdir functions/nvscic2c_epf_22CC/func
echo 0x10DE > functions/nvscic2c_epf_22CC/func/vendorid

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 437

Embedded Software Components

echo 0x22CC > functions/nvscic2c_epf_22CC/func/deviceid
ln -s functions/nvscic2c_epf_22CC/func controllers/141c0000.pcie_ep
echo 0 > controllers/141c0000.pcie_ep/start
echo 1 > controllers/141c0000.pcie_ep/start

The previous steps, including Linux kernel module insertion, can be added as a linux
systemd service to facilitate auto-availability of NvSciC2cPcie software at boot.

NvSciIpc (INTER_CHIP, PCIe) Channels

Once the Linux kernel module insertion and PCIe hot-plug completes successfully, the
following NvSciIpc channels are available for use with NvStreams producer or consumer
applications.

NVIDIA DRIVE AGX Orin DevKit

NVIDIA DRIVE AGX Orin DevKit as PCIe
Root Port

NVIDIA DRIVE AGX Orin DevKit as PCIe
Endpoint

nvscic2c_pcie_s0_c5_1 nvscic2c_pcie_s0_c6_1

nvscic2c_pcie_s0_c5_2 nvscic2c_pcie_s0_c6_2

nvscic2c_pcie_s0_c5_3 nvscic2c_pcie_s0_c6_3

nvscic2c_pcie_s0_c5_4 nvscic2c_pcie_s0_c6_4

nvscic2c_pcie_s0_c5_5 nvscic2c_pcie_s0_c6_5

nvscic2c_pcie_s0_c5_6 nvscic2c_pcie_s0_c6_6

nvscic2c_pcie_s0_c5_7 nvscic2c_pcie_s0_c6_7

nvscic2c_pcie_s0_c5_8 nvscic2c_pcie_s0_c6_8

nvscic2c_pcie_s0_c5_9 nvscic2c_pcie_s0_c6_9

nvscic2c_pcie_s0_c5_10 nvscic2c_pcie_s0_c6_10

nvscic2c_pcie_s0_c5_11 nvscic2c_pcie_s0_c6_11

nvscic2c_pcie_s0_c5_12 and nvscic2c_pcie_s0_c6_12 are not available for use with
NvStreams over Chip to Chip connection but only for NvSciIpc over Chip to Chip
(INTER_CHIP, PCIe) specically for short and less-frequent generic-purpose data. For
additional information, see NvSciIpc API Usage

NVIDIA DRIVE Recorder

NVIDIA DRIVE AGX Orin DevKit as PCIe
Root Port

NVIDIA DRIVE AGX Orin DevKit as PCIe
Endpoint

nvscic2c_pcie_s2_c6_1 nvscic2c_pcie_s1_c6_1

nvscic2c_pcie_s2_c6_2 nvscic2c_pcie_s1_c6_2

nvscic2c_pcie_s2_c6_3 nvscic2c_pcie_s1_c6_3

nvscic2c_pcie_s2_c6_4 nvscic2c_pcie_s1_c6_4

nvscic2c_pcie_s2_c6_5 nvscic2c_pcie_s1_c6_5

nvscic2c_pcie_s2_c6_6 nvscic2c_pcie_s1_c6_6

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 438

Embedded Software Components

NVIDIA DRIVE AGX Orin DevKit as PCIe
Root Port

NVIDIA DRIVE AGX Orin DevKit as PCIe
Endpoint

nvscic2c_pcie_s2_c6_7 nvscic2c_pcie_s1_c6_7

nvscic2c_pcie_s2_c6_8 nvscic2c_pcie_s1_c6_8

nvscic2c_pcie_s2_c6_9 nvscic2c_pcie_s1_c6_9

nvscic2c_pcie_s2_c6_10 nvscic2c_pcie_s1_c6_10

nvscic2c_pcie_s2_c6_11 nvscic2c_pcie_s1_c6_11

NvSciIpc (INTER_CHIP, PCIe) channel names can be modied according to convenience.

The user application on NVIDIA DRIVE AGX Orin DevKit as PCIe Root Port opens
nvscic2c_pcie_s0_c5_1for use, then the peer user application on the other NVIDIA DRIVE
AGX Orin DevKit as PCIe Endpoint must open nvscic2c_pcie_s0_c6_1 for exchange of
data across the SoCs and for the remaining channels listed previously. Similarly, for other
platforms, endpoints must open respective channels as per the previous channels table.

Each of the NvSciIpc (INTER_CHIP, PCIe) channels are congured to have 16 frames with
32 KB per frame as the default.

Reconguration

The following reconguration information is based on the default NvSciC2cPcie support
oered for NVIDIA DRIVE AGX Orin DevKit.

Dierent platforms or a dierent PCIe controller conguration on the same NVIDIA DRIVE
AGX Orin DevKit requires adding a new set of device-tree node entries for NvSciC2cPcie on
a PCIe Root Port (nvidia,tegra-nvscic2c-pcie-epc) and a PCIe Endpoint (nvidia,tegra-
nvscic2c-pcie-epf). For example, a change in PCIe Controller Id or a change in the role
of a PCIe controller from PCIe Root Port to PCIe Endpoint (or vice versa) from the default
NVIDIA DRIVE AGX Orin DevKit requires changes. The changes are possible with device-
tree node changes or additions, but it is not straightforward to document them all. These
are one-time changes and can occur in coordination with your NVIDIA point-of-contact.

BAR Size

BAR size for NVIDIA DRIVE AGX Orin as PCIe Endpoint is congured to 1 GB by default.
When required, this can be reduced or increased by modifying the property nvidia,bar-
win-size of device-tree node: nvscic2c-pcie-s0-c6-epf

File: <PDK_TOP>/drive-foundation/platform-config/hardware/nvidia/platform/t23x/
automotive/kernel-dts/p3710/common/tegra234-dcb-p3710-0010.dtsi/tegra234-p3710-0010-
nvscic2c-pcie.dtsi

nvscic2c-pcie-s0-c6-epf {
 compatible = "nvidia,tegra-nvscic2c-pcie-epf";
-- nvidia,bar-win-size = <0x40000000>; /* 1GB. */
++ nvidia,bar-win-size = <0x20000000>; /* 512MB. */
};

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 439

Embedded Software Components

The congured BAR size must be a power-of 2 and a minimum of 64 MB. Maximum size
of BAR depends on the size of pre-fetchable memory supported by PCIe RP. With NVIDIA
DRIVE AGX, max BAR size should be 0xf000 less than maximum pre-fetchable memory.

NvSciIpc (INTER_CHIP, PCIe) Channel Properties

The NvSciIpc (INTER_CHIP, PCIe) channel properties can be modied on a use-case basis.

Modify Channel Properties

To change the channel properties frames and frame size, must change for both NVIDIA
DRIVE AGX Orin DevKit as PCIe Root Port and NVIDIA DRIVE AGX Orin DevKit as PCIe
Endpoint device-tree nodes: nvscic2c-pcie-s0-c5-epc and nvscic2c-pcie-s0-c6-epf
respectively.

le: <PDK_TOP>/drive-foundation/platform-config/hardware/nvidia/platform/t23x/
automotive/kernel-dts/p3710/common/tegra234-dcb-p3710-0010.dtsi/tegra234-
p3710-0010-nvscic2c-pcie.dtsi

The following illustrates change in frames count or number of frames for
NvSciIpc (INTER_CHIP, PCIe) channel: nvscic2c_pcie_s0_c5_2 (PCIe Root Port) and
nvscic2c_pcie_s0_c6_1(PCIe Endpoint)
nvscic2c-pcie-s0-c5-epc {
nvidia,endpoint-db =
"nvscic2c_pcie_s0_c5_1, 16, 00032768",
-- "nvscic2c_pcie_s0_c5_2, 16, 00032768",
++ "nvscic2c_pcie_s0_c5_2, 08, 00032768",
"nvscic2c_pcie_s0_c5_3, 16, 00032768",
…..
};
nvscic2c-pcie-s0-c6-epf {
nvidia,endpoint-db =
"nvscic2c_pcie_s0_c6_1, 16, 00032768",
-- "nvscic2c_pcie_s0_c6_2, 16, 00032768",
++ "nvscic2c_pcie_s0_c6_2, 08, 00032768",
"nvscic2c_pcie_s0_c6_3, 16, 00032768",
…..
};

The following illustrates change in frame size for NvSciIpc (INTER_CHIP, PCIe) channel:
nvscic2c_pcie_s0_c5_2 (PCIe Root Port) and nvscic2c_pcie_s0_c6_1(PCIe Endpoint)
nvscic2c-pcie-s0-c5-epc {
nvidia,endpoint-db =
"nvscic2c_pcie_s0_c5_1, 16, 00032768",
-- "nvscic2c_pcie_s0_c5_2, 16, 00032768",
++ "nvscic2c_pcie_s0_c5_2, 16, 00028672",
"nvscic2c_pcie_s0_c5_3, 16, 00032768",
…..
};
nvscic2c-pcie-s0-c6-epf {
nvidia,endpoint-db =
"nvscic2c_pcie_s0_c6_1, 16, 00032768",
-- "nvscic2c_pcie_s0_c6_2, 16, 00032768",
++ "nvscic2c_pcie_s0_c6_2, 16, 00028672",
"nvscic2c_pcie_s0_c6_3, 16, 00032768",
…..
};

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 440

Embedded Software Components

New Channel Addition

To introduce additional NvSciIpc (INTER_CHIP, PCIe) channels, the change must occur for
both NVIDIA DRIVE AGX Orin DevKit as PCIe Root Port and NVIDIA DRIVE AGX Orin DevKit
as PCIe Endpoint device-tree nodes: nvscic2c-pcie-s0-c5-epc and nvscic2c-pcie-s0-
c6-epf respectively.

File: <PDK_TOP>/drive-foundation/platform-config/hardware/nvidia/platform/
t23x/automotive/kernel-dts/p3710/common/tegra234-dcb-p3710-0010.dtsi/tegra234-
p3710-0010-nvscic2c-pcie.dtsi

nvscic2c-pcie-s0-c5-epc {
 nvidia,endpoint-db =
 "nvscic2c_pcie_s0_c5_1, 16, 00032768",
 ……
 -- "nvscic2c_pcie_s0_c5_11, 16, 00032768";
 ++ "nvscic2c_pcie_s0_c5_11, 16, 00032768",
 ++ "nvscic2c_pcie_s0_c5_12, 16, 00032768";
};
nvscic2c-pcie-s0-c6-epf {
 nvidia,endpoint-db =
 "nvscic2c_pcie_s0_c6_1, 16, 00032768",
 ……
 -- "nvscic2c_pcie_s0_c6_11, 16, 00032768";
 ++ "nvscic2c_pcie_s0_c6_11, 16, 00032768",
 ++ "nvscic2c_pcie_s0_c6_12, 16, 00032768";
};

File: /etc/nvsciipc.cfg(on target)

INTER_CHIP_PCIE nvscic2c_pcie_s0_c5_11 0000
 ++ INTER_CHIP_PCIE nvscic2c_pcie_s0_c5_12 0000
 …..
 …..
 …..
 INTER_CHIP_PCIE nvscic2c_pcie_s0_c6_11 0000
 ++ INTER_CHIP_PCIE nvscic2c_pcie_s0_c6_12 0000

Changes can be made to reduce, subtract, or remove any of the existing NvSciIpc
(INTER_CHIP, PCIe) channels.

For a given pair of NVIDIA DRIVE AGX Orin DevKit as PCIe Root Port and NVIDIA DRIVE
AGX Orin DevKit as PCIe Endpoint, the maximum NvSciIpc (INTER_CHIP, PCIe) channels
supported are 16.

Similarly for other platforms, corresponding *dtsi les require modication.

For NVIDIA DRIVE Recorder: ./drive-foundation/platform-config/hardware/nvidia/
platform/t23x/automotive/kernel-dts/p4024/common/tegra234-p4024-nvscic2c-pcie.dtsi

Note: The channel properties have the following limits:

‣ Frame count: minimum: 1, maximum: 64

‣ Frame size: minimum: 64B, maximum: 32 KB. Must always be aligned to 64B

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 441

Embedded Software Components

PCIe Hot-Unplug

To tear down the connection between PCIe Root Port and PCIe Endpoint, PCIe hot-unplug
PCIe Endpoint from PCIe Root Port. Refer to the Restrictions section for more information.

The PCIe Hot-Unplug is always executed from PCIe Endpoint [NVIDIA DRIVE AGX Orin
DevKit (miniSAS cable connected to miniSAS port-B)] by initiating the power-down o the
PCIe Endpoint controller and subsequently unbinding the nvscic2c-pcie-epf module with
the PCIe Endpoint.

Prerequisite: PCIe Hot-Unplug must be attempted only when the PCIe Endpoint is
successfully hot-plugged into PCIe Root Port and NvSciIpc(INTER_CHIP, PCIE) channels are
enumerated.

To PCIe hot-unplug, execute the following on NVIDIA DRIVE AGX Orin DevKit
congured as PCIe Endpoint (miniSAS cable connected to miniSAS port-B). This makes
NvSciIpc(INTER_CHIP, PCIE) channels disappear on both the PCIe inter-connected NVIDIA
DRIVE AGX Orin DevKits.
sudo -s
cd /sys/kernel/config/pci_ep/
echo 0 > controllers/141c0000.pcie_ep/start
unlink controllers/141c0000.pcie_ep/func

Successful PCIe hot-unplug of PCIe Endpoint from PCIe Root Port makes the
NvSciIpc(INTER_CHIP, PCIE) channels as listed, NvSciIpc (INTER_CHIP, PCIe) channels, go
away on both the NVIDIA DRIVE AGX Orin DevKits, and you can proceed with power-cycle/
o of one or both the NVIDIA DRIVE AGX Orin DevKits.

PCIe Hot-Replug

To re-establish the PCIe connection between PCIe Endpoint and PCIe Root Port, the user
must PCIe hot-replug PCIe Endpoint to PCIe Root Port.

When both the SoCs were power-cycled after PCIe hot-unplug previously, you must follow
the usual steps of PCIe hot-plug. However, if one of the two SoCs power-cycled/rebooted
then, PCIe hot-replug is required to re-establish the connection between them.

Note: NVIDIA DRIVE AGX Orin DevKits with PCIe retimer rmware(FW) have known issues
that do not allow users to PCIe hot-replug and PCIe hot-unplug without rebooting both
the PCIe inter-connected NVIDIA DRIVE AGX Orin DevKits. For the platforms that have
PCIe retimers, you must power-cycle/reboot both the NVIDIA DRIVE AGX Orin DevKits and
establish the PCIe connection between them after PCIe hot-unplug. See the Execution
Setup section for connection information.

Note: PCIe Hot-Unplug and Replug functionality has not been veried on NVIDIA DRIVE
Recorder.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 442

Embedded Software Components

Prerequisite: PCIe hot-replug is attempted when one of the two SoCs is power-recycled/
rebooted after a successful attempt of PCIe hot-unplug between them. If both SoCs were
power-recycled/rebooted, then the same steps as listed in the Execution Setup section are
required to establish the PCIe connection between them.

For platforms that do not have PCIe retimers, to achieve PCIe hot-replug after the
connection was PCIe Hot-Unplugged before NVIDIA DRIVE AGX Orin DevKit has rebooted,
execute the following on NVIDIA DRIVE AGX Orin DevKit congured as PCIe Endpoint
(miniSAS cable connected to miniSAS port-B). This makes NvSciIpc(INTER_CHIP, PCIE)
endpoints reappear on both the PCIe inter-connected NVIDIA DRIVE AGX Orin DevKits.

Case 1: When only PCIe Root Port SoC was power-recycled/rebooted

On PCIe Root Port SoC (NVIDIA DRIVE AGX Orin DevKit (miniSAS cable connected to
miniSAS port-A))

Follow the same steps as listed in Linux Kernel Module Insertion, Execution Setup.

On PCIe Endpoint SoC [NVIDIA DRIVE AGX Orin DevKit(miniSAS cable connected to
miniSAS port-B)]
sudo -s
cd /sys/kernel/config/pci_ep/
ln -s functions/nvscic2c_epf_22CC/func controllers/141c0000.pcie_ep
echo 0 > controllers/141c0000.pcie_ep/start
echo 1 > controllers/141c0000.pcie_ep/start

Case 2: When only PCIe Endpoint SoC is power-recycled/rebooted

On PCIe Endpoint SoC (NVIDIA DRIVE AGX Orin DevKit (miniSAS cable connected to
miniSAS port-B)

Follow the steps Execution Setup.

On PCIe Root Port SoC (NVIDIA DRIVE AGX Orin DevKit (miniSAS cable connected to
miniSAS port-A)

Nothing is required. The module is already inserted.

SoC Error

The only scenario for SoC Error is when one or both of the PCIe Root Port SoC and PCIe
Endpoint SoC connected with nvscic2c-pcie has linux-kernel oops/panic. The application
might observe timeouts.

Reconnection

On the SoC that is still functional and responsive, user must follow the same restrictions
for PCIe Hot-Unplug. On the same SoC, once the applications exit or pipeline is purged,
user must recover the faulty SoC either by rebooting or resetting it.

Only then, subsequently:

‣ If the functional SoC (non-faulty) was PCIe Endpoint SoC, then same steps as for
‘PCIe Hot-Unplug’ and ‘PCIe Hot-Replug’ listed above on PCIe Endpoint SoC and on

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 443

Embedded Software Components

the recovered SoC (PCIe Root Port SoC) user must do the same steps as listed in sub-
section ‘Linux Kernel Module Insertion’

‣ If the functional SoC (non-faulty) was PCIe Root Port SoC, then nothing is to be done
on that SoC, but on the recovered SoC (PCIe Endpoint SoC) user must do the same
steps as listed in the PCIe Hot-Plug section.

‣ If both the SoC’s were faulty, then on recovering each of the two SoCs, it becomes the
usual case of ‘Linux kernel Module Insertion’ and ‘PCIe Hot-Plug’ as done to establish
the PCIe connection between them initially.

Successful Error Recovery and PCIe reconnection makes the Channels reappear/
available again for use.

SC-7 Suspend and Resume Cycle

Follow the same set of restrictions and assumptions for SC-7 suspend and resume cycle
as listed in the PCIe Hot-Unplug and PCIe Hot-Replug sections. Before one or both the
two interconnected SoCs enter SC-7 suspend, PCIe Hot-Unplug must be carried out
keeping the set of restrictions applicable for PCIe Hot-Unplug. Once one or both the two
interconnected SoCs exit from SC-7 suspend, such as SC-7 resume, the same steps as
listed in PCIe Hot-Replug are required.

Assumptions

‣ NVIDIA Software Communication Interface for Chip to Chip (NvSciC2cPcie) is oered
only between the inter-connected NVIDIA DRIVE Orin SoC as PCIe Root Port and a
NVIDIA DRIVE Orin SoC as PCIe Endpoint. Producer buers are copied onto remote
consumer buers pinned to PCIe memory using the PCIe eDMA engine.

‣ NVIDIA Software Communication Interface for Chip to Chip (NvSciC2cPcie) is oered
from a single Guest OS Virtual Machine of a NVIDIA DRIVE Orin SoC as PCIe Root
Port to a single Guest OS Virtual Machine of another NVIDIA DRIVE Orin SoC as PCIe
Endpoint.

‣ User-applications are responsible for the steps to teardown the ongoing Chip to Chip
transfer pipeline on all the SoCs in synergy and gracefully.

‣ Out of the box support is ensured for NVIDIA DRIVE AGX Orin DevKit inter-connected
with another NVIDIA DRIVE AGX Orin DevKit. In this conguration, the default
conguration is PCIe controller C5 in PCIe Root Port mode and PCIe controller C6 in
PCIe Endpoint mode. Any change in PCIe controller mode or by moving to another set
of PCIe controllers for NvSciC2cPcie requires changes in the tegra234-p3710-0010-
nvscic2c-pcie.dtsi device-tree include le.

Restrictions

‣ Before powering-o/recycling one of the two PCIe inter-connected NVIDIA DRIVE AGX
Orin DevKits when one NVIDIA DRIVE AGX Orin DevKit is PCIe hot-plugged into another
NVIDIA DRIVE AGX Orin DevKit, you must tear down the PCIe connection between them
(PCIe hot-unplug).

‣ Before tearing down the PCIe connection between the two SoCs (PCIe hot-unplug),
on both of these SoCs, all applications or streaming pipelines using the corresponding

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 444

Embedded Software Components

NvSciIpc(INTER_CHIP, PCIE) channels will exit or purge. Before they exit or purge,
the corresponding in-use NvSciIpc(INTER_CHIP, PCIE) channel must be closed with
NvSciIpcCloseEndpointSafe().

‣ On the two PCIe inter-connected NVIDIA DRIVE AGX Orin DevKits,
before closing a corresponding NvSciIpc(INTER_CHIP, PCIE) channel with
NvSciIpcCloseEndpointSafe(), you must ensure for this NvSciIpc(INTER_CHIP, PCIE)
channel:

‣ No pipelined NvSciSync waits are pending.

‣ All the NvSciIpc (INTER_CHIP, PCIE) channel messages sent have been received.

‣ All the NvSciBuf and NvSciSync, source and target handles, export and import
handles, registered and CPU mapped, with NvSciC2cPcie layer must be unregistered
and their mapping deleted with NvSciC2cPcie layer by invoking the relevant
NvSciC2cPcie programming interfaces.

‣ Unloading of NvSciC2cPcie Linux kernel modules is not supported.

‣ Error-handling of NvSciC2cPcie transfers leads to timeouts in the software layers
exercising NvSciC2cPcie.

‣ For NVIDIA Drive Recorder, C2C verication occurred by following boot order sequence -
Orin-A followed by Orin-B

‣ Chip to Chip communication accepts a maximum of 1022 NvSciBufObects and 1022
NvSciSyncObjects for NvStreams over Chip to Chip communication permitting system
limits.

5.7 NvMedia
This topic provides instructions for connecting and integrating the cameras as well as
explaining the requirements for applications to set additional ags when creating images
and videos.

Connecting and Integrating the Cameras

Multiple video and camera ports are provided in the NVIDIA DRIVE™ OS Platform. Before
using these cameras with the NvMedia sample applications, you must attach the cameras
to the ports in a specic order. If you fail to do so, NvMedia reports errors.

Warning:

Before connecting/disconnecting cameras to/from the NVIDIA DRIVE OS platform,
the system power must be disconnected. Failure to do so may damage the
camera.

5.7.1 Connecting Cameras
Detailed instructions are provided at:

‣ Setting Up the Cameras

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 445

Embedded Software Components

5.7.2 Mapping GMSL Cameras to the SoC
Detailed instructions are provided at:

‣ Mapping Connectors to Tegra

5.7.3 Camera Power Control
Detailed instructions are provided at:

‣ Camera Power Control

5.7.4 Understanding NvMedia
NvMedia provides APIs that process images and video. It also provides APIs for visual
programming and image pipelines.

5.7.4.1 Sequence of Tasks
The following diagram illustrates the sequence of tasks that applications follow when using
NvMedia DLA.

The following sections describe the sequence of tasks in the ow diagram above.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 446

Embedded Software Components

5.7.4.1.1 Setup
Allocate, congure, and set up all resources before attempting any runtime calls. Due to
safety requirements, NVIDIA does not recommend calling these setup APIs during runtime.

1. Create an instance.

Congure and create an instance of a specied DLA hardware engine using
NvMediaDlaCreate().

Note:

A maximum of sixteen (16) NvMedia DLA instances can be created.

2. Initialize the instance.

Initialize the instance with the instance ID and number of tasks with API
NvMediaDlaInit().

3. Create the loadable.

Create a loadable opaque handle with NvMediaDlaLoadableCreate(). The handle is
populated when the loadable is loaded into the instance.

4. Load the loadable.

Load a binary loadable into a DLA instance with the provided APIs in the following
order:
NvMediaDlaAppendLoadable
NvMediaDlaLoadLoadable

Only one loadable can be appended to the instance. Clients must call
NvMediaSetCurrentLoadable to specify which loadable to work on.

The binary loadable is created by the TensorRT builder. One example test app to create
a binary loadable is located here:

Note: DLA has access to all of the available DRAM system memory. Please refer
to TensorRT documentation here for further details on conguring the size of the
memory pools allocated to each DLA loadable.

Note: Upon successfully compiling loadables from the given network, the TensorRT
Builder reports the number of subnetwork candidates that were successfully
compiled into loadables, as well as the total amount of memory used per pool by those
loadables. Please refer to TensorRT documentation here for further details

5. Register buers.

Register all buers that will be used with the instance. Registration API is
NvMediaDlaDataRegister.

6. Fill the NvSciSync attribute list.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 447

https://docs.nvidia.com/deeplearning/sdk/index.html
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#customize-dla-mem-pools
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#determine-dla-memory-pool-usage

Embedded Software Components

The DLA instance lls in the NvSciSync attributes to provided memory with
NvMediaDlaFillNvSciSyncAttrList.

7. Register NvSciSync.

Register all NvSciSync objects that will be used with the instance. Registration API is
NvMediaDlaRegisterNvSciSyncObj.

8. Set the NvSciSync object.

Set end-of-frame (EOF) NvSciSync object or start-of-frame (SOF) NvSciSync object
to the instance, if needed. The related APIs are NvMediaSetNvSciSyncObjforSOF and
NvMediaSetNvSciSyncObjforEOF.

5.7.4.1.2 Runtime
Run the inference with input data on the provided loadable.

1. Insert the previous NvSciFence.

Insert the previous NvSciFence to the instance. The operation is blocked
until the expiration of the previous NvSciFence. The related API is
NvMediaDlaInsertPreNvSciSyncFence.

2. Submit.

Submit a task with specied inputs and outputs to the hardware engine with
NvMediaDlaSubmit. To submit a task and skip execution on the DLA hardware, use
NvMediaDlaSubmitBypass.

These are non-blocking calls. Applications can choose to block and wait for
an operation on a particular buer to complete. To do so, use the following
NvMediaTensorGetStatus function, as applicable.

3. Get NvSciFence.

Get the end-of-frame (EOF) or start-of-frame (SOF) from the instance. The expiration
of EOF indicates the completion of the operation and the expiration of SOF indicates
the start of the operation. The related APIs are NvMediaDlaGetEOFNvSciSyncFence and
NvMediaDlaGetSOFNvSciSyncFence.

5.7.4.1.3 Destroy
Free all resources.

1. Unregister NvSciSync objects.

Unregister all registered NvSciSync objects using NvMediaDlaUnregisterNvSciSyncObj.
2. Unregister data.

Unregister all registered buers using NvMediaDlaDataUnregister.
3. Remove the loadable.

Remove the loaded loadable from the instance with NvMediaDlaRemoveLoadable.
4. Destroy the loadable handle.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 448

Embedded Software Components

Destroy the created loadable handle with NvMediaDlaLoadableDestroy.
5. Destroy the instance.

Destroy the hardware engine instance using NvMediaDlaDestroy to free all resources.

5.7.4.2 Supported Tensor Formats
The following table describes DLA support for NvMediaTensor format types.

Input Tensor Formats Output Tensor Formats Precision Mode

NHWC NCHW or NC/xHWx INT8

NCHW NCHW or NC/xHWx INT8

NC/xHWx NCHW or NC/xHWx INT8

NHWC NCHW or NC/xHWx FP16

NCHW NCHW or NC/xHWx FP16

NC/xHWx NCHW or NC/xHWx FP16

5.7.4.3 Image Processing and Management
The NvMedia domain performs the following processes:

‣ Handles Image Surface data (H/W buer) in the form of NvSciBufObj. For example, YUV,
RGB, RAW (progressive only).

‣ Supports registering NvSciBufObj for processing.

‣ Supports per-image specic metadata as part of the NvSciBufObj.

5.7.4.3.1 Image 2D
The NvMedia Image 2D component supports image surface processing features such
as image copy, image scaling, image cropping. It operates on YUV/RGB input and output
surfaces. It also performs format conversion to/from YUV to RGB and supports aggregated
image handling.

5.7.4.3.2 Image Encode Processing (IEP)
The NvMedia Image Encode (IEP) component supports encoding the incoming NvMedia
Image (YUV) inputs to H.264, H.265, and AV1.

For a list of supported encoding features, see Video Encode.

NvMedia Image Encode Processing (IEP) APIs for NVENC supports the following features:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 449

Embedded Software Components

For H.264 encoding, the encoder has the following features:

‣ Accepts YUV frames as input

‣ Encoding common resolutions up to 3840 x 2160

‣ Supports H.264 Baseline, Main, and High proles with level up to 5.2

‣ Provides frame-only encoding

‣ For I-frame or I/P-frame encoding, the driver handles the picture type according to
the Group of Pictures (GOP) and IDR period.

‣ For I/B/P encoding, the picture reordering is handled in application code by
assigning the picture type, and then sending it to the driver for encoding.

‣ Supports all intra-macroblock types (16 x 16, 8 x 8, 4 x 4, PCM) and prediction types.

‣ Supports inter-macroblock partition sizes from 16 x 16, 16 x 8, 8 x 16 down to 8 x 8,
and skip and direct B-modes.

‣ Supports disable, temporal, or spatial direct mode for:

‣ B-picture

‣ One reference picture for P-picture

‣ Two reference pictures for B-picture

‣ Supports multiple rate-control modes including:

‣ Constant QP

‣ Constant Bit Rate (CBR) single-pass

‣ Variable Bit Rate (VBR)

‣ VBR with minimum QP

‣ Supports dynamic slice mode based on byte size and static multiple slices in the frame.

‣ Supports intra-refresh mode with refresh period, and instant refresh P-picture.

‣ Supports adaptive 8x8 transform mode.

‣ Supports VUI and SEI insertion.

‣ Supports CAVLC and CABAC.

‣ Supports rotation/mirroring mode.

‣ Supports dynamic congure changes at the frame level:

‣ SPS PPS output on next frame

‣ Constrained frame encode

‣ Instant intra refresh P picture

‣ New SEI packet insertion

‣ GOP length and IDR period update

‣ Rate control mode change

For H.265 encoding, the encoder has the following features:

‣ Accepts YUV frames as input.

‣ Encoding common resolutions up to 3840 x 2160

‣ Supports H.265 Main proles with level up to 6.0.

‣ Supports Frame only encoding.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 450

Embedded Software Components

‣ For I only or I/P encoding, the driver handles the picture type according to the GOP and
IDR period. B pictures are not supported.

‣ Supports all intra CU types (32 x 32, 16 x 16, 8 x 8, 4 x 4, PCM) and prediction types.

‣ Inter CU partition sizes from 32x32 to 8x8, with partition mode of PART_2Nx2N,
PART_2NxN, PART_Nx2N, PART_2NxnU, PART_2NxnD, PART_nLx2N PART_nRx2N plus
skip.

‣ 1 reference picture for P picture.

‣ Multiple rate-control modes—constant QP, CBR (single-pass), VBR, VBR with min QP.

‣ Dynamic slice mode based on byte size and static multiple slices in the frame.

‣ Intra refresh mode with refresh period, and instant refresh P picture.

‣ VUI and SEI insertion.

‣ CABAC only.

‣ Dynamic congure change at frame level:

‣ SPS PPS output on next frame

‣ Constrained frame encode

‣ Instant intra refresh P picture

‣ New SEI packet insertion

‣ Gop length and IDR period update

‣ Rate control mode change

For AV1 encoding, the encoder has the following features:

‣ Accepts YUV frames as input (YUV420 only).

‣ Encoding common resolutions up to 7680 x 4320

‣ Supports main prole up to level 6.3

‣ Supports 8/10 bit encoding

‣ Supports Frame only encoding.

Note: Processing of a submitted task can potentially time out for tasks that do not
complete in real time within an internally dened timeout (mLocktimeout). This implies that
the applied conguration (such as resolution and bitrate) is not supported on the platform
at the congured hardware clocks. This behavior shows up as failed/errored-out tasks even
when the supplied conguration is valid.

5.7.4.3.3 Image JPEG Encode (IJPE)
‣ Baseline ITU-T T.81 / ISO/IEC 10918-1

‣ Programmable Human Table

‣ Programmable Quant Table

‣ 8bit YUV420 semi-planar Input Format

‣ 8bit YUV420 planar input format

‣ Rate control i.e. target image size

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 451

Embedded Software Components

‣ Quality factor parameter from 1 (lowest quality) to 100 (highest quality)

Note: Processing of a submitted task can potentially time out for tasks that do not
complete in real time within an internally dened timeout (mLocktimeout). This implies that
the applied conguration (such as resolution and bitrate) is not supported on the platform
at the congured hardware clocks. This behavior shows up as failed/errored-out tasks even
when the supplied conguration is valid.

5.7.4.3.4 Image JPEG Decode (IJPD)
‣ Baseline ITU-T T.81 / ISO/IEC 10918-1

‣ As the output format depends on the format of the input stream, the following output
formats are possible (depending on the input stream):

Input bit-
stream

Output color
format

Output
memory
layout format

Output pixel
packing
format

Output bit
depth Comment

YUV420 YUV420 pitch linear planar 8-bit

YUV420 pitch linear semi-planar 8-bit

YUV422 YUV422H/V pitch linear planar 8-bit

pitch linear YUY2 8-bit

YUV444 YUV444 pitch linear planar 8-bit

Monochrome YUV400 pitch linear planar 8-bit

RGBA RGBA pitch linear interleaved 8-bit A can be either
0x00 or 0xFF

BGRA pitch linear interleaved 8-bit A can be either
0x00 or 0xFF

ABGR pitch linear interleaved 8-bit A can be either
0x00 or 0xFF

ARGB pitch linear interleaved 8-bit A can be either
0x00 or 0xFF

‣ Support for all input formats to give output in RGBA where R, G, B, A locations are
programmable (supported value for A can be either 0x00 or 0xFF).

‣ The supported chroma subsample source and target formats are as follows:

Source format Target format after chroma sub-sample
conversion

YUV420 YUV422H

YUV422V YUV422H

YUV420

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 452

Embedded Software Components

YUV422H YUV420

YUV444 YUV422H

YUV420

‣ Support down-scaling of decoded output by a power of 2. The output size downscale
by 2/4/8 factor in both width and height. For example, input with resolution (w x h) can
output in any one of these output resolutions (w/2 x h/2) or (w/4 x h/4) or (w/8 x h/8).

‣ Support for decoding of YUV444 non-interleaved JPEG stream. Output produced will be
in YUV444, 8-bit, pitch linear planar format.

Note: Processing of a submitted task can potentially time out for tasks that do not
complete in real time within an internally dened timeout (mLocktimeout). This implies that
the applied conguration (such as resolution and bitrate) is not supported on the platform
at the congured hardware clocks. This behavior shows up as failed/errored-out tasks even
when the supplied conguration is valid.

5.7.4.3.5 Image LDC
The NvMedia Image LDC component supports image surface processing features such as
lens distortion correction and temporal noise reduction.

5.7.4.3.6 Optical Flow Accelerator (OFA)
NVIDIA Optical Flow Accelerator (OFA) is hardware accelerator for computing optical ow
and stereo disparity between the frames.

Optical ow is useful in various use-case such as object detection and tracking, while
Stereo disparity is used in depth estimation.

The hardware capabilities of OFA are exposed through NvMedia IOFA APIs.

OFA can operate in two modes:

‣ Stereo Disparity Mode: In this mode, OFA generates disparity between rectied left and
right images of stereo capture.

‣ Optical Flow Mode: In this mode, OFA generates optical ow between two given frames,
returning X and Y component of ow vectors.

OFA generates disparity / ow vector block-wise, one output for each input block of 8x8 /
4x4 / 2x2 / 1x1 pixels (referred as output grid size). The generated output can be further
post-processed to improve accuracy, up sampled to produce dense map.

Stereo Disparity Mode

OFA processes rectied left and right view of stereo captures and generates disparity
values between them.

OFA in Stereo Disparity Mode, can process only rectied stereo image pairs. Rectication
of stereo image pair can be done using NvMedia Image 2D.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 453

Embedded Software Components

The output stereo disparity format is xed signed 10.5 (2 bytes per disparity output) and
range of disparity is xed [0, 127] or [0, 255]. We need to divide the output values by 32 to
get a disparity value in terms of pixel units.

OFA also provides Cost buer which contain HW cost of winner disparity candidates. Cost
for each output is 8 bit in size and range is 0 – 255.

Disparity values have inverse relationship with depth of the objects (distance between
object and sensor).

Stereo Parameter Description

Input Image Size
Minimum Size – 32 x 32

Maximum Size – 8192 x 8192

No alignment requirement

Input Image format / bit depth
Luma / Single channel Input

Supports bit depth of 8/10/12/16 bits

Disparity Output Disparity Map in xed S 10.5 format

Cost Output HW cost for winner disparity candidate

Output Grid Size 1x1/2x2/4x4/8x8

Maximum Disparity Range 128 / 256

Search Direction Left / Right Disparity Map

Region Of Interest Support Supports maximum 32 ROI per stereo pair

Stereo Use Case

The high-level block diagram of OFA Stereo use case is as follows

The stereo sensor provides unrectied left and right view images.

The application uses NvMedia 2D API to rectify these input stereo image pair.

OFA, congured in stereo mode processes rectied stereo image pair and generates
disparity map and HW cost buer.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 454

Embedded Software Components

The post-processing module processes the generated disparity map and HW cost buer to
improve accuracy of the disparity map.

Common examples of post processing algorithms are:

‣ Median ltering of disparity map

‣ Up sampling to produce a dense disparity map

‣ left–right consistency check

Stereo rectication and post-processing operations are not supported using OFA and must
be implemented on other HW accelerators.

Optical Flow Mode

OFA generates optical ow between two given frames.

The input to OFA in this mode, is image pyramid of input and reference frames. As search
range of single layer is small, pyramid approach is required to track large motion. Each
pyramid level will search around output of previous pyramid level.

OFA can process image pyramid generated with xed scale factor of 2. Image pyramid
generation needs be done outside OFA.

OFA generates ow vector for input block specied by output Grid size. Each ow vector
has X and Y component which represent motion in X and Y direction.

The output ow format is xed signed 10.5 (4 bytes per ow vector). We need to divide the
output values by 32 to get a disparity value in terms of pixel units.

OFA also provides Cost buer which contain HW cost of winner ow candidate for each
output. Cost for each output is 8 bit in size and range is 0 – 255.

OF Parameter Description

Input Image Size
Minimum Size – 32 x 32

Maximum Size – 8192 x 8192

No alignment requirement

Input Image format / bit depth
Luma / Single channel Input

Supports bit depth of 8/10/12/16 bits

Max Pyramid Levels 5

Flow Output Flow Map (mvx, mvy) in xed S10.5 format

Cost Output HW cost for winner disparity candidate

Output Grid Size 1x1/2x2/4x4/8x8

Region Of Interest Support Supports maximum 32 ROI per stereo pair

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 455

Embedded Software Components

Optical Flow Use Case

The high-level block diagram of OFA optical owuse case is as follows

Here stereo sensor provides the input and reference frame.

The application generates the image pyramid of input and reference frames.

OFA, congured in o mode processes pyramids of input and reference frames and
generates the ow map and HW cost buer.

The post-processing module processes the generated ow map and HW cost buer to
improve accuracy of the generated ow map.

Common examples of post-processing algorithms are:

‣ Median ltering of ow map

‣ Up sampling to produce dense ow map

‣ Forward-backward consistency check

Pyramid generation and post-processing operations are not supported using OFA and must
be implemented on other HW accelerators.

Note: Processing of a submitted task can potentially time out for tasks that do not
complete in real time within an internally dened timeout (mLocktimeout). This implies that
the applied conguration (such as resolution and bitrate) is not supported on the platform
at the congured hardware clocks. This behavior shows up as failed/errored-out tasks even
when the supplied conguration is valid.

5.7.4.3.7 SIPL
The NvMedia SIPL framework provides high dynamic range (HDR) camera processing which
outputs images for human and machine vision. It handles individual camera processing or
multiple cameras connected to an image aggregator chip.

5.7.4.4 NvMedia Tensor
This topic explains how to use the NvMedia Tensor API.

NvMedia Tensors are multi-dimensional data structures that NvMedia creates in SoC
DRAM memory to store multi-dimensional arrays of a specic data type. For example:
integers, oat etc.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 456

Embedded Software Components

This topic assumes a basic understanding of NvSciBuf APIs. See Buer Allocation for more
information.

5.7.4.4.1 Types of Tensors
Currently, NvMedia only supports 4-dimensional tensors:

NvMedia Tensors are used with NvMedia DLA components.

NvMedia Tensors can be created by allocating NvSciBuf through NvMedia Tensor attributes
using NvSciBuf API. As NvSciBuf APIs facilitate data sharing between NvMedia and
NVIDIA® CUDA®, this allows tensors allocated to be reused as permitted by NvSciBuf API.
For more information, see the NvSciBuf API and use cases.

NvMedia Tensor have two types of attributes:

‣ Tensor format attributes describe a tensor's order and format in memory.

‣ Tensor allocation attributes describe additional properties of a tensor, such as:

‣ Width, height, channels, and number of tensor surfaces.

‣ CPU access mapping (cached/uncached/unmapped).

‣ Shared memory space across virtual machine partitions.

5.7.4.4.1.1 Tensor Format Attributes

The following sections describe the tensor format attributes that NvMedia Tensors may
have.

NVM_TENSOR_ATTR_DATA_TYPE Attribute

This attribute species the tensor type. The value may be:
NVM_TENSOR_ATTR_DATA_TYPE_UINT

Indicates tensor of unsigned integers data types.
NVM_TENSOR_ATTR_DATA_TYPE_INT

Indicates tensor of signed integers data types.
NVM_TENSOR_ATTR_DATA_TYPE_FLOAT

Indicates tensor of oat data types.

NVM_TENSOR_ATTR_DIMENSION_ORDER Attribute

Species the layout and order of the tensor elements.

4D Tensor layout includes N, C, H, and W dimensions, where N refers to the number of
surfaces (or batch size), C refers to the number of channels in the surface (for example,
RGB if the surface type is an image), H refers to the height of the surface, and W refers to
the width of the surface.

The following are possible values for 4D tensor formats:

‣ NVM_TENSOR_ATTR_DIMENSION_ORDER_NCHW

‣ NVM_TENSOR_ATTR_DIMENSION_ORDER_NHWC

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 457

../../../api_reference/group__nvscibuf__transport__api.html

Embedded Software Components

‣ NVM_TENSOR_ATTR_DIMENSION_ORDER_NCxHWx

NVM_TENSOR_ATTR_BITS_PER_ELEMENT Attribute

Species the number of bits per element. The value can be:

‣ NVM_TENSOR_ATTR_BITS_PER_ELEMENT_64

Indicates that each element is 64 bits wide.

‣ NVM_TENSOR_ATTR_BITS_PER_ELEMENT_32

Indicates that each element is 32 bits wide.

‣ NVM_TENSOR_ATTR_BITS_PER_ELEMENT_16

Indicates that each element is 16 bits wide.

‣ NVM_TENSOR_ATTR_BITS_PER_ELEMENT_8

Indicates that each element is 8 bits wide.

5.7.4.4.1.2 Tensor Allocation Attributes

The following sections describe the tensor allocation attributes that NvMedia Tensor may
have.

NVM_TENSOR_ATTR_ALLOC_TYPE Attribute

Species the allocation type for the tensor. The value may be:

‣ NVM_TENSOR_ATTR_ALLOC_NONE

Indicates tensor allocation on SoC DRAM.

NVM_TENSOR_ATTR_4D_N

Species the number of tensor surfaces in a tensor. It is required to determine the size of
memory to be allocated.

NVM_TENSOR_ATTR_4D_C

Species the number of tensor channels. It is required to determine the size of memory to
be allocated.

NVM_TENSOR_ATTR_4D_H and NVM_TENSOR_ATTR_4D_W Attributes

Species the width and height of the tensor. It is required to determine the size of memory
to be allocated.

NVM_TENSOR_ATTR_4D_X

Species the interleaving factor of tensor surfaces (only in NCxHWx tensor ordering). It is
required to determine the size of memory to be allocated.

NVM_TENSOR_ATTR_CPU_ACCESS Attribute

Species the coherency policy to use for accesses of the tensor from the CPU. The value
may be:

‣ NVM_TENSOR_ATTR_CPU_ACCESS_UNCACHED

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 458

Embedded Software Components

Species that accesses from CPU never cache data.

Setting this attribute results in the following behavior: While writing to the tensor
buers from the CPU using NvMediaTensorLock() and NvMediaTensorUnlock(),
NvMedia uses appropriate memory barriers before handing over the tensor buer to
hardware engines to ensure coherency.

‣ NVM_TENSOR_ATTR_CPU_ACCESS_CACHED

Species that accesses from the CPU can pass through caches and store buers.

Setting this attribute results in the following behavior:

‣ While reading the tensor from the CPU using NvMediaTensorLock() and
NvMediaTensorUnlock(), caches are invalidated as necessary to ensure that the CPU
gets the latest data written by the hardware engines.

‣ While writing the tensor from the CPU using NvMediaTensorLock() and
NvMediaTensorUnlock(), caches are ushed as necessary before handing over the
tensor buers to hardware engines to ensure coherency.

In both cases, the tensor memory is mapped and it can be accessed with a mapping
into the current process's virtual address space.

‣ NVM_TENSOR_ATTR_CPU_ACCESS_UNMAPPED

Species a coherency policy that is the same as for
NVM_TENSOR_ATTR_CPU_ACCESS_UNCACHED. However, the tensor is not mapped into the
current process's virtual address space.

If the attribute is not specied, the coherency policy defaults to
NVM_TENSOR_ATTR_CPU_ACCESS_UNCACHED.

5.7.4.4.2 Tensor API Functions
This section describes NvMedia Tensor API functions that create handles from NvSciBuf,
destroy, and manage tensors.

5.7.4.4.2.1 NvMedia Tensor Creation and Destroy Functions

These API functions allow the creation and destruction of tensors.

NvMediaTensorCreateFromNvSciBuf()

Creates an NvMedia Tensor handle from an NvSciBuf created with the NvSciBuf API, after
the required NvSciBuf attributes list is prepared.

Every hardware engine in an NVIDIA SoC can have a dierent alignment or stride
constraints. Hence, sharing a buer across various engines requires that buer allocation
satises the constraints of all of the engines that share the buer. An engine whose
constraints are not satised may fail to operate on the buer. The allocation functions
provided by the various NvMedia drivers only satisfy the constraints of the engines that
are visible to them, and so cannot be used to allocate shared buers.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 459

Embedded Software Components

NvSciBuf is a buer allocation module that satises a common set of constraints that are
compatible with all of the hardware engines. It thus can allocate buers that are shareable
across the hardware engines visible to various drivers.

This is a typical ow to allocate an NvSciBufObj, which can be mapped to an
NvMediaTensor:

1. The application creates an NvSciBufAttrList.
2. The application queries NvMedia to ll the NvSciBufAttrList by passing a

set of NvMediaTensor allocation attributes and an NvMediaType as input to
NvMediaTensorFillNvSciBufAttrs().

3. The application may set any of the public NvSciBufAttribute values that NvMedia
does not set.

For more details on NvSciBuf concepts, terminology, and the API, see Buer Allocation.

The following NvSciBuf input attributes are set by NvMedia, and must not be set by the
application:

‣ NvSciBufGeneralAttrKey_Types

‣ NvSciBufGeneralAttrKey_NeedCpuAccess

‣ NvSciBufGeneralAttrKey_EnableCpuCache

‣ NvSciBufTensorAttrKey_DataType

‣ NvSciBufTensorAttrKey_NumDims

‣ NvSciBufTensorAttrKey_SizePerDim

‣ NvSciBufTensorAttrKey_AlignmentPerDim

‣ NvSciBufTensorAttrKey_StridesPerDim

‣ NvSciBufTensorAttrKey_PixelFormat

‣ NvSciBufTensorAttrKey_BaseAddrAlign

The following attributes are not set by NvMedia and must be set by the application:

‣ NvSciBufGeneralAttrKey_RequiredPerm
4. If the same NvSciBufObj object has to be shared with other user mode drivers (UMDs),

the application can get the corresponding NvSciBufAttrList from the respective
UMDs.

5. The application asks NvSciBuf to reconcile all of the lled NvSciBufAttrList objects,
then allocates an NvSciBuf object.

6. The application queries NvMedia to create an NvMediaTensor from the allocated
NvSciBuf object by calling NvMediaTensorCreateFromNvSciBuf().

7. The NvMediaTensor can be passed as input and output to any of the NvMedia API
functions that accept an NvMediaTensor as a parameter.

Example: NvMedia Tensor Allocation with NvSciBuf

Following is an example of how to allocate an NvMedia Tensor with NvSciBuf:

NvMediaStatus status;
NvSciError err;

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 460

Embedded Software Components

NvSciBufModule module;
NvSciBufAttrList attrlist;
NvSciBufAttrList conflictlist;
NvSciBufObj bufObj;
NvMediaTensor *tensor;
uint32_t numTensorAttr = NVM_TENSOR_ATTR_MAX;
NVM_TENSOR_DEFINE_ATTR(tensorAttr);
/*NvMedia related initialization. */

status = NvMediaTensorNvSciBufInit();
/*NvSciBuf related initialization. */
err = NvSciBufModuleOpen(&module);
NvSciBufAttrKeyValuePair attr_kvp = {NvSciBufGeneralAttrKey_RequiredPerm,
 &access_perm,
 sizeof(access_perm)};
/*Create NvSciBuf attribute list. */
err = NvSciBufAttrListCreate(module, &attrlist);
err = NvSciBufAttrListSetAttrs(attrlist, &attr_kvp, 1);
/* Initialize tensorAttrs as required. */
NVM_TENSOR_SET_ATTR_4D(tensorAttr, n, c, h, w, NCHW, INT, 8, UNCACHED, NONE, x);
/* Ask NvMedia to fill NvSciBufAttrs corresponding to
tensorAttrs. */
status = NvMediaTensorFillNvSciBufAttrs(NULL,
 tensorAttr,
 numTensorAttr,
 0,
 attrlist);
/* Reconcile the NvSciBufAttrs and then allocate an NvSciBufObj. */
err = NvSciBufAttrListReconcileAndObjAlloc(&attrlist, 1, bufobj, &conflictlist);
/* Create NvMediaTensor from NvSciBufObj. */
status = NvMediaTensorCreateFromNvSciBuf(NULL, bufobj, &tensor);
/* Free the NvSciBufAttrList which is no longer required. */
err = NvSciBufAttrListFree(attrlist);
/* Use the tensor as input or output as supported. */
....
....
/* Free the resources after use. */
/* Destroy NvMediaTensor. */
NvMediaTensorDestroy(tensor);
/* NvMedia related Deinit. */
NvMediaTensorNvSciBufDeinit();

/* NvSciBuf related deinit. */
NvSciBufObjFree(bufobj);
NvSciBufModuleClose(module);

Example: Reconcile between NvMediaTensor and Image Attributes (Optional)

This example shows how to reconcile NvMediaTensor and Image attributes.

1. Create Image attributes unreconciled_attrlistImage. For more information, see Multi
Datatype Attribute Lists Reconciliation

2. Reconcile Image and NvMediaTensor attributes.

attr[0] = unreconciled_attrlistImage;
attr[1] = unreconciled_attrlistTensor;
err = NvSciBufAttrListReconcileAndObjAlloc(&attrlist,
 2, bufobj, &conflictlist);

NvMediaTensorDestroy()

Destroys a previously allocated NvMedia Tensor object.

Example:
 if (tensor) {

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 461

Embedded Software Components

 NvMediaTensorDestroy(tensor);
 }

5.7.4.5 NvSciSync
The NvMedia APIs provide true hardware acceleration of image processing using hardware
engines on NVIDIA DRIVE AGX devices.

NvSciSync extends the NvMedia imaging components to support synchronization
among the imaging components, NVIDIA® CUDA® components, and NvSciSync-based
applications. NvSciSync supports imaging components that are targeted for Advanced
Driver Assistance Systems (ADAS) and autonomous application development. They do not
support NvMedia video components.

Imaging components that have NvSciSync extensions support:

‣ Accepting an NvSciSyncFence object when the NvMedia engine is used as a waiter

‣ Returning an NvSciSyncFence object when the NvMedia engine is used as a signaler

An NvSciSyncFence object is a snapshot of an NvSciSync object's state.

5.7.4.5.1 For Additional Information
See these sources for additional information about NvSciSync and related topics:

‣ NvSciSync: NvStreams Synchronization

‣ NvMedia image processing and the components of the NvMedia image processing
pipeline: the NvMedia Architecture topic in this document

5.7.4.5.2 Denitions
This section denes some terms that are specic to NvSciSync operations to NvMedia.

‣ Frame: The smallest unit of data that a hardware engine acceleration API can operate
on.

‣ SOF Fence: Start of frame fence, a fence whose expiry indicates the start of engine
processing.

‣ EOF Fence: End of frame fence, a fence whose expiry indicates that processing is
complete and an output frame is ready to be used.

‣ PRE Fence: A fence on which the start of engine processing is blocked until the expiry
of the fence.

5.7.4.5.3 NvSciSync Functions for Specic Imaging Components
This section gives an overview of the NvSciSync functions supported for various NvMedia
imaging components (2D, ICP, VPI, etc.).

NvSciSync supports a group of functions to each of several imaging components:
NvMedia2D, NvMediaICP, NvMediaVPI, etc. The groups of functions have parallel names.
For example, NvMedia XX RegisterNvSciSyncObj() registers an NvSciSync object with a
component, where XX is 2D for NvMedia2D, ICP for NvMediaICP, etc.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 462

Embedded Software Components

NvSciSync supports the following functions for each component, with a few exceptions
detailed below:

‣ Query a component's NvSciSyncObj attributes for waiting or signaling.

Call NvMediaXXFillNvSciSyncAttrList() to query the NvSciSync attributes of
component XX. The function sets (lls) the attributes in memory provided by the caller.
NvSciSync objects allocated with such NvSciSyncAttrList objects are only accepted
by component XX functions.

‣ Register and unregister an NvSciSync object.

Call NvMedia XX RegisterNvSciSyncObj() to register NvSciSyncObj objects with
component XX. You must register every NvSciSyncObj that component XX is to use.

During teardown, call NvMediaXXUnRegisterNvSciSyncObj() to unregister the
registered NvSciSyncObj objects with component XX.

‣ Set an NvSciSyncObj object for SOF usage with the component.

Call NvMedia XX SetNvSciSyncObjforSOF() to tell component XX to use a particular
NvSciSyncObj for signaling start of frame (SOF). You must call this function before you
call any of the component's main image processing functions.

‣ Set an NvSciSyncObj for EOF usage with the component.

Call NvMedia XX SetNvSciSyncObjforEOF() to tell component XX to use a particular
NvSciSyncObj for signaling end of frame (EOF). You must call this function before you
call any of the component's main image processing functions.

‣ Wait for an NvSciSyncFence.

Call NvMediaXXInsertPreNvSciSyncFence() to tell component XX to wait on an
NvSciSyncFence before actually starting image processing. You must call this function
before you call any of the component's main image processing functions.

‣ Get an NvSciSyncFence SOF.

Call NvMediaXXGetSOFNvSciSyncFence() to get an NvSciSyncFence from component
XX whose expiry indicates that the last submitted image processing request has
started. You must call this function only after you call the component's main image
processing functions.

‣ Get an NvSciSyncFence EOF.

Call NvMediaXXGetEOFNvSciSyncFence() to get an NvSciSyncFence from component
XX whose expiry indicates that the last submitted image processing request has
completed. You must call this function only after you call the component's main image
processing functions.

The functions are implemented for each of the following NvMedia imaging components.

Component Notes

2D

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 463

Embedded Software Components

Component Notes

LDC

SIPL
the ISP hardware engine does not generate any fence to indicate the
start of a frame.

IEP

OFA

DLA

Not every function is implemented for every imaging component. The following table
shows functions implemented for each supported component. For SIPL APIs, refer to the
NVIDIA DRIVE OS API Reference Guide.

Generic function

Description 2D LDC IEP OFA DLA

NvMediaXXFillNvSciSyncAttrList()

Fills attributes in an NvSciSyncAttrList.
X X X X X

NvMediaXXRegisterNvSciSyncObj()

Registers an NvSciSyncObj with a
component object.

X X X X X

NvMediaXXUnregisterNvSciSyncObj()

Unregisters an NvSciSyncObj with a
component object.

X X X X X

NvMediaXXSetNvSciSyncObjforSOF()

Species an NvSciSyncObj to use as an
SOF NvSciSyncFence.

— — — — X

NvMediaXXSetNvSciSyncObjforEOF()

Species an NvSciSyncObj to use as an
EOF NvSciSyncFence.

X X X X X

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 464

Embedded Software Components

Generic function

Description 2D LDC IEP OFA DLA

NvMediaXXInsertPreNvSciSyncFence()

Sets an NvSciSyncFence as a prefence.
X X X X X

NvMediaXXGetSOFNvSciSyncFence()

Gets an SOF NvSciSyncFence for an
NvMediaXXProcess () operation.

— — — — X

NvMediaXXGetEOFNvSciSyncFence()

Gets an EOF NvSciSyncFence for an
NvMediaXXProcess () operation.

X X X X X

5.7.4.5.4 Code Examples
Following is example code that illustrates NvSciSync operations for the 2D component. It
can also be used as a model for NvSciSync operations in the other imaging components.
/***** Init Time *****/
NvSciSyncModule nvscisyncModule;
NvSciError nverr;
NvSciSyncAttrList nvscisyncattr_w;
NvSciSyncAttrList nvscisyncattr_s;
NvSciSyncAttrList nvscisyncattr_unreconciled_h[2];
NvSciSyncAttrList nvscisyncattr_reconciled;
NvSciSyncAttrList ConflictAttrList;
NvSciSyncFence eofnvscisyncfence = NV_SCI_SYNC_FENCE_INITIALIZER;
NvSciSyncObj nvscisyncEOF, nvscisyncpre;
NvMediaStatus nvmstatus;
NvMedia2D *nvm2dhdl = NULL;
nvmstatus = NvMedia2DCreate(&nvm2dhdl, NULL);
nverr = NvSciSyncModuleOpen(&nvscisyncModule);
/***** NvMedia 2D as a signaler *****/
nverr = NvSciSyncAttrListCreate(nvscisyncModule, &nvscisyncattr_s);
nvmstatus = NvMedia2DFillNvSciSyncAttrList(nvm2dhdl, &nvscisyncattr_s,
 NVMEDIA_SIGNALER);
nvscisyncattr_unreconciled_h[0] = nvscisyncattr_s;
nvscisyncattr_unreconciled_h[1] = get attribute list from the appropriate waiter;
nverr = NvSciSyncAttrListReconcile(nvscisyncattr_unreconciled_h[],
 2 , &nvscisyncattr_reconciled, &ConflictAttrList);
nverr = NvSciSyncObjAlloc(nvscisyncattr_reconciled, &nvscisyncEOF);
/***** NvMedia 2D as a waiter *****/
nverr = NvSciSyncAttrListCreate(&nvscisyncattr_w);
nvmstatus = NvMedia2DFillNvSciSyncAttrList(nvm2dhdl, &nvscisyncattr_w,
 NVMEDIA_WAITER);
/*If the signaler is also in the same process as the 2D Waiter, then
NvSciSyncAttrListReconcileAndObjAlloc or NvSciSyncAttrListReconcile and
NvSciSyncObjAlloc API pair has/have to be used to allocate nvscisyncpre
 NvSciScynObject.
If the signaler is in a different process/VM than the 2D Waiter, then
NvSciSyncAttrList export/import APIs and NvSciSyncObjIpc Export/Import APIs
have to be used allocate a NvSciSyncObject on signaler and waiter sides.
nvscisyncpre is the imported NvSciSyncObject on the waiter side */
/*All the NvSciSyncObjects(NvSciSyncObjects associated with PreFences, EOFFence
) which will be used by NvMedia2D must be registered upfront. */

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 465

Embedded Software Components

/***** Start of registration of NvSciSync objects *****/
nvmstatus = NvMedia2DRegisterNvSciSyncObj(nvm2dhdl, NVMEDIA_EOFSYNCOBJ,
 nvscisyncEOF);
/* Register all the NvSciSync objects which will be used to generate prefences for
NvMedia2DBlit operation. nvscisyncpre is one such Pre NvSciSync object */
nvmstatus = NvMedia2DRegisterNvSciSyncObj(nvm2dhdl, NVMEDIA_PRESYNCOBJ,
 nvscisyncpre);
/***** End of Registration of NvSciSync Objects *****.
/*Allocate a NvSciBufObj for inputs, say inputimg[N] */
/*Allocate a NvSciBufObj for output, say outputimg */
/*Register the inputimgs and outputimg */
nvmstatus = NvMedia2DRegisterNvSciBufObj(nvm2dhdl, inputimg[i]);
nvmstatus = NvMedia2DRegisterNvSciBufObj(nvm2dhdl, outputimg);
/***** End of init-time and start of run-time *****/
/* Acquire an empty NvMedia 2D parameters object */
NvMedia2DComposeParameters params;
nvmstatus = NvMedia2DGetComposeParameters(nvm2dhdl, ¶ms);
nvmstatus = NvMedia2DSetNvSciSyncObjforEOF(nvm2dhdl, nvscisyncEOF);
 /*Get a nvscisyncfence from somewhere(maybe a eofnvscisyncfence of
some other engine operation) which neeeds to be inserted as prefence
for 2DBlit operation. prenvscisyncfence is one such NvSciSyncFence. */
nvmstatus = NvMedia2DInsertPreNvSciSyncFence(nvm2dhdl, prenvscisyncfence);
/* Set the source layer parameters */
nvmstatus = NvMedia2DSetSrcNvSciBufObj(nvm2dhdl, params, i, inputimg[i]);
nvmstatus =
 NvMedia2DSetSrcGeometry(nvm2dhdl,params,i,NULL,NULL,NVMEDIA_2D_TRANSFORM_NONE);
nvmstatus = NvMedia2DSetSrcFilter(nvm2dhdl, params, i, NVMEDIA_2D_FILTER_OFF);
nvmstatus = NvMedia2DSetSrcBlendMode(nvm2dhdl, params, i,
 NVMEDIA_2D_BLEND_MODE_CONSTANT_ALPHA, 0.5);
/* Set destination surface */
nvmstatus = NvMedia2DSetDstNvSciBufObj(nvm2dhdl, params, outputimg);
/* Submit the compose operation */
NvMedia2DComposeResult composeResult;
nvmstatus = NvMedia2DCompose(nvm2dhdl, params, &composeResult);
nvmstatus = NvMedia2DGetEOFNvSciSyncFence(nvm2dhdl, &composeResult,
 &eofnvscisyncfence);
 /*eofnvscisyncfence may be used as prefence for some other engine operation
 or application can decide to wait on CPU till their expiry using NvSciSyncWait API.
 */
/***** End of Run time *****/
/*Unregister the inputimgs and outputimg */
nvmstatus = NvMedia2DUnregisterNvSciBufObj(handle, inputimg[i]);
nvmstatus = NvMedia2DUnregisterNvSciBufObj(handle, outputimg);
/***** Unregister registered NvSciSync objects *****/
nvmstatus = NvMedia2DUnRegisterNvSciSyncObj(nvm2dhdl, nvscisyncEOF);
nvmstatus = NvMedia2DUnRegisterNvSciSyncObj(nvm2dhdl, nvscisyncpre);
NvSciSyncAttrListFree(nvscisyncattr_w);
NvSciSyncAttrListFree(nvscisyncattr_s);
NvSciSyncAttrListFree(nvscisyncattr_reconciled);
NvSciSyncObjFree(nvscisyncEOF);
NvSciSyncObjFree(nvscisyncpre);
NvSciSyncModuleClose(nvscisyncModule);

5.7.5 Understanding the Sensor Input Processing
Library (SIPL) Framework
The NvMedia SIPL framework provides a simplied API to capture the output of image
sensors connected to NVIDIA® DRIVE AGX Orin™ platforms.

The purpose of SIPL is to abstract the following operations from the application layer:

‣ Programming the image sensors, EEPROMs, serializers, and deserializers.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 466

Embedded Software Components

‣ Programming platforms to capture and process the images using hardware image
processing pipelines (ISPs).

5.7.5.1 Camera SIPL Notications
ENUM Value Comments Trigger Mechanism Frequency Recoverable Handle

NOTIF_INFO_ICP_PROCESSING_DONE 0 Pipeline event, indicates that ICP processing is nished. Capturing frame from VI was successful. Every frame N/A N/A

NOTIF_INFO_ISP_PROCESSING_DONE 1 Pipeline event, indicates that ISP processing is nished. ISP Process task is submitted for the frame
successfully.

Every frame N/A N/A

NOTIF_INFO_ACP_PROCESSING_DONE 2 Pipeline event, indicates that auto control processing is
nished.

Auto Control Alg processing on the frame nished
successfully.

Every frame N/A N/A

information

NOTIF_INFO_CDI_PROCESSING_DONE 3 Pipeline event, indicates that CDI processing is nished. Set sensor controls done. If triggered, immediately This event is
triggered only if the Auto Exposure and
Auto White Balance algorithm produces
new sensor settings that need to be
updated in the image sensor.

N/A N/A

NOTIF_INFO_ICP_AUTH_SUCCESS 4 Pipeline event, indicates image authentication success. Image Authentication Success Every frame N/A N/A

NOTIF_WARN_ICP_FRAME_DROP 100 Pipeline event, indicates that the pipeline was forced to
drop a frame due to a slow consumer or system issues.

Not enough free buers in the SIPL capture buer
pool.

Every time a frame was dropped YES Record

NOTIF_WARN_ICP_FRAME_DISCONTINUITY 101 Pipeline event, indicates that a discontinuity was detected
in parsed embedded data frame sequence number.

Current frame index num not equal last frame index
num + 1.

Every time a frame was sequence
number was not as expected

YES Record

Warnings

NOTIF_WARN_ICP_CAPTURE_TIMEOUT 102 Pipeline event, indicates occurrence of timeout while
capturing.

Cannot get data after in a duration of 10/frameRate. Everytime a frame was not retrieved
from VI within duration 10/frameRate.
Could occur during Deinit and it can be
ignored.

YES Record

NOTIF_ERROR_ICP_BAD_INPUT_STREAM 200 Pipeline event, indicates ICP bad input stream. The captured buer is a partial frame. On demand Depends on the specic error Print the error and stop the pipeline.

NOTIF_ERROR_ICP_CAPTURE_FAILURE 201 Pipeline event, indicates ICP capture failure. If getting output buer from VI fails. On demand NO Print the error and stop the pipeline,
or try to recover from the error
when the auto recovery option is
specied.

NOTIF_ERROR_ICP_EMB_DATA_PARSE_FAILURE 202 Pipeline event, indicates embedded data parsing failure. Return this error when ParseEmbeddedData function
return error.

On demand NO Print the error and stop the pipeline,
or try to recover from the error
when the auto recovery option is
specied.

NOTIF_ERROR_ISP_PROCESSING_FAILURE 203 Pipeline event, indicates ISP processing failure. If programming/processing request to ISP fails On demand NO Print the error and stop the pipeline,
or try to recover from the error
when the auto recovery option is
specied.

NOTIF_ERROR_ACP_PROCESSING_FAILURE 204 Pipeline event, indicates auto control processing failure. On demand NO Print the error and stop the pipeline,
or try to recover from the error
when the auto recovery option is
specied.

NOTIF_ERROR_CDI_SET_SENSOR_CTRL_FAILURE 205 Pipeline event, indicates CDI set sensor control failure. On demand NO Print the error and stop the pipeline,
or try to recover from the error
when the auto recovery option is
specied.

Errors

NOTIF_ERROR_DESER_LINK_FAILURE 206 Deprecated N/A N/A N/A N/A

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 467

Embedded Software Components

ENUM Value Comments Trigger Mechanism Frequency Recoverable Handle

NOTIF_ERROR_DESERIALIZER_FAILURE 207 Device block event, indicates a deserializer failure. On demand NO Call GetDeserializerErrorInfo to get
details.

NOTIF_ERROR_SERIALIZER_FAILURE 208 Device block event, indicates a serializer failure. On demand NO

NOTIF_ERROR_SENSOR_FAILURE 209 Device block event, indicates a sensor failure.

1. Cong which gpios used for these device errors via
platform cong. 2. Start an error monitor in a thread.
3. Device driver calls low-level driver to wait for the
specied GPIO interrupts. 4. Once the specied GPIO
interrupt occurs, translate GPIO index num to these
three error types, and then notify app to handle it via
callback.

On demand NO

Call GetModuleErrorInfo to get
details.

NOTIF_ERROR_ISP_PROCESSING_FAILURE_RECOVERABLE 210 Pipeline event, indicates an ISP process failure due to
recoverable errors.

An ISP recoverable error has happened in the last ISP
processed frame for the specied pipeline.

On demand YES Record

NOTIF_ERROR_ICP_AUTH_FAILURE 211 Pipeline event, indicates image authentication failure. If image authentication or the request to authenticate
image fails.

On demand YES if it is an authentication failure; NO
if it is an error from the Security Engine

Authentication failures can resolve
on their own. Otherwise, print the
error and stop the pipeline.

NOTIF_ERROR_INTERNAL_FAILURE 300 Pipeline and device block event, indicates an unexpected
internal failure.

When there are critical failures due to a) dependencies
b) helper functions c) failed to submit capture
requests.

On demand NO Print the error and stop the pipeline.

5.7.5.2 SIPL Guidance on Output Image Formats
SIPL supports multiple image formats using the ICP and ISP outputs. This topic describes
how the output formats are set and which parameters can be modied to override output
formats under specic conditions.

ICP Output Formats

ICP output formats are dependent on the sensor used.

Based on the vendor and sensor module specics, the output format
of ICP is determined using the PlatformCfg::DeviceBlockInfo::
CameraModuleInfo::SensorInfo::VirtualChannelInfo::cfa and inputFormat elds in
the PlatformCfg struct provided as input to the INvSIPLCamera::SetPlatformCfg API.

Refer to NvSIPLCapStructs.h for the following:

1. Supported values for input format that correspond to NvSiplCapInputFormatType
enum.

2. Supported values for cfa that correspond to the valid NVSIPL_PIXEL_ORDER ags.

Note: SIPL does not add restrictions on the use of dierent input format type/pixel orders
because these are specic to sensors, and SIPL does not have a way of determining
the expectations of each sensor. A recommendation is to adhere to the specics of the
sensors.

SIPL however does pose restrictions such as rejecting bad combinations of input
format and pixel order. Some examples of the invalid combinations are as follows.

1. NVSIPL_CAP_INPUT_FORMAT_TYPE_YUV422 and NVSIPL_PIXEL_ORDER_RGBA
2. NVSIPL_CAP_INPUT_FORMAT_TYPE_RAW6 and NVSIPL_PIXEL_ORDER_RGBA

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 468

Embedded Software Components

3. NVSIPL_CAP_INPUT_FORMAT_TYPE_RGB888 and NVSIPL_PIXEL_ORDER_RGGB
4. NVSIPL_CAP_INPUT_FORMAT_TYPE_YUV422 and NVSIPL_PIXEL_ORDER_RGGB
5. NVSIPL_CAP_INPUT_FORMAT_TYPE_RAW6 and NVSIPL_PIXEL_ORDER_YUV
6. NVSIPL_CAP_INPUT_FORMAT_TYPE_RGB888 and NVSIPL_PIXEL_ORDER_YUV

ISP Output Formats

Refer to the table provided as part of NvSIPLCamera.hpp for documentation on
INvSIPLCamera::RegisterImages API for the various ISP output formats supported by SIPL.

In 6.0 release, users are expected to call INvSIPLCamera::GetImageAttributes API before
calling INvSIPLCamera::RegisterImages API in order to validate the attributes provided by
the user. The sequence of API calls is as follows:

1. Application calls NvSciBufAttrListCreate to create an unreconciled buer attribute list.
2. Application implements and calls OverrideImageAttributes(NvSciBufAttrs) function

to set the required output format for each ISP output in case it is dierent from the
default.

Note: Sample function is implemented in nvsipl_camera -> CNvSIPLMaster.hpp

1. Application calls INvSIPLCamera::GetImageAttrs(NvSciBufAttrs), which checks
and validates the buer attributes in case you chose to override the default format.
Otherwise, Application adds attributes for the default formats.

Note: NVIDIA maintains the name of the API due to ABI compliance requirements.
However, a name such as VerifyandSetImageAttrsthe is more representative of the
functionality.

1. Application calls NvSciBufAttrReconcile to reconcile all buer attributes across other
buer attribute lists (other consumers for this buer, which could be any downstream
engine, such as VIC, IEP, and CUDA)

2. Application calls NvSciBufObjAlloc on the reconciled attribute list to create a buer
object

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 469

Embedded Software Components

3. Application calls INvSIPLCamera::RegisterImages(NvSciBufObj), which only accepts
the buer if one of the attribute lists used to reconcile and allocate was veried by SIPL
using INvSIPLCamera::GetImageAttrs

Note:

1. ISP output images will be a binary match if the default NITO provided by NVIDIA is used
while requesting the same output formats with same resolution.

2. The ISP0 and ISP1 outputs can have dierent formats as long as they both are YUV
type.

3. The camera tuning does not have to be re-run for dierent formats since formats are
just dierent ways to represent images in the memory. However, the data itself will
dier as the representation of the memory varies across formats.

OverrideImageAttributes

ISP supports three types of formats:

1. YUV Semi Planar Images
2. YUV Packed Images–Luma is a type of YUV Packed Image
3. RGBA Packed Images

Creating packed type buers (2 and 3) are straightforward: you use
NvSciBufImageAttrKey_Plane*** type attributes to override Image formats.

For semi-planar type buers (1), however, NvSciBuf provides attribute keys to create
buers of the above types using two methods:

1. Using NvSciBufImageAttrKey_Plane*** type attributes
2. Using NvSciBufImageAttrKey_Surf*** type attributes

NvSciBuf added the Surf type attributes to make the task of creating multi-plane image
buers easy for the user. However, in Plane type attributes you must provide the height
and width of each plane to determine the memory layout of the image.

In SIPL the library oversees calculations for height and width of the buer factoring in
multiple criteria such as sensor output resolution, input crop, downscale, and so on. This
is complicated if you supply Plane type attributes to SIPL while trying to create multi-
plane images. Hence, SIPL restricts you to Surf type attributes when using multi-plane
YUV images.

Examples

For YUV 444 SEMI-PLANAR UINT 16 BLOCK LINEAR image, the following attributes should
be set to the corresponding values:

Attribute Name Attribute Value

NvSciBufGeneralAttrKey_Types NvSciBufType_Image

NvSciBufImageAttrKey_SurfType NvSciSurfType_YUV

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 470

Embedded Software Components

Attribute Name Attribute Value

NvSciBufImageAttrKey_SurfBPC NvSciSurfBPC_16

NvSciBufImageAttrKey_SurfMemLayout NvSciSurfMemLayout_SemiPlanar

NvSciBufImageAttrKey_SurfSampleType NvSciSurfSampleType_444

NvSciBufImageAttrKey_SurfComponentOrder NvSciSurfComponentOrder_YUV

NvSciBufImageAttrKey_SurfColorStd NvSciColorStd_REC709_ER

NvSciBufImageAttrKey_Layout NvSciBufImage_BlockLinearType

For YUV 444 PACKED UINT 8 BLOCK LINEAR image, the following attributes should be set
to the corresponding values

Attribute Name Attribute Value

NvSciBufGeneralAttrKey_Types NvSciBufType_Image

NvSciBufImageAttrKey_PlaneCount 1

NvSciBufImageAttrKey_Layout NvSciBufImage_BlockLinearType

NvSciBufImageAttrKey_PlaneColorFormat NvSciColor_A8Y8U8V8

NvSciBufImageAttrKey_PlaneColorStd NvSciColorStd_REC709_ER

5.7.5.3 SIPL Architecture
The following diagram illustrates the architecture of the SIPL framework.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 471

Embedded Software Components

The SIPL Query component is used to query data about which external devices are
supported, how they are connected to the platform, and how they should be congured. It
returns this information in the form of a PlatformCfg struct.

The SIPL Device Block component initializes and controls the external devices attached
to the platform. SIPL Device Block is composed of four primary sub-components: Core,
Device Driver Interface (DDI), Camera Device Drivers, and Camera Device Interface (CDI).
As a combined component, SIPL Device Block uses I2C to program the settings specied
in the PlatformCfg struct. Additionally, it initializes the GMSL deserializers, brings up the
serializer/deserializer (serdes) link(s) between the camera modules and the deserializers,

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 472

Embedded Software Components

and begins streaming from the sensors on the camera modules. Please note that the
application does not directly use SIPL Device Block to control and interact with external
devices; instead, it must go through SIPL Core.

The SIPL Core component orchestrates the entire capture process from initialization,
through running, to deinitialization. It uses the SIPL Device Block component to initialize
the external devices, and initializes the SoC to process captured images. It also allows the
user to request images both before and after they have gone through the ISP pipeline and
provides queues to deliver those images to the user.

5.7.5.4 SIPL Use Cases
SIPL supports special use cases, such as receive-only mode and a custom auto control
plugin.

The sub-sections provide detailed information for the following usecases:

‣ Camera SIPL Receive-Only Mode

‣ Registering a User Dened Auto Control Plugin

5.7.5.4.1 Camera SIPL Receive-Only Mode
Receive-Only Mode is an operation mode of the Camera SIPL library, on a secondary
NVIDIA® Tegra host, to receive and process MIPI CSI frames without interacting with the
camera module hardware. The client on the primary host perform control and operation of
the camera module hardware. Frame capture settings should be congured identically on
the secondary receive only client for compatibility.

Use case Examples

‣ Data Recording

‣ Load balancing, such as running dierent networks on the same inputs concurrently

‣ Allowing data to cross safety boundaries:

‣ Primary ASIL safety host is the sole controller of camera hardware on a particular
camera hardware block

‣ Secondary host may be QM or a lower ASIL level, such as a back-up camera, data
recorder, or infotainment

Receive-Only Mode Operation

Receive-only mode is enabled by setting the isPassiveModeEnabled ag in the device
block platform conguration. The customer application should ensure that the SIPL
platform conguration on both SoCs are mirrored identically, or are otherwise compatible
for capture, and then synchronize the initialization and start of the primary client before
the secondary client.

‣ APIs with I2C accesses and power control calls to deserializers and camera modules,
such as sensors, serializers, and EEPROMs, are rendered NOP, and they return a success
status immediately. The exceptions are that I2C writes are still performed in the

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 473

Embedded Software Components

deserializer driver at Init() and Deinit() to enable and disable replication mode on
the deserializer hardware respectively, and to run CSI deskew in D-Phy mode only.

The NVCSI pad on the receiving Tegra must be enabled when the deserializer drives
CSI output to the lanes. Otherwise, permanent damage to the chip is possible. It is not
possible to enable replication mode on the deserializer from the primary SoC before the
secondary SoC client is initialized.

‣ External camera hardware interrupts continue to be monitored and propagated to the
secondary client as usual if physically connected and congured. These signals may be
shared and jointly delivered with the primary client if it is also physically connected and
congured.

External Camera Hardware

Camera hardware device errors and interrupts may be propagated to both the primary
and secondary SoCs. Error interrupt lines are connected to both SoCs on reference Tegra
boards, such as the NVIDIA Orin Devkit. SIPL propagates error interrupt notications to the
client regardless of whether the receive-only mode ag is set in the platform conguration.
The secondary mode client is typically unable to respond such errors; it may be forbidden
from performing I2C communication to retrieve the detailed error status and eect a link
recovery procedure. This indication of hardware fault may be useful to arrest a capture
pipeline for a mission-critical application on the secondary SoC in the event of latent
source corruption.

The client system architecture implements the inter-Tegra error notication delivery
and handling strategy, which coordinates the responses, possibly synchronized, of the
independent clients.

Tegra Capture and Processing

Capture and processing errors originating from the secondary SoC are propagated to the
client through SIPL and other mechanisms, such as 3LSS, as usual and without change.

Link Recovery

The procedure to perform link recovery in response to error notications can occur on the
primary SoC client, but this will usually interfere with the secondary SoC capture.

Link recovery is currently not supported on the secondary SoC client. A re-launch of the
non-safety receive-only mode SIPL client may be necessary to achieve restoration of
service.

Drive OS 5.x (T19x) Drive OS 6.0.3.0+ (T23x)

Linux (non-safety) Yes Yes

QNX (standard) Yes Yes

QNX (safety) No Yes

The SIPL library contains a basic callback-based camera module link error notication
and recovery system. Each deserializer on the Camera Interface Module (CIM) has

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 474

Embedded Software Components

an error GPIO pin to indicate the appearance of an error in its links. An error monitor
thread for each device block dumps the deserializer error status registers, automatically
clears the error GPIO, and noties the client via its pre-registered callback of a
NOTIF_ERROR_DESER_LINK_FAILURE event.

A mask indicating which of the camera modules is in error is communicated to the client,
and the deserializer error status registers contain more information about the specic
error conditions.

Camera module error recovery is not automatic and triggered by the client. Recovery
occurs at the link granularity. Individual camera modules and their links are independently
disabled at the deserializer and each subdevice is re-initialized, as shown in the following
diagram.

The camera pipeline, NVCSI/VI/ISP, is not reset by SIPL. The client coordinates frame error
handling and resubmission of capture and process requests during recovery.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 475

Embedded Software Components

5.7.5.4.2 Registering a User Dened Auto Control Plugin
The application is responsible for allocating and deallocating the plugin object. To avoid
resource allocation during safety critical operation, the plugin should only allocate required
resources during initialization and deallocate during deinitialization.

To register a user-dened (custom) auto control plugin, the user must derive from the
ISiplControlAuto interface class and implement its functions.
class ISiplControlAuto {
public:
 virtual SIPLStatus Process(const SiplControlAutoInputParam& inParams,
 SiplControlAutoOutputParam& outParams) = 0;
 virtual SIPLStatus GetNoiseProfile(
 const SiplControlEmbedInfo& currFrameEmbedInfo,
 const uint32_t maxSupportedNoiseProfiles,
 uint32_t& noiseProfile) {
 noiseProfile = 0;
 return NVSIPL_STATUS_OK;
 }
 virtual ~ISiplControlAuto() = default;

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 476

Embedded Software Components

protected:
 ISiplControlAuto() = default;
private:
 ISiplControlAuto(const ISiplControlAuto&) = delete;
 ISiplControlAuto& operator= (const ISiplControlAuto&) = delete;
};

5.7.5.4.2.1 Class Public Functions

The public functions for ISiplControlAuto are as follows.

Member Description

Process The function is called for every frame by SIPL to process
the input parameters (SIPLControlAutoInputParam) and
generate the output settings (SiplControlAutoOutputParam)
for future images.

GetNoiseProle The function is called for every frame by SIPL to generate
the output noiseProle based on the input parameters
(SiplControlEmbedData and maxSupportedNoiseProfiles).

~ISiplControlAuto() Default destructor.

Process Function

The Process function is called in the rst frame without ISP Statistics or when the ISP has
processed the captured image and generated the statistics.

The plugin must receive input information in the SiplControlAutoInputParam
structure and populate the results into the SiplControlAutoOutputParam structure.
SiplControlAutoInputParam and SiplControlAutoOutputParam structures are described
in the Process Function Input Parameters and Process Function Output Parameters
sections.
SIPLStatus Process(const SiplControlAutoInputParam& inParams,
 SiplControlAutoOutputParam& outParams)

Parameters inParams: Species the input parameters to the plugin.

outParams: Species the generated output parameters by the plugin.

Return Value NVSIPL_STATUS_OK: Success.

NVSIPL_STATUS_ERROR: An error occurred.

Process Function Input Parameters

When the plugin Process function is called, it must process the input information and
generate the output parameters.

The plugin supports the following input categories:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 477

Embedded Software Components

‣ Sensor Attribute Properties

‣ Embedded Data and line information

‣ Histogram and LAC statistics

‣ Flicker band statistics

SiplControlAutoInputParam

The input information is passed in the following structure:
struct SiplControlAutoInputParam {
 SiplControlEmbedData embedData;
 DevBlkISCSensorAttributes sensorAttr;
 SiplControlIspStatsInfo statsInfo;
};

Structure Parameter

SiplControlAutoInputParam ‣ embedData: Species the Embedded Settings of the
frame.

‣ sensorAttr: Species the attributes of the sensor.
‣ statusInfo: Species the stats data.

SiplControlEmbedData

The structure members provide embedded data for the image that is being processed.
That information is a set of registers of the image sensor.

The denition is as follows:
struct SiplControlEmbedData {
 SiplControlEmbedInfo embedInfo;
 DevBlkISCFrameSeqNum frameSeqNum;
 DevBlkISCEmbeddedDataChunk topEmbeddedData;
 DevBlkISCEmbeddedDataChunk bottomEmbeddedData;
};

Structure Parameter

SiplControlEmbedData ‣ embedInfo: Holds the parsed embedded info for the
captured frame.

‣ frameSeqNum: Holds frame sequence number for the
captured frame.

‣ topEmbeddedData: Embedded buer at the
beginning of the frame.

‣ bottomEmbeddedData: Embedded buer at the end
of the frame.

DevBlkISCSensorAttributes

The structure members provide attributes data for the image sensor.
struct DevBlkISCSensorAttributes {

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 478

Embedded Software Components

 char sensorName[DEVBLK_ISC_MAX_SENSOR_NAME_LENGTH];
 uint32_t sensorCFA;
 char sensorFuseId[DEVBLK_ISC_MAX_FUSE_ID_LENGTH];
 uint8_t numActiveExposures;
 DevBlkISCAttrRange sensorExpRange[DEVBLK_ISC_MAX_EXPOSURES];
 DevBlkISCAttrRange sensorGainRange […];
 DevBlkISCAttrRange sensorWhiteBalanceRange […];
 float_t sensorGainFactor[DEVBLK_ISC_MAX_EXPOSURES];
 uint32_t numFrameReportBytes;
};

Structure Parameter

DevBlkISCSensorAttributes ‣ sensorName: Holds the name attribute.
‣ sensorCFA: Holds the CFA attribute.
‣ sensorFuseId: Holds the fuse ID attribute.
‣ numActiveExposures: Holds the number of active

exposures attribute.
‣ sensorExpRange: Holds the sensor exposure ranges

for active exposures.
‣ sensorGainRange: Holds the sensor gain ranges for

active exposures.
‣ sensorWhiteBalanceRange: Holds the sensor white

balance ranges for active exposures.
‣ sensorGainFactor: Holds the additional sensor gain

factor between active exposures. These gain factors
describe the sensitivity dierence between the
exposures.

‣ numFrameReportBytes: Holds the number of frame
report bytes supported by the sensor.

SiplControlIspStatsInfo

This structure contains the statistics data.
struct SiplControlIspStatsInfo {
 const NvSiplISPLocalAvgClipStatsData* lacData[2];
 const NvSiplISPLocalAvgClipStats* lacSettings[2];
 const NvSiplISPHistogramStatsData* histData[2];
 const NvSiplISPHistogramStats* histSettings[2];
 const NvSiplISPFlickerBandStatsData* fbStatsData;
 const NvSiplISPFlickerBandStats* fbStatsSettings;

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 479

Embedded Software Components

};

Structure Parameter

SiplControlIspStatsInfo ‣ lacData: Holds const pointers to LAC stats data from
LAC-0, LAC-1 blocks in ISP.

‣ lacSettings: Holds const pointers to LAC stats
settings from LAC-0, LAC-1 blocks in ISP.

‣ histData: Holds const pointers to Histogram stats
data from HIST-0, HIST-1 blocks in ISP.

‣ histSettings: Holds const pointers to Histogram stats
settings from HIST-0, HIST-1 blocks in ISP.

‣ fbStatsData: Holds const pointer to Flicker Band
stats data from FB block in ISP.

‣ fbStatsSettings: Holds const pointer to Flicker Band
stats settings from FB block in ISP.

Process Function Output Parameters

When the plugin Process function is called, it must process the input information and
generate the output parameters.

The plugin must generate the information in the following categories:

‣ Exposure control

‣ White balance control

‣ Histogram statistics settings

‣ LAC statistics settings

‣ Flicker-band statistics settings

‣ SiplControlAutoOutputParam

SiplControlAutoOutputParam

The SiplControlAutoOutputParam structure provides the ISP stats settings, exposure
settings, and white balance settings calculated by plugin based on the ISP stats received in
Process Function Input Parameters.

The output is passed in the following structure:
struct SiplControlAutoOutputParam {
 SiplControlAutoSensorSetting sensorSetting;
 SiplControlAutoAwbSetting awbSetting;
 SiplControlIspStatsSetting newStatsSetting;
 float_t ispDigitalGain;

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 480

Embedded Software Components

};

Structure Parameter

SiplControlAutoOutputParam ‣ sensorSetting: Holds sensor exposure and gain
settings.

‣ awbSetting: Holds AWB settings.
‣ newStatsSetting: Holds Stats Settings.
‣ ispDigitalGain: Holds the digital gain to be applied in

ISP.

SiplControlAutoSensorSetting

This structure contains the sensor settings.
struct SiplControlAutoSensorSetting {
 uint8_t numSensorContexts;
 DevBlkISCExposure exposureControl[…];
 DevBlkISCWhiteBalance wbControl[…];
};

Structure Parameter

SiplControlAutoSensorSetting ‣ numSensorContexts: Holds the number of sensor
contexts to activate.

‣ exposureControl: Holds the sensor exposure settings
to set for each context.

‣ wbControl: Holds the sensor white balance settings
to set for each context.

SiplControlAutoAwbSetting

This structure contains the AWB, CCT and CCM settings.
struct SiplControlAutoAwbSetting {
 SiplControlAutoAwbGain wbGainTotal[…];
 float_t cct;
 float_t ccmMatrix[…][…];
}

Structure Parameter

SiplControlAutoAwbSetting ‣ wbGainTotal: Total white balance gains, including both
senor channel gains and ISP gains.

‣ cct: Correlated Color Temperature.
‣ ccmMatrix: Color Correlation Matrix.

SiplControlIspStatsSetting

This structure contains the stat block settings for the ISP.
struct SiplControlIspStatsSetting {

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 481

Embedded Software Components

 bool valid;
 NvSiplISPLocalAvgClipStats lac[2];
 NvSiplISPHistogramStats hist1;
 NvSiplISPFlickerBandStats fbStats;
}

Structure Parameter

SiplControlIspStatsSetting ‣ valid Settings: to control ISP stats blocks are valid or
not.

‣ Lac: Settings for 2 LAC stats ISP blocks.
‣ hist1: Settings for Histogram 1 stats blocks.
‣ fbStats: Settings for Flicker Band stats block.

GetNoiseProle Function

The GetNoiseProfile function receives the embedded information for the current frame
in SiplControlEmbedInfo structure and the parameter maxSupportedNoiseProfiles
variable and puts the generated noise prole number in noiseProfile variable.
SiplControlEmbedInfo structure is dened in the SiplControlEmbedData section and
maxSupportedNoiseProfiles is an integer ranging from 1 to 32, specifying the max
number of allowed noise proles to be used by the plugin.

Declaration
SIPLStatus GetNoiseProfile(const SiplControlEmbedInfo& currFrameEmbedInfo,const
 uint32_t maxSupportedNoiseProfiles,
 uint32_t& noiseProfile)

Parameters currFrameEmbedInfo: Species the input embedded info parameters
for the current frame.

maxSupportedNoiseProles: Species the input max number of
allowed noise proles to be used by the plugin.

noiseProle: Species the output calculated noise prole number.

Return Value NVSIPL_STATUS_OK: Success.

NVSIPL_STATUS_ERROR: An error occurred.

5.7.5.4.2.2 GetNoiseProle Function Input Parameters

When the GetNoiseProfile function is called, it must process the following input
information and generate the output parameter.

‣ SiplControlEmbedData

‣ maxSupportedNoiseProles

SiplControlEmbedData

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 482

Embedded Software Components

This structure contains the embedded data for the image that is being processed. This
structure is explained in the SiplControlEmbedData section.

maxSupportedNoiseProles

This parameter is an integer specifying the max number of allowed noise proles to be
used in plugin.

5.7.5.4.2.3 GetNoiseProle Function Output Parameters

The output of GetNoiseProfile function is the generated noise prole number,
noiseProfile. The valid range for the output noiseProfile is:

0<= noiseProfile < maxSupportedNoiseProfiles.

5.7.5.4.2.4 Plugin Input Data Range Requirements

The plugin must check the range for all the input parameters based on the valid ranges
provided in the NVIDIA DRIVE OS SDK API Reference Documentation and return an error
if any value is not in range. In addition, the plugin must return an error if expTimeValid or
gainValid is false in EmbedInfo.

5.7.5.4.2.5 Plugin Output Data Range Requirements

The plugin must output values within the ranges provided in the NVIDIA DRIVE OS SDK
API Reference Documentation. In addition, SIPL code would detect the following situations
and report an error:

‣ When the product of output digital gain and any of the output wbGainTotal gains is
greater than 8 or less than 0.

‣ For each frame, SIPL calculates the total exposure as a product of exposure and gain as
follows:
Total_Exposure = exposureTime[0] * sensorGain[0]

Only the 0th exposure and gain values (corresponding to the long exposure frame)
are used for this calculation. In order to prevent abrupt change between consecutive
frames, SIPL calculates the ratio of Total_Exposure between Frame N and N+1 as
follows:
Exposure_Ratio = Total_Exposure[N+1] / Total_Exposure[N]

‣ Exposure_Ratio must be within the range of [1/1024.0, 1024.0].

‣ When any coecient in product of output ccmMatrix and inverse of the Color Space
Conversion (CSC) matrix is greater than 8 or less than -8.

The default CSC_Inv matrix is as follows:
CSC_Inv[0] = {0.2126, -0.11457, 0.5};
CSC_Inv[1] = {0.7152, -0.38543, -0.45415};
CSC_Inv[2] = {0.0722, 0.5, -0.04585};

In addition, fusion in ISP is not supported. Therefore, the output SiplControlAutoAwbGain
must be lled with valid values for the rst plane (SiplControlAutoAwbGain[0]).

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 483

Embedded Software Components

5.7.5.4.2.6 ISP Processing and 24-bit Sensor Output

NVIDIA recommends the following programming to process 24-bit sensors: The exposure
combination is done in the sensor to generate the 24-bit linear pixel values. Following the
exposure combination, the sensor performs a PWL compression on the 24-bit linear values
to generate the 12-bit compressed pixel values.

The PWL compression on 24-bit values in the sensor is such that when ISP applies a PWL
decompression to retrieve 20-bit data, the 20-bit data are eectively the result of 24-bit
linear data compressed by a power curve. The power curve is designed to preserve the
dynamic range of the sensor.

All the blocks following the PWL decompression (linearization) block in ISP (specically the
statistics data: LAC0, LAC1, HIST0, HIST1, and FB) operate on the 20-bit compressed data.

Therefore, when using the statistics data, you can write software to linearize the data by
using the inverse power-curve.

The semi-raw RGBFP16 output generated by ISP is also compressed using this power-
curve. Obtain this linear data by writing the software to use the inverse power-curve.

5.7.5.5 Camera Authentication
NVIDIA DRIVE® OS 6 introduces features to authenticate camera sensors, the control
messages between camera sensors and Drive OS, and the image frames received from the
camera sensors. This topic describes the following:

‣ Camera authentication features and supported cameras.

‣ How security features are deployed and congured with NVIDIA Drive OS 6 and how
applications can use these features.

‣ How authentication features can be enabled for additional camera sensors.

The target audience of this topic consists of OEMs and system integrators, software
developers writing applications for Drive OS 6, and camera device driver writers.

Motivation and Use Cases

Cameras are used in autonomous vehicles for perception of the environment surrounding
the vehicle. Camera data is typically used to assist the driver in maneuvering the vehicle, or
to control the vehicle direction and speed, depending on the level of autonomy.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 484

Embedded Software Components

Several security threats are possible and applicable to this architecture. At a high level they
are:

‣ Tampering of the camera or its sensor: An entity that gains physical access to the
camera and its sensor can tamper with the image or other data sent by the camera.

‣ Tampering of image data: An entity that gains physical access to hardware CSI image
data read channels can tamper with image data. Image data can be tampered in a
way to disrupt the perception application that consumes this data. This can result in
misclassication of image data.

‣ Tampering of I2C Settings: An entity that gains physical access to HW I2C write
channels can tamper with settings written by sensor drivers. These settings control the
camera and can cause the quality of images sent by the camera to be aected to the
point where images may not be correctly processed by perception applications.

‣ Image Frame Replay and Forgery: An entity that gains physical access to hardware CSI
image data read channels can intercept and replay previously sent image frames or
forge new image frames. Image data can be tampered with to disrupt the perception
application that consumes this data. This can result in misclassication of image data.

The camera authentication features provide mitigations against these threats.

Camera Authentication Features

NVIDIA DRIVE OS provides the following camera authentication features to mitigate
against threats.

‣ Camera authentication: establish the authenticity of the camera module and its sensor.

‣ Image authentication: ensure that the image data is coming from the expected sensor,
has not been tampered with, and is not a replay of a previously sent camera frame.

‣ Control authentication: ensure that control messages (typically exchanged with i2c) are
not tampered with.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 485

Embedded Software Components

Supported Products

There is no established standard for authenticating camera modules or authenticating
data from camera modules. The camera authentication algorithms and protocols used
depend on the capabilities provided by a specic camera model, with each camera vendor
implementing their own proprietary solution.

5.7.5.5.1 Platform Camera Conguration
NVIDIA DRIVE® OS Safety build enforces authentication of all camera modules that are
enabled in platform camera topology conguration. There is no option to disable the
authentication step in a Safety build. DRIVE OS SIPL core refuses an application request
to start a camera streaming for any module whose authentication cannot be successfully
nished for whatever reason:

‣ SIPL device driver for a sensor does not support authentication

‣ Physical camera module does not support authentication

‣ Physical camera module is not provisioned with required key materials

‣ Authentication is supported, but fails during session establishment for any reason

For more information, refer to Understanding the Sensor Input Processing Library (SIPL)
Framework

Non-safety and safety debug builds have an option to control authentication for a specic
camera module through SIPL camera platform conguration. The SIPL camera core
framework attempts to authenticate camera modules that have the isAuthEnabled
ag set to true in a platform cong. Following is an example SIPL database JSON le
description of the IMX728 module:
{
 "cameraModules": [
 {
 "name": "V1SIM728S2RU2030NB20",
 "description": "IMX728 RGGB module - 30FOV - MIPI-IMX728, MAX96717",
 "serializer": {
 "name": "MAX96717F"
 },
 "sensors": [
 {
 "name": "IMX728",
 "i2cAddress": "0x1C",
 "isAuthEnabled" : true,
 "virtualChannels" : [
 {
 "cfa": "rggb",
 "width": 3840,
 "height": 2160
 }
]
 }
],
 "eeproms": [
 {
 "name": "M24C04",
 "i2cAddress": "0x54"
 }
]

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 486

Embedded Software Components

 }
]
}

Platform integrators can enable authentication individually for each camera module in
SIPL platform conguration for non-safety or debug builds. For more information, refer to
Adding a Sensor Conguration

5.7.5.5.2 Application Support for Camera Authentication
This section provides information for camera application developers to activate camera
authentication, receive, and process notication-related events (including failures).

The NVIDIA DRIVE OS SDK provides applications with a camera management interface
through SIPL APIs. For additional information, refer to Understanding the Sensor Input
Processing Library (SIPL) Framework.

The SIPL framework manages all aspects of camera sensor authentication and provides
status to an application using SIPL notications.

5.7.5.5.2.1 Activating Authentication for a Camera Module

In a Safety DRIVE OS build, authentication is automatically enforced for all camera
modules, without any control from application. DRIVE OS Camera core will fail to start if
authentication fails for any active camera module.

For non-safety and DEBUG builds, application retrieves the “authentication enable” ag
for each individual module by querying platform cong. For details, refer to SIPL Query.
Platform cong can be changed to control per-module authentication ag.

If the authentication ag is not explicitly set to False in a platform conguration, a non-
safety build will use True value for the ag by default.

5.7.5.5.2.2 Module Initialization

The SIPL framework automatically runs the authentication step during the SIPL
initialization call, INvSIPLCamera::Init(), when required by platform conguration
(platform cong is set by the INvSIPLCamera::SetPlatformCfg() call before Init). If
the authentication step fails, the INvSIPLCamera::Init() method returns an error and
Camera module initialization will not occur. Streaming can not be started for the module
with the NvSIPLCamera::Start() call.

To identify the exact cause of failure, refer to the system logs.

5.7.5.5.2.3 I2C Transactions Authentication

NVIDIA DRIVE OS SIPL camera software communicates with camera sensors over i2c
during Init and Runtime (streaming) steps:

‣ At init time, default settings are pushed to a sensor over i2c bus before streaming can
start.

‣ At runtime, image quality autocontrol algorithm in SIPL core can periodically decide to
change sensor settings over i2c (exposure, white balance, and so on) based on changing
lighting conditions.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 487

Embedded Software Components

Initialization time i2c transactions are performed when application calls the
INvSIPLCamera::Init() method. Any failure to authenticate i2c transactions during Init
stage is seen by application as a failure of INvSIPLCamera::Init() call, and streaming will
not start.

At runtime (after camera streaming starts) SIPL manages optimal camera sensor
settings internally by controlling sensor via i2c bus, transparently to camera
user application. If i2c transactions fail,application is be notied through SIPL
notication queue. Refer to nvsipl::NvSIPLPipelineNotier::NoticationType by
NOTIF_ERROR_CDI_SET_SENSOR_CTRL_FAILURE event. I2C authentication failure is treated
like any other type of I2C transaction error and is reported by the same event.

Application monitors the SIPL notication queue for
NOTIF_ERROR_CDI_SET_SENSOR_CTRL_FAILURE events and performs actions required to
recover the camera link when failure occurs.

5.7.5.5.2.4 Image Authentication Status

Image authentication is performed by SIPL on RAW frame data after reception from CSI
bus, unpacking (adding pad bits) and placing unpacked image data into system memory.
Authentication runs on data before post-processing is applied.

The input pixel format depends on camera module conguration specied in camera
platform cong VirtualChannelInfo member inputFormat. Authentication can start
immediately after frame is placed into memory in parallel with the image post-processing
step.

Application consuming post-processed frames from SIPL must wait for image
authentication status before it makes a critical decision based on image pixel data.
Application can use an image, for example sensor fusion, while it waits for authentication
status, but it cannot make vehicle steering decisions until authentication status is
available.

Authentication status of a frame is reported to Application separately from a frame itself,
to reduce overall image processing latency, because authentication can be performed in
parallel to post-processing of a RAW frame.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 488

../../../api_reference/classnvsipl_1_1NvSIPLPipelineNotifier.html#a8829ed28670ce15581acb566d13c397a
../../../api_reference/structnvsipl_1_1SensorInfo_1_1VirtualChannelInfo.html

Embedded Software Components

In case image authentication is done sequentially to post-processing extra latency would
be introduced to camera capture pipeline. To avoid this SIPL performs authentication in
parallel to post-processing step. Therefore, ISP post-processed images may be passed UP
to a camera application before authentication is nished. Exact timing depends on the
size of a frame to authenticate. It is then up to the application to use frame data and then
wait for authentication status before safety decision is made (e.g., before vehicle steering
decision is made).

This is illustrated on a following diagram showing standard SIPL image processing pipeline
with an addition of Image Authentication Status reporting.

Asynchronous notication of authentication status for each frame is done via existing SIPL
notication queue INvSIPLNoticationQueue. Assumption is on camera application that it
will monitor the notication queue for authentication status events and will do a matching
between an event and previously received post-processed buer.

SIPL notication queue events related to image authentication are as follows:
enum NotificationType {
 ...
 NOTIF_ERROR_ICP_AUTH_FAILURE,
 NOTIF_INFO_ICP_AUTH_SUCCESS,
 ...
}

NvSIPLPipelineNotifier::NotificationData {
 eNotifType type; // NOTIF_ERROR_ICP_AUTH_FAILURE or NOTIF_INFO_ICP_AUTH_SUCCESS
 uint32_t pipelineId;
 uint64_t frameSequenceNumber;
}

Application can identify each individual frame based on pipeline ID (one per Sensor) and a
frame sequence number (always incrementing).

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 489

http://sw-mobile-docs/DRAFT/V6Q_ORIN_SDK/api_reference/classnvsipl_1_1INvSIPLNotificationQueue.html

Embedded Software Components

5.7.5.6 Using the SIPL Framework

5.7.5.6.1 Step 1: Querying Platform Conguration
First, use the SIPL Query component through the INvSIPLQuery interface to get a list
of supported platform congurations. A platform conguration is structure (a struct)
that lists properties of external devices and how they are connected to the platform. This
includes but is not limited to:

‣ Device I2C addresses

‣ Image properties (frame rate, data type, image size, etc.)

‣ Deserializer MIPI properties (PHY mode, number of lanes, etc.)

‣ Which camera modules are connected to which CSI brick

This information is returned in the form of a list of PlatformCfg structs. Choose the
PlatformCfg struct that reects the current conguration. It is not strictly necessary to
use the SIPL Query component, and the PlatformCfg struct may be obtained by other
means, or even hard coded into the application.

5.7.5.6.2 Step 2: Initialize SIPL
To initialize SIPL Core, rst use the INvSIPLCamera::GetInstance method to get an
instance of a class that implements INvSIPLCamera. The following methods can then be
used to congure the settings that SIPL Core is to use during capture:

‣ INvSIPLCamera::SetPlatformCfg()

‣ INvSIPLCamera::SetPipelineCfg()

Once SIPL Core has been congured, call INvSIPLCamera::Init()to initialize SIPL. This
programs the external devices to prepare them to stream, receive, and process images.
Note that this step prepares SIPL to capture and process images but does not actually
start the process.

5.7.5.6.3 Step 3: Start SIPL
Next, register output buers and congure autocontrol using the following methods:

‣ INvSIPLCamera::GetImageAttributes()

‣ INvSIPLCamera::RegisterImages()

‣
‣ INvSIPLCamera::RegisterAutoControlPlugin()

All image buers must be allocated with the attributes retrieved with the
INvSIPLCamera::GetImageAttributes () function. Once allocated, all of the output
buers must then be registered with SIPL using the INvSIPLCamera::RegisterImages()
function. Once registration of all output buers is completed the pipeline can be started
using INvSIPLCamera::Start(). This method programs the externally connected devices
to start streaming images. After this method is called, capture is active. SIPL starts
receiving images, processing them through ISP, and sending them to the image output
queues.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 490

Embedded Software Components

5.7.5.7 Components

5.7.5.7.1 SIPL Query
The SIPL Query component implements the INvSIPLQuery interface and is contained in the
shared library libnvsipl_query.so. It maintains a database of supported external image
devices and their properties. It also maintains a database of platform congurations. The
database contains the following types of objects:

Database Object Type Description

SensorInfo An object that stores the settings for an image
sensor external device.

EEPROMInfo An object that stores the settings for an EEPROM
external device.

SerInfo An object that stores the settings for a GMSL
serializer external device.

CameraModuleInfo An object that stores the properties for a camera
module external device. This consists of one
SerInfo object, zero or more EEPROMInfo objects,
and zero or more SensorInfo objects.

DeserInfo An object that stores the settings for a GMSL
deserializer external device.

PlatformCfg An object that describes all external devices
that are attached to the CSI ports of the SoC.
This includes which DeserInfo objects are to
be used for each camera group, and which
CameraModuleInfo objects are to be used.

SIPL Query provides API calls to:

‣ Parse the default database

‣ Get information about all devices supported by the library

‣ Get a list of all supported platform congurations

‣ Retrieve a specic platform conguration by name

‣ Parse a user-provided platform_config.json le to override the PlatformCfg structs
in the SIPL Query database

‣ Apply a mask to enable only specic deserializer links in a specic platform
conguration

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 491

Embedded Software Components

5.7.5.7.1.1 SIPL Query Drivers

SIPL Query creates the database at runtime by searching for SIPL Query Drivers. A Query
Driver is a shared library in the form libnvsipl_qry_*.so that contains a collection of
database objects. SIPL Query searches the paths provided in the $LD_LIBRARY_PATH
environment variable for the rst directory named nvsipl_drv and opens all Query Drivers
in it.

5.7.5.7.2 SIPL Device Block
SIPL Device Block is composed of four primary sub-components:

1. SIPL Device Block Core
2. SIPL Device Block Device Driver Interface (DDI)
3. (Third-party) SIPL Device Block Camera Device Drivers
4. SIPL Device Block Camera Device Interface (CDI)

The sub-components will be discussed in more detail below.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 492

Embedded Software Components

5.7.5.7.2.1 SIPL Device Block Core

Device Block Core provides a unied interface over arbitrary external device congurations
to upper layers of the SIPL stack. To accomplish this and to accommodate custom silicon
or driver solutions, Device Block Core denes supported external device types as a
series of abstract interfaces. Device Block Core exclusively deals with these interfaces
in providing its main functionalities of hardware conguration and initialization, stream
manipulation, error retrieval, etc.

Third-party Device Block Camera Device Drivers may provide implementations for the
interfaces exported by Device Block Core allowing the SIPL stack to handle a wide variety
of hardware solutions.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 493

Embedded Software Components

5.7.5.7.2.2 SIPL Device Block Device Driver Interface (DDI)

The Device Block Device Drivers Interface (DDI) sub-component is a set of C++ driver
interface classes that 3rd-party vendors must inherit and implement in their camera
device drivers. Using DDI, hardware-specic device drivers can be dynamically loaded into
the client process by SIPL according to the provided platform conguration.

5.7.5.7.2.3 SIPL Device Block Camera Device Drivers

Device Block Core uses Device Block Camera Device Drivers to program external
devices. A Device Block Camera Device Driver is a shared library in the form
libnvsipl_devblk_drv_*.so that is used to program a specic type of camera module.
Device Block Core selects which Device Block Camera Device Driver(s) to use based on the
names of the camera modules that are attached to each GMSL link of the deserializer.

At runtime, Device Block Core searches the paths dened in the environment variable
$LD_LIBRARY_PATH for the rst directory named nvsipl_drv and opens all Device Block
Camera Device Drivers in it. This allows you to add support for more devices by adding
third-party Device Block Camera Device Drivers to the nvsipl_drv directory.

5.7.5.7.2.4 SIPL Device Block Camera Device Interface (CDI)

The Device Block Camera Device Interface (CDI) sub-component provides a common
interface for Device Block Camera Device Drivers to access their hardware over an I2C
interface. Additionally, CDI provides interfaces that expose various error signals from
external devices.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 494

Embedded Software Components

5.7.5.7.3 SIPL Core
The SIPL Core component implements the INvSIPLCamera interface. It initializes the
external devices through the SIPL Device Block component and initializes the platform to
capture and process images.

SIPL Core also provides queues to contain the output buers produced by the capture
processes. You must read the buers from these queues regularly to avoid starving the
system of output buers.

5.7.5.8 Retrieving NITO Metadata from a NITO File
The Fetch NITO Metadata API is a non-safety API that allows the user to retrieve NITO
metadata from the parameter sets present in a NITO le. Depending on the workow, NITO
metadata can be helpful in use cases such as validation. One example can be conrming
that the same NITO is used during initial frame capture and at a later stage (such as ISP
processing).

A NITO le may contain one or more "parameter sets", and each parameter set contains
"NITO metadata", dened as the parameter set ID, parameter set schema hash, and
parameter set data hash unique to that parameter set. This API provides the ability to
fetch this metadata for each parameter set in a NITO le.

The API consists of a single standalone function (see below), with an associated struct type
and constants specic to a NITO le (described in the following section):
SIPLStatus GetNitoMetadataFromMemory(
 uint8_t const *const nitoMem,
 size_t const nitoMemLength,
 NvSIPLNitoMetadata *const metadataArray,
 size_t const metadataArrayLength,
 size_t *const metadataCount)

5.7.5.8.1 NvSIPLNitoMetadata Struct and Related Constants
The API provides constants that dene the length of the Parameter Set ID and the Hash
values. These are used by the API, and should be used when iterating over the retrieved
metadata:
const size_t NITO_PARAMETER_SET_ID_SIZE = 16U
const size_t NITO_SCHEMA_HASH_SIZE = 32U
const size_t NITO_DATA_HASH_SIZE = 32U

NvSIPLNitoMetadata

This structure contains xed-length arrays to store the metadata retrieved from a single
parameter set.
struct NvSIPLNitoMetadata {
 uint8_t parameterSetID[NITO_PARAMETER_SET_ID_SIZE];
 uint8_t schemaHash[NITO_SCHEMA_HASH_SIZE];
 uint8_t dataHash[NITO_DATA_HASH_SIZE];

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 495

Embedded Software Components

}

Structure Parameter

NvSIPLNitoMetadata ‣ parameterSetID: Identier of the parameter set.
‣ schemaHash: Hash value of the parameter set

schema.
‣ dataHash: Hash value of parameter values.

5.7.5.8.2 GetNitoMetadataFromMemory Function
The GetNitoMetadataFromMemory function receives information about the NITO le in
nitoMem and nitoMemLength, which is a pointer to a memory buer loaded with the NITO
le contents and an integer indicating the size of the NITO memory buer, respectively.
Once metadata is retrieved, it copies the data for each parameter set into metadataArray,
an array of NvSIPLNitoMetadata struct (dened in the NvSIPLNitoMetadata and Related
Constants section above). metadataArrayLength is an integer which represents length
of this array (for example, the maximum number of elements that can be stored), used
to guarantee there is enough storage space for all retrieved metadata tuples (ID, schema
hash, data hash). The function also updates the metadataCount variable to indicate the
number of metadata tuples retrieved.

Declaration
 SIPLStatus GetNitoMetadataFromMemory(
 uint8_t const *const nitoMem,
 size_t const nitoMemLength,
 NvSIPLNitoMetadata *const metadataArray,
 size_t const metadataArrayLength,

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 496

Embedded Software Components

 size_t *const metadataCount)

Parameters ‣ nitoMem: Species the input pointer to the memory containing the
NITO buer.

‣ nitoMemLength: Species the length (in bytes) of the input
NITO buer. The buer length must be between 1 byte and 6MB
(maximum NITO le size).

‣ metadataArray: Species the output pointer to the
NvSIPLNitoMetadata struct array that will store the retrieved
metadata.

‣ metadataArrayLength: Species the maximum number of elements
that can be stored in the NvSIPLNitoMetadata struct array.

‣ metadataCount: Species the output pointer to a location to store
how many metadata tuples (ID, Schema Hash, Data Hash) were
retrieved by the operation.

Return Value NVSIPL_STATUS_OK – Success

NVSIPL_STATUS_BAD_ARGUMENT – Invalid parameters received, or
more metadata tuples retrieved than maximum NvSIPLNitoMetadata
struct array length indicated by metadataArrayLength.

NVSIPL_STATUS_INVALID_STATE – Invalid state occurred

NVSIPL_STATUS_OUT_OF_MEMORY – Memory allocation failed

NVSIPL_STATUS_ERROR – Error occurred

5.7.5.8.3 GetNitoMetadataFromMemory Function Input
Parameters
The input parameters for the GetNitoMetadataFromMemory function are:

‣ nitoMem - Pointer to the memory buer loaded with NITO le contents.

‣ nitoMemLength - Integer indicating memory buer length

‣ metadataArrayLength - Integer indicating length of output NvSIPLNitoMetadata struct
array.

Input Parameter Restrictions

1. This function can only read NITO content from memory buers. The user must provide
functionality to copy NITO data from other containers (for example, les) into memory
before using this API.

2. The length specied by nitoMemLength for the output NvSIPLNitoMetadata struct
array must be greater than or equal to the number of parameter set(s) in the
NITO buer. The API will return the error NVSIPL_STATUS_BAD_ARGUMENT if the
metadataArray cannot store all retrieved metadata tuples.

3. The API performs standard input parameter checks, such as null pointers and greater
than 0 (zero) length.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 497

Embedded Software Components

5.7.5.8.4 GetNitoMetadataFromMemory Function Output
Parameters
The output of GetNitoMetadataFromMemory function, using the NITO buer and other
information received as described in the GetNitoMetadataFromMemory Function Input
Parameters section is the following:

‣ metadataArray (array of struct NvSIPLNitoMetadata), populated with metadata from all
parameter set(s) in the NITO buer.

‣ Updated metadataCount variable to indicate the number of metadata tuples retrieved.

5.7.5.8.5 API Usage
The following section describes the API workow.

1. The user is required to instantiate and pass in ve arguments:

‣ nitoMem: Pointer to location of memory that a NITO le is loaded into memory.

Note:

As mentioned in the section Input Parameter Restrictions earlier, NITO data in
other containers (for example, les) must be copied into memory before using
this API.

‣ nitoMemLength: Size of the memory pointed to that holds the NITO le.

‣ metadataArray: Pointer to a user-instantiated array of the NvSIPLNitoMetadata
struct, which will be used to store the metadata retrieved.

‣ metadataArrayLength: Size of the metadata array, for example, the number of
elements the array can hold.

Note:

As mentioned in the section Input Parameter Restrictions earlier, this must be
greater than or equal to the number of parameter set(s) in the NITO buer.
The API will return an error if the metadataArray cannot store all retrieved
metadata tuples.

‣ metadataCount: Pointer to a variable to store number of tuples in metadataArray on
success.

2. On success, the function will populate the NvSIPLNitoMetadata struct array
metadataArray with metadata from each parameter set and update the metadataCount
variable to indicate the number of metadata tuples retrieved.

‣ For printing the parameter set ID and hash values, the user can iterate over each
element of the metadataArray using metadataCount and the NITO le constants
described in NvSIPLNitoMetadata and Related Constants section.

3. On failure, an error will be logged stating the possible reason and the corresponding
error code.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 498

Embedded Software Components

Sample API usage code is provided in the nvsipl_camera application. In addition, command
line arguments have been added to nvsipl_camera to allow users to retrieve metadata from
the NITO les loaded by the application, as well as specify the number of parameter sets in
the NITO le when necessary.

5.7.6 NvMedia Sample Applications
The NvMedia sample applications demonstrate how to use the NvMedia API to perform
multimedia tasks. Multimedia based samples are built for single windowing compatibility
that depends on the platform operating system.

NVIDIA DRIVE 6.0 Linux uses the X11 windowing system.

Graphics OpenGL ES samples are built and organized for compatibility with both Wayland
and X11 windowing systems with subdirectories for both. For information on the graphics
OpenGL ES samples, see Building and Running Samples in Graphics Programming

5.7.6.1 Building and Running the NvMedia Samples
The NvMedia samples installed on the Linux host development system are already
compiled and ready to run. If you modify a sample, though, you must rebuild it on the host
Linux system. This section explains how.

Additionally, before you can run a sample, you must dene environment variables and
optionally customize a conguration le.

5.7.6.1.1 Building the NvMedia Samples
Each sample comes with source code and a makele. Use these procedures to build the
desired sample.

5.7.6.1.1.1 To build a sample application

 1. On the host system, enter the commands:
cd <top>/drive-linux/samples/nvmedia/<sample_dir>
make clean
make

Where <sample_dir> is the sample directory.
 2.

Add the samples to the RFS and reash the NVIDIA DRIVE AGX Orin™ platform to make
the new samples available there.

5.7.6.1.2 Running the NvMedia Samples

Prerequisites

‣ The shared libraries, executables, and conguration les or scripts required to
congure the cameras. For details, refer to the specic sample application.

‣ The video les in case of decode/encode samples.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 499

Embedded Software Components

Deserializer Clock Control

Deserializer part on P3898 platform does not have dedicated oscillator. Clock input is
received from the display serializer. Before launching the camera application, turn on
RCLKOUT from the display serializer using the following commands,

echo 386 > /sys/class/gpio/export
echo out > /sys/class/gpio/PG.03/direction
cat /sys/class/gpio/PG.03/direction
echo 1 >/sys/class/gpio/PG.03/value
 i2ccmd -d /dev/i2c-8 -a 0x40 -l 2 -o 0x03 -w 0x30

5.7.6.1.2.1 To run a sample application

If the /home/username/drive-linux/samples/nvmedia directory does not exist on the
DRIVE AGX Orin Platform, and you wish to copy all samples, us the copytarget-samples
command and reash the board as described previously in Building the NvMedia Samples.

If the /home/username/drive-linux/samples/nvmedia directory does not exist on the
NVIDIA DRIVE AGX Orin™ platform, copy a single rebuilt sample:

 1. Copy the sample to the target system. For example, from the target execute:
cd /home/<username>/
mkdir drive-linux/samples/nvmedia
rcp -r <host_user>@<host_ip>:/<complete_host_install_path>
/drive-linux/samples/nvmedia/<sample_dir> /home/<username>/
drive-linux/samples/nvmedia

If the /home/username/drive-linux/samples/nvmedia directory already exists, update
a single rebuilt sample using the previous procedure without the mkdir command.

 2. Navigate to the sample application directory.
 3. Copy the default conguration le and modify your copy for your needs.
 4. Run the sample application.

5.7.6.2 SIPL Sample Applications
The SIPL sample applications demonstrate how to use the SIPL API to capture and process
images from automotive cameras.

5.7.6.2.1 Tips for Using Sample Applications
‣ When developing drivers for camera sensors, use the nvsipl_camera application as an

example test application.

‣ Ensure that the Ethernet-based communication used for camera power control is
congured correctly.

5.7.6.2.2 SIPL Camera (nvsipl_camera)
The NvMedia nvsipl_camera sample application demonstrates how to use the NvMedia
SIPL API to select and initialize a camera platform conguration. The sample uses the

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 500

Embedded Software Components

NvSIPLQuery, NvSIPLDeviceBlock, NvSIPLCamera, and NvSIPLClient functions to program
the image devices, NVIDIA® Tegra® VI and ISP hardware engines.

nvsipl_camera provides switches to select the platform conguration and customize
the selected platform conguration by specifying the enable mask. For more information
about the NvSIPL API, refer to the API documentation for NvSIPL.

5.7.6.2.2.1 Architecture

The test application has a single main() function that coordinates all of the application's
individual tasks. First, the command line switches are parsed using a CCmdLineParser
object. Next, the platform conguration is obtained using the INvSIPLQuery interface and
then an INvSIPLCamera instance is created and congured.

The main() thread creates CNvSIPLConsumer objects to receive the SIPL output buers.
Depending on the choice of the command line switches, the output images can be used
in one of two ways: either written to a le or sent to a display. In the case of le writing,
each CNvSIPLConsumer creates its own CFileWriter object to use for writing its received
images to a le. For display, a CComposite object and its supporting classes (such as
CCompositeHelper) are created to combine the images from a camera group to a single
frame and then send that composite frame to the display.

Instead of receiving input from a camera module, the SIPL library can optionally read and
process images from a le. When the appropriate command line switches are supplied, the
application uses a CFileReader object to extract the images from a le and submit them
to the SIPL library.

5.7.6.2.2.2 Running the application

Before you can run nvsipl_camera you must follow the procedures in Building and Running
the NvMedia Samples.

To run the sample on the target

 1. Change the current directory to the folder that contains the nvsipl_camera binary:
samples/nvmedia/nvsipl/test/camera/

 2. Enter one of these commands to launch the application:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 501

../../../api_reference/group__NvSIPL.html

Embedded Software Components

‣ Without display:
$./nvsipl_camera -c "<platform>"

‣ With one display:
$./nvsipl_camera -c "<platform>" -d 1

‣ With two displays:
$./nvsipl_camera -c "<platform>" -d 2

Where <platform> is the platform conguration name.

Note:

Frame drops may occur when the connected display resolution is higher than
4K. This is not observed with 1080p displays.

To run the sample on the target as non-root

Change the current directory to the folder that contains the nvsipl_camera binary:

samples/nvmedia/nvsipl/test/camera/

Launch Command Construction

iolauncher --wait -U
 1000:1000,10100,10140,10150,2110,2230,2340,2341,2342,2343,2347,2400,3000,3220,3220,3800,3810,3830,3850,3870,3920,3923,40002,40005,40006,40020,40052,45031,45036,45037,45038,45042,45043,45044,45045,45046,45047,45047,45066,45068,45069,45071,45085,45112,55006,55007,55016,55017,55018,55019,55034,55066,55067,55070
 -A nonroot,allow,public_channel -A nonroot,allow,interruptevent -A
 nonroot,allow,able=cdac/devblk:3 -A all,allow,able=nvsys/system_info -A
 all,allow,able=nvcap/reserve_access_isp_channel -A all,allow,able=nvcap/
reserve_access_vi_channel -A all,allow,able=cba/tag:3 /samples/nvmedia/nvsipl_camera
 -c V1SIM623S4RU5195NB3_CPHY_x4 -m "'0 1111 0 0'" --showfps

In the previous example, the primary UID:GID is 1000:1000, which is the default-installed
non-privileged nvidia:nvidia user and group.

Required SGID for Camera Application

Following are the minimum set of SGIDs required for a SIPL Client:

SGID Library

2110 nvsku

2230 nvcap

2340 nvi2c0

2341 nvi2c1

2342 nvi2c2

2343 nvi2c3

2347 nvi2c7

2400 devv_nvhv

3000 nvsys

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 502

Embedded Software Components

SGID Library

3220 io_pkt

3800 devm-cdac

10100 devg_nvrm_nvmap

10140 devg_nvrm_nvhost

10150 devg_nvrm_nvgpu_igpu

55006 libnvisp.so

55007 libnvisppg.so

55016 libnvscibuf.so.1

55017 libnvscicommon.so.1

55018 libnvscistream.so.1

55019 libnvscisync.so.1

55070 libnvsipl_devblk_campwr_max20087_fusa.so

55066 libnvsipl_devblk_drv_imx623vb2.so

55067 libnvsipl_devblk_drv_imx728vb2.so

55034 libnvsipl_devblk_drv_ar0820_cust1.so

40002 libc.so.5

40005 libm.so.3

40006 libslog2.so.1

45066 libnvdtcommon.so

40020 libudt.so

45047 libnvsciipc.so

45046 libnvscievent.so

45031 libnvivc.so

45071 libnvsocsys.so

45112 libnvdvms_client.so

45038 libnvos.so

45037 libnvos_s3_safety.so

45069 libnvrm_mem.so

45043 libnvrm_host1x.so

45044 libnvrm_stream.so

45042 libnvrm_gpu.so

45045 libnvrm_surface.so

45085 NITO Files

40002 ldqnx-64.so.2, libgcc_s.so.1,libc.so.5

40052 libcatalog.so.1

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 503

Embedded Software Components

SGID Library

40005 libm.so.3

40006 libslog2.so.1

45066 libnvdtcommon.so

40020 libudt.so

45047 libnvsciipc.so

45046 libnvscievent.so

45031 libnvivc.so

45071 libnvsocsys.so

45112 libnvdvms_client.so

45038 libnvos.so

45037 libnvos_s3_safety.so

45069 libnvrm_mem.so

45043 libnvrm_host1x.so

45044 libnvrm_stream.so

45042 libnvrm_gpu.so

45045 libnvrm_surface.so

40052 libcatalog.so.1

Required QNX Abilities

Following are the minimum set of QNX abilities required for a SIPL client:

Custom Ability

public_channel

interruptevent

cdac/devblk:<i2c_bus>

nvsys/system_info

nvcap/reserve_access_isp_channel

nvcap/reserve_access_vi_channel

cba/tag:<i2c_bus>

<i2c_bus> corresponds to the i2c bus of deserializer. In the examples below the bus IDs are
0,2,3,7 for deserializer A, B, C and D respectively.

SIPL CDAC

SIPL CDAC Resource Block (virtualized deserializer) nodes are populated under /dev/sipl/
resblockXY, the GID of the Resource Block nodes are congured the SIPL CDAC Device Tree
for each Resource Block. Currently, the default parameters are set to the following for the
Orin and similar platforms:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 504

Embedded Software Components

Resource Block GID Description

/dev/sipl/resblock0 3810 Deserializer A (i2c0)

/dev/sipl/resblock2 3830 Deserializer B (i2c2)

/dev/sipl/resblock3 3850 Deserializer C (i2c3)

/dev/sipl/resblock7 3870 Deserializer D (i2c7)

5.7.6.2.2.3 Display Layout

When nvsipl_camera runs with the –d option, the output images for one camera group
display using the layout below. If an output is not enabled, the corresponding portion of
the display is dark. You can use interactive commands to switch between the outputs of
dierent camera groups.

If only one output is enabled on a camera group, it displays using the full screen.

Note:

1. ISP Formats Usage: when -d option is used, all enabled ISP outputs are passed to
VIC and composition occurs to obtain a RGB888 image that is pushed to display. VIC
does not support composition for oating point or 16-bit images. The default ISP2
output format (RGBA PACKED FP16 PL as documented in the NVIDIA DRIVE OS SDK API
Reference Guide for INvSIPLCamera::GetImageAttributes, is overridden to be YUV
420 SEMI-PLANAR UINT8 BL when ISP2 output is requested.

2. RGB-IR Sensor output: for RGB-IR sensors such as OV2312, ISP1 output cannot be
displayed because the LUMA format is 16 bit and not supported by VIC.

3. Display Interface: nvsipl_camera app uses OpenWFD display interfaces. This is not
compatible with EGLDevice/X11/WinScreen/Wayland.

4. VIC Bandwidth: when more than one output displays, while using 8MP camera, to
preserve the limited VIC bandwidth, ISP downscales the images from 4k to 108op
before passing the images to VIC for format conversion.

RAW output

Link 0

ISP0 output

Link 0

ISP1 output

Link 0

ISP2 output

Link 0

RAW output

Link 1

ISP0 output

Link 1

ISP1 output

Link 1

ISP2 output

Link 1

RAW output

Link 2

ISP0 output

Link 2

ISP1 output

Link 2

ISP2 output

Link 2

RAW output

Link 3

ISP0 output

Link 3

ISP1 output

Link 3

ISP2 output

Link 3

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 505

Embedded Software Components

5.7.6.2.2.4 Secondary Capture

In secondary capture mode, the secondary (processor B) captures images from the sensors
that are already programmed by the primary (processor A).

When you run nvsipl_camera on processor B, you can use the --enableSecondary switch
to capture in secondary mode.

Limitations

‣ Before starting nvsipl_camera on the secondary, you must start capture on the
primary. The secondary can continue to capture even after the primary has stopped
capturing.

‣ Enable masks specied using the -m command line switch must be identical for both
primary and secondary. (See Command Line Switches.)

‣ Platform conguration specied using the -c command line switch must be identical
for primary and secondary. (See Command Line Switches.)

5.7.6.2.2.5 Command Line Switches

The following table shows the nvsipl_camera application's command line switches.

All numeric arguments may be specied in decimal (e.g., 18) or hexadecimal (e.g., 0x12).

Switch Description Default Setting

-h Displays help text. Display only if an
invalid command
line argument is
found.

-c "name" Species name of platform
conguration that describes the
connection of image sensors to Orin-
based platforms.

Supported congurations are displayed
by the -h switch.

Required switch.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 506

Embedded Software Components

Switch Description Default Setting

--link-enable-masks
"<m-AB> <m-CD>
<m-EF> <m-GH>"

Enables masks for links on each
deserializer connected to camera groups
A, B, C, and D.

The number of masks must equal the
number of deserializers in the platform
conguration selected with the -c
switch.

Each mask <m-…> is a two-byte unsigned
integer which applies to one deserializer
and controls the four links that can be
enabled for that deserializer. If the mask
is expressed as a four-digit hexadecimal
number, the last digit may be 1 to enable
link 0 or 0 to disable it; the next-to-last
may be 1 to enable link 1 or 0 to disable
it; and so on.

For example,

"0x0000 0x1101 0x0000 0x0000"

disables all links on the deserializers
connected to camera groups A, C, and
D, and enables links 0, 2, and 3 on the
deserializer connected to camera group
B.

All links on all
deserializers are
enabled.

-d <n>
Species the number of displays to send
the output to. Supported values are 1 to
2.

Display output is
disabled.

-p "x0 y0 width
height"

Denes display position (upper left
corner is at x0, y0) and dimensions
(width, height) of the display rectangle.

Full screen display.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 507

Embedded Software Components

Switch Description Default Setting

-f "prex"

Sets a prex for the output le's name.
The name of the created le has the
form:

<p>_cam_<s>_out_<n>.<e>

Where:

‣ <p> is the prex. It may begin with a
pathname.

‣ <s> is the ID of the sensor that
originated the images.

‣ <n> is the output number, which is 0
for RAW images, 1 for ISP0 output,
and 2 for ISP1 output.

‣ <e> is the le extension, which is
raw for RAW images and yuv for ISP
output.

For example, if the prex is /home/
nvidia/test, the pathname of the RAW
output le from Sensor0 is:

/home/nvidia/test_cam_0_out_0.raw

No output les are
generated.

-r <n>
Exits application after n seconds. Application runs

forever.

-v <n>
Sets verbosity level. Supported values
are 0 (only errors are printed) to 4
(maximum verbosity).

0

-t "le"

Species a custom platform
conguration JSON le.

Application uses its
built-in database
of platform
congurations.

-l
Lists platform congurations dened in
the le specied by the -t switch.

-i "le"

Enables simulator mode testing and
species the RAW le to be used as
input source for the SIPL library. --link-
enable-masks must be used to enable
only one camera module.

Simulator mode is
disabled.

--enableRawOutput Enables RAW output. Disabled.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 508

Embedded Software Components

Switch Description Default Setting

--disableISP0Output Disables ISP0 output. Enabled.

--disableISP1Output Disables ISP1 output. Enabled.

--disableISP2Output Disables ISP2 output. Enabled.

--enablePassive Enable passive mode. Disabled

--showfps
Prints FPS (frames per second)
messages on stdout.

Disabled.

--showmetadata
Shows metadata when RAW output is
enabled.

Disabled.

--plugin <type>

Auto Control Plugin. Supported types
(default: if NITO available 0, else 1):

‣ 0: NVIDIA Auto Exposure/Auto White
Balance (AE/AWB) Plugin

‣ 1: Custom plug-in 0

Defaults to 0 if
the NITO le is
available for all
camera modules,
else 1.

--autorecovery
Automatically attempts to recover any
broken links on a periodic interval.

Disabled.

--nvsci
Uses NvSciStream for frame
synchronization and transfer.

Disabled.

--prole “le-prex”

Dumps proling timestamps in file-
prefix_cam_x_out_y.csv and shows
frame rate (even if --showfps is not
specied).

Disabled.

--skipFrames <val>
If using the -f switch, skips val frames
at the beginning before writing to le.

No frames are
skipped.

--writeFrames <val>
If using the -f switch, writes a maximum
of val frames to le (starting after the
number of skipped frames, if specied).

All captured frames
are written to le.

--nito "folder"
Species the directory to search for
NVIDIA Image Tuning Object (NITO) les.

Search folder is /
usr/share/camera/.

--icrop "y+h"
Species the ISP input crop where input
is cropped to bottom vertical oset y
plus height h.

Disabled.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 509

Embedded Software Components

Switch Description Default Setting

--showEEPROM

Reads data (such as the sensor name
and revision) from the camera module
EEPROM, then displays that information
on the command line.

Disabled.

--autoLED
Enables automatic LED control,
specically for AR0234.

Disabled.

--
showNitoMetadata

Retrieves and displays NITO Metadata
(ID, dataHash, schemaHash) for each
parameter set(s) in the NITO le(s)
loaded by the application to stdout.

Disabled.

--
numParameterSetsInNITO
<val>

Maximum number of parameter sets in
NITO le. Must be greater than or equal
to one (1). Use if expecting more than
ten (10) parameter sets in NITO le(s).

10

--useNvSciBufPath Enables use of NvSciBuf Buers as
inputs instead of NvMediaImages.

Disabled.

--ignoreError Ignore the fatal error Disabled.

--
enableStatsOverrideTest

Enable ISP statistics settings override Disabled.

--enableSubframe Enable Subframe feature Disabled

--enablePassive Enable passive mode Disabled.

--
setSensorCharMode
<expNo>

Set sensor in characterization mode
with exposure number (only supported
for AR0820)

Disabled.

--
numParameterSetsInNITO
<val>

Number of parameter sets in NITO le.
Use if expecting >10 parameter sets in
NITO le(s).

10

NVIDIA Image Tuning Object (NITO) is a binary le containing ISP settings, tuning, and
characterization parameters for a specic camera module.

5.7.6.2.2.6 Interactive Menu Options

Option Description

ld Lists all camera groups in use by the application.

Available only when command line switch -d is used to enable
display.

e <g><d> Displays the output of camera group g on display d.

To see the available camera groups, use the ld option.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 510

Embedded Software Components

Option Description

dl <sensor ID> Disable link for sensor ID

el <sensor ID> Enable link for sensor ID without module reset

elr <sensor ID> Enable link for sensor ID with module reset

cm Check the module availability

q Quits the application.

les <sensor ID> Enables the LED associated with the sensor ID for GazeT AR0234.

lds <sensor ID> Disables the LED associated with the sensor ID for GazeT AR0234.

cust <sensor
ID>,<value>

Sets an example value for the OV2311 custom API

5.7.6.2.2.7 Optional Features

Heterogenous Frame Synchronization

Note: This function requires hardware support, which is available on P3710-10-a04,
p3710-10-s05, p3710-12-a04, and p3710-12-s05. Refer to DRIVE Platform Supported
Boards for the board information.

TSC_EDGE_OUT signals are used as FSYNC signals supplied to sensors through the
deserializer and the serializer, and 3 x TSC_EDGE_OUT signals are applicable on P3710-10-
a04, p3710-10-s05, p3710-12-a04, p3710-12-s05. Each TSC_EDGE_OUT signal is
precongured with the same or dierent frequencies in the device tree while the OS
boots up, and they are supplied to each deserializer directly, or through the multipliers and
multiplexers to provide the dierent FSYNC signal options for the dierent use cases.

The deserializer selects one FSYNC and forwards it to the camera module selectively. The
following image is an example use case to select the dierent FSYNC signal as a source of
each camera module. The hardware block image, below, indicates how each FSYNC signal
is routed. The timing diagram indicates what frequencies are congured and what oset
is used among 3 x TSC_EDGE_OUT signals in the SDK and PDK by default. If dierent
frequencies or osets are required, refer to TSC Signal Generation for more information.

Example of forwarding two dierent FSYNC signals to dierent camera modules:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 511

Embedded Software Components

Hardware block diagram to support heterogenous frame synchronization:

Timing diagram among 3 x FSYNC signals:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 512

Embedded Software Components

Reference Codes

The deserializer driver (MAX96712DeserializerDriver_nv) provides a custom interface
API, SetHeteroFrameSync, to select the MFP pins per link and to control the
multiplexer, located in drive-<OS>/samples/nvmedia/nvsipl/devblk/devblk_new/
devices/MAX96712DeserializerDriver_nv/CNvMMax96712_Fusa_nv.cpp. The
SetHeteroFrameSync API calls two sub APIs, MAX96712WriteParameters(),
with CDI_WRITE_PARAM_CMD_MAX96712_SET_HETERO_FRAME_SYNC to select
MFP of the deserializer as a FSYNC source for the camera module per link and
DevBlkCDISetFsyncMux() to change the input source of the multiplexer associated with
the specic deserializer.

The nvsipl_camera sample application (drive-<OS>/samples/nvmedia/nvsipl/
test/camera) provides two command options to support the heterogeneous frame
synchronization and calls the SetHeteroFrameSync API to congure the MFPs and the
multiplexer per deserializer.

‣ --syncGPIOIdxDes 'gpios'

: MFP pin index is a list of MFP pins for each deserializer.

:Eg: '2 2 2 2 2 2 2 2 2 2 2 2 2 4 2 4' use MFP4 for the link 1 and 3 on CSI-GH interface and
MFP2 is used for other links.

‣ --syncMuxSelDes 'Indexes'

:Selection index to the multiplexer. Applicable only for the specic board.

:Index is a list of selection index for each deserializer.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 513

Embedded Software Components

:Eg: '1 2 3' selects the selection index 1 for the multiplexer on the deserializer on the
camera group B, the selection index 2 for the multiplexer on CSI-EF, and the selection index
3 for the multiplexer on CSI-GH.

Automatic Link Recovery

The automatic link recovery feature can be enabled by specifying the --autorecovery
switch. If enabled, the nvsipl_camera application will keep track of any links that fail (for
example, if a camera module is disconnected) and it will periodically attempt to recover
that link to restore normal functionality. An example showing how to use this feature is
provided below.
$./nvsipl_camera --platform-config "SF3324_DPHY_x4" --link-enable-masks "0x0001
 0x0000 0x0000 0x0000" --showfps -d 1 --autorecovery

NvSci

NvSci utilities can be enabled by specifying the --nvsci switch. If enabled, the
synchronization and transfer of frames from the NvSIPL library to the display are managed
using NvSciSync and NvSciStream. An example showing how to use this feature is provided
below.
$./nvsipl_camera --platform-config "SF3324_DPHY_x4" --link-enable-masks "0x0001
 0x0000 0x0000 0x0000" --showfps -d 1 --nvsci

Proling

Performance metrics for nvsipl_camera can be displayed by specifying the --profile
switch. The nvsipl_camera --profile command line option takes a le prex as an
argument and dumps the proling timestamps into file-prefix_cam_x_out_y.csv for
each camera and enabled output. The dumped CSV le has the following columns:

For Capture Output

Capture Timestamp (us)

For ISP Output

Capture Timestamp (us), Capture Done Event Timestamp (us)

Following is an example showing how to use this feature:

$./nvsipl_camera --platform-config "SF3324_DPHY_x4" --link-enable-masks "0x0001
 0x0000 0x0000 0x0000" -d 0 --profile /tmp/sipl_profile

Fetch NITO Metadata

NITO Metadata can be fetched by specifying the --showNitoMetadata switch. If enabled,
the NITO le loaded by the application will have its parameter set(s) ID, schema hash, and
data hash retrieved and printed to stdout in the following format:

‣ Parameter Set ID: "00000000-0000-0000-0000-000000000000" (in hex)

‣ Schema/data hash: "0000…" (hex string with no spaces)

Note the API instantiates an array of structures to store the metadata retrieved for each
parameter set in the NITO le, thus it requires that the length of this array is greater than

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 514

Embedded Software Components

or equal to the number of the parameter sets in the NITO le. The app assumes by default
a maximum of ten (10) parameter sets present in the NITO le.

If the user knows that greater than ten (10) parameter sets exist in the NITO le, then they
can specify this using the --numParameterSetsInNITO <val> switch. Note that in order to
specify this switch, the user must also specify the --showNitoMetadata switch.

An example showing how to use this feature, without setting a custom number of
parameter sets, is provided below:
$./nvsipl_camera --platform-config "V728S1-120V1-FWC_CPHY_x4"
--link-enable-masks "0x0001 0x0000 0x0000 0x0000"
--showNitoMetadata

An example showing the error messages when the NITO le contains more parameter sets
than the default of ten (10), is provided below:
$./nvsipl_camera --platform-config "V728S1-120V1-FWC_CPHY_x4"
--link-enable-masks "0x0001 0x0000 0x0000 0x0000"
–-showNitoMetadata

Error messages if parameter sets retrieved from le is greater than ten (10):
... Call to fetchNitoMetadata API returned code:1,
valid API parameters not provided, check API arguments.
... GetNitoMetadataFromMemory: Call to fetchNitoMetadata API
failed, look at logs for error
... nvsipl_camera: ERROR: Failed to retrieve metadata from NITO file
... nvsipl_camera: ERROR: Failed to run Fetch NITO Metadata API

To resolve the above error, and in general if needed, an example showing how to use this
feature when setting a custom number of parameter sets, is provided below:
$./nvsipl_camera --platform-config "V728S1-120V1-FWC_CPHY_x4"
--link-enable-masks "0x0001 0x0000 0x0000 0x0000" –-showNitoMetadata
--numParameterSetsInNITO 12

5.7.6.2.2.8 Examples

Platform conguration: V1SIM728S2RU4120HB20 modules in two-lane CPHY mode

This conguration assumes that 4 V1SIM728S2RU4120HB20 camera modules are
connected to the camera group A and 4 V1SIM728S2RU4120HB20 camera modules are
connected to the camera group D of the platform.

Example 2: Use link 0 of group A and link 2 of group D
$./nvsipl_camera -c "V1SIM728S2RU4120HB20_CPHY_x2" --link-enable-masks "0x0001 0x0000
 0x0000 0x0100" -d 1

This command species V1SIM728S2RU4120HB20 modules on link 0 of the deserializer on
camera group A and link 2 of the deserializer on camera group D. It displays output on one
display.

Example 3: Use links 0 of group A and 2 of group D with secondary capture

1. On processor B, enter this command:
$./nvsipl_camera -c "V1SIM728S2RU4120HB20_CPHY_x2" --link-enable-masks "0x0001
 0x0000 0x0000 0x0100" --enablePassive

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 515

Embedded Software Components

This command species V1SIM728S2RU4120HB20 modules on link 0 of the
deserializer on camera group A and link 2 of the deserializer on camera group D. It
displays output on one display. nvsipl_camera application waits for the input from the
user

2. On processor A, enter this command:
$./nvsipl_camera -c "V1SIM728S2RU4120HB20_CPHY_x2" --link-enable-masks "0x0001
 0x0000 0x0000 0x0100" -d 1

This command species V1SIM728S2RU4120HB20 modules on link 0 of the
deserializer on camera group A and link 2 of the deserializer on camera group D. It
displays output on one display

3. Once nvsipl_camera application starts on the processor A, type any key on the process
B to let nvsipl_camera application on process B starts to capture

Example: File input mode

$./nvsipl_camera -c "V1SIM728S2RU4120HB20_CPHY_x2" --link-enable-masks "0x0001 0x0000
 0x0000 0x0000" -i <raw_file_name> -d 1

This command species an input le that contains RAW frames captured using
V1SIM728S2RU4120HB20 modules. It displays output on one display.

5.7.6.2.2.9 Camera Commands

This section describes camera commands for supported cameras.

nvsipl_camera should run as root or with sudo.

Maxim Integrated GMSL SERDES

Note 1.
Two different deserializers are used per camera group, and each one supports the
 different link speed between the serializer and the deserializer. Connect the camera
 module to the compatible deserializer. Otherwise, the link lock error is reported.

P3710
Camera Group A : MAX96712(3 or 6Gbps)
Camera Group B : MAX96722(3 Gbps)
Camera Group C : MAX96712(3 or 6Gbps)
Camera Group D : MAX96712(3 or 6Gbps)

P3663
Camera Group A : MAX96712(3 or 6Gbps)
Camera Group B : MAX96722(3 Gbps)

P3898
Camera Group A : MAX96724(3 or 6Gbps)
Camera Group B : MAX96724F(3 Gbps)

Note 2.
I2C bus speed is 1MHz for the camera group A and B on P3710 and P3663. Please make
 sure HW components in the camera module can support 1MHz I2C bus speed

AR0820 Using 1 Lane CPHY

Available module names:

‣ Entron AR0820: F008A120RM0AV2

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 516

Embedded Software Components

Command example:
./nvsipl_camera --platform-config "<module_name>_CPHY_x1" --link-enable-masks "0x0001
 0x0000 0x0000 0x0000" --showfps -d 1

Camera Group No. of Cams Command

NVIDIA DRIVE
AGX Orin™ Dev
Kit (P3710-10)

NVIDIA DRIVE
AGX Orin™

(P3663)

1 ./nvsipl_camera --
platform-cong
"F008A120RM0AV2_CPHY_x1"
--link-enable-
masks "0x0001
0x0000 0x0000
0x0000" --
showfps -d 1

Y YA

2 ./nvsipl_camera --
platform-cong
"F008A120RM0AV2_CPHY_x1"
--link-enable-
masks "0x0011
0x0000 0x0000
0x0000" --
showfps -d 1

Y Y

C 1 ./nvsipl_camera --
platform-cong
"F008A120RM0AV2_CPHY_x1"
--link-enable-
masks "0x0000
0x0000 0x0001
0x0000" --
showfps -d 1

Y N

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 517

Embedded Software Components

Camera Group No. of Cams Command

NVIDIA DRIVE
AGX Orin™ Dev
Kit (P3710-10)

NVIDIA DRIVE
AGX Orin™

(P3663)

2 ./nvsipl_camera --
platform-cong
"F008A120RM0AV2_CPHY_x1"
--link-enable-
masks "0x0000
0x0000 0x0011
0x0000" --
showfps -d 1

Y N

1 ./nvsipl_camera --
platform-cong
"F008A120RM0AV2_CPHY_x1"
--link-enable-
masks "0x0000
0x0000 0x0000
0x0001" --
showfps -d 1

Y ND

2 ./nvsipl_camera --
platform-cong
"F008A120RM0AV2_CPHY_x1"
--link-enable-
masks "0x0000
0x0000 0x0000
0x0011" --
showfps -d 1

Y N

AR0820 Using 2 Lane CPHY

Available module names:

‣ Entron AR0820: F008A120RM0AV2

Command example:
./nvsipl_camera --platform-config "<module_name>_CPHY_x2" --link-enable-masks "0x0001
 0x0000 0x0000 0x0000" --showfps -d 1

Camera Group No. of Cams Command

NVIDIA DRIVE
AGX Orin™ Dev
Kit (P3710-10)

NVIDIA DRIVE
AGX Orin™

(P3663)

A 1 ./nvsipl_camera --
platform-cong
"F008A120RM0AV2_CPHY_x2"
--link-enable-
masks "0x0001
0x0000 0x0000
0x0000" --
showfps -d 1

Y Y

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 518

Embedded Software Components

Camera Group No. of Cams Command

NVIDIA DRIVE
AGX Orin™ Dev
Kit (P3710-10)

NVIDIA DRIVE
AGX Orin™

(P3663)

2 ./nvsipl_camera --
platform-cong
"F008A120RM0AV2_CPHY_x2"
--link-enable-
masks "0x0011
0x0000 0x0000
0x0000" --
showfps -d 1

Y Y

1 ./nvsipl_camera --
platform-cong
"F008A120RM0AV2_CPHY_x2"
--link-enable-
masks "0x0000
0x0000 0x0001
0x0000" --
showfps -d 1

Y NC

2 ./nvsipl_camera --
platform-cong
"F008A120RM0AV2_CPHY_x2"
--link-enable-
masks "0x0000
0x0000 0x0011
0x0000" --
showfps -d 1

Y N

1 ./nvsipl_camera --
platform-cong
"F008A120RM0AV2_CPHY_x2"
--link-enable-
masks "0x0000
0x0000 0x0000
0x0001" --
showfps -d 1

Y ND

2 ./nvsipl_camera --
platform-cong
"F008A120RM0AV2_CPHY_x2"
--link-enable-
masks "0x0000
0x0000 0x0000
0x0011" --
showfps -d 1

Y N

AR0820 Using 4 Lane CPHY

Available module names:

‣ Entron AR0820: F008A120RM0A

Command example:
./nvsipl_camera --platform-config "<module_name>_CPHY_x4" --link-enable-masks "0x0001
 0x0000 0x0000 0x0000" --showfps -d 1

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 519

Embedded Software Components

Camera Group No. of Cams Command

NVIDIA DRIVE
AGX Orin ™ Dev
Kit (P3710-10)

NVIDIA DRIVE
AGX Orin™

(P3663)

1 ./nvsipl_camera --
platform-cong
"F008A120RM0A_CPHY_x4"
--link-enable-
masks "0x0001
0x0000 0x0000
0x0000" --
showfps -d 1

Y YA

4 ./nvsipl_camera --
platform-cong
"F008A120RM0A_CPHY_x4"
--link-enable-
masks "0x1111
0x0000 0x0000
0x0000" --
showfps -d 1

Y Y

1 ./nvsipl_camera --
platform-cong
"F008A120RM0A_CPHY_x4"
--link-enable-
masks "0x0000
0x0000 0x0001
0x0000" --
showfps -d 1

Y NC

4 ./nvsipl_camera --
platform-cong
"F008A120RM0A_CPHY_x4"
--link-enable-
masks "0x0000
0x0000 0x1111
0x0000" --
showfps -d 1

Y N

1 ./nvsipl_camera --
platform-cong
"F008A120RM0A_CPHY_x4"
--link-enable-
masks "0x0000
0x0000 0x0000
0x0001" --
showfps -d 1

Y ND

4 ./nvsipl_camera --
platform-cong
"F008A120RM0A_CPHY_x4"
--link-enable-
masks "0x0000
0x0000 0x0000
0x1111" --
showfps -d 1

Y N

IMX728 Using 2 Lane CPHY

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 520

Embedded Software Components

Available module names:

P3663 and P3710

‣ Valeo IMX728 B1 :

‣ V728S1-120V1-FWC

‣ V728S1-120V1-SCF

‣ V728S1-070V1-SCR

‣ V728S1-030V1-FTC

‣ V728S1-030V1-RC

‣ Valeo IMX728 B2.1P:

‣ V1SIM728S1RU3120NB20

‣ V1SIM728S1RU3070HB20

‣ V1SIM728S1RU3030NB20

‣ Valeo IMX728 B3.1C:

‣ V1SIM728S2RU1030NB30

‣ V1SIM728S2RU3070HB30

‣ V1SIM728S2RU3120NB30

‣ V1SIM728S2RU3120HB30

‣ Valeo IMX728 B2.2:

‣ V1SIM728S2RU2030NB20

‣ V1SIM728S2RU4070HB20

‣ V1SIM728S2RU4120NB20

‣ V1SIM728S2RU4120HB20

‣ Valeo IMX728 C0:

‣ V1SIM728S3RU4120NC00

‣ V1SIM728S3RU4120HC00

‣ V1SIM728S3RU4070HC00

‣ V1SIM728S3RU2030NC00

‣ Smartlead IMX728 B1

‣ R0SIM728S2RU2120NB1

‣ R0SIM728S2RU1070NB1

‣ R0SIM728S2RU2030NB1

‣ Smartlead IMX728 B2

‣ R0SIM728S3RU2120NB2

‣ R0SIM728S3RU1070NB2

‣ R0SIM728S3RU2030NB2

Command example:
./nvsipl_camera --platform-config "<module_name>_CPHY_x2" --link-enable-masks "0x0001
 0x0000 0x0000 0x0000" --showfps -d 1

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 521

Embedded Software Components

Camera Group No. of Cams Command

NVIDIA DRIVE
AGX Orin™ Dev
Kit (P3710-10)

NVIDIA DRIVE™

AGX Orin
(P3663)

1 ./nvsipl_camera --
platform-cong
"V728S1-120V1-
FWC_CPHY_x2" --
link-enable-masks
"0x0001 0x0000
0x0000 0x0000" --
showfps -d 1

Y YA

2 ./nvsipl_camera --
platform-cong
"V728S1-120V1-
FWC_CPHY_x2" --
link-enable-masks
"0x0011 0x0000
0x0000 0x0000" --
showfps -d 1

Y Y

1 ./nvsipl_camera --
platform-cong
"V728S1-120V1-
FWC_CPHY_x2" --
link-enable-masks
"0x0000 0x0000
0x0001 0x0000" --
showfps -d 1

Y N/AC

2 ./nvsipl_camera --
platform-cong
"V728S1-120V1-
FWC_CPHY_x2" --
link-enable-masks
"0x0000 0x0000
0x0011 0x0000" --
showfps -d 1

Y N/A

1 ./nvsipl_camera --
platform-cong
"V728S1-120V1-
FWC_CPHY_x2" --
link-enable-masks
"0x0000 0x0000
0x0000 0x0001" --
showfps -d 1

Y N/AD

2 ./nvsipl_camera --
platform-cong
"V728S1-120V1-
FWC_CPHY_x2" --
link-enable-masks
"0x0000 0x0000
0x0000 0x0011" --
showfps -d 1

Y N/A

P3898

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 522

Embedded Software Components

‣ Valeo IMX728 B2.1P:

‣ V1SIM728S1RU3120NB20

‣ V1SIM728S1RU3070HB20

‣ V1SIM728S1RU3030NB20

‣ Valeo IMX728 B3.1C:

‣ V1SIM728S2RU1030NB30

‣ V1SIM728S2RU3070HB30

‣ V1SIM728S2RU3120NB30

‣ V1SIM728S2RU3120HB30

‣ Valeo IMX728 B2.2:

‣ V1SIM728S2RU2030NB20

‣ V1SIM728S2RU4070HB20

‣ V1SIM728S2RU4120NB20

‣ V1SIM728S2RU4120HB20

Command example:
./nvsipl_camera --platform-config "<module_name>_MAX96724_CPHY_x2" --link-enable-
masks "0x0001 0x0000" --showfps -d 1

Camera Group No. of Cams Command
NVIDIA DRIVE AGX
Orin-N (P3898)

A 1 ./nvsipl_camera -c
V1SIM728S2RU1030NB30_MAX96724_CPHY_x2
--link-enable-masks '0
0x1' --showfps -v 2

Y

A 2 ./nvsipl_camera --
platform-cong
"V1SIM728S2RU1030NB30_MAX96724_CPHY_x2"
--link-enable-masks
"0x0000 0x0011 " --
showfps -d 1

Y

Note: nvsipl_camera application looks for PTP interface clock base for proling. To enable
this networking interface on P3898, refer to the P3898 Networking section.

IMX728 Using 4 Lane CPHY

Available module names:

P3663 and P3710

‣ Valeo IMX728 B1:

‣ V728S1-120V1-FWC

‣ V728S1-120V1-SCF

‣ V728S1-070V1-SCR

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 523

Embedded Software Components

‣ V728S1-030V1-FTC

‣ V728S1-030V1-RC

‣ Valeo IMX728 B2.1P:

‣ V1SIM728S1RU3120NB20

‣ V1SIM728S1RU3070HB20

‣ V1SIM728S1RU3030NB20

‣ Valeo IMX728 B3.1C:

‣ V1SIM728S2RU1030NB30

‣ V1SIM728S2RU3070HB30

‣ V1SIM728S2RU3120NB30

‣ V1SIM728S2RU3120HB30

‣ Valeo IMX728 B2.2:

‣ V1SIM728S2RU2030NB20

‣ V1SIM728S2RU4070HB20

‣ V1SIM728S2RU4120NB20

‣ V1SIM728S2RU4120HB20

‣ Valeo IMX728 C0:

‣ V1SIM728S3RU4120NC00

‣ V1SIM728S3RU4120HC00

‣ V1SIM728S3RU4070HC00

‣ V1SIM728S3RU2030NC00

‣ Smartlead IMX728 B1

‣ R0SIM728S2RU2120NB1

‣ R0SIM728S2RU1070NB1

‣ R0SIM728S2RU2030NB1

‣ Smartlead IMX728 B2

‣ R0SIM728S3RU2120NB2

‣ R0SIM728S3RU1070NB2

Command example:
./nvsipl_camera --platform-config "<module_name>_CPHY_x4" --link-enable-masks "0x0001
 0x0000 0x0000 0x0000" --showfps -d 1

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 524

Embedded Software Components

Camera Group No. of Cams Command

NVIDIA DRIVE
AGX Orin ™ Dev
Kit (P3710-10)

NVIDIA DRIVE
AGX Orin™

(P3663)

1 ./nvsipl_camera --
platform-cong
"V728S1-120V1-
FWC_CPHY_x4" --
link-enable-masks
"0x0001 0x0000
0x0000 0x0000" --
showfps -d 1

Y YA

4 ./nvsipl_camera --
platform-cong
"V728S1-120V1-
FWC_CPHY_x4" --
link-enable-masks
"0x1111 0x0000
0x0000 0x0000" --
showfps -d 1

Y Y

1 ./nvsipl_camera --
platform-cong
"V728S1-120V1-
FWC_CPHY_x4" --
link-enable-masks
"0x0000 0x0000
0x0001 0x0000" --
showfps -d 1

Y N/AC

4 ./nvsipl_camera --
platform-cong
"V728S1-120V1-
FWC_CPHY_x4" --
link-enable-masks
"0x0000 0x0000
0x1111 0x0000" --
showfps -d 1

Y N/A

1 ./nvsipl_camera --
platform-cong
"V728S1-120V1-
FWC_CPHY_x4" --
link-enable-masks
"0x0000 0x0000
0x0000 0x0001" --
showfps -d 1

Y N/AD

4 ./nvsipl_camera --
platform-cong
"V728S1-120V1-
FWC_CPHY_x4" --
link-enable-masks
"0x0000 0x0000
0x0000 0x1111" --
showfps -d 1

Y N/A

P3898

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 525

Embedded Software Components

‣ Valeo IMX728 B2.1P:

‣ V1SIM728S1RU3120NB20

‣ V1SIM728S1RU3070HB20

‣ V1SIM728S1RU3030NB20

‣ Valeo IMX728 B3.1C:

‣ V1SIM728S2RU1030NB30

‣ V1SIM728S2RU3070HB30

‣ V1SIM728S2RU3120NB30

‣ V1SIM728S2RU3120HB30

‣ Valeo IMX728 B2.2:

‣ V1SIM728S2RU2030NB20

‣ V1SIM728S2RU4070HB20

‣ V1SIM728S2RU4120NB20

‣ V1SIM728S2RU4120HB20

Command example:
./nvsipl_camera --platform-config "<module_name>_MAX96724_CPHY_x4" --link-enable-
masks "0x0001 0x0000" --showfps -d 1

Camera Group No. of Cams Command
NVIDIA DRIVE AGX
Orin-N (P3898)

A 1 ./nvsipl_camera -c
V1SIM728S2RU1030NB30_MAX96724_CPHY_x4
--link-enable-masks
'0x0001 0x0000' --
showfps -v 2

Y

A 2 ./nvsipl_camera --
platform-cong
"V1SIM728S2RU1030NB30_MAX96724_CPHY_x4"
--link-enable-masks
"0x0011 0x0000 " --
showfps -d 1

Y

Note: nvsipl_camera application looks for PTP interface clock base for proling. To enable
this networking interface on P3898, refer to the P3898 Networking section.

IMX623 Using 2 Lane CPHY

Available module names:

P3663 and P3710

‣ Valeo IMX623 B1: V623S2-195V1-SVS

‣ Valeo IMX623 B2: V1SIM623S3RU3200NB20

‣ Valeo IMX623 B3.2: V1SIM623S4RU5195NB3

‣ Smartlead IMX623 B1: R0SIM623S3RU1197NB1

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 526

Embedded Software Components

‣ Smartlead IMX623 B2: R0SIM623S4RU1197NB2

Command example:
./nvsipl_camera --platform-config "<module_name>_CPHY_x2" --link-enable-masks "0x0000
 0x0001 0x0000 0x0000" --showfps -d 1

Camera Group No. of Cams Command

NVIDIA DRIVE
AGX Orin™ Dev
Kit (P3710-10)

NVIDIA DRIVE
AGX Orin™

(P3663)

1 ./nvsipl_camera --
platform-cong "
V623S2-195V1-
SVS_CPHY_x2" --
link-enable-masks
"0x0000 0x0001
0x0000 0x0000" --
showfps -d 1

Y YB

2 ./nvsipl_camera --
platform-cong "
V623S2-195V1-
SVS_CPHY_x2" --
link-enable-masks
"0x0000 0x0011
0x0000 0x0000" --
showfps -d 1

Y Y

P3898

‣ Valeo IMX623 B3.2: V1SIM623S4RU5195NB3

‣ Valeo IMX623 B2: V1SIM623S3RU3200NB20

Command example:
./nvsipl_camera --platform-config "<module_name>_MAX96724_CPHY_x2" --link-enable-
masks "0x0000 0x0001" --showfps -d 1

Camera Group No. of Cams Command
NVIDIA DRIVE AGX
Orin-N (P3898)

B 1 ./nvsipl_camera -c
V1SIM623S3RU3200NB20_MAX96724_CPHY_x2
--link-enable-masks '0
0x1' --showfps -v 2

Y

B 4 ./nvsipl_camera --
platform-cong
"V1SIM623S3RU3200NB20_MAX96724_CPHY_x2"
--link-enable-masks
"0x0000 0x1111 " --
showfps -d 1

Y

Note: nvsipl_camera application looks for PTP interface clock base for proling. To enable
this networking interface on P3898 refer to the P3898 Networking section.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 527

Embedded Software Components

IMX623 Using 4 Lane CPHY

Available module names:

P3663 and P3710

‣ Valeo IMX623 B1: V623S2-195V1-SVS

‣ Valeo IMX623 B2: V1SIM623S3RU3200NB20

‣ Valeo IMX623 B3.2: V1SIM623S4RU5195NB3

‣ Smartlead IMX623 B1 : R0SIM623S3RU1197NB1

‣ Smartlead IMX623 B2: R0SIM623S4RU1197NB2

Command example:
./nvsipl_camera --platform-config "<module_name>_CPHY_x4" --link-enable-masks "0x0000
 0x0001 0x0000 0x0000" --showfps -d 1

Camera Group No. of Cams Command

NVIDIA DRIVE
AGX Orin™ Dev
Kit (P3710-10)

NVIDIA DRIVE
AGX Orin™

(P3663)

1 ./nvsipl_camera --
platform-cong "
V623S2-195V1-
SVS_CPHY_x4" --
link-enable-masks
"0x0000 0x0001
0x0000 0x0000" --
showfps -d 1

Y YB

4 ./nvsipl_camera --
platform-cong "
V623S2-195V1-
SVS_CPHY_x4" --
link-enable-masks
"0x0000 0x1111
0x0000 0x0000" --
showfps -d 1

Y Y

P3898

‣ Valeo IMX623 B3.2: V1SIM623S4RU5195NB3

‣ Valeo IMX623 B2: V1SIM623S3RU3200NB20

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 528

Embedded Software Components

Command example:
./nvsipl_camera --platform-config "<module_name>_MAX96724_CPHY_x4" --link-enable-
masks "0x0000 0x0001" --showfps -d 1

Camera Group No. of Cams Command
NVIDIA DRIVE AGX
Orin-N (P3898)

B 1 ./nvsipl_camera -c
V1SIM623S3RU3200NB20_MAX96724_CPHY_x4
--link-enable-masks '0
0x1' --showfps -v 2

Y

B 4 ./nvsipl_camera --
platform-cong
"V1SIM623S3RU3200NB20_MAX96724_CPHY_x4"
--link-enable-masks
"0x0000 0x1111 " --
showfps -d 1

Y

Note: nvsipl_camera application looks for PTP interface clock base for proling. To enable
this networking interface on P3898, refer to the P3898 Networking section.

OV2311 Using 2 Lane DPHY/CPHY

Available module names:

‣ Leopard OV2311 A1: (DPHY only)

‣ LI-OV2311-VCSEL-GMSL2-60H

‣ LI-OV2311-VCSEL-GMSL2-60H_L

‣ Leopard OV2311 B1: (CPHY only)

‣ I0OO23111CML1050NB10

‣ I0OO23111CML1050NB10_30FPS

‣ Leopard OV2311 B2: (CPHY only)

‣ LI-OV2311-VCSEL-GMSL2-55H

‣ LI-OV2311-VCSEL-GMSL2-55H_L

Command example:
./nvsipl_camera --platform-config "<module_name>_DPHY_x2" --link-enable-masks "0x0000
 0x0000 0x0000 0x0001" --showfps -d 1
 or
./nvsipl_camera --platform-config "<module_name>_CPHY_x2" --link-enable-masks "0x0000
 0x0000 0x0000 0x0001" --showfps -d 1

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 529

Embedded Software Components

Camera
Group

No. of
Cams Command

NVIDIA
DRIVE
AGX
Orin™

Dev Kit
(P3710-10)

NVIDIA
DRIVE
AGX
Orin™

(P3663)

1 ./nvsipl_camera --platform-cong " LI-
OV2311-VCSEL-GMSL2-60H_DPHY_x2" --
link-enable-masks "0x0000 0x0000 0x0001
0x0000" --showfps -d 1 --enableRawOutput --
disableISP0Output --disableISP1Output

Y NC

4 ./nvsipl_camera --platform-cong " LI-
OV2311-VCSEL-GMSL2-60H_DPHY_x2" --
link-enable-masks "0x0000 0x0000 0x1111
0x0000" --showfps -d 1 --enableRawOutput --
disableISP0Output --disableISP1Output

Y N

1 ./nvsipl_camera --platform-cong " LI-
OV2311-VCSEL-GMSL2-60H_DPHY_x2" --
link-enable-masks "0x0000 0x0000 0x0000
0x0001" --showfps -d 1 --enableRawOutput --
disableISP0Output --disableISP1Output

Y ND

4 ./nvsipl_camera --platform-cong " LI-
OV2311-VCSEL-GMSL2-60H_DPHY_x2" --
link-enable-masks "0x0000 0x0000 0x0000
0x1111" --showfps -d 1 --enableRawOutput --
disableISP0Output --disableISP1Output

Y N

OV2311 Using 4 Lane DPHY/CPHY

Available module names:

‣ Leopard OV2311 A1: (DPHY only)

‣ LI-OV2311-VCSEL-GMSL2-60H

‣ LI-OV2311-VCSEL-GMSL2-60H_L

‣ Leopard OV2311 B1: (CPHY only)

‣ I0OO23111CML1050NB10

‣ I0OO23111CML1050NB10_30FPS

‣ Leopard OV2311 B2: (CPHY only)

‣ LI-OV2311-VCSEL-GMSL2-55H

‣ LI-OV2311-VCSEL-GMSL2-55H_L

Command example:
./nvsipl_camera --platform-config "<module_name>_DPHY_x2" --link-enable-masks "0x0000
 0x0000 0x0000 0x0001" --showfps -d 1
 or
./nvsipl_camera --platform-config "<module_name>_CPHY_x2" --link-enable-masks "0x0000
 0x0000 0x0000 0x0001" --showfps -d 1

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 530

Embedded Software Components

Camera Group No. of Cams Command

NVIDIA DRIVE
AGX Orin™ Dev
Kit (P3710-10)

NVIDIA
DRIVE AGX
Orin™(P3663)

C 1 ./nvsipl_camera --
platform-cong "
LI-OV2311-VCSEL-
GMSL2-60H_DPHY_x4"
--link-enable-
masks "0x0000
0x0000 0x0001
0x0000" --
showfps -d 1 --
enableRawOutput
--
disableISP0Output
--
disableISP1Output

Y N

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 531

Embedded Software Components

Camera Group No. of Cams Command

NVIDIA DRIVE
AGX Orin™ Dev
Kit (P3710-10)

NVIDIA
DRIVE AGX
Orin™(P3663)

4 ./nvsipl_camera --
platform-cong "
LI-OV2311-VCSEL-
GMSL2-60H_DPHY_x4"
--link-enable-
masks "0x0000
0x0000 0x1111
0x0000" --
showfps -d 1 --
enableRawOutput
--
disableISP0Output
--
disableISP1Output

Y N

1 ./nvsipl_camera --
platform-cong "
LI-OV2311-VCSEL-
GMSL2-60H_DPHY_x4"
--link-enable-
masks "0x0000
0x0000 0x0000
0x0001" --
showfps -d 1 --
enableRawOutput
--
disableISP0Output
--
disableISP1Output

Y ND

4 ./nvsipl_camera --
platform-cong "
LI-OV2311-VCSEL-
GMSL2-60H_DPHY_x4"
--link-enable-
masks "0x0000
0x0000 0x0000
0x1111" --
showfps -d 1 --
enableRawOutput
--
disableISP0Output
--
disableISP1Output

Y N

OX5B Using 4 Lane CPHY

Available module names:

‣ Smartlead OX5B B2: R0OOX05B1CHU1170NB20

Command example:
./nvsipl_camera --platform-config "<module_name>_CPHY_x4" --link-enable-masks "0x0001
 0x0000 0x0000 0x0000" --showfps -d 1

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 532

Embedded Software Components

Camera Group No. of Cams Command

NVIDIA DRIVE
AGX Orin ™ Dev
Kit (P3710-10)

NVIDIA DRIVE
AGX Orin™

(P3663)

1 ./nvsipl_camera --
platform-cong
"R0OOX05B1CHU1170NB20_CPHY_x4"
--link-enable-
masks "0x0001
0x0000 0x0000
0x0000" --
showfps -d 1

Y YA

4 ./nvsipl_camera --
platform-cong
"R0OOX05B1CHU1170NB20_CPHY_x4"
--link-enable-
masks "0x1111
0x0000 0x0000
0x0000" --
showfps -d 1

Y Y

1 ./nvsipl_camera --
platform-cong
"R0OOX05B1CHU1170NB20_CPHY_x4"
--link-enable-
masks "0x0000
0x0000 0x0001
0x0000" --
showfps -d 1

Y N/AC

4 ./nvsipl_camera --
platform-cong
"R0OOX05B1CHU1170NB20_CPHY_x4"
--link-enable-
masks "0x0000
0x0000 0x1111
0x0000" --
showfps -d 1

Y N/A

1 ./nvsipl_camera --
platform-cong
"R0OOX05B1CHU1170NB20_CPHY_x4"
--link-enable-
masks "0x0000
0x0000 0x0000
0x0001" --
showfps -d 1

Y N/AD

4 ./nvsipl_camera --
platform-cong
"R0OOX05B1CHU1170NB20_CPHY_x4"
--link-enable-
masks "0x0000
0x0000 0x0000
0x1111" --
showfps -d 1

Y N/A

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 533

Embedded Software Components

TI FPD-LINK SERDES

Note 1.
Connect the camera module to the correct deserializer, otherwise, the link lock error
 is reported.

P3710
Camera Group A: DS90UB9724 (7.55 Gbps)
Camera Group B: DS90UB9724 (7.55 Gbps)
Camera Group C: DS90UB9724 (7.55 Gbps)
Camera Group D: DS90UB9724 (7.55 Gbps)

Note 2.
I2C bus speed is 1MHz for the camera group A and B on P3710 and P3663. Please make
 sure HW components in the camera module can support 1MHz I2C bus speed

IMX728 FPD-Link Using 4 Lane CPHY

Available module names:

‣ IMX728 FPD-Link:

Command example:
./nvsipl_camera --platform-config "IMX728_FPDLINK_RGGB_CPHY_x4" --link-enable-masks
 "0x0001 0x0000 0x0000 0x0000" --showfps -d 1

Camera Group No. of Cams Command

NVIDIA DRIVE
AGX Orin ™ Dev
Kit (P3710-10)

NVIDIA DRIVE
AGX Orin™

(P3663)

1 ./nvsipl_camera --
platform-cong
"IMX728_FPDLINK_RGGB_CPHY_x4"
--link-enable-
masks "0x0001
0x0000 0x0000
0x0000" --
showfps -d 1

Y NA

4 ./nvsipl_camera --
platform-cong
"IMX728_FPDLINK_RGGB_CPHY_x4"
--link-enable-
masks "0x1111
0x0000 0x0000
0x0000" --
showfps -d 1

Y N

B 1 ./nvsipl_camera --
platform-cong
"IMX728_FPDLINK_RGGB_CPHY_x4"
--link-enable-
masks "0x0000
0x0001 0x0000
0x0000" --
showfps -d 1

Y N

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 534

Embedded Software Components

Camera Group No. of Cams Command

NVIDIA DRIVE
AGX Orin ™ Dev
Kit (P3710-10)

NVIDIA DRIVE
AGX Orin™

(P3663)

4 ./nvsipl_camera --
platform-cong
"IMX728_FPDLINK_RGGB_CPHY_x4"
--link-enable-
masks "0x0000
0x1111 0x0000
0x0000" --
showfps -d 1

Y N

1 ./nvsipl_camera --
platform-cong
"IMX728_FPDLINK_RGGB_CPHY_x4"
--link-enable-
masks "0x0000
0x0000 0x0001
0x0000" --
showfps -d 1

Y NC

4 ./nvsipl_camera --
platform-cong
"IMX728_FPDLINK_RGGB_CPHY_x4"
--link-enable-
masks "0x0000
0x0000 0x1111
0x0000" --
showfps -d 1

Y N

1 ./nvsipl_camera --
platform-cong
"IMX728_FPDLINK_RGGB_CPHY_x4"
--link-enable-
masks "0x0000
0x0000 0x0000
0x0001" --
showfps -d 1

Y ND

4 ./nvsipl_camera --
platform-cong
"IMX728_FPDLINK_RGGB_CPHY_x4"
--link-enable-
masks "0x0000
0x0000 0x0000
0x1111" --
showfps -d 1

Y N

DS90UB971 SER TPG Using 4 Lane CPHY

Available module names:

‣ DS90UB971 TPG:

‣ DS90UB971_TPG_SENSOR

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 535

Embedded Software Components

Command example:
./nvsipl_camera --platform-config "DS90UB971_RAW12_TPG_CPHY_x4" --link-enable-masks
 "0x0001 0x0000 0x0000 0x0000" --showfps -d 1

Camera Group No. of Cams Command

NVIDIA DRIVE
AGX Orin ™ Dev
Kit (P3710-10)

NVIDIA DRIVE
AGX Orin™

(P3663)

1 ./nvsipl_camera --
platform-cong
"DS90UB971_RAW12_TPG_CPHY_x4"
--link-enable-
masks "0x0001
0x0000 0x0000
0x0000" --
showfps -d 1

Y NA

4 ./nvsipl_camera --
platform-cong
"DS90UB971_RAW12_TPG_CPHY_x4"
--link-enable-
masks "0x1111
0x0000 0x0000
0x0000" --
showfps -d 1

Y N

1 ./nvsipl_camera --
platform-cong
"DS90UB971_RAW12_TPG_CPHY_x4"
--link-enable-
masks "0x0000
0x0001 0x0000
0x0000" --
showfps -d 1

Y NB

4 ./nvsipl_camera --
platform-cong
"DS90UB971_RAW12_TPG_CPHY_x4"
--link-enable-
masks "0x0000
0x1111 0x0000
0x0000" --
showfps -d 1

Y N

C 1 ./nvsipl_camera --
platform-cong
"DS90UB971_RAW12_TPG_CPHY_x4"
--link-enable-
masks "0x0000
0x0000 0x0001
0x0000" --
showfps -d 1

Y N

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 536

Embedded Software Components

Camera Group No. of Cams Command

NVIDIA DRIVE
AGX Orin ™ Dev
Kit (P3710-10)

NVIDIA DRIVE
AGX Orin™

(P3663)

4 ./nvsipl_camera --
platform-cong
"DS90UB971_RAW12_TPG_CPHY_x4"
--link-enable-
masks "0x0000
0x0000 0x1111
0x0000" --
showfps -d 1

Y N

1 ./nvsipl_camera --
platform-cong
"DS90UB971_RAW12_TPG_CPHY_x4"
--link-enable-
masks "0x0000
0x0000 0x0000
0x0001" --
showfps -d 1

Y ND

4 ./nvsipl_camera --
platform-cong
"DS90UB971_RAW12_TPG_CPHY_x4"
--link-enable-
masks "0x0000
0x0000 0x0000
0x1111" --
showfps -d 1

Y N

DS90UB971 SER TPG Using 4 Lane DPHY

Available module names:

‣ DS90UB971 TPG:

‣ DS90UB971_TPG_SENSOR

Command example:
./nvsipl_camera --platform-config "DS90UB971_RAW12_TPG_DPHY_x4" --link-enable-masks
 "0x0001 0x0000 0x0000 0x0000" --showfps -d 1

Camera Group No. of Cams Command

NVIDIA DRIVE
AGX Orin ™ Dev
Kit (P3710-10)

NVIDIA DRIVE
AGX Orin™

(P3663)

A 1 ./nvsipl_camera --
platform-cong
"DS90UB971_RAW12_TPG_DPHY_x4"
--link-enable-
masks "0x0001
0x0000 0x0000
0x0000" --
showfps -d 1

Y N

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 537

Embedded Software Components

Camera Group No. of Cams Command

NVIDIA DRIVE
AGX Orin ™ Dev
Kit (P3710-10)

NVIDIA DRIVE
AGX Orin™

(P3663)

4 ./nvsipl_camera --
platform-cong
"DS90UB971_RAW12_TPG_DPHY_x4"
--link-enable-
masks "0x1111
0x0000 0x0000
0x0000" --
showfps -d 1

Y N

1 ./nvsipl_camera --
platform-cong
"DS90UB971_RAW12_TPG_DPHY_x4"
--link-enable-
masks "0x0000
0x0001 0x0000
0x0000" --
showfps -d 1

Y NB

4 ./nvsipl_camera --
platform-cong
"DS90UB971_RAW12_TPG_DPHY_x4"
--link-enable-
masks "0x0000
0x1111 0x0000
0x0000" --
showfps -d 1

Y N

C 1 ./nvsipl_camera --
platform-cong
"DS90UB971_RAW12_TPG_DPHY_x4"
--link-enable-
masks "0x0000
0x0000 0x0001
0x0000" --
showfps -d 1

Y N

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 538

Embedded Software Components

Camera Group No. of Cams Command

NVIDIA DRIVE
AGX Orin ™ Dev
Kit (P3710-10)

NVIDIA DRIVE
AGX Orin™

(P3663)

4 ./nvsipl_camera --
platform-cong
"DS90UB971_RAW12_TPG_DPHY_x4"
--link-enable-
masks "0x0000
0x0000 0x1111
0x0000" --
showfps -d 1

Y N

1 ./nvsipl_camera --
platform-cong
"DS90UB971_RAW12_TPG_DPHY_x4"
--link-enable-
masks "0x0000
0x0000 0x0000
0x0001" --
showfps -d 1

Y ND

4 ./nvsipl_camera --
platform-cong
"DS90UB971_RAW12_TPG_DPHY_x4"
--link-enable-
masks "0x0000
0x0000 0x0000
0x1111" --
showfps -d 1

Y N

5.7.6.2.3 SIPL Reprocess (nvsipl_reprocess)
The NvMedia nvsipl_reprocess is a sample application that:

‣ Reads RAW images from the le system.

‣ Processes the RAW images through the Image Signal Processor (ISP).

‣ Writes the processed images to the le system.

5.7.6.2.3.1 Running the Application

1. Change to the folder that contains the nvsipl_reprocess binary:
samples/nvmedia/nvsipl/test/reprocess/

2. Enter the following command to launch the application:
$./nvsipl_reprocess -c "<platform>"
--link-enable-masks "<mask>" --out0 <format> -i <input> --nito <file>

Where:

‣ <platform> is the platform conguration name.

‣ <mask> species a sensor from a given camera group.

‣ <format> is the ISP output format.

‣ <input> species the path of the RAW le to process.

‣ <file> species the NVIDIA ISP Tuning Object to use.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 539

Embedded Software Components

The parameters above are required to run nvsipl_reprocess. The NVIDIA ISP Tuning
Object (NITO) is a binary le containing ISP settings, tuning, and characterization
parameters for a specic camera module. The NITO les are located at:
/usr/share/camera/

Sensor Module Corresponding NITO le

V728S1-120V1-FWC_CPHY_x2 V728S1-120V1-FWC.nito

V728S1-120V1-FWC_CPHY_x4 V728S1-120V1-FWC.nito

5.7.6.2.3.2 Command Line Switches

The following table shows the nvsipl_reprocess application's command line switches.

All numeric arguments may be specied in decimal (for example, 18) or hexadecimal (for
example, 0x12).

Switch Description Default Setting

-h or --help Displays help text. Display only if an invalid
command line argument is
found.

-c or --platform-cong <name>
Species name of the platform
conguration that describes
the connection of image
sensors to Xavier based
platforms.

The ‑h switch displays
supported congurations.

Required argument.

-t or --test-cong-le <le> Set custom platform cong
JSON le name.

Use default platform cong.

-v or --verbosity <n> Sets verbosity level. Supported
values are 0 (none) to 4
(maximum verbosity).

1 (errors)

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 540

Embedded Software Components

Switch Description Default Setting

-f or --ledump-prex
"<prex>" Sets a prex for the output

les’ lenames.

The output les contain the
processed images.

The names of the les created
have the form:

<e>_<p>_cam_<s>.yuv

Where:

‣ <e> is the prex. It may
begin with a pathname.

‣ <p> contains the ISP
output index.

‣ <s> is the ID of the sensor
that originated the images.

For example, if the prex is /
home/nvidia/test, the path
name of the output le from
Sensor0 processed by ISP1 is:

/home/nvidia/
test_ISP1_cam_0.yuv

No output les are generated.

-s or --frames-to-skip <s> Skip <s> frames from the
beginning of the le.

No frame skipping.

-n or --frames-to-save <n> Saves <n> frames after skipped
frames.

Processing saves frames until
the end of the input le.

-i or --input-raw-le <le> Species the RAW input le to
process.

Required argument.

-m or --link-enable-masks
<m‑AB> <m-CD> <m-EF> <m-
GH>

Species the position of sensor
at the time of raw capture.
The application retrieves the
conguration of the sensor
using the mask.

This application only supports
one link at a time.

For example, ‘0x0000 0x0001
0x0000 0x0000’ species link
0 connected to the CSI-CD
interface.

Required argument.

--icrop <y+h> Species the cropping at the
input in the format <y+h>.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 541

Embedded Software Components

Switch Description Default Setting

-l or --list-congs List cong from le specied
by -t or --test-cong-le

--out0 <format>
Species the output format
for processed images through
ISP0.

Supported formats:
yuv420_8b (BL), yuv420_8b_pl,
yuv420_16b_709er (BL),
yuv420_16b_709er_pl,
yuv444_8b, yuv444_16b_709er,
yuv444_8b_bl.

If both out0 and out1 are
enabled, then their formats
should match.

At least one of the three --out0
<format> or

--out1 <format> or –out2
<format> must be present.

--out1 <format>
Species the output format
for processed images through
ISP1.

Supported formats: supported
formats same as out0 for RGB
Bayer sensor data

luma_16b in case of RGB-IR
sensor data.

If both out0 and out1 are
enabled, then their formats
should match if the sensor data
input is from RGB Bayer sensor.

At least one of the three --out0
<format> or

--out1 <format> or –out2
<format> must be present.

--out2 <format>
Species the output format
for processed images through
ISP2.

Supported formats: supported
formats same as out0 and
additionally rgb_sensor_16f for
RGB Bayer sensor data.

Not supported for RGB-IR
sensor data.

At least one of the three --out0
<format> or

--out1 <format> or –out2
<format> must be present.

--out0size <wxh> Species the downscale
output0 size in the format of
<wxh>.

If argument is not given, no
downscaling occurs.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 542

Embedded Software Components

Switch Description Default Setting

--out1size <wxh> Species the downscale
output1 size in the format of
<wxh>.

If argument is not given, no
downscaling occurs.

--out2size <wxh> Species the downscale
output2 size in the format of
<wxh>.

If argument is not given, no
downscaling occurs.

--out0crop <x+y+wxh> Species the cropping of
output0 size after downscaling.

If argument is not given, no
cropping occurs.

--out1crop <x+y+wxh> Species the cropping of
output1 size after downscaling.

If argument is not given, no
cropping occurs.

--out2crop <x+y+wxh> Species the cropping of
output2 size after downscaling.

If argument is not given, no
cropping occurs.

--save-metadata Saves metadata to le for each
pipeline.

-

--header-skip <s1,s2> Skips <s1> bytes in the le
header and <s2> bytes in each
frame header.

If option not specied, <s1>
and <s2> are both 0.

--plug-in <type>
Plugin used for control
algorithm components.
Accepts:

NV: NVIDIA AE/AWB plug-in

SAMPLE: Sample plugin

CUSTOM: Custom plugin

NV

--nito <le> Species NVIDIA ISP tuning
object <le> to use.

Required argument.

5.7.6.2.3.3 Saving Metadata to a File

To save metadata to a le, add the --save-metadata argument when
running nvsipl_reprocess. The metadata le gets saved in the format
<prefix>_<isp>_cam_<id>_meta.txt.

Example: Saving Metadata from a V623S2-195V1-SVS Module in Two-lane CPHY Mode

$./nvsipl_reprocess -c "V623S2-195V1-SVS_CPHY_x2" -m "0000 0001 0000 0000" -i
 input_file.raw –-out0 yuv420_8b ––save-metadata --nito V623S2-195V1-SVS.nito -f
 “output”

Sample metadata output:
Camera ID: 12
Number of exposures: 3
Sensor exposure block valid: TRUE
Exposure Time T1: 0.017088
Exposure Time T2: 0.001034
Exposure Time T3: 0.000067
Sensor gain block valid: TRUE
Sensor Gain T1: 2.900000
Sensor Gain T2: 2.900000
Sensor Gain T3: 2.900000

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 543

Embedded Software Components

White balance block valid: TRUE
White Balance Gain T1 for:
R component: 1.500000
Gr component: 1.000000
Gb component: 1.000000
B component: 1.500000
White Balance Gain T2 for:
R component: 1.500000
Gr component: 1.000000
Gb component: 1.000000
B component: 1.500000
White Balance Gain T3 for:
R component: 1.500000
Gr component: 1.000000
Gb component: 1.000000
B component: 1.500000
Sensor PWL block valid: FALSE
CRC block valid: FALSE
Frame Report block valid: FALSE
Temperature block valid: FALSE

5.7.6.2.4 SIPL Sample (nvsipl_sample)
The NvMedia nvsipl_sample sample application demonstrates how to use the NvMedia
SIPL APIs to capture and process images from a camera module. The sample uses the
INvSIPLCamera and INvSIPLClient interfaces to program the external image devices and
the NVIDIA® Tegra® VI and ISP hardware engines. For more information about the NvSIPL
APIs, see the API documentation for NvSIPL.

5.7.6.2.4.1 Architecture

The following diagram shows the architecture of the nvsipl_sample application.

The test application executes the SiplMain() function in which it uses the INvSIPLCamera
interface for communicating with the NvSIPL library and uses the CImageManager class for
buer allocation and deallocation.

The platform conguration used by the application is xed; all output types are enabled for
one image processing pipeline. This pipeline captures and processes images from a single
camera module.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 544

../../../api_reference/namespacenvsipl.html

Embedded Software Components

The calibration data for the image processing pipeline is provided in the form of an NVIDIA
Image Tuning Object (NITO) le in the target le system. NITO les are binary les that
contain ISP settings, tuning settings, and characterization parameters for a specic
camera module.

The main thread, executing the SiplMain() function, initializes the image processing
pipeline using the NvSIPL APIs and then spawns a series of dierent threads. One thread
is created for receiving the errors and events from the NvSIPL library and printing them to
the command line. Other individual threads are created for receiving the output buers for
each of the output types of the pipeline. All these threads receive their associated items
(either events or image buers) by retrieving these items from queues provided by the
NvSIPL library.

The received buers contain an image and its associated metadata. Each image output
thread reads the frame sequence number from the image metadata structure and prints
it to the command line, then releases the buer for subsequent capture and processing
operations.

5.7.6.2.4.2 Running the Application

Before running nvsipl_sample it is necessary to follow the procedures in Building and
Running the NvMedia Samples.

To run the sample on the target:

 1. Change the current directory to the folder that contains the nvsipl_sample binary:
/samples/nvmedia/nvsipl/test/sample/

 2. Enter this command to launch the application:
$./nvsipl_sample -p LI-OV2311-VCSEL-GMSL2-60H-DPHY_x4

5.7.6.2.4.3 Command Line Switches

Option Description

-p <platformCfgName> Species a platform conguration.

Example:

‣ LI-OV2311-VCSEL-GMSL2-60H-DPHY_x4
‣ Refer to the Camera Commands for the full

list of supported congurations.

-v <level> Set verbosity
Supported values (0,4)
None - 0
Errors - 1
Warnings and above - 2
Info and above - 3
Debug and above - 4

-d Enable Display (QNX only)

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 545

Embedded Software Components

5.7.6.2.4.4 Interactive Menu Options

Option Description

q Quits the application

5.7.6.2.4.5 Camera Commands and Platform Congs

This section describes supported camera commands for dierent platforms.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 546

Embedded Software Components

List of commands

Command Description
Camera
Group No. of Cams

NVIDIA
Drive Orin™

Developer
Kit (P3710)
Supported?

NVIDIA
Drive™ Orin
(P3663)
Supported?

./
nvsipl_sample
-p LI-
OV2311-
VCSEL-
GMSL2-60H-
DPHY_x4

Leopard
OV2311
(Camera
Module LI-
OV2311-
VCSEL-
GMSL2-60H)
in Four Lane
DPHY Mode

AB 1 Y Y

./
nvsipl_sample
-p
 V1SIM728S1RU3120NB20_CPHY_x4

Valeo IMX728
B2 (Camera
Module
V1SIM728S1RU3070HB20)
in Four Lane
CPHY Mode

AB 1 Y Y

./
nvsipl_sample
-p
 V1SIM728S2RU3120HB30_CPHY_x4

Valeo IMX728
B3 (Camera
Module
V1SIM728S2RU3120HB30)
in Four Lane
CPHY Mode

AB 1 Y Y

./
nvsipl_sample
-p
 V1SIM728S2RU4120NB20_CPHY_x4

Valeo IMX728
B2.2 (Camera
Module
V1SIM728S2RU4120NB20)
in Four Lane
CPHY Mode

AB 1 Y Y

./
nvsipl_sample
-p
 V1SIM623S3RU3200NB20_CPHY_x4

Valeo IMX728
B2 (Camera
Module
V1SIM623S3RU3200NB20)
in Four Lane
CPHY Mode

AB 1 Y Y

./
nvsipl_sample
-p
 V1SIM623S3RU3200NB20_CPHY_x4

Valeo IMX623
B2 (Camera
Module
V1SIM623S3RU3200NB20)
in Four Lane
CPHY Mode

CD 1 Y Y

./
nvsipl_sample
-p
 V1SIM623S4RU5195NB3_CPHY_x4

Valeo IMX623
B3.2 (Camera
Module
V1SIM623S4RU5195NB3)
in Four Lane
CPHY Mode

CD 1 Y Y

./
nvsipl_sample
-p
 F008A120RM0A_CPHY_x4

Entron AR0820
(Camera
Module
F008A120RM0A)
in Four Lane
CPHY Mode

CD 2 Y Y

./
nvsipl_sample
-p
 IMX390_C_3461_F200_RGGB_CPHY_x4

IMX390
(Camera
Module
IMX390_C_3461)
in Four Lane
CPHY Mode

CD 1 Y Y

./
nvsipl_sample
-p
 AR0820C120FOV_24BIT_RGGB_CPHY_x2

AR0820 24Bit
(Camera
Module
AR0820C120FOV_24BIT)
in Two Lane
CPHY Mode

A 1 Y Y

./
nvsipl_sample
-p
 VC0820C120R24_CPHY_x2

VCC AR0820
(Camera
Module
VC0820C120R24)
in Two Lane
CPHY Mode

A 1 Y Y

./
nvsipl_sample
-p
 OV2311_C_3461_CPHY_x2

OV2311
(Camera
Module
OV2311_C_3461)
in Two Lane
CPHY Mode

A 1 Y Y

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 547

Embedded Software Components

5.7.6.2.4.6 Camera Input Module (CIM) SKU Identication

To obtain the SKU information of a CIM ROM, execute the following command in the Aurix
shell:
NvShell>cimrom get sku

For example, for a board with CIM SKU of 0002, the output from running the command is:
699-63553-0002-100

The last three digits may vary.

5.7.6.3 NvMedia IDE - Decode Processing (nvm_ide_sci)
NvMedia IDE - Decode Processing (nvm_ide_sci)

This topic describes how to use the NvMedia IDE - Decode Processing sample application,
nvm_ide_sci, for stream decoding. The application supports these stream types:

‣ MPEG

‣ MPEG-4

‣ VC1

‣ H.264

‣ H.265

‣ VP8

‣ VP9

‣ AV1 (From T234 NVIDIA Orin™ and higher chips only)

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 548

Embedded Software Components

Proles and Supported Levels

Codec Prole and level
Max video format,
max bitrate Comments

H.264
Baseline, Main, High

Level 5.1

up to 8 bpp

Level 5.1

DRM Support

4K@60, 120 Mbps

@ 540 MHz

Exceptions as listed in IAS

Max resolution:

‣ H265/VP9/AV1: 8192x8192 pixels

‣ H264: 4096x4096

‣ MPEG2: 4080x4080

‣ VP8: 4096x4096

‣ VC1: 1920x1088

‣ MPEG4: 1920x1088

Min resolution:

‣ H264: 48x48

‣ H265: 144x144

‣ AV1/VP9: 128x128

‣ VP8/MPEG2/MPEG4/VC-1: Width >=
48

Perf mentioned is for 4:2:0, 8/10bpp

‣ Perf HALVED for 4:4:4

‣ 8K = 7680*4320

HEVC Main, Main10, Main12, Main444
12, MV Main

Level 6.0

DRM Support

4K@120, 8K@30, 240
Mbps

@800 MHz

New design, based on AV1 IP

VP8 All Proles
4K@60, 120 Mbps

@ 540 MHz

VP9 Prole 0, Prole 2

Level 5.1

DRM Support

4K@120, 8K@30, 160
Mbps

@800 MHz

New design, based on AV1 IP

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 549

Embedded Software Components

Codec Prole and level
Max video format,
max bitrate Comments

MPEG-2
SP, MP

DRM Support

4K@60, 120 Mbps

@ 540 MHz

MPEG-4 SP, ASP
1080p@240, 120
Mbps

@ 540 MHz

VC1
SP, MP, AP

Level 4

DRM Support

4K@220, 60 Mbps

@ 540 MHz

AV1
Main Prole

Level 6.0

Bpp: 8/10

Color: 4:2:0, 4:0:0 only

DRM Support

No support for High/Professional
proles or YUV4:2:2/YUV4:4:4

4K@120, 8K@30, 120
Mbps

@800 MHz

Max res–8kx8k

5.7.6.3.1 Command Line Switches
The application’s command syntax is:

./nvm_ide_sci [switches]
Required Commands

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 550

Embedded Software Components

Required Switches

The following table describes the required command line switches:

Switch Description

-c <codec_type>
Species the codec type. You can specify the
type with an integer or a string:

‣ 1 or mpeg: MPEG
‣ 2 or mpeg4: MPEG-4
‣ 3 or vc1: VC1
‣ 4 or h264: H.264
‣ 5 or vp8: VP8
‣ 6 or h265: H265
‣ 7 or vp9: VP9
‣ 8 or av1 : AV1 (Orin T234 and higher chips

only)

-f <input_le> Species the input le to decode.

Other Switches

The following table describes the optional command line switches:

Switch Description Default

-t Displays decode timing
information. Default: Not
displayed.

Information is not displayed.

-n <frames> Species the minimum number
of frames to decode. In some
cases, however, specifying this
option might show a false CRC
mismatch issue toward the end
of the frame number specied
using the -n option.

Decodes the whole stream.

-s <output_le> Species the output YUV le
name.

No le is written.

-operating_point AV1 Decode specic option for
SVC streams only , for choosing
operating point

0

-output_all_layers
AV1 Decode specic options
for SVC streams, to Display
all Decoded frames or only
Highest Layer Enhancement
layer.

1

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 551

Embedded Software Components

Switch Description Default

-id <instance_id> Species the nvdec instance ID
to use for decoding. The value
can be 0 or 1.

0

-annexBStream AV1 codec-specic option
to indicate that the input
Bitstream is in AnnexB format.

0

-a <aspect_ratio> Species the video stream’s
aspect ratio.

N/A

-v <level>
Species the logging level. The
value can be:

‣ 0: Errors
‣ 1: Warnings
‣ 2: Info
‣ 3: Debug

0

-h Prints help text for the
application.

-crc <gen/chk> Enable CRC checks (chk) or
generate CRC le (gen)

False

-crcpath <path> Path for crc of the picture Null

-cropcrc CRC will be calculated on actual
resolution

False

5.7.6.3.2 Examples
The nvm_ide_sci application can be used for stream decoding. Decoded frames can be
saved to an output YUV le. This section provides several usage scenarios.

To perform decoding without saving decoded output

Enter this command:

./nvm_ide_sci -c 4 -f disney.264

The command starts decoding the disney.264 H.264 stream and does not save the output
YUV to a le.

To perform decoding and save decoded output

Enter this command:

./nvm_ide_sci -c 4 -f disney.264 -s disney_out.yuv

The command starts decoding the disney.264 H.264 stream and saves the decoded frames
to the disney_out.yuv le.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 552

Embedded Software Components

To specify the number of frames to decode

To specify the number of frames to decode, enter this command:

./nvm_ide_sci -c 4 -f disney.264 -n 100

This example decodes the rst 100 frames from the disney.264 le without saving the
output to a le.

To specify the number of times to decode the frames, enter this command:

./nvm_ide_sci -c 4 -f disney.264 -l 10

This example decodes disney.264 ten times.

To generate CRC for decoded YUV

Enter this command:

./nvm_ide_sci -c 4 -f disney.264 -crc gen -crcpath disney_PitchLinear_Ref_CRC.txt

This example decodes the stream disney.264 and generates CRC of the decoded YUV, and
then saves it in the le disney_PitchLinear_Ref_CRC.txt.

To check CRC for decoded YUV against a reference CRC

Enter this command:

./nvm_ide_sci -c 4 -f disney.264 -crc chk -crcpath disney_PitchLinear_Ref_CRC.txt

This example decodes the stream disney.264, computes CRC of the decoded YUV, and
compares it with the reference CRC disney_PitchLinear_Ref_CRC.txt. It prints if the CRC
matches the reference. If there is a mismatch, then the decoding is incorrect.

To get the decode timing information

Enter this command:

./nvm_ide_sci -c 4 -f disney.264 -prof

This example decodes the stream disney.264 and prints information about the average
time taken per frame and the total time taken for the sequence.

5.7.6.4 NvMedia IJPD - JPEG Decode (nvm_ijpd_sci)
The NvMedia IJPD application, nvm_ijpd_sci, demonstrates how to decode a set of JPEG
bitstreams into uncompressed image surfaces using NvMedia IJPD APIs. It parses the
command line with required parameter sets for the JPEG decoder, including the following:

‣ Input bitstream le name

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 553

Embedded Software Components

‣ Output le name

‣ Output resolution

‣ Output format, etc.

It then reads the input bitstream le into the local buer frame by frame and sends the
information to the NvMedia IJPD. It saves the resulting image surfaces into the output YUV
le.

The application also supports CRC generation and CRC checking modes. CRC generation
is primarily for developers to provide a golden/reference CRC that can be used during
verication. The CRC values can vary for dierent Tegra chip versions. CRC checking mode
is for quality assurance to verify the application for new releases.

The following diagram describes the basic function ow.

5.7.6.4.1 Example Commands

To decode 100 JPEG les into 720 x 480 images in RGB format

Enter the command:

./nvm_ijpd_sci -f input%d.jpg -of outputfile -fn 100

To decode 100 JPEG les with CRC generation

Enter the command:

./nvm_ijpd_sci -f input%d.jpg -of outputfile -fn 100 -crcgen crc.txt

To decode 100 JPEG les with CRC checking

Enter the command:

./nvm_ijpd_sci -f input%d.jpg -of outputfile -fn 100 -crcchk crc.txt

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 554

Embedded Software Components

To decode a monochrome (YUV400) le

Enter the command:

./nvm_ijpd_sci -f input.jpg -of outputfile -format 4

The default format value is 0 (yuv420). Format conversion from YUV400 to YUV420 is not
supported. You must set the -format switch to 4 for monochrome decode.

Conguration Format

The ‑format parameter congures the color format of the decoded YUV. Supported
formats are:

‣ 0: yuv420 (the default)

‣ 1: rgba

‣ 2: yuv422

‣ 3: yuv444

‣ 4: yuv400

The output format that can be congured for a JPEG input depends on the format of the
JPEG:

JPEG Format Supported Output Formats

YUV444 JPEG All the output formats are supported.

YUV422 JEPG
The following output formats are supported:

‣ 0: yuv420
‣ 1: rgba
‣ 2: yuv422

YUV420 JPEG
The following output formats are supported:

‣ 0: yuv420
‣ 1: rgba

Unknown JPEG format The application sets the output format to the
default value of 0 (yuv420).

YUV400 JPEG

(Monochrome)

The following output formats are supported:

‣ 4: yuv400

Output YUV Resolution

The resolution of generated YUV is always aligned to the next multiple of 16. For example,
if the input JPEG resolution is 800x600, the resolution of output YUV le is 800x608.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 555

Embedded Software Components

Note that the image is not scaled from 800x600 to 800x608; the last eight lines must be
ignored.

5.7.6.4.2 Command Line Switches
To run the sample application, enter this command:

./nvm_ijpd_sci [switches]

The following table describes the command line switches for the application:

Switch Description Default Settings

-h Prints the help menu. N/A

-f <le> Species the input bitstream
le. If the lename is
inputd.jpg, the application
tries to decode a set of input
JPG les named input1.jpg,
input2.jpg, etc. Otherwise, the
single specied le’s bitstream
is decoded.

N/A

-of <le> Species the YUV le. N/A

-fr <w>x<h> Species the output le
resolution as width and
height separated by an ‘x’, e.g.
640x480 or 1080x960.

N/A

-fn <value> Species the decode frame
number.

1

-format <value>
Species the output format.
Values are:

‣ 0: yuv420
‣ 1: rgba
‣ 2: yuv422
‣ 3: yuv444
‣ 4: yuv400

0

-ds <value> Species the decode output
downscale factor. The value can
be [0,3].

0 (no downscale)

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 556

Embedded Software Components

Switch Description Default Settings

-crcgen <le> Generates a CRC and saves it to
the specied le.

N/A

-crcchk <le> Generates a CRC and checks it
against the specied CRC le.

N/A

-v <level>
Logging level. The value can be:

‣ 0 (Errors)
‣ 1 (Warnings)
‣ 2 (Information)
‣ 3 (Debug)

If the switch is omitted, 0.

If the switch is specied but
<level> is omitted, 0.

5.7.6.5 Image JPEG Encode (nvm_ijpe_sci)
The NvMedia Image JPEG Encode application, nvm_ijpe_sci, demonstrates how to encode
image surfaces into JPEG bitstreams using NvMedia JPEG encode APIs. It parses the
command line with required parameter sets for JPEG encoder including:

‣ Input le name

‣ Resolution

‣ Output bitstream le name

‣ Quality, etc.

It then reads the input le into the image surface and sends the information to the
NvMedia JPEG encoder. It saves the resulting bitstreams into a set of output les.

The application also supports CRC generation and CRC checking modes. CRC generation
is mainly for developers to provide an original CRC. It can be a dierent CRC for dierent
Tegra chip versions. CRC checking mode is for QA to verify the application for new releases.

The following diagram describes the basic function ow:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 557

Embedded Software Components

5.7.6.5.1 Example Commands

To encode a set of 720 x 480 JPEG les with quality 75

‣ Enter this command:

./nvm_ijpe_sci -f input.yuv -fr 720x480 -of output%d.jpg -q 75

To encode with CRC generation

‣ Enter this command:

./nvm_ijpe_sci -f input.yuv -fr 720x480 -of output%d.jpg -q 75 -crcgen crc.txt

To encode with CRC checking

‣ Enter this command:

./nvm_ijpe_sci -f input.yuv -fr 720x480 -of output%d.jpg -q 75 -crcchk crc.txt

5.7.6.5.2 Command Line Switches
To run the Image Encode sample application, enter this command:
./nvm_ijpe_sci [switches]

This table describes the command line switches:

e Description Default

-h Prints the help menu. N/A

-f <le>
Species the pathname of an input YUV le. The
input le should be in YUV420 with UV order.

N/A

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 558

Embedded Software Components

e Description Default

-fr <W>x<H>
Species the input le resolution in width ×
height format, for example: 640x480.

N/A

-of <le>

Species the pathname of an output
le. If outputd.jpg is specied, the
application generates a set of JPG les
as output1.jpg, output2.jpg, etc. Otherwise,
the last JPEG bitstream is saved to the specied
le.

N/A

-q <value>
Species the encode quality. The value must be
in the range [1,100].

50

-crcgen <le>
Generates a CRC and saves it to the specied
le.

N/A

-crcchk <le>
Generates a CRC and checks it against the
specied CRC le.

N/A

-v <level>

Logging level. Value may be:

‣ 0 (Errors)
‣ 1 (Warnings)
‣ 2 (Information)
‣ 3 (Debug)

If the switch
is omitted, 0.
If the switch
is specied
but <level> is
omitted, 3.

-HuTable
<le>

Species the pathname of a conguration le
containing a Human table.

N/A

-QuantTable
Species the pathname of a conguration le
containing a quant table.

N/A

-hwid Species the hardware instance ID to be used. 0

5.7.6.6 NvMedia IEP – Encode Processing (nvm_iep_sci)
The NvMedia IEP sample application nvm_iep_sci demonstrates how to use the NvMedia
IEP API to encode H.264/H.265/VP9/AV1 bitstreams with the NVENC hardware engine.

The application consumes raw images in a single YUV le in the YUV color space. It
produces compressed elementary streams in one of the following formats:

‣ H.264 with various conguration parameters

‣ Baseline up to Level 5.2

‣ Main proles up to Level 5.2

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 559

Embedded Software Components

‣ High proles up to Level 5.2

‣ H.265 main prole up to level 6.0 with various conguration parameters

‣ VP9 prole 0

‣ AV1 main prole up to level 6.3

nvm_iep_sci can run in event data recorder mode for a given number of seconds, as
specied on the command line. The specied number of seconds of bitstream is saved to
the output bitstream le.

5.7.6.6.1 Architecture and Data Flow

nvm_iep Stack Diagram

Component Descriptions

Name Description

nvm_iep_sci The sample application which calls the NvMedia
IEP APIs. On receipt of the headers and
bitstream, packetizes the encoded stream and
saves the result to an output le.

NvMedia IEP API Calls the low-level hardware driver interface to
issue encoding commands to NVENC microcode.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 560

Embedded Software Components

Name Description

Low-level hardware driver
Writes out high level headers, including SPS,
PPS, VUI and SEI.

The driver creates and maintains reference
picture surfaces, the output bitstream buers,
and the internal status buers.

For each input picture, the driver provides a
conguration data structure (a picture setup)
that contains encoder parameters along
with the encode commands to the NVENC
microcode. This structure contains:

‣ Buer information (current picture,
reference pictures)

‣ Sequence and picture parameter set
information and rate control conguration

‣ Other module congurations as needed

NVENC microcode Accesses the hardware engine to schedule the
encoding commands, and return the encode
status including bitstreams, statistics, etc.

NVENC hardware engine Handles slice header and data.

NvMedia Low-Level Encode Driver Inputs and Outputs

Picture buers must be in block linear format. Pitch linear input data is not supported due
to ineciency in the memory accesses.

The picture dimensions of the encoded streams are always in multiples of X pixels, where X
is:

‣ 16 for H.264 encoding

‣ 32 for H.265 encoding

‣ 64 for VP9 encoding

If the input needs cropping, it is cropped at the right and bottom of the picture. If the input
picture’s horizontal/vertical dimensions are not X pixels aligned, the application software
must verify the padding on the right/bottom side to make it X pixels aligned, where X is
dependent on the codec as listed above.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 561

Embedded Software Components

5.7.6.6.2 Running the Sample Application
The nvm_iep_sci application supports an input le of type YUV.

To run the application

1. Prepare the input le.

‣ The input is a single YUV le.

‣ To encode YUV les, the InputFile parameter must specify the pathname on the
command line or in a conguration le.

2. Create a conguration for the encoding process.
3. Follow the steps in Building and Running the NvMedia Samples
4. Launch the application.

5.7.6.6.3 Command Line Switches
The format of the nvm_iep_sci application command line is:

nvm_iep_sci [-h] [-v] [-cf config.cfg] {[-sf config1.cfg]...[-sf configN.cfg]} {[-p
 EncParam1=EncValue1]..[EncParamM=EncValueM]} -eventDataRecorder [num_second]

The following table describes the command line switches:

Switch Description Default

-h Displays help text on for this
application.

N/A

-v <level>
Logging level. Value may be:

‣ 0: Errors
‣ 1: Warnings
‣ 2: Info
‣ 3: Debug

0

-cf <cong_le> Species the base
conguration le.

N/A

-sf <cong_le>
Species a specic
conguration le.

Any parameters provided in
this le overwrite parameters
specied in the base
conguration le.

N/A

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 562

Embedded Software Components

Switch Description Default

-p <p1>=<v1>,… <pn>=<vn>
Sets parameter <p1> to the
value <v1>… <pn> to value
<vN>.

Overrides parameters set
through both conguration
les.

Note: Invalid parameters keys
are ignored.

N/A

-eventDataRecorder <sec> Enables event data recorder
mode with a recording time of
<sec> seconds.

-crc gen <lename> Generates CRC values and
stores them in the specied
le.

N/A

-crc chk <lename> Generates CRC values at
runtime and checks them
against the CRC values
specied in the le.

N/A

-id <id> Species encoder instance ID. 0

5.7.6.6.4 Examples for Performing Common Tasks

To encode to H.264/H265/VP9/AV1

Enter the command:
./nvm_iep_sci -cf enc_h264_sample.cfg
./nvm_iep_sci -cf simple_h265_cif.cfg
./nvm_iep_sci -cf simple_vp9_cif.cfg
./nvm_iep_sci -cf enc_av1_sample.cfg

The encoding is performed using parameters supplied in the conguration le.

The base conguration le species the input and output le information, but it is more
convenient to use a specic conguration le (with the ‑sf option) for these parameters or
pass them through the command line using -p option.

To run in event data recorder mode

Enter the command:

./nvm_iep_sci -cf enc_h264_sample.cfg -eventDataRecorder <sec>

In event data recorder mode, the application saves a specied number of seconds
of bitstream in the output bitstream le. The number of seconds is specied by the
eventDataRecorder option.

In event data recorder mode, the application forces the following encode parameters:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 563

Embedded Software Components

‣ GOP size = frame rate, which equals to 1 second encode time

‣ IDR period = GOP size

‣ H264RepeatSPSPPSMode = 2, SPS/PPS is repeated for every IDR frame[JS1]

The settings guarantee that each GOP bitstream is decoded independently. The GOP size
and IDR period can be set to half second encode time, or other values. The user application
can choose values which ts the use case as desired.

To use a specic conguration le

Enter the command:

./nvm_iep_sci -cf enc_h264_sample.cfg -sf enc_h26x_specific_config.cfg

The encoding is performed using parameters supplied in the enc_h264_sample.cfg and
enc_h26x_specific_config.cfg les. If a parameter is present in both les, the value in
the specic conguration le enc_h26x_specific_config.cfg is used.

5.7.6.6.5 Conguration File Syntax
When you run nvm_iep_sci you must provide a conguration le. A default conguration is
available at:

<top>/drive-linux/samples/nvmedia/img_enc/enc_h264_sample.cfg

The conguration le contains parameters with values, groups or sections of parameters,
and optional comments.

Parameters

Each parameter must be on a separate line. A parameter line contains the following tokens:

‣ The parameter name

‣ An equal sign (“=”)

‣ A value

‣ An optional comment

Here is an example of a parameter with a comment:

InputFile = "configs/input.yuv" # File to encode

An unknown parameter in a conguration le does not cause a failure; the parameter is
ignored. An ill-formed parameter line causes the application to fail.

Comments

A comment consists of a pound sign (a ‘#’) and any following text to the end of the line. A
comment may appear at the end of any parameter line, or on a line by itself.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 564

Embedded Software Components

Sections

A section is a named group of parameters, containing a specic set of parameters. For
example, the group RC_Params contains rate control parameters. You can dene one or
more RC_Params sections and use the parameter values they set by referring to them in
the EPRateControlSectionIndex and EPPRCParamsIndex parameters, described later in
this topic.

Note:

Range of values that can be used for numbering sections is 1 to 9 in steps of 1.

Available section types include:

‣ EncodePic_Params: per-frame parameters

‣ EncodePicH264_Params: specic H.264 per-frame parameters

‣ Payload: dierent arrays of SEI payloads can be used for every picture in H.264
encoding

‣ EncodePicH265_Params: consists of specic H.265 per frame parameters

‣ EncodePicVP9_Params: specic VP9 per frame parameters

‣ PayloadH265: dierent arrays of SEI payloads can be used for every picture in H.265
encoding

‣ RC_Params: rate control parameters

‣ QP_Params: quantization parameters

Each section begins with a line in the form:

[<section name> <section number>]

The rest of the section consists of parameter values to be dened in the group. A
specic set of parameters may be dened in each group, as shown in Conguration File
Parameters.

For example, these lines dene three QP_Params groups:
[QP_Params 1]
QPBSlice = 30 # Quant. parameter for B slices (0-51) - qpInterB
QPISlice = 28 # Quant. parameter for I Slices (0-51) - qpIntra
QPPSlice = 28 # Quant. parameter for P Slices (0-51) - qpInterP

[QP_Params 2]
QPBSlice = 40 # Quant. parameter for B slices (0-51) - qpInterB
QPISlice = 38 # Quant. parameter for I Slices (0-51) - qpIntra
QPPSlice = 38 # Quant. parameter for P Slices (0-51) - qpInterP

[QP_Params 3]
QPBSlice = 50 # Quant. parameter for B slices (0-51) - qpInterB
QPISlice = 48 # Quant. parameter for I Slices (0-51) - qpIntra
QPPSlice = 48 # Quant. parameter for P Slices (0-51) - qpInterP

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 565

Embedded Software Components

5.7.6.6.6 Conguration File Parameters
Parameters that specify the length of an array, such as
ExplicitFrameInvervalPatternLength or ExplicitFrameInvervalPattern, do not need
to be set or may be set to 0. In either case, the application uses the default array size of
1000.

General Conguration Parameters

The following table describes the general conguration parameters:

Parameter Description

InputFile Identies the le sent to the encoder.

InputFileFormat
Input le format. The values can be:

‣ 0: IYUV
‣ 1: YV12
‣ 3: IYUV444
‣ 4: IYUV420_10bit (LSB aligned)
‣ 5: IYUV444_10bit (LSB aligned)
‣ 6: IYUV420_10bit (MSB aligned)
‣ 7: IYUV444_10bit (MSB aligned)
‣ 8: IYUV420_12bit (LSB aligned)

OutputFile Species the output le.

StartFrame Species the start frame for encoding. Encoding
for StartFrame−1 is skipped.

FramesToBeEncoded Number of frames to encode.

EPCodec
Species the video codec type. The values can
be:

‣ 0: H.264 codec
‣ 1: H.265 codec
‣ 2: VP9 codec
‣ 3: AV1 codec

EPRateControlSectionIndex Index of the RC_params section to use for
encoder initialization.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 566

Embedded Software Components

Parameter Description

ExplicitFrameIntervalPattern
Species the frame interval pattern. The values
in the string represent the EncodePic_Params
section to use for each frame.

For example, if the given pattern is 123, then:

‣ For frames 1, 4, 7, 10... EncodePic_Params
section 1 is used.

‣ For frames 2, 5, 8, 11... EncodePic_Params
section 2 is used.

‣ For frames 3, 6, 9, 12... EncodePic_Params
section 3 is used.

ExplicitFrameIntervalPatternLength Species the length of the interval pattern.

ExtradataFileName Species the path to the le in which the
frame-wise extra data will get dumped, when -
extraMetadata ag is enabled. The metadata
includes information such as frame average QP,
frame type, intra/inter MB or CTB counts, and so
on.

DynamicResolutionFileName Species the path to the conguration le for
Dynamic Resolution Change (DRC) feature. Refer
to the DRC section below for the expected
structure of the DRC conguration le.

DRCBuerRealloc Species whether DRC support should be
enabled using the buer reallocation approach.
The values can be:

‣ 0: Buer reallocation disabled (default)
‣ 1: Buer reallocation enabled

This parameter should only be used along with
InputFileDRC parameter. Refer to the DRC
Buer Reallocation section below for more
information.

InputFileDRC Species the path to the input le after the
DRC resolution change. This parameter should
only be used when DRCBuerRealloc is set to
1. Refer to the DRC Buer Reallocation section
below for more information.

QPDeltaMapFileBaseName Species the base name of the per-frame QP
delta map les. Refer to the QP delta map
section below for the expected structure of the
QP delta map les.

BitrateFileName Species the path to the conguration le for
Dynamic Bitrate Change (DBC) feature. Refer
to the DBC section below for the expected
structure of the DBC conguration le.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 567

Embedded Software Components

Encode Conguration Parameters

The following table describes the encode conguration parameters:

Parameter Description

EPEncodeWidth Species the width of the encode.

EPEncodeHeight Species the height of the encode.

EPFrameRateNum

EPFrameRateDen

Species the numerator and denominator for
the frame rate to use for encoding, in frames
per second. The frame rate is:

EPFrameRateNum / EPFrameRateDen

EPGopLength Species the number of pictures in a GOP. If 0,
keyframes are not inserted automatically.

EPGopPattern
Species the GOP pattern. If the GOP length is
0, the Frame Interval Pattern must be set to IPP.
The values can be:

‣ 0: I
‣ 1: IPP
‣ 2: IBP
‣ 3: IBBP

EPMaxNumRefFrames
Species the maximum number of reference
frames. The value can be:

‣ EPMaxNumRefFrames =0 for I Only mode
‣ EPMaxNumRefFrames =1 for IP mode
‣ EPMaxNumRefFrames =2 for IBP mode

Quantization Conguration Parameters

The following table describes the quantization conguration parameters:

Parameter Description

QPBSlice Species the Quantization parameter for B
slices [0-51].

QPISlice Species the Quantization parameter for I Slices
[0-51].

QPPSlice Species the Quantization parameter P Slices
[0-51].

Rate Control Conguration Parameters

The following table describes the rate control conguration parameters:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 568

Embedded Software Components

Parameter Description

RCMode
Species the rate control mode. The values can
be:

‣ 0x0 = Constant bitrate mode
‣ 0x1 = Constant QP mode
‣ 0x2 = Variable bitrate mode
‣ 0x3 = Variable bitrate mode with MinQP

RCAverageBitrate Species the average bit rate in bits/second;
used for encoding.

RCMaxBitrate Species the maximum bit rate for the encoded
output. This is used in Variable Bit Rate (VBR)
mode and is ignored for Constant Bit Rate (CBR)
mode.

RCVbvBuerSize Species the VBV (HRD) buer size in bits. Set
to 0 to use the default VBV buer size.

RCVbvInitialDelay Species the VBV(HRD) initial delay in bits. Set
to 0 to use the default VBV initial delay.

RCEnableMinQP Set to 1 if minimum QP is used for the rate
control.

RCEnableMaxQP Set to 1 if maximum QP is used for the rate
control.

RCConstQPInde[JS7] x Species the initial QP_Params section index
used for encoding. In Constant QP mode these
values are used for all frames.

RCMinQPIndex Species the QP_Paramssection index used as
the minimum QP values for rate control.

RCMaxQPIndex Species the QP_Params section index used as
the maximum QP values for rate control.

Per-Frame Encode Conguration Parameters

The following table describes the per-frame encode conguration parameters:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 569

Embedded Software Components

Parameter Description

EPEencodePicFlags
Species the bitwise OR’ed encode picture ags.

The ags are:

‣ 0x1: Encodes the current picture as an Intra
picture.

‣ 0x2: Encodes the current picture as an
IDR picture. This ag is valid when the
enoder makes the picture type decision. (Set
EPPictureType to 0).

‣ 0x4: Writes the sequence and picture header
in the encoded bitstream of the current
picture.

‣ 0x8: Indicates the end of the input stream.
‣ 0x10: Indicates a change in bit rate from the

current picture onwards.
‣ 0x20: Indicates that the user forced

constant QP Rate control from the current
picture onwards.

‣ 0x40: Indicates a change in the rate control
mode on the y from current picture
onwards.

EPInputDuration Species the duration of the input picture.

EPPictureType
Species the input picture type. The client must
set this parameter explicitly if it has not set the
Enable PTD (picture type decision) to 1.

The picture types are:

‣ 0x00: Forward predicted picture
‣ 0x01: Bidirectionally predicted picture
‣ 0x02: Intra predicted picture
‣ 0x03: IDR picture
‣ 0x04: Bidirectionally predicted picture with

only Intra MBs
‣ 0x05: Picture is skipped
‣ 0x06: First picture in intra refresh cycle
‣ 0xFF: Picture type unknown

EPH264PicParamsIndex Codec specic parameters:
EncodePicH264_Param section index to be used.

EPRCParamsIndex Rate control parameters: RC_Params section
index to be used.

H.264 Encode Conguration Parameters

The following table describes the H.264 encode conguration parameters:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 570

Embedded Software Components

Parameter Description

H264Prole
Supported proles are:

‣ 0: Automatic prole selection
‣ 66: Baseline prole
‣ 77: Main prole
‣ 88: Extended prole
‣ 100: High prole
‣ 244: High444 prole (lossless)

H264Level Species the encoding level. The
recommendation is for the client to set the level
to 0 to enable the NvMedia Encode interface to
select the correct level.

H264EncodeQuality Species the encode quality
0 = NVMEDIA_ENCODE_QUALITY_L0
1 = NVMEDIA_ENCODE_QUALITY_L1
2 = NVMEDIA_ENCODE_QUALITY_L2

recommend quality setting for H264 is
 NVMEDIA_ENCODE_QUALITY_L1

To be deprecated in future releases

H264EnableNewPreset Set to NVMEDIA_TRUE to use new encoder
preset APIs (H264EncPreset)

H264EncPreset Species the encoder preset to use
0x0 = NVMEDIA_ENCODE_QUALITY_HQ
0x10 = NVMEDIA_ENCODE_QUALITY_HP
0x20 = NVMEDIA_ENCODE_QUALITY_UHP

recommend quality setting is
 NVMEDIA_ENCODE_QUALITY_HP

H264Features
Species the bitwise OR'ed conguration
feature ags. The ags are:

‣ ENABLE_OUTPUT_AUD (1 << 0)

‣ ENABLE_INTRA_REFRESH (1 << 1)

‣ ENABLE_DYNAMIC_SLICE_MODE (1 << 2)

‣ ENABLE_CONSTRANED_ENCODING (1 << 3)

H264IdrPeriod Species the IDR interval. If not set, it defaults
to the GOP length. A low latency application
client must set the IDR interval to 0 so that IDR
frames are not inserted automatically.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 571

Embedded Software Components

Parameter Description

H264RepeatSPSPPSMode
Species the frequency of writing Sequence and
Picture parameters. The values can be:

‣ 0x0: Repeating SPS/PPS is disabled
‣ 0x1: SPS/PPS is repeated for every intra

frame
‣ 0x2: SPS/PPS is repeated for every IDR

frame

H264NumSliceCountMinus1 One less than the number of slices desired per
frame.

H264DisableDeblockingFilterIDC Deblocking lter mode. The value can be 0, 1, or
2.

H264IntraRefreshPeriod
The interval between successive intra refreshes
if intra refresh is enabled and one-time intra
refresh conguration is desired.

If H264IntraRefreshPeriod is specied, the rst
IDR is encoded, and no more key frames are
encoded.

The client must set EPPictureType to 6 for the
rst picture of every intra refresh period.

H264IntraRefreshCnt The number of frames over which intra refresh
occurs.

H264MaxSliceSizeInBytes The maximum slice size, in bytes, for dynamic
slice mode. The client must enable dynamic slice
mode to use this parameter.

H264AdaptiveTransformMode
Species the Adaptive Transform Mode.
Available modes are:

‣ 0x0: The encoder driver automatically
selects Adaptive Transform 8x8 mode.

‣ 0x1: Adaptive Transform 8x8 mode disabled.
‣ 0x2: Adaptive Transform 8x8 mode must be

used.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 572

Embedded Software Components

Parameter Description

H264BdirectMode
Species the B Direct mode. Available modes
are:

‣ 0x0: Spatial B Direct mode
‣ 0x1: Disable B Direct mode
‣ 0x2: Temporal B Direct mode

H264EntropyCodingMode
Species the entropy coding mode. Available
modes are:

‣ 0x0: The encoder driver automatically
selects the entropy coding mode

‣ 0x1: Entropy coding mode is CABAC
‣ 0x2: Entropy coding mode is CAVLC

H264MotionPredictionExclusionFlags
Species the bitwise OR’ed exclusion ags for
motion prediction. Available ags are:

‣ (1 << 0): Disable Intra 4x4 vertical prediction
‣ (1 << 1): Disable Intra 4x4 horizontal

prediction
‣ (1 << 2): Disable Intra 4x4 DC prediction
‣ (1 << 3): Disable Intra 4x4 diagonal down left

prediction
‣ (1 << 4): Disable Intra 4x4 diagonal down

right prediction
‣ (1 << 5): Disable Intra 4x4 vertical right

prediction
‣ (1 << 6): Disable Intra 4x4 horizontal down

prediction
‣ (1 << 7): Disable Intra 4x4 vertical left

prediction
‣ (1 << 8): Disable Intra 4x4 horizontal up

prediction
‣ (1 << 9): Disable Intra 8x8 vertical prediction
‣ (1 << 10): Disable Intra 8x8 horizontal

prediction
‣ (1 << 11): Disable Intra 8x8 DC prediction
‣ (1 << 12): Disable Intra 8x8 diagonal down

left prediction
‣ (1 << 13): Disable Intra 8x8 diagonal down

right prediction
‣ (1 << 14): Disable Intra 8x8 vertical right

prediction
‣ (1 << 15): Disable Intra 8x8 horizontal down

prediction
‣ (1 << 16): Disable Intra 8x8 vertical left

prediction
‣ (1 << 17): Disable Intra 8x8 horizontal up

prediction
‣ (1 << 18): Disable Intra 16x16 vertical

prediction
‣ (1 << 19): Disable Intra 16x16 horizontal

prediction
‣ (1 << 20): Disable Intra 16x16 DC prediction
‣ (1 << 21): Disable Intra 16x16 plane

prediction
‣ (1 << 22): Disable Intra chroma vertical

prediction
‣ (1 << 23): Disable Intra chroma horizontal

prediction
‣ (1 << 24): Disable Intra chroma DC prediction
‣ (1 << 25): Disable Intra chroma plane

prediction
‣ (1 << 26): Disable Inter L0 partition 16x16

prediction
‣ (1 << 27): Disable Inter L0 partition 16x8

prediction
‣ (1 << 28): Disable Inter L0 partition 8x16

prediction
‣ (1 << 29): Disable Inter L0 partition 8x8

prediction

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 573

Embedded Software Components

H.264 VUI Conguration Parameters

The following table describes the H.264 VUI conguration parameters:

Parameter Description

VUIAspectRatioInfoPresentFlag A value of 1 indicates that the aspect ratio
information is present.

VUIAspectRatioIDC Species the sample aspect ratio of the luma
samples.

VUIAspectSARWidth Species the horizontal size of the sample
aspect ratio.

VUIAspectSARHeight Species the vertical size of the sample aspect
ratio.

VUIOverscanInfoPresentFlag A value of 1 indicates that overscan info is
present.

VUIOverscanInfo Species overscan information, as dened in
Annex E of the ITU-T Specication.

VUIVideoSignalTypePresentFlag If set to 1, species that Video Format, Video
Full Range Flag, and Color Description Present
Flag are present.

VUIVideoFormat Species the source video format as dened in
Annex E of the ITU-T Specication.

VUIVideoFullRangeFlag Species the output range of the luma and
chroma samples, as dened in Annex E of the
ITU-T Specication.

VUIColourDescriptionPresentFlag A value of NVMEDIA_TRUE indicates that the
color primaries, transfer characteristics, and
color matrix are present.

VUIColourPrimaries Species the color primaries for converting
to RGB, as dened in Annex E of the ITU-T
Specication.

VUITransferCharacteristics Species the opto-electronic transfer
characteristics to use, as dened in Annex E of
the ITU-T Specication.

VUIMatrixCoecients Species the matrix coecients used to derive
the luma and chroma from the RGB primaries, as
dened in Annex E of the ITU-T Specication.

H.264 Payload Conguration Parameters

The following describes the H.264 payload conguration parameters:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 574

Embedded Software Components

Parameter Description

H264PayloadSize SEI payload 1 size in bytes. SEI payload must
be byte aligned, as described in Annex D of the
H.264 Specication.

H264PayloadType SEI payload 1 types and syntax is available in
Annex D of the H.264 Specication.

H264Payload Payload 1 data.

H.264 Per-Frame Encode Conguration Parameters

The following table describes the H.264 per-frame encode conguration parameters.
These are in addition to the per-frame encode conguration parameters. These
parameters must be sent on a per-frame basis.

Parameter Description

H264PayloadArraySize Size of Payload Array.

H264PayloadArrayIndexes Array of the Payload section indexes to be used.

H.265 Conguration Parameters

The following table describes the H.265 conguration parameters:

Parameter Description

H265Prole
Supported proles are:

1: Main prole (supported)

H265Level Species the encoding level. It is recommended
that the client set the level to 0 to enable the
NvMedia Encode interface to select the correct
level.

H265EncodeQuality Species the encode quality
0 = NVMEDIA_ENCODE_QUALITY_L0
1 = NVMEDIA_ENCODE_QUALITY_L1

recommended quality setting for H264
 is NVMEDIA_ENCODE_QUALITY_L0

To be deprecated in future releases

H265EnableNewPreset Set to NVMEDIA_TRUE to use new encoder
preset APIs (H265EncPreset)

H265EncPreset Species the encoder preset to use
0x0 = NVMEDIA_ENCODE_QUALITY_HQ
0x10 = NVMEDIA_ENCODE_QUALITY_HP
0x20 = NVMEDIA_ENCODE_QUALITY_UHP

recommend quality setting is
 NVMEDIA_ENCODE_QUALITY_HP

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 575

Embedded Software Components

Parameter Description

H265Features
Species bitwise OR'ed conguration feature
ags. The ags are:

‣ ENABLE_OUTPUT_AUD (1 << 0)

‣ ENABLE_INTRA_REFRESH (1 << 1)

‣ ENABLE_DYNAMIC_SLICE_MODE (1 << 2)

‣ ENABLE_CONSTRANED_ENCODING (1 << 3)

‣ ENABLE_LOSSLESS_COMPRESSION (1 << 4)

‣ ENABLE_SLICE_LEVEL_OUTPUT (1 << 5)

H265IdrPeriod Species the IDR interval. If not set, defaults to
the GOP Length. A low latency application client
can set the IDR interval to 0 so that IDR frames
are not inserted automatically.

H265RepeatSPSPPSMode
Species the frequency of writing Sequence and
Picture parameters.

Available values are:

‣ 0x0: Repeating SPS/PPS is disabled
‣ 0x1: SPS/PPS is repeated for every intra

frame
‣ 0x2: SPS/PPS is repeated for every IDR

frame

H265NumSliceCountMinus1 One less than the number of slices desired per
frame.

H265DisableDeblockingFilterIDC Deblocking lter mode. Possible values are 0 and
1.

H265IntraRefreshPeriod
The interval between successive intra refreshes,
assuming:

‣ Intra refresh is enabled.
‣ one time intra refresh conguration is

desired.

If H265IntraRefreshPeriod is specied, the
rst IDR is encoded and no more key frames are
encoded.

The client must set EPPictureType to 6 for the
rst picture of every intra refresh period.

H265IntraRefreshCnt Species the number of frames over which intra
refresh occurs.

H265MaxSliceSizeInBytes Species the maximum slice size, in bytes, for
dynamic slice mode. The client must enable
dynamic slice mode to use this parameter.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 576

Embedded Software Components

H.265 VUI Conguration Parameters

This table describes the H.265 VUI conguration parameters:

Parameter Description

H265VUIAspectRatioInfoPresentFlag A value of 1 indicates that aspect ratio
information is present.

H265VUIAspectRatioIDC Species the value of the sample aspect ratio of
the luma samples.

H265VUIAspectSARWidth Horizontal size of the sample aspect ratio.

H265VUIOverscanInfoPresentFlag A value of 1 indicates that overscan information
is present.

H265VUIOverscanInfo Species overscan information, as dened in
Annex E of the ITU-T Specication.

H265VUIVideoSignalTypePresentFlag A value of 1 indicates that Video Format, Video
Full Range Flag, and Color Description Present
Flag are present.

H265VUIVideoFormat Species the source video format, as dened in
Annex E of the ITU-T Specication.

H265VUIVideoFullRangeFlag Species the output range of the luma and
chroma samples, as dened in Annex E of the
ITU-T Specication.

H265VUIColourDescriptionPresentFlag A value of NVMEDIA_TRUE indicates that the
color primaries, transfer characteristics, and
color matrix are present.

H265VUIColourPrimaries Species color primaries for converting to RGB,
as dened in Annex E of the ITU-T Specication.

H265VUITransferCharacteristics Species the opto-electronic transfer
characteristics to use, as dened in Annex E of
the ITU-T Specication.

H265VUIMatrixCoecients Species the matrix coecients to use to derive
the luma and chroma from the RGB primaries, as
dened in Annex E of the ITU-T Specication.

H.265 Payload Conguration Parameters

The following table describes the H.265 payload conguration parameters:

Parameter Description

H265PayloadSize SEI payload 1 size in bytes. SEI payload must
be byte aligned, as described in Annex D of the
ITU‑T Specication.

H265PayloadType SEI payload 1 types and syntax are available in
Annex D of the ITU‑T Specication.

H265Payload Payload 1 data.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 577

Embedded Software Components

H.265 Per-Frame Encode Conguration Parameters

The following table describes the H.265 per-frame encode conguration parameters.
These parameters must be sent on a per frame basis.

Parameter Description

EPH265PicParamsIndex Codec specic parameters:
EncodePicH265_Params section index to be
used.

H265PayloadArrayIndexes Array of Payload section indexes to be used.

H265PayloadArraySize Size of Payload Array.

VP9 Conguration Parameters

This table describes the VP9 conguration parameters:

Parameter Description

VP9Features
Species bitwise OR'ed conguration feature
ags. The ags are:

‣ ENABLE_LOOP_FILTER_PARAMS (1 << 0),
‣ ENABLE_QUANTIZATION_PARAMS (1 << 1),
‣ ENABLE_TRANSFORM_MODE (1 << 2),
‣ ENABLE_HIGH_PRECISION_MV (1 << 3),
‣ DISABLE_ERROR_RESILIENT (1 << 4),
‣ ENABLE_PROFILING (1 << 5),
‣ INIT_QP (1 << 6),
‣ QP_MAX (1 << 7)

VP9IdrPeriod
Species the IDR interval. If not set,the interval
will equal the GOP length. The low-latency
application client can set the IDR interval to 0 so
that IDR frames are not inserted automatically.

Default value = 17

EPlog2NumTileInRow Species the log of number of tiles in a row.

EPlog2NumTileInCol Species the log of number of tiles in a column.

EPNumEpCores
Species the number of Entropy Cores to be
used. Supported values – 1 and 4.

Default value – 1.

4 EP Cores are only supported for multiple tile
conguration.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 578

Embedded Software Components

VP9/AV1 Per-Frame Encode Conguration Parameters

The following describes the VP9/AV1 per-frame encode conguration parameters. These
parameters must be sent on a per frame basis.

Parameter Description

EPVP9PicParamsIndex Codec specic parameters:
EncodePicVP9_Params section index to be used.

AV1 Conguration Parameters

The following table describes the AV1 conguration parameters:

Parameter Description

EPEnableTileEncode Enable encoding with multiple tile conguration.

EPlog2NumTileInRow Species the log of number of tiles in a row.

EPlog2NumTileInCol Species the log of number of tiles in a column.

AV1EnableInternalHighBitDepth Enables internal high bit depth. When enabled,
input YUV is 8 bit, but the encoded bitstream is
10 bit.

AV1EnableSsimRdo Enables SSIM-based rate distortion optimization

AV1FrameRestorationType Species the frame restoration type.

AV1EnableUniCompound Enables the uni-compound for P frames.

AV1IdrPeriod
Species the IDR interval. If not set, the
interval is equal to the GOP length. Low latency
application client can set the IDR interval to 0 so
that IDR frames are not inserted automatically.

Default value = 17

AV1EncodeQuality
Species the encode quality setting. Supported
values:

1 – HP

2 - UHP

To be deprecated in future releases

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 579

Embedded Software Components

Parameter Description

AV1EnableNewPreset Set to NVMEDIA_TRUE to new encoder preset
APIs (AV1EncPreset)

AV1EncPreset Species the encoder preset to use
0x10 = NVMEDIA_ENCODE_QUALITY_HP
0x20 = NVMEDIA_ENCODE_QUALITY_UHP

recommend quality setting is
 NVMEDIA_ENCODE_QUALITY_HP

AV1Features
Species bitwise OR'ed conguration feature
ags. The ags are:

‣ ENABLE_QUANTIZATION_PARAMS (1 << 1),
‣ DISABLE_CDF_UPDATE (1 << 2),
‣ INIT_QP (1 << 6),
‣ QP_MAX (1 << 7)

Conguration Parameters for Dynamic Features

The following dynamic features can be congured using additional input les:

Dynamic Resolution Change (DRC)

This feature can be enabled by providing the DynamicResolutionFileName parameter, which
should be set to the path of a le containing the resolution change information. Each line
of the le should be formatted as per the following structure:
<frame_id> <width> <height>

For each line in the preceding conguration le, the specied resolution will take eect for
all the frames starting from the specied frame_id until the frame_id specied on the next
line (if any) or the end of the encode session, whichever occurs rst.

The DRC feature can be applied in two dierent modes, as described below:

DRC without buer reallocation

By default, the DRCBuerRealloc parameter is set to 0, to indicate that buer reallocation
is disabled.

‣ The test app allocates all buers at the maximum DRC resolution specied by
EncodeWidth x EncodeHeight, and reads all the frames of the input YUV le at the
same max resolution.

‣ Within each input frame, the actual frame to be encoded should be positioned by
aligning to the top-left corner, with the rest of the frame buer being lled with black
padding, to match the maximum DRC resolution.

DRC with buer reallocation

If the DRCBuerRealloc parameter is set to 1, then the other parameters should be set as
per the following requirements:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 580

Embedded Software Components

‣ The DynamicResolutionFileName parameter should be congured as per the preceding
description; and the specied le should contain only one line, because only one
resolution change can be supported using the buer reallocation approach.

‣ The InputFile parameter should be used to identify the input YUV le for the initial
resolution, whereas the InputFileDRC parameter should be used to identify the input
YUV le after the resolution change.

If Buer reallocation is congured as above, then the Dynamic Resolution Change feature
is applied as per the following process:

‣ The test app pre-allocates buers for the initial resolution as well as the changed
resolution after DRC.

‣ The test app starts by reading frames from the InputFile for encoding at the initial
resolution.

‣ When the processing reaches the frame_id specied on the rst (and only) line of
DynamicResolutionFileName, the test app switches to using the buers allocated for
the changed resolution.

‣ The test app now starts reading the subsequent frames from InputFileDRC le, until
the end of the encode session.

Dynamic Bitrate Change

This feature can be enabled by providing the BitrateFileName parameter, which should
be set to the path of a le containing the bitrate change information. Each line of the le
should be formatted as per the following structure:
<frame_id> <bitrate_bps> <vbv_buffer_size_bits>

For each line in the above conguration le, the specied bitrate settings will take eect
for all the frames starting from the specied frame_id until the frame_id specied on the
next line (if any) or the end of the encode session, whichever occurs rst.

QP delta map

This feature can be enabled by providing the QPDeltaMapFileBaseName parameter,
which should be set to the basename of a path containing input QP delta les for
each frame. The lename of each frame's QP delta map should be as per the format
<QPDeltaMapFileBaseName>_%05d.bin where %05d will be replaced with the frame index
starting from 1.

Usage guide for Dynamic Features

The following guidelines are provided as recommended best practices while using the
above features; in particular to improve the rate control characteristics of the encoding. In
this section, "dynamic parameter" refers to any parameter that can be modied using the
preceding features; such as bitrate, resolution, and QP delta map.

1. After changing any dynamic parameter, there should be a gap of at least 3 frames
before the same or dierent dynamic parameter is changed. This will allow the rate
control algorithm to stabilize at the current operating point, and avoid bitrate overows.

2. While applying DRC, the Encode Conguration Parameters EPEncodeWidth,
EPEncodeHeight should be set to the maximum target resolution that would be applied

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 581

Embedded Software Components

during the encode session. In addition, the encoding should always start with this
maximum target resolution; in other words, DRC should not be applied to the rst
frame of the session.

3. Although DRC supports changes from any initial resolution to any new target
resolution, it is recommended to perform a gradual resolution change, by applying
not more than 2x increase or decrease in the width and height of the resolution at
a time. For example, to instead of changing the resolution from 540p(960x540) to
4k(3840x2160), a smoother rate control can be achieved by rst switching from 540p
to 1080p(1920x1080), and then after 3 frames to 4k.

4. The dimensions of QP delta map for each frame should be computed as follows:
#define ALIGN_256(x) (x << 8)
frameWidthInCTB = (EPEncodeWidth + CTB_SIZE - 1)/CTB_SIZE
frameHeightInCTB = (EPEncodeHeight + CTB_SIZE - 1)/CTB_SIZE
QPDeltaBufferSizeInBytes = ALIGN_256(frameWidthInCTB) * (frameHeightInCTB + 2)

where CTB_SIZE=32, and EPEncodeWidth, EPEncodeHeight are as per the Encode
Conguration Parameters. Each entry in the QP delta map le should be a signed 8-
bit integer, denoting the QP delta value for a CTB of 32x32 pixels. The frame should be
scanned row-wise from the top-left to bottom-right.

5. In particular, the dimensions of the QP delta map buer do not change even while
applying Dynamic Resolution Change. In this case,, the QP delta map values should be
arranged as if the actual frame to be encoded is positioned by aligning to the top-left
corner, with the rest of the frame buer being lled with black padding, to match the
maximum DRC resolution.

6. QP delta map should not contain any values with a magnitude exceeding 5. In addition,
the average value of QP delta map should be close to zero, for each row of CTBs within
the frame. This allows a uniform allocation of the bits throughout the frame.

7. It is possible to update multiple dynamic parameters at the same frame; and it may also
be necessary to take advantage of the same. For example, the target bitrate should
be adjusted based on the current resolution, as well as the complexity of the encoding
content. Increasing the resolution without increasing the target bitrate causes a
reduction in video quality.

5.7.6.7 Image LDC (nvmimg_ldc)
The NvMedia Image LDC sample application, nvmimg_ldc, demonstrates how to use the
NvMedia Lens Distortion Correction (LDC) APIs to perform Geometric Transformation
(GEOTRANS) and Temporal Noise Reduction (TNR). The sample uses the NVIDIA® VIC
hardware engine.

The application can read YUV les and perform GEOTRANS and TNR on input YUV les.
It uses a conguration le that species various settings. It can also write the output
surfaces as YUV les.

5.7.6.7.1 Running the Sample Application
This topic describes how to run the sample application.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 582

Embedded Software Components

To run the sample application

‣ Create a conguration le. You can use the ldc_*.conf les packaged in the platform
as references.

‣ Follow the steps in Building and Running the NvMedia Samples.

‣ Launch the application:

$ nvmimg_ldc -cf /path/to/config/file.conf -v 3

5.7.6.7.2 Conguration File Parameters
Sample conguration les (.conf les) are available in platform install directory under:
samples/nvmedia/img_ldc/

A conguration le contains parameters with values, groups or sections of parameters,
and comments.

5.7.6.7.2.1 General Conguration Parameters

This table describes the general conguration parameters:

Parameter Description Type and Range

versionMajor Supported API version major
number.

uchar: [3, 3]

versionMinor Supported API version minor
number.

uchar

numFrames Number of frames to be
processed.

uint: [1,f] where f is the number
of frames in the input le]

inputFile Name of input YUV le. string: maximum 1024
characters

outputFile Name of output YUV le. string: maximum 1024
characters

xSobelFile Outputs an xSobel le. string: maximum 1024
characters

xSobelDSFile Outputs a 4×4 downsampled
xSobel le.

string: maximum 1024
characters

srcWidth Width of source surface. ushort: [64, 16384]

srcHeight Height of source surface. ushort: [16, 16384]

srcRectx0 Left X coordinate of source
rectangle.

ushort: [0, srcWidth]

srcRecty0 Top Y coordinate of source
rectangle.

ushort: [0, srcHeight]

srcRectx1 Right X coordinate of source
rectangle.

ushort: [0, srcWidth]

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 583

Embedded Software Components

Parameter Description Type and Range

srcRecty1 Bottom Y coordinate of source
rectangle.

ushort: [0, srcHeight]

dstWidth Width of destination surface. ushort: [64, 16384]

dstHeight Height of destination surface. ushort: [16, 16384]

dstRectx0 Left X coordinate of destination
rectangle.

ushort: [0, dstWidth)

dstRecty0 Top Y coordinate of destination
rectangle.

ushort: [0, dstHeight)

dstRectx1 Right X coordinate of
destination rectangle.

ushort: [0, dstWidth)

dstRecty1 Bottom Y coordinate of
destination rectangle.

ushort: [0, dstHeight)

enableGeotrans Enables Geotrans processing uint: [0, 1]

enableMaskMap Enables Bitmask feature uchar: [0, 1]

enableTnr Enables TNR uchar: [0, 1]

generateWarpMap Enables warp map
autogenerating based on the
camera model.

uint: [0, 1]

applyWarpMap Enables reading ready warp
map from the le.

uint: [0, 1]

writeXSobel Enables writing xSobel surface
to the le

uint: [0, 1]

writeXSobelDS Enables writing downsampled
xSobel surface to the le

uint: [0, 1]

5.7.6.7.2.2 Geometric Transformation Parameters

This table describes the Geometric Transformation Parameters:

Parameter Description Range

lter
Filter quality. Supported values
are:

0: LOW

1: MEDIUM

2: HIGH

uint: [0, 2]

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 584

Embedded Software Components

Parameter Description Range

model
Lens Model. Supported values
are:

0: POLYNOMIAL

1: FISHEYE_EQUIDISTANT

2: FISHEYE_EQISOLID

3: FISHEYE_ORTHOGRAPHIC

4: FISHEYE_STEREOGRAPHIC

uint: [0, 4]

k1

k2

k3

k4

k5

k6

Radial distortion coecients. oat

p1

p2

Tangential distortion
coecients.

oat

fx

fy

Camera focal length in X and Y-
axis, measured in pixel units.

oat

cx

cy

Camera optical center in X and
Y-axis, measured in pixel units.

oat

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 585

Embedded Software Components

Parameter Description Range

R00

R01

R02

R10

R11

R12

R20

R21

R22

Rotation matrix elements. oat

T0

T1

T2

Translation vector elements. oat

targetKfx

targetKfy

Target camera focal length in
X and Y-axis, measured in pixel
units.

oat

targetKcx

targetKcy

Target camera optical center in
X and Y-axis, measured in pixel
units.

oat

ptMatrix00

ptMatrix01

ptMatrix02

ptMatrix10

ptMatrix11

ptMatrix12

ptMatrix20

ptMatrix21

ptMatrix22

Perspective matrix elements. oat

numHorRegion Number of horizontal regions. uint: [1, 4]

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 586

Embedded Software Components

Parameter Description Range

numVerRegion Number of vertical regions. uint: [1, 4]

horRegionWidth0

horRegionWidth1

horRegionWidth2

horRegionWidth3

Widths of regions. uint

verRegionHeight0

verRegionHeight1

verRegionHeight2

verRegionHeight3

Heights of regions. uint

log2horSpace0

log2horSpace1

log2horSpace2

log2horSpace3

Horizontal interval between the
control points in regions in log2
space.

uint

log2verSpace0

log2verSpace1

log2verSpace2

log2verSpace3

Vertical interval between the
control points in regions in log2
space.

uint

bitMaskWidth Width of the bitmask surface. uint

bitMaskHeight Height of the bitmask surface. uint

bitMaskFile Pathname of a le containing a
bitmask map.

string: maximum 1,024
characters

maskedPixelFillColor Indicates whether to ll the
masked pixels with specied
color.

uint: [0,1]

maskY Y channel value of the default
color.

oat: [0.0,1.0]

maskU U channel value of the default
color.

oat: [0.0,1.0]

maskV V channel value of the default
color.

oat: [0.0,1.0]

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 587

Embedded Software Components

5.7.6.7.2.3 Warp Map Parameters

This table describes the parameters that specify a user-provided warp map for geometric
transformation.

Parameter Description Range

numControlPoints Total number of control points. uint

warpMapFile
Path to the .map le containing
the mapping value of each
control point.

The size of the le in bytes
must be

numControlPoints *

sizeof(float) * 2.

string: maximum 1024
characters

5.7.6.7.2.4 TNR Parameters

The following table describes Temporal Noise Reduction parameters.

Parameter Description Range

updateTnrParams Indicates whether to update
the TNR parameters for each
frame.

uint: [0, 1]

spatialSigmaLuma Sigma of the luma for spatial
lter.

uint

spatialSigmaChroma Sigma of the chroma for spatial
lter.

uint

rangeSigmaLuma Sigma of the luma for range
lter.

uint

rangeSigmaChroma Sigma of the chroma for range
lter.

uint

sadMultiplier SAD multiplier parameter. oat: [0.0,1.0]

sadWeightLuma Weight of luma when
calculating SAD.

oat: [0.0,1.0]

alphaSmoothEnable Enables or disables the spatial
alpha smooth.

uint: [0,1]

alphaIncreaseCap Temporal alpha restrict increase
capability.

oat: [0.0,1.0]

alphaScaleIIR Alpha scale IRR for strength. oat: [0.0,1.0]

alphaMaxLuma Max luma value for alpha clip
calculation.

oat: [0.0,1.0]

alphaMinLuma Min luma value for alpha clip
calculation.

oat: [0.0,1.0]

alphaMaxChroma Max chroma value for alpha clip
calculation.

oat: [0.0,1.0]

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 588

Embedded Software Components

Parameter Description Range

alphaMinChroma Min chroma value for alpha clip
calculation.

oat: [0.0,1.0]

betaX1 BetaX1 in Beta calculation. oat: [0.0,1.0]

betaX2 BetaX2 in Beta calculation. oat: [0.0,1.0]

maxBeta Max Beta threshold in Beta
calculation.

oat: [0.0,1.0]

minBeta Min Beta threshold in Beta
calculation.

oat: [0.0,1.0]

5.7.6.7.3 Command Line Options
This is the application’s command syntax:

$ nvmimg_ldc [-h] [-v] [-cf config.conf]

Required Options

The following table describes required command line options:

Option Description Default

-cf Species the conguration le,
including its full path.

(Not Applicable)

Other Options

The following table describes optional command line options:

Option Description Default

-h Displays the application’s help
text.

(Not Applicable)

-v <level>
Logging level. Value may be:

‣ Errors
‣ Warnings
‣ Info
‣ Debug

0

5.7.6.7.4 Example
This example demonstrates how to call nvimg_ldc to perform an operation.

To copy input into output:

$ nvmimg_ldc -cf ldc_basic.conf -v 3

Input and output le paths must be edited in the cong le.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 589

Embedded Software Components

5.7.6.8 Image 2D (nvmimg_2d)
The NvMedia Image 2D sample application nvmimg_2d demonstrates how to use the
NvMedia Image 2D API to execute a single NvMedia2DCompose test case dened in .cfg
format for NvMediaImage conversion.

The application requires you to provide command line input as well as a group of settings
as dened in the conguration le.

Usage

The command syntax is:

$ nvmimg_2d <config filename>

Conguration File Structure

The conguration le structure consists of parameters, assigned values, and comments.
Parameter values are assigned with a line such as Parameter = Value in the conguration
le. Lines starting with # are comments.

The sample application contains example conguration les (.cfg).

Surface Data File Format

The input and output les (congured with SrcLayerXInputFile and DstOutputFile
conguration parameters) contain the surface pixel data as binary dump. The exact
layout of the data is determined by the le I/O mode and the surface format set with the
conguration parameters.

Conguration Parameters

The following table describes the conguration parameters.

The X in parameters starting with SrcLayerX is an integer in range 1-16.

The Y in parameters containing the string PlaneY is an integer in range 1-3.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 590

Embedded Software Components

Parameter Description Type Range

FileIOMode
Denes how the
surface data in input
and output les are
interpreted.

Valid values:

‣ ‣ NvSci

‣ LineByLine

With NvSci,
NvSciBufObjGetPixels()

and
NvSciBufObjPutPixels()

functions are used.
This means that
for all YUV surface
formats, including
planar, semiplanar and
interleaved, the surface
data le format has
planar layout with the
planes in Y, U, V order.

With LineByLine, a
simple copy of the
surface data occurs
line-by-line, discarding
any padding.

Optional. If not set,
defaults to NvSci.

STRING See description

SrcLayerXInputFile File where the
surface data for the
source layer is read.
Mandatory if the layer
is used.

STRING Max 256 char

SrcLayerXLayout
Memory layout to use
for the source surface.

Valid values:

‣ BlockLinear
‣ PitchLinear

Mandatory if the layer
is used.

STRING See description

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 591

Embedded Software Components

Parameter Description Type Range

SrcLayerXScanType
Scan type to use for
the source surface.

Valid values:

‣ Progressive
‣ Interlace

Mandatory if the layer
is used.

STRING See description

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 592

Embedded Software Components

Parameter Description Type Range

SrcLayerXPlaneYColorFormat
Color format to use
for the source surface
plane.

Valid values:

‣ U8V8
‣ U8_V8
‣ V8U8
‣ V8_U8
‣ U10V10
‣ V10U10
‣ U12V12
‣ V12U12
‣ U16V16
‣ V16U16
‣ Y8
‣ Y10
‣ Y12
‣ Y16
‣ U8
‣ V8
‣ U10
‣ V10
‣ U12
‣ V12
‣ U16
‣ V16
‣ A8Y8U8V8
‣ Y8U8Y8V8
‣ Y8V8Y8U8
‣ U8Y8V8Y8
‣ V8Y8U8Y8
‣ A16Y16U16V16
‣ A8
‣ B8G8R8A8
‣ A8R8G8B8
‣ A8B8G8R8
‣ A2R10G10B10
‣ A16B16G16R16

Mandatory if the plane
is used.

STRING See description

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 593

Embedded Software Components

Parameter Description Type Range

SrcLayerXPlaneYColorStandard
Color standard to use
for the source surface
plane.

Valid values:

‣ SRGB
‣ REC601_SR
‣ REC601_ER
‣ REC709_SR
‣ REC709_ER
‣ REC2020_RGB
‣ REC2020_SR
‣ REC2020_ER
‣ YcCbcCrc_SR
‣ YcCbcCrc_ER
‣ SENSOR_RGBA
‣ REQ2020PQ_ER

Optional. If set for one
plane, set the value
for all planes of the
surface.

STRING See description

SrcLayerXPlaneYWidth Width of the source
surface plane.
Mandatory if the plane
is used.

UINT
16 - 16384

16 - 8192 if color
format with 16-bit
components is used.

SrcLayerXPlaneYHeight Height of the source
surface plane.
Mandatory if the plane
is used.

UINT
16 - 16384

16 - 8192 if color
format with 16-bit
components is used.

SrcLayerXSrcRectLeft The source layer’s
source rectangle left
coordinate. Optional.
If set, all layer’s source
rectangle coordinates
must be set.

UINT 0 – source surface
width

SrcLayerXSrcRectTop The source layer’s
source rectangle top
coordinate. Optional.
If set, all layer’s source
rectangle coordinates
must be set.

UINT 0 – source surface
height

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 594

Embedded Software Components

Parameter Description Type Range

SrcLayerXSrcRectRight The source layer’s
source rectangle right
coordinate. Optional.
If set, all layer’s source
rectangle coordinates
must be set.

UINT 0 – source surface
width

SrcLayerXSrcRectBottomThe source layer’s
source rectangle
bottom coordinate.
Optional. If set, all
layer’s source rectangle
coordinates must be
set.

UINT 0 – source surface
height

SrcLayerXDstRectLeft The source layer’s
destination rectangle
left coordinate.
Optional. If set, all
layer’s destination
rectangle coordinates
must be set.

UINT 0 – destination surface
width

SrcLayerXDstRectTop The source layer’s
destination rectangle
top coordinate.
Optional. If set, all
layer’s destination
rectangle coordinates
must be set.

UINT 0 – destination surface
height

SrcLayerXDstRectRight The source layer’s
destination rectangle
right coordinate.
Optional. If set, all
layer’s destination
rectangle coordinates
must be set.

UINT 0 – destination surface
width

SrcLayerXDstRectBottomThe source layer’s
destination rectangle
bottom coordinate.
Optional. If set, all
layer’s destination
rectangle coordinates
must be set.

UINT 0 – destination surface
height

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 595

Embedded Software Components

Parameter Description Type Range

SrcLayerXTransform
Transformation to
apply for the source
layer.

Valid values:

‣ None
‣ Rotate90
‣ Rotate180
‣ Rotate270
‣ FlipHorizontal
‣ InvTranspose
‣ FlipVertical
‣ Transpose

Optional

STRING See description

SrcLayerXFiltering
Filtering to apply for
the source layer.

Valid values:

‣ O
‣ Low
‣ Medium
‣ High

Optional

STRING See description

SrcLayerXBlending
Blending to apply for
the source layer.

Valid values:

‣ Disabled
‣ ConstantAlpha
‣ StraightAlpha
‣ PremultipliedAlpha

Optional

STRING See description

SrcLayerXBlendingConstantAlphaConstant alpha factor
to use in blending.
Mandatory if blending
is congured for the
layer.

FLOAT 0.0 – 1.0

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 596

Embedded Software Components

Parameter Description Type Range

DstOutputFile File where the
destination surface
data is written to.
Mandatory.

STRING Max 256 char

DstLayout Memory layout
to use for the
destination surface.
See SrcLayerXLayout
for valid values.
Mandatory.

STRING See description

DstScanType Scan type to use
for the destination
surface. See
SrcLayerXScanType
for valid values.
Mandatory.

STRING See description

DstPlaneYColorFormat Color format to use
for the destination
surface plane. See
SrcLayerXPlaneYColorFormat
for valid values.
Mandatory if the plane
is used.

STRING See description

DstPlaneYColorStandard Color standard to use
for the destination
surface plane. See
SrcLayerXPlaneYColorStandard
for valid values.
Optional. If set for one
plane,the value must
be set for all planes of
the surface.

STRING See description

DstPlaneYWidth Width of the
destination surface
plane. Mandatory if the
plane is used.

UINT
16 - 16384

16 - 8192 if color
format with 16-bit
components is used.

DstPlaneYHeight Height of the
destination surface
plane. Mandatory if the
plane is used.

UINT
16 - 16384

16 - 8192 if color
format with 16-bit
components is used.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 597

Embedded Software Components

5.7.6.9 NvMedia IOFA (nvm_iofa_stereo_sci and
nvm_iofa_ow_sci)
Two sample applications, nvm_iofa_stereo_sci and nvm_iofa_flow_sci, demonstrate
how to use the NvMedia Optical Flow Accelerator (OFA) APIs to perform optical ow/stereo
matching. The sample uses the NVIDIA

®
 OFA hardware engine.

nvm_iofa_stereo_sci can read Left View and Right View YUV les and perform stereo
matching on input stereo pair. The sample application outputs one stereo disparity value
for each 1x1/2x2/4x4/8×8 input block on the output surface. Grid size controls input block
size, which is sample application’s argument.

The output stereo disparity format is xed signed 10.5 and range of disparity is xed [0,
127] or [0, 255]. Divide the output values by 32 to get a disparity value in terms of pixel
units.

nvm_iofa_flow_sci can read input YUV le and perform optical ow estimation on input
YUV le. The sample outputs one ow vector value for each 1x1/2x2/4x4/8×8 input
block on the output surface. Input block size is controlled by grid size, which is sample
application’s argument.

The output ow vector format is xed signed 10.5 [Range -1024 to 1023]. For optical ow,
divide each component of ow vector values by 32 to get the ow vector in terms of pixel
units.

Architecture

The following gure shows the architecture of the nvm_iofa_stereo_sci and
nvm_iofa_flow_sci application.

To run the sample:

1. Follow the steps in Building and Running the NvMedia Samples.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 598

Embedded Software Components

2. Launch the application:

$ nvm_iofa_stereo_sci -h -v 3

$ nvm_iofa_flow_sci -h -v 3

Command Line Options for nvm_iofa_stereo_sci

The sample application command syntax is as follows:
$ nvm_iofa_stereo_sci [options]

The command line options are as follows.

String parameters, such as pathnames, have a maximum length of 1024 characters.
Restrictions on other types of parameters are noted individually.

Required Command Line Options

Option Parameter Description

-l Left view le name Species left view le name
with full path.

-r Right view le name Species right view le name
with full path.

-res <w>x<h>
Species the input surface
dimensions, where <w>
represents width and <h>
represents height. Width and
height are separated by a letter
‘x’ with no spaces, for example:

-res 640x480

<w> has a range of [32, 8192].

<h> has a range of [32, 8192].

Optional Command Line Options

Option Parameter Description

-h n/a Displays guidance on using this
application.

-version n/a Get NvMediaIOFA Major/Minor
version

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 599

Embedded Software Components

Optional Command Line Options

Option Parameter Description

-v
0: Errors (default)

1: Warnings

2: Info

3: Debug

Logging level.

-gridSize
0: Grid Size 1x1

1: Grid Size 2x2

2: Grid Size 4x4

3: Grid Size 8x8

Output Grid Size set by
Application.

-o Disparity Output le name Species disparity output le
name with full path.

-co Cost Output le name Species cost output le name
with full path.

-stereocrcgen A pathname of a le to be
created with the letype .txt

Generates CRC values of
disparity map in the specied
le.

-stereocrcchk A pathname of an existing le
with the letype .txt

Checks CRC values generated
from disparity map against
values from the specied le.

-costcrcgen A pathname of a le to be
created with the letype .txt

Generates CRC values of cost
surface in the specied le.

-costcrcchk A pathname of an existing le
with the letype .txt

Checks CRC values generated
from cost surface against
values from the specied le.

-if
0: YV12 (default)

1: IYUV

Input YUV le format.

-chromaFormat
0 : 400

1 : 420

2 : 422

3 : 444

Chroma Format IDC of input
yuv

-ndisp
128

256

Max Disparity value in terms of
pixels

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 600

Embedded Software Components

Optional Command Line Options

Option Parameter Description

-rlSearch
0: Disable reverse search
(default)

1: Enable reverse search

Enable reverse search
generates right view disparity
map.

-frames An integer Species the number of input
frames to be processed

-inputBuering
1 to 8

default (1)

Input YUV pair buering

-prole
0: Disable Prole

1: Enable Prole with Async
mode

2: Enable Prole with Sync
mode

Enable OFA proling to get SW
and HW overhead

-etype 0: Stereo Disparity HQ mode
(default)

Species stereo matching
quality mode.

-bit_depth
8: 8 bits (default)

10: 10 bits

12: 12 bits

16: 16 bits

Number of bits per
components on input surfaces.

-timeout An Integer (default – 30ms) timeout value to wait for OFA
operation to nish in ms

-p1 An integer SGM penalty1 value

-p2 An integer SGM penalty2 value

-diag
0: Disable diagonal mode

1: Enable diagonal mode

SGM diagonal mode

-adaptiveP2
0: Disable adaptive P2

1: Enable adaptive P2

SGM adaptive p2 mode enabled

-alpha 0 to 3 alpha value to use along with
adaptiveP2

-pass 1 to 3 Num Passes of SGM

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 601

Embedded Software Components

Optional Command Line Options

Option Parameter Description

-frameIntervalInMS An Integer Time interval between two
stereo pair in milisec.

-roiMode
0: Disable ROI mode (default)

1: Enable ROI mode

ROI (Region of interest) mode

-roiPosXStartDiv32

-roiPosYStartDiv8

-roiWidthDiv32

-roiHeightDiv8

An Integer
ROI parameters

ROI top-left x position (in 32-
pixel unit)

ROI top-left y position (in 8-
pixel unit)

ROI width (in 32-pixel unit)

ROI height (in 8-pixel unit)

Examples

These examples demonstrate how to call nvm_iofa_stereo_sci to perform various
operations.

‣ Stereo Disparity estimations for YUV subsampling type 420 8-bit input
$ nvm_iofa_stereo_sci -l left_inputfile -r rightinputfile -res wxh -o outputfile -
inputBuffering 1 -frames 100 -v 3

The application performs stereo matching according to the parameters in the
command line.

‣ Stereo Disparity estimation for YUV subsampling type 400 10-bit input
$ nvm_iofa_stereo_sci -l leftinputfile -r rightinputfile -res wxh -o outputfile -
inputBuffering 3 -chromaFormat 0 -bit_depth 10 -frames 100 -v 3

The application performs stereo matching according to the parameters in the
command line.

‣ Stereo Disparity estimation for YUV subsampling type 444 16-bit input

$ nvm_iofa_stereo_sci -l leftinputfile -r rightinputfile -res wxh -o outputfile -
inputBuffering 2 -chromaFormat 3 -bit_depth 16 -frames 100 -v 3

The application performs stereo matching according to the parameters in the
command line.

‣ Stereo Disparity estimation for YUV subsampling type 420 8-bit input with CRC
generation
$ nvm_iofa_stereo_sci -l leftinputfile -r rightinputfile -res wxh -o outputfile -
inputBuffering 2 -stereocrcgen crc.txt -frames 100 -v 3

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 602

Embedded Software Components

The application performs stereo matching according to the parameters in the
command line.

‣ Stereo Disparity estimation for YUV subsampling type 420 8-bit input with CRC
comparison
$ nvm_iofa_stereo_sci -l leftinputfile -r rightinputfile -res wxh -o outputfile -
inputBuffering 2 -stereocrcchk crc.txt -frames 100 -v 3

The application performs stereo matching according to the parameters in the
command line.

Command Line Options for nvmedia_ofa_ow

The sample application command syntax is as follows:
$ nvm_iofa_flow_sci [options]

The command line options are as follows.

String parameters, such as pathnames, have a maximum length of 1024 characters.
Restrictions on other types of parameters are noted individually.

Required Command Line Options

Option Parameter Description

-f Input le name Species input le name with
full path.

-res <w>x<h>
Species the input surface
dimensions, where <w>
represents width and <h>
represents height. Width and
height are separated by a letter
‘x’ with no spaces, for example:

-res 640x480

<w> has a range of [32, 8192].

<h> has a range of [32, 8192].

Optional Command Line Options

Option Parameter Description

-h n/a Displays guidance on using this
application.

-version n/a Get NvMediaIOFA Major/Minor
version

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 603

Embedded Software Components

Optional Command Line Options

Option Parameter Description

-v
0: Errors (default)

1: Warnings

2: Info

3: Debug

Logging level.

-gridSize
0: Grid Size 1x1

1: Grid Size 2x2

2: Grid Size 4x4

3: Grid Size 8x8

Output Grid Size set by
Application.

-o Flow Output le name Species ow output le name
with full path.

-co Cost Output le name Species cost output le name
with full path.

-owcrcgen A pathname of a le to be
created with the letype .txt

Generates CRC values of ow
map in the specied le.

-owcrcchk A pathname of an existing le
with the letype .txt

Checks CRC values generated
from ow map against values
from the specied le.

-costcrcgen A pathname of a le to be
created with the letype .txt

Generates CRC values of cost
surface in the specied le.

-costcrcchk A pathname of an existing le
with the letype .txt

Checks CRC values generated
from cost surface against
values from the specied le.

-if
0: YV12 (default)

1: IYUV

Input YUV le format.

-chromaFormat
0 : 400

1 : 420 (default)

2 : 422

3 : 444

Chroma Format IDC of input
yuv (level 0 / base layer for ow
estimation).

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 604

Embedded Software Components

Optional Command Line Options

Option Parameter Description

-pydChromaFormat
0 : 400

1 : 420 (default)

2 : 422

3 : 444

Chroma Format IDC of input
pyramid except base layer.

-frames An integer Species the number of input
frames to be processed

-inputBuering
1 to 8

default (1)

Input YUV pair buering

-prole
0: Disable Prole

1: Enable Prole with Async
mode

2: Enable Prole with Sync mode

Enable OFA proling to get SW
and HW overhead

-etype 0: Optical Flow HQ mode
(default)

Species of matching quality
mode.

-bit_depth
8: 8 bits (default)

10: 10 bits

12: 12 bits

16: 16 bits

Number of bits per
components on input surfaces.

-timeout An Integer (default – 30ms) timeout value to wait for OFA
operation to nish in ms

-p1 An integer SGM penalty1 value

-p2 An integer SGM penalty2 value

-diag
0: Disable diagonal mode

1: Enable diagonal mode

SGM diagonal mode

-adaptiveP2
0: Disable adaptive P2

1: Enable adaptive P2

SGM adaptive p2 mode enabled

-alpha 0 to 3 alpha value to use along with
adaptiveP2

-pass 1 to 3 Num Passes of SGM

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 605

Embedded Software Components

Optional Command Line Options

Option Parameter Description

-frameIntervalInMS An Integer Time interval between two
stereo pair in milisec.

-roiMode
0: Disable ROI mode (default)

1: Enable ROI mode

ROI (Region of interest) mode

-roiPosXStartDiv32

-roiPosYStartDiv8

-roiWidthDiv32

-roiHeightDiv8

An Integer
ROI parameters

ROI top-left x position (in 32-
pixel unit)

ROI top-left y position (in 8-
pixel unit)

ROI width (in 32-pixel unit)

ROI height (in 8-pixel unit)

Examples

These examples demonstrate how to call nvmedia_iofa_flow_scito perform various
operations.

‣ Flow estimation for YUV subsampling type 420 8-bit input
$ nvm_iofa_flow_sci -f inputfile -res wxh -o outputfile -inputBuffering 1 -frames
 100 -v 3

‣ The application performs ow estimation according to the parameters in the command
line.

‣ Flow estimation for YUV subsampling type 400 10-bit input
$ nvm_iofa_flow_sci -f inputfile -res wxh -o outputfile -inputBuffering 3 -
chromaFormat 0 -bit_depth 10 -frames 100 -v 3

The application performs ow estimation according to the parameters in the command
line.

‣ Flow estimation for YUV subsampling type 444 16-bit input
$ nvm_iofa_flow_sci -f inputfile -res wxh -o outputfile -inputBuffering 2 -
chromaFormat 3 -bit_depth 16 -frames 100 -v 3

The application performs ow estimation according to the parameters in the command
line.

‣ Flow estimation for YUV subsampling type 420 8-bit input with CRC generation
$ nvm_iofa_flow_sci -f inputfile -res wxh -o outputfile -inputBuffering 2 -
flowcrcgen crc.txt -frames 100 -v 3

The application performs ow estimation according to the parameters in the command
line.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 606

Embedded Software Components

‣ Flow estimation for YCbCR subsampling type 420 8-bit input with CRC comparison
$ nvm_iofa_flow_sci -f inputfile -res wxh -o outputfile -inputBuffering 2 -
flowcrcgen crc.txt -frames 100 -v 3

The application performs ow estimation according to the parameters in the command
line.

5.7.6.10 Optisense (stereosense and owsense)
Two sample applications, stereosense and owsense, are part of Optisense apps. These
applications demonstrate an end-to-end pipeline implementation of OFA use cases, which
involve pre-processing and post-processing modules along with OFA HW processing.
The post-processing and pre-processing modules of these sample applications are
implemented on CPU, which can be later ported on hardware modules such as 2D and
CUDA.

stereosense – The test application demonstrates stereo pipeline. stereosense reads the
Left View, Right View YUV les, and performs stereo matching on input stereo pairs. The
disparity output is post-processed with median ltering, nearest neighbor up-sampling,
and left-right consistency checks.

The output stereo disparity format is xed signed 10.5 and range of disparity is xed to [0,
127] or [0, 255]. Divide the output values by 32 to get a disparity value in pixels.

owsense – The test application demonstrates the optical ow pipeline. owsense reads
the input YUV le and performs optical ow estimation on the input YUV le. owsense
generates ow map for input frames provided and post-processes the ow output with
median ltering and nearest neighbor up-sampling.

Application generates an image pyramid of input and reference frames, which is provided
as input to OFA HW.

5.7.6.10.1 Running the Sample Application
To run the sample:

1. Follow the steps in Building and Running the NvMedia Samples.
2. Launch the application:

$ stereosens -h

$ flowsense -h

The sample application command syntax is as follows:

for stereo:

$ stereosense [options]

The command line options are as follows:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 607

Embedded Software Components

Required Command Line Options

Option Parameter Description

-input Left view le name Species left view le name
with full path.

-ref Right view le name Species right view le name
with full path.

-width width of input Species the width of input
surface

-height height of input Species the height of input
surface

Optional Command Line Options

Option Parameter Description

-h n/a Displays guidance on using this
application.

-gridSize
0: Grid Size 1x1

1: Grid Size 2x2

2: Grid Size 4x4

3: Grid Size 8x8

Output Grid Size set by
Application.

-o Disparity Output le name Species disparity output le
name with full path.

-co Cost Output le name Species cost output le name
with full path.

-owcrcgen A pathname of a le to be
created with the letype .txt

Generates CRC values of
disparity map in the specied
le.

-owcrcchk A pathname of an existing le
with the letype .txt

Checks CRC values generated
from disparity map against
values from the specied le.

-chromaFormat
0 : 400

1 : 420

2 : 422

3 : 444

Chroma Format IDC of input
yuv

-ndisp
128

256

Max Disparity value in terms of
pixels

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 608

Embedded Software Components

Required Command Line Options

Option Parameter Description

-lrCheck
0: Disable reverse search
(default)

1: Enable reverse search

Enable reverse search
generates right view disparity
map.

-lrCheckThr An integer Decides threshold for lrcheck

-nframes An integer Number of frames used for
stereo estimation. Default: one
frames

-prole
0: Disable Prole

1: Enable Prole with Async
mode

: Enable Prole with Sync mode

Enable OFA proling to get SW
and HW overhead

-etype
0: use default SGM parameters
value (default)

1: use congurable Values for
SGM parameters

Enable congurable SGM
parameters

-bitDepth
8: 8 bits (default)

10: 10 bits

12: 12 bits

16: 16 bits

Number of bits per
components on input surfaces.

-p1 An integer SGM penalty1 value

-p2 An integer SGM penalty2 value

-diag
0: Disable diagonal mode

1: Enable diagonal mode

SGM diagonal mode

-adaptiveP2
0: Disable adaptive P2

1: Enable adaptive P2

SGM adaptive p2 mode enabled

-alpha 0 to 3 alpha value to use along with
adaptiveP2

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 609

Embedded Software Components

Required Command Line Options

Option Parameter Description

-pass 1 to 3 Num Passes of SGM

-median
0: Disable median ltering
(default)

1:Enable median ltering

Enable median ltering over
output

-upsample
0: Disable upsampling (default)

1:Enable upsampling

Enable upsampling of output

5.7.6.10.2 Example: owsense and Post Median Filtering
To run owsense without post median ltering

./flowsense -input left_000165_1238x374.yuv -width 1238 -height 374 -bitDepth
8 -gridSize 2 -chromaFormat 0 -o flow.bin -co cost.bin -flowcrcgen flow.txt -
nframes 20

To run owsense with median ltering

./flowsense -input left_000165_1238x374.yuv -width 1238 -height 374 -bitDepth
8 -gridSize 2 -chromaFormat 0 -o flow.bin -co cost.bin -flowcrcgen flow.txt -
median 1 -nframes 2

5.7.6.10.3 Example: stereosense and Median Filtering
To run stereosense without median ltering:

./stereosense -input left_000165_1238x374.yuv -ref right_000165_1238x374.yuv
-width 1238 -height 374 -flowcrcgen stereo.txt -nframes 20 -gridSize 3 -
bitDepth 8 -chromaFormat 0 -ndisp 256 -o stereo.bin

To run stereosense with median ltering:

./stereosense -input left_000165_1238x374.yuv -ref right_000165_1238x374.yuv
-width 1238 -height 374 -flowcrcgen stereo.txt -nframes 20 -gridSize 3 -
bitDepth 8 -chromaFormat 0 -ndisp 256 -median 1 -o stereo.bin

for ow:

$ owsense [options]

The command line options are as follows.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 610

Embedded Software Components

Required Command Line Options

Option Parameter Description

-input Left view le name Species input le name with
full path.

-ref Right view le name Species reference le name
with full path.

-width width of input Species the width of input
surface

-height height of input Species the height of input
surface

Optional Command Line Options

Option Parameter Description

-h n/a Displays guidance on using this
application.

-gridSize
0: Grid Size 1x1

1: Grid Size 2x2

2: Grid Size 4x4

3: Grid Size 8x8

Output Grid Size set by
Application.

-o Disparity Output le name Species disparity output le
name with full path.

-co Cost Output le name Species cost output le name
with full path.

-owcrcgen A pathname of a le to be
created with the letype .txt

Generates CRC values of
disparity map in the specied
le.

-owcrcchk A pathname of an existing le
with the letype .txt

Checks CRC values generated
from disparity map against
values from the specied le.

-chromaFormat
0 : 400

1 : 420

2 : 422

3 : 444

Chroma Format IDC of input
yuv

-do_bwd Enable backward reference Use backward referencing for
ow

-nframes An integer Number of frames used for ow
estimation. Default: one pair
frames

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 611

Embedded Software Components

Required Command Line Options

Option Parameter Description

-prole
0: Disable Prole

1: Enable Prole with Async
mode

2: Enable Prole with Sync mode

Enable OFA proling to get SW
and HW overhead

-bitDepth
8: 8 bits (default)

10: 10 bits

12: 12 bits

16: 16 bits

Number of bits per
components on input surfaces.

-p1 An integer SGM penalty1 value

-p2 An integer SGM penalty2 value

-diag
0: Disable diagonal mode

1: Enable diagonal mode

SGM diagonal mode

-adaptiveP2
0: Disable adaptive P2

1: Enable adaptive P2

SGM adaptive p2 mode enabled

-alpha 0 to 3 alpha value to use along with
adaptiveP2

-pass 1 to 3 Num Passes of SGM

-median
0: Disable median ltering
(default)

1:Enable median ltering

Enable median ltering over
output

-upsample
0: Disable upsampling (default)

1:Enable upsampling

Enable upsampling of output

5.7.6.11 Deep Learning Accelerator Programming
Interface (nvm_dlaSample)
The NvMedia nvm_dlaSample sample application demonstrates how to use the NvMedia
Deep Learning Accelerator (DLA) APIs to perform deep learning inference operations. The
sample uses the NVIDIA® SoC DLA hardware engine.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 612

Embedded Software Components

For related information, see Deep Learning Accelerator in Understanding NvMedia.

The nvm_dlaSample application has four testing modes:

1. Runtime mode.

‣ Single thread for running DLA.

‣ Demonstrates how to create and initialize DLA instances.

‣ Demonstrates how to run DLA with provided input data and network.
2. SciSync mode.

‣ Single thread for running DLA. Two supporting threads for synchronization (signaler
and waiter).

‣ Demonstrates how to create and initialize DLA instances.

‣ Demonstrates how to run DLA with provided input data and network.

‣ Demonstrates how to synchronize DLA task submission with a CPU signaler and
CPU waiter.

3. Multithreaded mode.

‣ Multiple threads (4) for running DLA.

‣ Demonstrates how to create and initialize DLA instances.

‣ Demonstrates how to run DLA with provided input data and network.
4. Ping mode.

‣ Pings the specied instance if it exists.

5.7.6.11.1 Architecture
The following diagram shows the architecture of the nvm_dlaSample application.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 613

Embedded Software Components

5.7.6.11.2 Running the Sample Application

5.7.6.11.2.1 Prerequisites

You have followed the procedures in Building and Running the NvMedia Samples in
NvMedia Sample Applications.

5.7.6.11.2.2 To run the sample

 1. Navigate to:
samples/nvmedia/dla_sample/

 2. Launch the application:
$ nvm_dlaSample --mode runtime -d instanceId -n numTasks --loadable /path/to/
loadable

5.7.6.11.3 Command Line Switches
This is the nvm_dlaSample command syntax:
$ nvm_dlaSample [-h] [-v <Logging Level>] [--mode <Mode>] [-d <Instance ID>] [-n
 numTasks>] [--loadable /path/to/loadable]

The following table describes the command line switches.

Switch
Para-
meter Description

-h N/A Displays guidance on using this application.

-d [Instance
ID]

Species the hardware engine ID on which to run the test.
The value may be 0 or 1. The default is 0.

-n [numTasks]
Species the number of simultaneous tasks that can be
sent to a DLA instance.

--prole [path] Path to the prole le.

--mode [mode]

Species the mode of the test to run. The value may be:

‣ runtime
‣ scisync
‣ multithread
‣ ping

--loadable [path] Path to the loadable le.

-v N/A Enables verbose descriptions.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 614

Embedded Software Components

5.7.6.11.4 NvMedia Sample Applications
The NvMedia sample applications demonstrate how to use the NvMedia API to perform
multimedia tasks. Multimedia based samples are built for single windowing compatibility
that depends on the platform operating system.

NVIDIA DRIVE 6.0 Linux uses the X11 windowing system.

Graphics OpenGL ES samples are built and organized for compatibility with both Wayland
and X11 windowing systems with subdirectories for both. For information on the graphics
OpenGL ES samples, see Building and Running Samples in Graphics Programming

5.7.6.11.4.1 Runtime mode

$ nvm_dlaSample --mode runtime -d 0 -n 8 --loadable /path/to/loadable

5.7.6.11.4.2 Scisync mode

$ nvm_dlaSample --mode scisync -d 0 -n 8 --loadable /path/to/loadable

5.7.6.11.4.3 Multithread mode

$ nvm_dlaSample --mode multithread --loadable /path/to/loadable

5.7.6.11.4.4 Ping mode

$ nvm_dlaSample --mode ping

5.7.7 Debugging CSI Capture Errors
Note:

All commands in this section must run as root user (with sudo).

The terms used throughout this section are as follows:

‣ CCPLEX: NVIDIA Carmel CPU complex running the capture stack and applications.

‣ CRC: Cyclic Redundancy Check, a 16-bit checksum present in MIPI CSI packet footer.

‣ ECC: Error Correction Code, a 6-bit code present in MIPI CSI packet header that can be
used by the receiver to correct single bit errors and detect double bit errors.

‣ NVCSI: An SoC MIPI CSI interface conformant to CSI2 v2.0 specication.

‣ RCE: Realtime Camera Engine is an ARM Cortex R5 core running an RTOS that handles
programming of NVCSI/VI engines and notify messages from VI.

‣ VI: An SoC Video Input module that takes frame data from NVCSI interface and writes it
to memory.

The layers where errors can occur during a camera capture are as follows:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 615

Embedded Software Components

Deserializer Errors

Two signals that can be generated by Deserializer are as follows:

1. ERRB
2. LOCK

If these signals are toggled, SIPL sends error notication to the client, and the client
collects the detailed error information from the hardware.

5.7.7.1 Error Logs
When an error is encountered in decoding CSI packets received at an SoC CSI interface and
writing the raw frame data to memory, the VI hardware engine noties these errors to RCE.
The capture stack running on CCPLEX queries the capture status from RCE and displays:

‣ The CSI stream ID (CSI brick).

‣ VC ID for which the error occurred.

‣ The type of error.

‣ Detailed errors per the error type.

The error status provides a good starting point to determine the root cause and identify
the next steps.

If the VI engine did not successfully capture a frame, and did not encounter and report an
error to RCE, then the error message, as follows, or a similar one displays:
Frame Start Timeout Error.

 EngineStatusError (2), Detailed Error Code: 00000001 at
 StreamId:0 vcId:0 CSIFrameId:0 notified-bits:2000000or

Frame End Timeout Error

 EngineStatusError (2), Detailed Error Code: 00000002 at
 StreamId:0 vcId:0 CSIFrameId:0 notified-bits:4000000

This can be due to one of two reasons:

1. The deserializer is not streaming data.
2. The VI channel is not congured to capture the correct data type/VC id.

The remainder of this document describes the root causes for these errors.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 616

Embedded Software Components

5.7.7.2 RCE Traces
Apart from the error events, the VI noties several other events to RCE that can be read by
CCPLEX using the RCE tracing framework. This notication is disabled by default and can
be enabled as follows:

1. Run these commands to enable the RCE traces before starting capture:
echo 10000 > /sys/kernel/debug/tracing/buffer_size_kb
echo 1 > /sys/kernel/debug/tracing/tracing_on
echo 1 > /sys/kernel/debug/tracing/events/tegra_rtcpu/enable
echo 3 > /sys/kernel/debug/camrtc/log-level

2. After starting capture, read the RCE traces using:
cat /sys/kernel/debug/tracing/trace

3. Clear the RCE trace from the previous capture using:
echo > /sys/kernel/debug/tracing/trace

The RCE trace logs several events such as SOF, EOF that can be used to determine if the VI
channel is capturing data or not. Capture the RCE traces and provide them to NVIDIA for
further analysis.

5.8 Programmable Vision Accelerator
(PVA)
NVIDIA DRIVE® OS provides support for the Programmable Vision Accelerator (PVA) engine.
The PVA engine is an advanced VLIW SIMD digital signal processor, which is optimized
to implement image processing and computer vision algorithms. PVA provides excellent
performance with extremely low power consumption. PVA can be used asynchronously and
concurrently with the CPU, GPU, and other accelerators on the DRIVE platform as part of a
heterogeneous compute pipeline.

If you are planning to build PVA applications or to use PVA applications built in to
DriveWorks, update the PVA allowlist located at the following IFS path:

<rootfs>/lib/firmware/pva_auth_allowlist

NVIDIA Driveworks is the primary API for the PVA engine. Refer to Driveworks API
documentation for supported algorithms and usage.

With additional software, it is also possible to program the PVA directly with custom
algorithms. Contact NVIDIA for more information.

5.9 Logging
Note:: The nvlog feature is currently under development. You can enable this feature for
testing purposes, but do not enable the feature in production systems until it is enabled by
default in DRIVE OS releases.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 617

Embedded Software Components

NVIDIA DRIVE
®
 OS has a logging component that allows logs from multiple DRIVE OS

components to be obtained. Currently, support is only available for applications within
DRIVE OS Linux Guest VM to send logs that are stored in a le that is created and
accessible from Linux Guest VM. This support will be enhanced in future releases to
support more execution environments outside of Guest VM.

Terms

Logging Entity : Application threads(s) trying to log, each thread is an entity.

Entity Logging library : entity specific logging library build that is linked to
 Guest VM entities (libnvlog_guestvm_entity)

nvlogclient_fast : logging client/server combined application.

Logging library : full build of logging library that is linked to nvlogclient_fast
 (libnvlog.so)

Logging Pipeline

The logging pipeline is as follows:
(Logging Entity + libnvlog_guestvm_entity) -> (nvlogclient_fast + libnvlog.so) -> log
 storage file

Components

The following lists the source and binary locations within the SDK:

1. Pre-built binaries:
<top>/drive-linux/lib-target/libnvlog.so
<top>/drive-linux/filesystem/contents/bin/nvlogclient_fast
<top>/drive-linux/filesystem/contents/bin/nvlogtest
<top>/drive-linux/filesystem/contents/bin/nvlogtest_stdin

2. Source code:

Source les for the test applications (nvlogtest*) and the Logging Client
(nvlogclient_fast) can be found under:
<top>/drive-linux/samples/tools/nvlog/

3. Include les and user API:

Any application needing to send logs using this new framework must use the <top>/
drive-linux/samples/tools/nvlog/include/nvlog.h header le and link to
libnvlog_guestvm_entity library. API documentation can be found in the same header
le.

In a booted DRIVE OS Linux Guest VM console, the following logging related components
are available:

1. /usr/local/bin/

nvlogclient_fast : Application component responsible for collecting logs from
dierent Logging Entities within Linux Guest VM and storing them.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 618

Embedded Software Components

nvlogtest : Test application that has two threads sending log messages every second.

nvlogtest_stdin : Test application that takes input from stdin and sends each line as a
log message.

2. /usr/local/lib/

libnvlog.so : Logging library that provides logging APIs.

Execution Steps

Default Behavior

nvlog library is disabled by default on boot. This is to keep the default behavior of the
system same as before while allowing incremental testing of nvlog. Following messages
can be seen for each process that is trying to log via. nvlog during boot (in syslog):
Dec 21 00:54:11 tegra-ubuntu nvtzvault: NvLogOsSupportEnabled: nvlog DT node is not
 enabled, disabling library

Dec 21 00:54:11 tegra-ubuntu nvtzvault: NvLogOsInit - NvLog support is not enabled

The following messages (in syslog) also appears during boot to show that nvlogclient_fast
was launched but failed due to nvlog library being disabled.
Dec 21 00:54:11 tegra-ubuntu bash[1148]: Launched /usr/local/bin/nvlogclient_fast !!!
Dec 21 00:54:11 tegra-ubuntu nvlogclient_fast: NvLogOsSupportEnabled: nvlog DT node
 is not enabled, disabling library
Dec 21 00:54:11 tegra-ubuntu nvlogclient_fast: NvLogOsInit - NvLog support is not
 enabled
Dec 21 00:54:11 tegra-ubuntu bash[1179]: main - NvLogClientInit failed for msgqueue
 (error : -1)

Behavior with nvlog Enabled

nvlog can be enabled for testing by adding the following DT node in tegra234-p3710-0010-
a01-driveav-gos-qnxwrap.dts:
nvlog {
status = "okay";
};

After recompiling/ashing, following messages can be seen during boot:
Dec 21 00:54:11 tegra-ubuntu systemd[1]: Starting nvlog client logging service...
Dec 21 00:54:11 tegra-ubuntu bash[1140]: Launched /usr/local/bin/nvlogclient_fast !!!
Dec 21 00:54:11 tegra-ubuntu nvlogclient_fast: SHMDiscoveryClientThread: Discovery
 client thread starting..
Dec 21 00:54:11 tegra-ubuntu nvlogclient_fast: NvLogDiscoveryPlugin_nvsciipc_Init -
 Entry
Dec 21 00:54:11 tegra-ubuntu systemd[1]: Started nvlog client logging service.

Output log le is created in the /home/nvidia/ directory:
nvidia@tegra-ubuntu:~$ ls -al /home/nvidia/nvlog_system_log.txt
-rw-r--r--. 1 root root 20480 Dec 21 00:54 /home/nvidia/nvlog_system_log.txt

nvidia@tegra-ubuntu:~$ cat /home/nvidia/nvlog_system_log.txt
 EUID PID ENTITY ID SEQ TIMESTAMP MSG
 0 1305 1305 3 346841060 Module_id 51 Severity
 5 : created TA endpoint: 1, created CA endpoints: 2

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 619

Embedded Software Components

 0 1305 1305 2 346840076 Module_id 51 Severity
 5 : Server trying IVC endpoint: pkcs11_keystore_tk11_ivc_d2
 0 1305 1305 1 346838406 Module_id 51 Severity
 5 : Server trying IVC endpoint: pkcs11_keystore_tk11_ivc_d1
 0 1291 1304 1 346765176 Module_id 51 Severity
 5 : Waiting for Suspend Request from Kernel: pkcs11-keystore-tk10
 0 1291 1291 3 346758455 Module_id 51 Severity
 5 : created TA endpoint: 1, created CA endpoints: 2
 0 1291 1291 2 346757262 Module_id 51 Severity
 5 : Server trying IVC endpoint: pkcs11_keystore_tk10_ivc_d2
 0 1291 1291 1 346755441 Module_id 51 Severity
 5 : Server trying IVC endpoint: pkcs11_keystore_tk10_ivc_d1
 0 1284 1299 1 346717953 Module_id 51 Severity
 5 : Waiting for Suspend Request from Kernel: pkcs11-keystore-tk1
 0 1284 1284 3 346711198 Module_id 51 Severity
 5 : created TA endpoint: 1, created CA endpoints: 2
 0 1284 1284 2 346710136 Module_id 51 Severity
 5 : Server trying IVC endpoint: pkcs11_keystore_tk1_ivc_d2
 0 1284 1284 1 346708419 Module_id 51 Severity
 5 : Server trying IVC endpoint: pkcs11_keystore_tk1_ivc_d1
 0 1272 1281 1 346543194 Module_id 51 Severity
 5 : Waiting for Suspend Request from Kernel: nvmacsec
 0 1272 1272 3 346537165 Module_id 51 Severity
 5 : created TA endpoint: 1, created CA endpoints: 2
 0 1272 1272 2 346536002 Module_id 51 Severity
 5 : Server trying IVC endpoint: nvmacsec_ta_d2
 0 1272 1272 1 346534344 Module_id 51 Severity
 5 : Server trying IVC endpoint: nvmacsec_ta_d1
 0 1260 1270 1 346428824 Module_id 51 Severity
 5 : Waiting for Suspend Request from Kernel: gp-se
…

Note:: Raw output from Logging Client is not sequential with regards to generated logs.
This is due to the underlying implementation where readers and writers are lockless and
the reader retrieves messages in bursts (in reverse order for each burst). The raw output
le must be sorted on the basis of timestamp (column 5) to get the logs from multiple
sources in order (example: sort -k5 -n).

Note:: Log messages can be lost if entity (or producer) is spewing a lot of log messages
before nvlogclient_fast (or consumer) is able to read the messages.

Note:: The rst log message is not currently retrieved/stored by the Logging Client. This is
a known issue.

5.10 Docker Services
NVIDIA DRIVE

®
 OS provides a Docker containerization service as part of the NVIDIA DRIVE

OS Linux Guest VM. The service integrates both the Docker runtime environment as well as
the NVIDIA Container Toolkit to provide containerization with iGPU access on the target.

Note:: Docker services on the target are still considered experimental. It is recommended
for use only for development purposes and not intended for production.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 620

Embedded Software Components

Docker services contain the following components:

‣ Docker Runtime

‣ NVIDIA Container Toolkit

‣ Sample: How to Launch

‣ Supporting Other Applications

Docker Runtime

Docker is a high-level API that complements kernel namespacing to provide a Linux
container runtime with strong guarantees of isolation and repeatability. The runtime
provides both a daemon, which implements the containerization, and a client to interact
with said daemon.

The Docker client can be run by executing sudo docker on the target. You can conrm that
the daemon is running by executing sudo service docker status.

The Docker runtime present in the DRIVE OS Linux Guest VM is from upstream Ubuntu
Canonical repositories and is considered experimental on non-amd64 architectures.

To learn more in depth about Docker, the runtime, and features, visit https://docker.com.

NVIDIA Container Toolkit

The NVIDIA Container Runtime uses this specication to determine which directories,
devices, libraries, and les to make available to a Docker container at runtime. Through
the Mount Plugins Specication, it is possible to run GPU-accelerated applications on the
target within a Docker container that would otherwise have been isolated from the iGPU.

‣ /etc/nvidia-container-runtime/host-files-for-container.d/devices.csv

Species the list devices for the Mount Plugins Specication.

‣ /etc/nvidia-container-runtime/host-files-for-container.d/drivers.csv

Species the libraries for the Mount Plugins Specication

The preceding two les are provided as part of the DRIVE OS Linux Guest VM lesystem
to enable out-of-the-box support for running CUDA samples on the target within Docker.
They provide instructions for the Mount Plugins Specication for mounting the required
directories, devices, libraries, and so on, into Docker.

The section below goes through a simple step-by-step guide on how to use Docker on the
target and use the NVIDIA Container Runtime to run a GPU-accelerated CUDA sample from
within Docker.

Sample: How to Launch

The following sample uses the deviceQuery application that is provided as part of the
CUDA installation on the target. The following also assumes that the platform is connected
to the Internet. Internet access will be required for step 3 as the Docker runtime will
attempt to pull or download the ubuntu:20.04 image from Docker’s repository.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 621

https://docker.com

Embedded Software Components

1. Change directory to the path for the deviceQuery sample and compile it.

cd /usr/local/cuda-11.4/samples/1_Utilities/deviceQuery/ && sudo make

2. Run the deviceQuery sample and conrm successful output for GPU device
information:

./deviceQuery

3. Execute Docker with the given sample to conrm iGPU access from within Docker. It
should print to console the same output that was printed in step 2.

sudo docker run --rm --runtime nvidia --gpus all -v $(pwd):$(pwd) -w $(pwd)
 ubuntu:20.04 ./deviceQuery

This command might take a few moments as it will need to pull the Ubuntu 20.04
Docker image and start a Docker terminal session.

Supporting Other Applications

The devices.csv and drivers.csv les are congured out of the box to support
successfully running the deviceQuery CUDA sample application within Docker. Supporting
other GPU-accelerated applications only requires adding the appropriate paths to
dependent libraries, devices, directories, and so on, to the devices.csv and drivers.csv
les.

Please follow the template already present in those les while making necessary changes
to support your other applications.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 622

Chapter 6. System Software
Components and
Interfaces

This topic provides guidance on using system software and component interfaces to
interact with the platform. Examples of platform interfaces are le system components,
I2C drivers, and SPI drivers.

6.1 Calculating GPIO Index in Linux
The following section describes how to calculate the GPIO index:

1. The Orin GPIOs are grouped in banks and each bank has up to 8 pins. The bank and the
pin information of a GPIO is fundamental for calculating its index.

GPIO is represented as X.Y, where:

‣ X encodes the bank and can have the following values: PA, PB, …, PY or PAA, ... PFF
as listed in table below..

For the banks with naming scheme P*, the "P" must be ignored, i.e., "PA" refers to bank
A.

‣ Y encodes the pin within a bank. For example, 00 for pin 0, 01 for pin 1, …, and 07 for
pin 7.

2. The banks are associated to a base and can also be sequentially translated into a
bank_index as shown in the table below:

The base numbering may change in cases where customization is done in kernel and
can be identied using the dmesg log:
nvidia@tegra-ubuntu:~$ cat /sys/kernel/debug/gpio | grep gpiochip
[9.965908] gpiochip0: registered GPIOs 348 to 511 on tegra234-gpio
[9.970024] gpiochip1: registered GPIOs 316 to 347 on tegra234-gpio-aon

The base is 348 for tegra234-gpio and 316 for tegra234-gpio-aon from the above log.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 623

System Software Components and Interfaces

3. The GPIO index can be calculated as: GPIO_index = base + bank_start_index + pin.

The following is an example of calculating the GPIO index for PS.05.

a). PS.05 represents bank S and pin 5.
b). Bank S has bank_index 113 and base 348(tegra-gpio base)
c). GPIO index is 466 (466 = 348 + 113 + 5)

6.2 Persistence Across Bootburn
Flashing Using Persistent Partition
NVIDIA DRIVE

®
 OS provides persistence across bootburn ashing for user data and

metadata partitions. The persistence works by reserving a partition in bootburn that is not
written or modied in the ashing process. Due to this eect, the data in this partition is
completely unchanged across bootburn ashing. After the lesystem is loaded, the user
data partition is mounted on /home, and the persistent metadata is overlayed on /etc.

6.2.1 Persistent Data Across Flashing
The following data is persistent across ashing:

1. SSH host keys uniquely identify the system for all SSH connections.
2. User account metadata les containing details and properties of each user account and

group.

‣ /etc/passwd: List of the system and local users.

‣ /etc/group: List local and system groups and user account membership
information.

‣ /etc/gshadow and /etc/shadow: Contain user account and hashed-password (using
crypt).

‣ /etc/subgid and /etc/subuid: The range of group-ids and user-ids allowed for local
user account and groups.

6.2.2 Why You Require Persistent Data Across
Flashing
Flashing the rootfs partition to update the lesystem must not change or erase the
system identity, user account information, or user data. The persistent partitions store
user data, metadata, and SSH-host keys (the system's identity for SSH connections).
Because the persistent partitions (as the name suggests) are not changed by bootburn
ashing or drive update, persistent partitions are required to store such data across
ashing.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 624

System Software Components and Interfaces

6.2.3 Workow with Persistent Partition
The persistent partition workow consists of the ashing phase and the lesystem phase.

Flashing

1. If the bootburn utility is executed, the lesystem image is always ashed to the
lesystem partition.

2. If the bootburn utility is executed with the --init-persistent-partitions option,
the prebuilt user metadata and data images are ashed to persistent partitions (as
specied in PCT conguration in global_storage.cfg).

3. If the bootburn utility is executed without the --init-persistent-partitions option,
there are no changes to persistent partitions.

Filesystem Boot

1. Filesystem mounts the existing user metadata and data persistent partitions.
2. Filesystem checks for the stamp /etc/nvidia/skip-oem-config.stamp.

‣ If yes, proceeds to the next step.

‣ If no, OEM-cong is executed to set up user accounts.

After oem-cong is executed, the stamp /etc/nvidia/skip-oem-config.stamp is
added, and this is written to persistent metadata partition.

3. Check if /opt/drive-linux-first-boot.stamp exists.

‣ If yes, applies x-up for persistent partition.

‣ If no, proceeds to the next step.

After the x-up is complete, /opt/drive-linux-first-boot.stamp is deleted.
4. Filesystem proceeds to reach the command-line login prompt.

Default Behaviors in NVIDIA DRIVE OS Linux

1. When the bootburn utility is run with the --init-persistent-partitions option:

a). The /etc/nvidia/skip-oem-config.stamp should not exist.

1. The OEM-cong is executed to set up user accounts.
2. After oem-cong is executed, the stamp /etc/nvidia/skip-oem-config.stamp

is added, and this is written to persistent metadata partition.
b). The x-up is executed (as the lesystem image contains the stamp /opt/drive-

linux-first-boot.stamp) but is equivalent to a no-op.
2. When the bootburn utility is run without the --init-persistent-partitions option:

a). /etc/nvidia/skip-oem-config.stamp should already exist and oem-cong is
skipped.

b). The x-up is executed, and this cleans up persistent metadata partition by removing
everything other than the necessary les, such as /etc/passwd|group|shadow|

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 625

System Software Components and Interfaces

gshadow|subuid|subgid, /etc/ssh/ssh_host_key*, and /etc/nvidia/<oem-
config-stamps>.

‣ Cleanup is required because all les added /etc go to the persistent partition
(even if they apply to the rootfs partition) due to overlayfs limitation.

Note: These are the default behaviors in NVIDIA DRIVE
®
 OS Linux. However, lesystem

users can always change the behavior by removing or adding stamps again (/etc/nvidia/
skip-oem-config.stamp or /opt/drive-linux-first-boot.stamp).

6.2.4 Methods to Reset Persistent Partition
Use bootburn with additional argument --init_persistent_partitions to reset the
persistent partition.

Alternatively, if you are using create_bsp_images.py and flash_bsp_images.py, add --
init_persistent_partitions to only create_bsp_images.py and flash_bsp_images.py
resets the persistent partition.

To reset the partition there are two (2) dierent workows:

1. Using bootburn.py to ash target: Please add --init_persistent_partitions command-line
argument to bootburn.

2. Using create_bsp_images.py + ash_bsp_images.py to ash target: Please add --
init_persistent_partitions to create_bsp_images.py. (No --init_persistent_partitions
command-line argument required for ash_bsp_images.)

6.2.5 Data Migration for Persistent Partitions

This release introduces an enhanced persistent partition workow where persistent
partition images are created by build-fs and ashed by the bootburn utility if --init-
persistent-partitions is used. The work in the current release is not compatible with
the previous releases of NVIDIA DRIVE

®
 OS Linux including 6.0.4.0. If you have 6.0.4.0

lesystem ashed, updating the lesystem only updates the rootfs, but the data (although
not erased) in the persistent partition is not usable for the current release. You can use the
following steps to migrate your persistent data across releases.

Moving Data from Version 6.0.4.0 or Earlier to the Current Version

‣ Setting Up to Migrate Data

1. Enable a WAR in /usr/sbin/nv_init.sh script before it launches driveos-
persistence.sh.
#!/bin/bash
...
export PS4='+(${BASH_SOURCE}:${LINENO}): ${FUNCNAME[0]:+${FUNCNAME[0]}(): }'

/bin/bash # <== Please add root shell HERE

Persistence service setup
/bin/bash $DBG_OPTS /usr/sbin/driveos-persistence.sh

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 626

System Software Components and Interfaces

sync
....
systemctl --no-block isolate graphical.target || true

2. Reboot the system.
3. Wait for the root shell by pressing ENTER until you see the root prompt.

‣ Migrating Persistent Metadata Partition

1. Mount the persistent metadata partition.
mkdir -p /tmp/tmp_mdata
mount /dev/vblkdev1 /tmp/tmp_mdata
mv /tmp/tmp_mdata/driveos/security/etc/ /tmp/tmp_mdata/

2. Remove the old persistent partition directories after migration.
rm -rf /tmp/tmp_mdata/driveos/security/

3. Unmount the partition.
umount /tmp/tmp_mdata

‣ Migrating Persistent Data Partition

1. Format data partition.
mkfs.ext4 /dev/vlbkdev3 # (input y if any prompt comes up)

2. Mount the persistent data partition.
mkdir -p /tmp/tmp_data
mount /dev/vblkdev3 /tmp/tmp_data

3. Move the data in the home directory.
mv /home /tmp/tmp_data/

4. Unmount the partition.
umount /tmp/tmp_data

‣ After Migration

‣ Flash the NVIDIA DRIVE
®
 platform with the 6.0.5.0 SDK.

Moving Data from Current Version to Version 6.0.4.0 or Earlier

‣ Setting Up to Migrate Data

1. Enable a WAR in /usr/sbin/nv_init.sh script before it launches driveos-
persistence.sh.
#!/bin/bash
...
export PS4='+(${BASH_SOURCE}:${LINENO}): ${FUNCNAME[0]:+${FUNCNAME[0]}(): }'

/bin/bash # <== Please add root shell HERE

Persistence service setup
/bin/bash $DBG_OPTS /usr/sbin/driveos-persistence.sh
sync
....
systemctl --no-block isolate graphical.target || true

2. Reboot the system.
3. Wait for the root shell by pressing ENTER until you see the root prompt.

‣ Migrating Persistent Metadata Partition

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 627

System Software Components and Interfaces

1. Mount the persistent metadata partition.
mkdir -p /tmp/tmp_mdata
mount /dev/vblkdev1 /tmp/tmp_mdata
mkdir -p /tmp/tmp_mdata/driveos/security/
mv /tmp/tmp_mdata/etc/ /tmp/tmp_mdata/driveos/security/

2. Remove the old persistent partition directories after migration.
3. Unmount the partition.

umount /tmp/tmp_mdata

‣ Migrating Persistent Data Partition

To prepare the system persistent data migration,

1. Flash NVIDIA DRIVE platform with 6.0.4.0 or an earlier version.
2. Add a WAR in nv_init.sh to execute /bin/bash before running driveos-

perisstence.sh.
3. Reboot the system.
4. Wait for the root shell by pressing ENTER until you see the root prompt.

To migrate the data,

1. Mount the persistent data partition.
mkdir -p /tmp/tmp_data
mount /dev/vblkdev3 /tmp/tmp_data

2. Move the data in the home directory to the rootfs partition.
mv /tmp/tmp_data/home/ /

3. Unmount the partition.
umount /tmp/tmp_data

4. Remove WAR by deleting the line and adding the /bin/bash for the root shell.

‣ After Migration

‣ Reboot the system.

6.3 Version Checker
NVIDIA® DRIVE OS Linux contains many software components with packages installed. The
NVIDIA Orin Devkit hardware includes many modules having rmware ashed. We provide
the version checker tool to ensure correctness/checks of software components and the
ashed rmwares. This tool provides a holistic way to check a list of rmware or lesystem
packages using a data-driven approach. The version checker is divided into the frontend
root node and the backend leaf nodes. The root node version checker manages passing
board info, logging, lters output messages to the shell (standard output & /dev/console),
iteratively executes the leaf node version checkers, and manages lower-layers errors. The
version checker tool is modeled based on a tree with root node version checker responsible
for all leaf node version checkers. The root node version checker uses root node cong, and
each leaf node version checker uses the respective leaf node cong, both of which use the
YAML format.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 628

System Software Components and Interfaces

The root node version checker does the following to execute dierent leaf node modules:

‣ Root node version checker reads root node cong, obtains board-id, and makes the list
of leaf node instances to call.

‣ For each leaf node rmware, root node version checker passes board-id, calls leaf
version checker with, and passes leaf node cong.

The steps used to check the version using the leaf node version checker are the following:

‣ If Leaf node cong uses type=debian then:

‣ Leaf node version checker gets the expected manifest of package versions from the
cong.

‣ Leaf node version checker uses dpkg-query (reference Tool for debian packages) to
get the packages and their versions in the lesystem.

‣ Leaf node version checker then tallies manifest packages to lesystem packages
and where packages tally, compares versions of packages.

‣ Leaf node version checker depending on MATCH/MISMATCH, prints the PASS/FAIL
result.

‣ If Leaf node cong uses type=rmware, then:

‣ Leaf node version checker gets the expected rmware version based on the cong
le.

‣ Leaf node version checker uses the Tool attribute and executes the command to
fetch rmware version from the board.

‣ Leaf node version checker compares expected rmware version to obtained
rmware version and prints the PASS/FAIL result.

Version Checker Prerequisites

Version checker requires the following setup commands to be executed one time on the
target before running it. Ensure that you have completed the target-side setup and have
logged in using your username and password in the minicom console.

1. Version checker in the default conguration prints all output to standard output and
prints just error messages to /dev/console.

2. Run the version checker application as shown in the command line below.

Notes specic to dierent lesystems:

‣ Filesystems driveos-oobe-rfs and driveos-oobe-desktop-rfs:

1. Using the preinstalled ssh server, connect from host to target using the ssh shell.
2. Run the version checker in the ssh shell.
3. The version checker prints to standard output shall be seen in the current shell, and

the prints to /dev/console should be seen in the minicom console.

‣ Filesystem driveos-core-rfs:

1. In this lesystem, the ssh server package is not preinstalled, so it is not possible to
start an ssh shell from the host to the target is possible.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 629

System Software Components and Interfaces

2. Use the minicom console to run the version checker.
3. The version checker will print messages from standard output and /dev/console to

the minicom console.

Version Checker Command Line

Version checker is always executed using the root version checker and uses the following
command-line as shown below.
usage: version_checker_root.py [-h] [-i YAML_PATH] [-l LOGFILE_PATH] [-v]
Checks all system firmwares.
 -h, --help show this help message and exit
 -i YAML_PATH, --input-yaml YAML_PATH
 Input YAML config file.
 -l LOGFILE_PATH, --log-file-path LOGFILE_PATH
 Optional Argument: Log file path. Default path is /var/log/
version_checker.log.
 -v, --verbose Optional Argument: Verbose logging i.e., print info/debug
 messages to /dev/console.

Examples running version_checker_root.pyapplication:

1. Run with default log le path (/var/log/version_checker.log) and input cong /
etc/nvidia/version_checker/manifest/version_data_root.yml

a). Prints info messages to standard output, log le, and only errors to /dev/console.
version_checker_root.py -i /etc/nvidia/version_checker/manifest/
version_data_root.yml

2. Run with custom log le path <log_le> and same input cong from step 1.

a). Prints info messages to standard output, log le, and only errors to /dev/console.
version_checker_root.py -i /etc/nvidia/version_checker/manifest/
version_data_root.yml -l <log_file>

3. Run with default log le path (/var/log/version_checker.log) and same input cong
from step 1 in verbose mode.

a). Prints info messages to standard output, to log le, and to /dev/console.
version_checker_root.py -i /etc/nvidia/version_checker/manifest/
version_data_root.yml -v

Cong Files

The root node cong contains the following elds per child node:

‣ Path to child node version checker.

‣ Cong le of child node version checker.

‣ The version of DRIVE OS LINUX SDK.

‣ Path of DRIVE OS LINUX SDK manifest.

Leaf node cong contains the following elds:

‣ Name of the module like lesystem or rmware.

‣ Type of the module: debian or rmware.

‣ For type=rmware, we have:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 630

System Software Components and Interfaces

‣ The rmware version ashed on board.

‣ Firmware version list corresponding to board.

‣ List of compatible boards (i.e., boards containing the rmware and has its version
retrievable) corresponding to the rmware.

‣ For type=debian we have:

‣ Tool to fetch package versions in the lesystem.

‣ Path of lesystem manifest.

The below examples provide a root node cong and a leaf node cong.

Root node cong:
sdk_version: "<release>-<GCID>"
sdk_manifest: "/etc/nvidia/version-ubuntu-rootfs.txt"
versions:
 - versions: ["/usr/sbin/version_checker_leaf.py", "/etc/nvidia/version_checker/
manifest/rootfs_debians.yml"]
 - versions: ["/usr/sbin/version_checker_leaf.py", "/etc/nvidia/version_checker/
manifest/ethernet_firmware_1.yml"]

Leaf node cong:

1. Example with type=debian:
sdk_version: "<release>-<GCID>"
type: "debian"
filesystem_packages:
 name: "Filesystem debian packages"
 tool: "dpkg-query -W -f '${Package}=${Version}\\n'"
 manifest: "/etc/nvidia/rootfilesystem-manifest/driveos-rfs.MANIFEST.json"

2. Example type=rmware:
sdk_version: "<release>-<GCID>"
type: "firmware"
firmware:
 name: "8 Port 100Mb Ethernet Switch"
 tool: "/bin/bash -c '/lib/firmware/marvell_ethernet/common/ota/linux/nvidia/
update-firmware.sh --printversion | grep \"Current firmware version flashed is\" |
 cut -d\" \" -f7'"
 firmware_versions: # <list of dicts>
 - compatible_boards: ["e3550_t194b", "e3550_t194a"]
 firmware_version: ["02.07.1001"]

Output Messages and Logging

The version checker has the following structure for outputting messages into standard
output, minicom console, and the (persistent) log le. The minicom console output
messages appear only if an error occurs. The standard output and the log le contain
informational messages to help users understand or debug tool/cong les. The verbose
ensures that all of the minicom console, standard output, and log les contain all the
informational messages.

Sample /dev/console output on an error:
*** Version mismatch on firmware "8 Port 100Mb Ethernet Switch", expected
 ['02.07.1000'] but found 02.07.1001. ***
*** Error version check for firmware "8 Port 100Mb Ethernet Switch". ***

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 631

System Software Components and Interfaces

*** Version mismatch on firmware "8 Port 100Mb Ethernet Switch - Secure Keys",
 expected ['02.07.1000'] but found 02.07.1001. ***
*** Error version check for firmware "8 Port 100Mb Ethernet Switch - Secure Keys".

Sample standard output as well as log le content /dev/console output on an error:
===============================
ROOT VERSION CHECKER
===============================
Invoking python3 /lib/firmware/version_checker_leaf.py -i /lib/firmware/ethernet/
ethernet_firmware_1.yml -b e3550_t194a

Start checking version of "8 Port 100Mb Ethernet Switch".
Invoking /bin/bash -c '/lib/firmware/marvell_ethernet/common/ota/linux/nvidia/update-
firmware.sh --printversion | grep "Current firmware version flashed is" | cut -d" " -
f7'

*** Version mismatch on firmware "8 Port 100Mb Ethernet Switch", expected
 ['02.07.1000'] but found 02.07.1001. ***
*** Error version check for firmware "8 Port 100Mb Ethernet Switch". ***
Finished checking version of "8 Port 100Mb Ethernet Switch".

Invoking python3 /lib/firmware/version_checker_leaf.py -i /lib/firmware/ethernet/
ethernet_firmware_2.yml -b e3550_t194a

Start checking version of "8 Port 100Mb Ethernet Switch - Secure Keys".
Invoking /bin/bash -c '/lib/firmware/marvell_ethernet/common/ota/linux/nvidia/update-
firmware.sh --printversion | grep "Current firmware version flashed is" | cut -d" " -
f7'

*** Version mismatch on firmware "8 Port 100Mb Ethernet Switch - Secure Keys",
 expected ['02.07.1000'] but found 02.07.1001. ***
*** Error version check for firmware "8 Port 100Mb Ethernet Switch - Secure Keys".

Finished checking version of "8 Port 100Mb Ethernet Switch - Secure Keys".

Version Checker API Documentation

The version checker supports the following semantics below for each root node and leaf
node version checker.

Root version checker semantics:

Field Type
Acceptable
Values Required Syntax Instructions

sdk_version str SDK version
in form of
A.B.C.D (like
5.2.6.0, 6.0.0.0,
etc.)

Yes "sdk_version" :
"<sdk_ver_num>"

Please add
SDK release
version info
and must
match the
value on le in
sdk_manifest.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 632

System Software Components and Interfaces

Field Type
Acceptable
Values Required Syntax Instructions

sdk_manifest str Path of the
le containing
SDK version.

Yes "sdk_version":
<le path
having sdk
version>

Please add the
path of the
le containing
the SDK
version to the
value of key
sdk_version.

versions list(dict)
Contains the
list dictionaries
in the form,

{version:
<version data>}

Yes "versions" :
<list of dict>;
dict is version:
<version data>

Please add a
list of version
entries under
the version
key.

version list(str) 2 element
list of strings
["leaf checker",
"leaf cong"]

Yes "version" :
["leaf checker",
"leaf cong"]

Please add
<path_to_rmware_checker,
path_to_rmware_data>
in the list for
each.

Leaf version checker semantics:

Field Type
Acceptable
Values Required Syntax Instructions

sdk_version str SDK version
in form of
A.B.C.D (like
5.2.6.0, 6.0.0.0,
etc.)

Yes "sdk_version" :
"<sdk_ver_num>"

Please add
SDK release
version info
and must
match the
value on le in
sdk_manifest.

type str Type of cong,
either "debian"
or "rmware".

Yes "type": <type> Please add
<type> of
cong which
is "debian or
"rmware".

name str Name of the
version entry.

Yes "name" :
"<version entry
name>"

Please add the
full name of
the version
entry in this
eld. This can
be any user-
dened name.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 633

System Software Components and Interfaces

Field Type
Acceptable
Values Required Syntax Instructions

tool str Command-
line tool to
query existing
version from
the system.

Yes "tool" :
"<cmdline
to query
version>"

Please add the
full cmdline,
including the
path to the
low-level utility
to fetch the
version of the
component
with
arguments.

rmware_versionslist(dict) Contains the
list of dict
in the form,
{"compatible_boards":
<value>,
"rmware_version":
<value>}

Yes "rmware_versions"
: <list of dicts>

Please add
the rmware
denition
listing under
this eld.

comptabile_boardslist(str) Contains a list
of board-ids.

Yes "compatible_boards":
<"board1",
board2", ..>

Please add
all supported
board_ids
containing this
rmware.

rmware_versionlist(str) Contains a list
of rmware
versions.

Yes "rmware_version":
<"ver1",
"ver2", ..>

Please add
all possible
rmware
versions
corresponding
to a
compatible
board.

lesystem_packagesdict(dict) Contains a
dict describing
lesystem
attributes

Yes "lesystem_packages":
<fs_dict>

Please add dict
of lesystem
attributes to
this eld.

manifest str A string
containing the
path of the
RFS debian
manifest.

Yes "manifest":
<path>

Please add the
path of the
RFS debian
manifest to
this eld.

Version Checker Developer API Documentation

Version checker tools are implemented in python3 and contains python3 compatible
documentation within code. To open the documentation, please use the steps below.

1. cd <top>/drive-linux/filesystem/contents/bin

2. pydoc3 -w ./

3. Open the generated version_checker_leaf.html and version_checker_root.html on
your browser.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 634

System Software Components and Interfaces

6.4 Linux File Systems
The DRIVE OS Linux consists of a hierarchy of le systems. Each layer of the hierarchy of
le systems is assigned a purpose and the particular purpose at that layer denes the
contents of the le system.

The following image represents the hierarchy of le systems. Each layer builds on top of
other layers.

The base layer at the bottom of the hierarchy is the Canonical (open source) Ubuntu Base
le system. The NVIDIA® DRIVE OS Linux le systems are built on top of the Ubuntu Base
le system.

The next layer is named driveos-core-rfs and is purposed to contain automotive-specic
Debian packages, drivers, libraries, tools, rmwares, scripts, and other necessary les for
core functionality. The driveos-core-rfs le system is useful for production systems.

The next layer is named driveos-oobe-rfs and is an Out Of Box Console for developers. It
contains automotive-specic samples, documentation, and developer friendly tools. This
le system is intended to be used by developers for developers.

The nal layer is named driveos-oobe-desktop-rfs and is an Out Of Box GUI Desktop
Experience for developers. It contains automotive GUI desktop interface, specic samples,
documentation, and developer friendly tools. This le system is intended to be used by
developers for software development.

The itemized listing of Debian packages in the DRIVE OS Linux le system is available in
an end-user friendly descriptive version alongside the EXT4 image le of the le system
(depending on driveos-oobe-rfs, driveos-core-rfs, or driveos-oobe-desktop-rfs) in the
following paths:

‣ /opt/nvidia/driveos/<release>/<DRIVEOS_GCID>/drive-linux/filesystems/
driveos-core-ubuntu-20.04-rfs/driveos-core-ubuntu-20.04-rfs.manifest

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 635

System Software Components and Interfaces

‣ /opt/nvidia/driveos/<release>/<DRIVEOS_GCID>/drive-linux/filesystems/
driveos-oobe-ubuntu-20.04-rfs/driveos-oobe-ubuntu-20.04-rfs.manifest

‣ /opt/nvidia/driveos/<release>/<DRIVEOS_GCID>/drive-linux/filesystems/
driveos-oobe-desktop-ubuntu-20.04-rfs/driveos-oobe-desktop-ubuntu-20.04-
rfs.manifest

Where <DRIVEOS_GCID> is the GCID of DRIVE OS Linux and <release> is the version of
NVIDIA DRIVE OS Linux.

Additionally, the le systems also contain a listing of all installed packages (useful for
DRIVE OS Build-FS) at (depending on driveos-oobe-rfs, driveos-core-rfs, or driveos-oobe-
desktop-rfs):

‣ /etc/nvidia/rootfilesystem-manifest/driveos-core-ubuntu-20.04-
rfs.MANIFEST.json

‣ /etc/nvidia/rootfilesystem-manifest/driveos-oobe-ubuntu-20.04-
rfs.MANIFEST.json

‣ /etc/nvidia/rootfilesystem-manifest/driveos-oobe-desktop-ubuntu-20.04-
rfs.MANIFEST.json

Finally, the le system contains les overlayed over the Debian packages from dierent
modules like drivers, libraries, tools, rmware, scripts, and samples. The set of modules is
included in driveos-core-rfs and driveos-oobe-rfs. The itemized listing is available in the
CopyTarget topic.

6.4.1 DRIVE OS Linux File Systems
The following table shows the Debian package to be installed for the specied le system.

File System File to Download Purpose

driveos-oobe-
ubuntu-20.04-rfs

nv-driveos-linux-driveos-oobe-
ubuntu-20.04-rfs-<release>-
<DRIVEOS_GCID>_<release>-
<DRIVEOS_GCID>_amd64.deb

Intended to be used by developers as a
development or reference lesystem.

Contains NVIDIA automotive sample
applications and corresponding
documentations.

driveos-oobe-desktop-
ubuntu-20.04-rfs

nv-driveos-linux-driveos-oobe-
desktop-ubuntu-20.04-rfs-<release>-
<DRIVEOS_GCID>_<release>-
<DRIVEOS_GCID>_amd64.deb

Intended to be used by developers as a
development or reference lesystem.

Contains NVIDIA automotive GUI desktop
interface, sample applications, and
corresponding documentations.

driveos-core-
ubuntu-20.04-rfs

nv-driveos-linux-driveos-core-
ubuntu-20.04-rfs-<release>-
<DRIVEOS_GCID>_<release>-
<DRIVEOS_GCID>_amd64.deb

Intended to be used by production systems.

Contains NVIDIA automotive drivers,
libraries, tools, rmware, scripts, and other
required les for core functionality.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 636

System Software Components and Interfaces

Where <DRIVEOS_GCID> is the GCID of NVIDIA DRIVE
®
 OS Linux and <release> is the

NVIDIA DRIVE
®
 OS Linux SDK version.

Note:

‣ The DRIVE OS Linux le system Debian is installable only in the local Debian
installer workow. The steps for the local Debian installer are in the Install
DRIVE OS Linux Debian Packages topic.

‣ To install or get dierent le systems using SDK Manager or Docker path, see the
DRIVE OS Linux SDK Manager or Docker documentation.

6.4.2 Filesystem Manifest
Each lesystem is accompanied by a Filesystem Manifest. The manifest is located with the
lesystem at :

/opt/nvidia/driveos/<release>/<GCID>/drive-linux/filesystems/<fs_variant>/
<fs_variant>.MANIFEST.json

Where:

‣ <DRIVEOS_GCID> is the GCID of NVIDIA DRIVE OS Linux

‣ <release> is the NVIDIA DRIVE OS Linux SDK version

‣ <fs_variant> is one of the values from the list: [driveos-core-ubuntu-20.04-rfs, driveos-
oobe-ubuntu-20.04-rfs, driveos-oobe-desktop-ubuntu-20.04-rfs]

The manifest can be used to identify the information dened in the NVIDIA DRIVE OS
Build-FS cong for generating the lesystem. For more information, see NVIDIA Build-FS
documentation.

6.4.2.1 Prompts During Installation of Filesystem
During installation of the lesystem, certain criteria may trigger one or more interactive
prompts for you to conrm or specify additional information. When prompts are issued,
you must answer to continue.

There are silent install variables that allow non-interactive installation. These silent
install variables are specied in the respective tables of each installation method and an
explanation to use them is provided. Silent install variables are set as environment variables
and if exposed to the installers, are used.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 637

System Software Components and Interfaces

6.4.2.2 Prompts During Installation of Filesystem from
Debian
Interactive
Prompt

Acceptable
Input Default Trigger Instructions

Silent Install Variable
Bypass Criteria

Please input
NV_WORKSPACE
path.

NV_WORKSPACE:
Path where
DRIVEOS SDK
is installed

Valid Unix
directory
path, ensure
input is
terminated
with a
trailing
slash.

-

This
prompt
will be
presented
to the
user to
conrm
if the
following
condition
is met
unless
the
silent
install
variable
criteria
has
been set
with the
appropriate
value.

${NV_WORKSPACE}
is not
dened
in the
environment.

This prompt
is required
to be
answered
to indicate
to Debian
installation
script the
location
to create
lesystem
image.

NV_WORKSPACE=<DIRECTORY_PATH>

Where <DIRECTORY_PATH> is
the valid DRIVE OS
LINUX installed directory;
ensure this directory
path ends with a slash
"/".

"<FILEPATH>"
already
exists, do
you wish to
replace the
img [y/N] ?

Where

<FILEPATH>
is the
absolute
lepath
where the
installer is
attempting
to install
lesystem
image to.

"y" - yes

"n" - no
n (no)

This
prompt
will be
presented
to the
user to
conrm
if the
following
condition
is met
unless
the
silent
install
variable
criteria
has
been set
with the
appropriate
value.

File
<FILEPATH>
already
exists.

This prompt
is presented
to prevent
automated
destruction
of potential
existing
data.

NV_OVERWRITE_IMAGE=yes

Note: It is
irrelevant whether
${NV_WORKSPACE} has
been set or not because
${NV_WORKSPACE} will
be set by prior prompt
(above) if not already.

"<SYMLINK_PATH>"
symlink
already
exists, and
points to
"<SYMLINK_POINTED_PATH>",
Do you wish
to continue
to update
the symlink
to currently
installing
rootfs [y/N]?

Where:

<SYMLINK_PATH>
is the
absolute
symlink path
which the
installer is
attempting to
update.

<SYMLINK_POINTED_PATH>
is the
location
the existing
symlink is
pointing to
currently.

"y" - yes

"n" - no
n (no)

This
prompt
will be
presented
to the
user to
conrm
if the
following
conditions
are met
unless
the
silent
install
variable
criteria
has
been set
with the
appropriate
value.

Symlink
<SYMLINK_PATH>
already
exists.

This prompt
is presented
to prevent
automated
destruction
of potential
existing
data.

NV_OVERWRITE_SYMLINK=yes

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 638

System Software Components and Interfaces

6.4.3 Unused Upstream Components in DRIVE OS
Linux
The DRIVE OS Linux SDK le system (based on Ubuntu-20.04) has components from
upstream that are unused and inapplicable for DRIVE OS Linux. The following list shows the
components that are unused due to the reasons mentioned below.

‣ Upower: Upower daemon is used for power management in Linux. The DRIVE OS Linux
guest OS does not have control for power management and is controlled by AURIX.

‣ Pulseaudio: DRIVE OS Linux does not support pulseaudio and has alternatives for audio.

‣ Alsa: DRIVE OS Linux does not support pulseaudio and has alternatives for audio.

‣ apt-daily: Apt-daily is disabled in DRIVE OS Linux SDK le systems to prevent automatic
updates of packages in the le system because the baseline le system has been
quality tested and delivered.

‣ isc-dhcp-server: DHCP server is disabled because all documented SDK workows use
the target as a DHCP client.

‣ network-manager: DRIVE OS Linux supports networking using systemd-networkd
instead of network-manager.

‣ ondemand.service: DRIVE OS Linux does not support CPU governor with ondemand
policy.

6.4.4 Logging In
Note:

If you experience instability or timeouts with ssh connections to a DRIVE AGX Orin
System in the DRIVE AGX Orin System, set -o ServerAliveInternal to keep the
ssh session live. For example:

$ ssh -o ServerAliveInternal=240 nvidia@<Target IP Address>

See the standard Linux ssh manpage documentation for more information.

The le systems (drive-oobe-rfs only) support secured shell (ssh) and serial console logins.
Use the secure login feature.

6.4.5 DRIVE OS Linux Username and Password
For information about the default DRIVE OS username and password, and how to change
the username and password, see Changing the Default Target Username and Password.

6.4.6 Installing Non-Default File Systems
When the DRIVE OS Linux is installed using the steps in the Install DRIVE OS Linux Debian
Packages topic, the default le system installed is driveos-core-ubuntu-20.04-rfs. You
can install other le system Debian, such as driveos-oobe-desktop-ubuntu-20.04-rfs or
driveos-oobe-ubuntu-20.04-rfs, following these steps.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 639

System Software Components and Interfaces

1. To install the driveos-oobe-rfs or driveos-oobe-desktop Debian package, use the
following commands:
$ export NV_WORKSPACE="/path/where/SDK/needs/is/installed"
$ sudo -E dpkg -i <deb_file>

Enter yes to each follow-on dpkg prompt.

The <deb_le> is the le system Debian from the File System column in the table
shown in "DRIVE OS LINUX File Systems".

2. After installing the le system, ash the target using the guidelines in the DRIVE OS
Bootburn document.

6.4.7 Network Conguration in NVIDIA
Filesystems
The service/daemon that manages/congures the network in NVIDIA lesystems (driveos-
core-rfs, driveos-oobe-rfs, driveos-oobe-desktop-rfs) is systemd-networkd, which is
dierent from the standard network manager (NetworkManager) used in Ubuntu 20.04 by
default.

systemd-networkd is the only network manager installed. Hence, utilities like netplan
aren't installed to support both systemd-networkd and NetworkManager.

6.4.7.1 Conguring Interfaces
To congure a particular interface, you must create a network le/netdev le in /etc/
systemd/network/.

For example, to congure interface eth0 with DHCP, create network le 50-wired.network
and place it in /etc/systemd/network/:
[Match]
Name=eth0
[Network]
DHCP=ipv4

For more information on network le semantics, priority, and location, see the systemd-
networkd man page.

6.4.8 Rebuilding the File System from ubuntu-
base and Local Mirror
DRIVE OS Linux SDK provides the following additional target-specic components below.
These components, along with build-fs and copytarget tools, can be used to rebuild the
lesystem starting from the ubuntu-base tarball.

1. Canonical ubuntu-base tarball: nv-driveos-linux-ubuntu-20.04-base-*_amd64.deb
2. Canonical arm64 Debian packages: nv-driveos-linux-ubuntu-20.04-arm64-debians-

*_amd64.deb

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 640

https://www.freedesktop.org/software/systemd/man/systemd.network.html
https://www.freedesktop.org/software/systemd/man/systemd.network.html

System Software Components and Interfaces

3. NVIDIA CUDA arm64 Debian packages: cuda-repo-ubuntu2004-11-4-local*arm64.deb
4. NVIDIA cuDNN arm64 Debian packages: cudnn-prune-87-repo-ubuntu2004-8-2-

local*arm64.deb

5. NVIDIA TensorRT arm64 Debian packages: nv-tensorrt-repo-ubuntu2004-cuda11.4-
trt*arm64.deb

6. NVIDIA Mellanox arm64 Debian packages: nv-driveos-linux-mlnx-docker-arm64-
debians-*_amd64.deb

7. NVIDIA Docker arm64 Debian packages: nv-driveos-linux-mlnx-docker-arm64-
debians-*_amd64.deb

8. NVIDIA DriveWorks arm64 Debian packages: List of Debian packages:

a). driveworks-v*_drive-linux-*.deb

b). driveworks_cgf-v*_drive-linux-*.deb
c). driveworks_cgf_cross-v*_drive-linux-*.deb

d). driveworks_cgf_samples-v*_drive-linux-*.deb
e). driveworks_cross-v*_drive-linux-*.deb

f). driveworks_data-v*_drive-linux-*.deb

g). driveworks_samples-v*_drive-linux-*.deb
h). driveworks_stm-v*_drive-linux-*.deb
i). driveworks_stm_cross-v*_drive-linux-*.deb

j). driveworks_stm_samples-v*_drive-linux-*.deb

9. NVIDIA DRIVE OS Core arm64 Debian packages - List of Debian packages:

a). nv-driveos-linux-aurix_*_arm64.deb

b). nv-driveos-linux-firmware_*_arm64.deb
c). nv-driveos-linux-headers_*_arm64.deb

d). nv-driveos-linux-kernel-modules_*_arm64.deb
e). nv-driveos-linux-libraries_*_arm64.deb

f). nv-driveos-linux-samples_*_arm64.deb

g). nv-driveos-linux-security_*_arm64.deb
h). nv-driveos-linux-tools_*_arm64.deb
i). nv-driveos-linux-core_*_arm64.deb

j). nv-driveos-linux-oobe_*_arm64.deb

The following steps are prerequisites and must be performed before executing the steps
to rebuild the lesystem below:

1. Ensure that DRIVE OS Linux SDK is installed as per the Getting Started page.
2. Install the build-fs and Copytarget Debian packages to use these tools.
3. Ensure the NV_WORKSPACE shell variable is set and points to the top directory where

DRIVE OS Linux SDK is installed.
4. Keep the DRIVE OS Linux SDK Debian packages in $NV_WORKSPACE and switch to the

following directory:
cd $NV_WORKSPACE

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 641

System Software Components and Interfaces

Steps to rebuild a lesystem from ubuntu-base
The rebuilding a lesystem requires the use of a local mirror from the target-specic
components above. Execute the steps below to set up the local mirror.

1. Install the driveos-oobe-desktop-rfs SDK package to install its manifest le driveos-
${FS_VARIANT}*MANIFEST.json.
$ sudo -E dpkg -i ./nv-driveos-linux-driveos-oobe-desktop-ubuntu-20.04-rfs-
*_amd64.deb

Here, ${FS_VARIANT} is the name of lesystem variant, e.g. oobe-desktop.

For an example to rebuild driveos-oobe-desktop-rfs, please refer to Example: Steps to
rebuild driveos-oobe-desktop-rfs lesystem from ubuntu-base below.

2. Install Canonical ubuntu-base and arm64 Debian SDK packages:
$ sudo -E dpkg -i ./nv-driveos-linux-ubuntu-20.04-arm64-debians-<release>-
<GCID>_<release>-<GCID>_amd64.deb ./nv-driveos-linux-ubuntu-20.04-base-
<release>-<GCID>_<release>-<GCID>_amd64.deb

3. Install NVIDIA Mellanox and Docker arm64 Debian packages:
$ sudo -E dpkg -i ./nv-driveos-linux-mlnx-docker-arm64-debians--<release>-
<GCID>_<release>-<GCID>_amd64.deb

4. Copy the NVIDIA CUDA, cuDNN, TensorRT and DriveWorks arm64 Debian packages to
$NV_WORKSPACE/drive-linux/lesystem/contents/debians/nvidia/.

5. Import CUDA bits exported variables by sourcing versions using cmd below:
$ source ${NVWORKSPACE}/drive-linux/filesystem/contents/debians/
versions.conf

6. Build the nal lesystem starting from ubuntu-base:
$ sudo -E /opt/nvidia/driveos/common/filesystems/build-fs/17/bin/
build_fs.py -w ${NV_WORKSPACE}/ -i ${NV_WORKSPACE}/drive-linux/filesystem/
targetfs-images/driveos-${FS_VARIANT}-ubuntu-20.04-rfs.MANIFEST.json -o
 $PWD/output/

Example: Steps to rebuild driveos-oobe-desktop-rfs lesystem from ubuntu-
base

The rebuilding use case/example requires the use of a local mirror from the target-specic
components above. Execute the steps below to set up the local mirror.

1. Install the driveos-oobe-desktop-rfs SDK package to install its manifest le driveos-
oobe-desktop*MANIFEST.json.
$ sudo -E dpkg -i ./nv-driveos-linux-driveos-oobe-desktop-ubuntu-20.04-rfs-
*_amd64.deb

2. Install Canonical ubuntu-base and arm64 Debian SDK packages:
$ sudo -E dpkg -i ./nv-driveos-linux-ubuntu-20.04-arm64-debians-<release>-
<GCID>_<release>-<GCID>_amd64.deb ./nv-driveos-linux-ubuntu-20.04-base-<release>-
<GCID>_<release>-<GCID>_amd64.deb

3. Install NVIDIA Mellanox and Docker arm64 Debian packages:
$ sudo -E dpkg -i ./nv-driveos-linux-mlnx-docker-arm64-debians--<release>-
<GCID>_<release>-<GCID>_amd64.deb

4. Copy the NVIDIA CUDA, cuDNN, TensorRT and DriveWorks arm64 Debian packages to
$NV_WORKSPACE/drive-linux/filesystem/contents/debians/nvidia/.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 642

System Software Components and Interfaces

5. Import CUDA bits exported variables by sourcing versions using cmd below:
$ source ${NVWORKSPACE}/drive-linux/filesystem/contents/debians/versions.conf

6. Build the nal lesystem starting from ubuntu-base:
$ sudo -E /opt/nvidia/driveos/common/filesystems/build-fs/17/bin/build_fs.py -
w ${NV_WORKSPACE}/ -i ${NV_WORKSPACE}/drive-linux/filesystem/targetfs-images/
driveos-oobe-desktop-ubuntu-20.04-rfs.MANIFEST.json -o $PWD/output/

Note: To rebuild a lesystem other than driveos-oobe-desktop, provide the corresponding
manifest as input instead of driveos-oobe-desktop-ubuntu-20.04-rfs.MANIFEST.json.

Similarly, to install any lesystem manifest, install the corresponding lesystem
SDK package.

Rebuilding a Filesystem from ubuntu-base Using NVIDIA DRIVE OS Core
CopyTarget YAML Manifests

This section provides instructions rebuild the Linux RFS using the DRIVE OS Core
CopyTarget YAML manifests from ${NV_WORKSPACE}/drive-linux/lesystem/copytarget/
manifest/*.yaml to copy the Core les instead of obtaining them from the NVIDIA DRIVE OS
Core Debian packages.

This is useful when you have modied the Core les on your host and want to copy them to
the lesystem without rebuilding the NVIDIA DRIVE OS Core Debian packages.

Note: If you instead wish to add additional les to an already available lesystem, follow
the instructions in How to Add a Single Debian Package and a Single File to the Linux
Filesystem.

1. Install the rfs SDK package to install its manifest le driveos-
${FS_VARIANT}*MANIFEST.json.
$ sudo -E dpkg -i
 ./nv-driveos-linux-driveos-${FS_VARIANT}-ubuntu-20.04-rfs-
*_amd64.deb
Here, ${FS_VARIANT} is the name of lesystem variant, e.g. oobe-desktop.

For an example to rebuild driveos-oobe-desktop-rfs, please refer to Example: Rebuilding
driveos-oobe-desktop-rfs Filesystem from ubuntu-base Using NVIDIA DRIVE OS Core
CopyTarget YAML Manifests below.

2. Install Canonical ubuntu-base and arm64 Debian SDK packages:
$ sudo -E dpkg -i ./nv-driveos-linux-ubuntu-20.04-arm64-debians-*_amd64.deb
 ./nv-driveos-linux-ubuntu-20.04-base-*_amd64.deb

3. Install NVIDIA Mellanox and Docker arm64 Debian packages:
$ sudo -E dpkg -i
 ./nv-driveos-linux-mlnx-docker-arm64-debians-*_amd64.deb

4. Copy the NVIDIA CUDA, cuDNN, TensorRT and DriveWorks arm64 Debian packages to
$NV_WORKSPACE/drive-linux/lesystem/contents/debians/nvidia/.

5. Import CUDA bits exported variables by sourcing versions using cmd below:
$ set -a
$ source

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 643

System Software Components and Interfaces

 ${NV_WORKSPACE}/drive-linux/filesystem/contents/debians/
versions.conf
$ set +a

6. Update ${NV_WORKSPACE}/drive-linux/lesystem/targetfs-images/driveos-
${FS_NAME}-ubuntu-20.04-rfs.MANIFEST.json to remove DRIVE OS Core Debian
packages.
$ sed -i
 '/nv-driveos-linux-\(aurix\|core\|firmware\|headers\|kernel-
modules\|libraries\|oobe\|samples\|security\|tools\).*/d'
 ${NV_WORKSPACE}/drive-linux/filesystem/targetfs-images/
driveos-${FS_VARIANT}-ubuntu-20.04-rfs.MANIFEST.json

7. Update ${NV_WORKSPACE}/drive-linux/lesystem/targetfs-images/driveos-
${FS_NAME}-ubuntu-20.04-rfs.MANIFEST.json to use the DRIVE OS Core CopyTarget
YAML manifests. You may update the “CopyTarget” key in the Build-FS manifest
manually to include the YAML manifests from ${NV_WORKSPACE}/drive-linux/
lesystem/copytarget/manifest/*.yaml or use the following singlecommand (note that
this is one single command that can be pasted into your bash terminal):
python3 -B - << END
import json
from collections import OrderedDict
bkConfig = OrderedDict()
manifest="${NV_WORKSPACE}/drive-linux/filesystem/targetfs-images/driveos-
${FS_VARIANT}-ubuntu-20.04-rfs.MANIFEST.json"
with open(manifest) as f:
 data = f.read()
bkConfig = json.loads(data, object_pairs_hook=OrderedDict)
bkConfig["CopyTargets"] = [
 "\${COPYTARGETYAML_DIR}/copytarget-configs.yaml",
 "\${COPYTARGETYAML_DIR}/copytarget-aurix.yaml",
 "\${COPYTARGETYAML_DIR}/copytarget-aurix.yaml",
 "\${COPYTARGETYAML_DIR}/copytarget-firmware.yaml",
 "\${COPYTARGETYAML_DIR}/copytarget-headers.yaml",
 "\${COPYTARGETYAML_DIR}/copytarget-kernel-modules.yaml",
 "\${COPYTARGETYAML_DIR}/copytarget-libraries.yaml",
 "\${COPYTARGETYAML_DIR}/copytarget-samples.yaml",
 "\${COPYTARGETYAML_DIR}/copytarget-security.yaml",
 "\${COPYTARGETYAML_DIR}/copytarget-tools.yaml"
]
with open(manifest, 'w') as f:
 f.write(json.dumps(bkConfig, indent=4, sort_keys=False))
END

8. Build the nal lesystem starting from ubuntu-base:
$ sudo -E /opt/nvidia/driveos/common/filesystems/build-fs/17/bin/
build_fs.py -w ${NV_WORKSPACE}/ -i ${NV_WORKSPACE}/drive-linux/filesystem/
targetfs-images/driveos-${FS_VARIANT}-ubuntu-20.04-rfs.MANIFEST.json -o
 $PWD/output/

Example: Rebuilding driveos-oobe-desktop-rfs Filesystem from ubuntu-base
Using NVIDIA DRIVE OS Core CopyTarget YAML Manifests

This section provides an example to rebuild the Linux OOBE Desktop RFS using the DRIVE
OS Core CopyTarget YAML manifests from ${NV_WORKSPACE}/drive-linux/filesystem/
copytarget/manifest/*.yaml to copy the Core les instead of obtaining them from the
NVIDIA DRIVE OS Core Debian packages.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 644

System Software Components and Interfaces

This is useful when you have modied the Core les on your host and want to copy them to
the lesystem without rebuilding the NVIDIA DRIVE OS Core Debian packages.

Note: If you instead wish to add additional les to an already available lesystem, follow
the instructions in How to Add a Single Debian Package and a Single File to the Linux
Filesystem.

1. Install the driveos-oobe-desktop-rfs SDK package to install its manifest le driveos-
oobe-desktop*MANIFEST.json.

$ sudo -E dpkg -i
 ./nv-driveos-linux-driveos-oobe-desktop-ubuntu-20.04-rfs-*_amd64.deb

2. Install Canonical ubuntu-base and arm64 Debian SDK packages:

$ sudo -E dpkg -i ./nv-driveos-linux-ubuntu-20.04-arm64-debians-*_amd64.deb
 ./nv-driveos-linux-ubuntu-20.04-base-*_amd64.deb

3. Install NVIDIA Mellanox and Docker arm64 Debian packages:

$ sudo -E dpkg -i
 ./nv-driveos-linux-mlnx-docker-arm64-debians-*_amd64.deb

4. Copy the NVIDIA CUDA, cuDNN, TensorRT and DriveWorks arm64 Debian packages to
$NV_WORKSPACE/drive-linux/filesystem/contents/debians/nvidia/.

5. Import CUDA bits exported variables by sourcing versions using cmd below:

$ set -a
$ source
 ${NV_WORKSPACE}/drive-linux/filesystem/contents/debians/
versions.conf
$ set +a

6. Update ${NV_WORKSPACE}/drive-linux/filesystem/targetfs-images/driveos-
oobe-desktop-ubuntu-20.04-rfs.MANIFEST.json to remove DRIVE OS Core Debian
packages.

$ sed -i
 '/nv-driveos-linux-\(aurix\|core\|firmware\|headers\|kernel-modules
\|libraries\|oobe\|samples\|security\|tools\).*/d'
 ${NV_WORKSPACE}/drive-linux/filesystem/targetfs-images/driveos-oobe-
desktop-ubuntu-20.04-rfs.MANIFEST.json

7. Update ${NV_WORKSPACE}/drive-linux/filesystem/targetfs-images/driveos-oobe-
desktop-ubuntu-20.04-rfs.MANIFEST.json to use the DRIVE OS Core CopyTarget
YAML manifests. You may update the “CopyTarget” key in the Build-FS manifest
manually to include the YAML manifests from ${NV_WORKSPACE}/drive-linux/
filesystem/copytarget/manifest/*.yaml or use the following singlecommand (note
that this is one single command that can be pasted into your bash terminal):

python3 -B - << END
import json
from collections import OrderedDict
bkConfig = OrderedDict()
manifest="${NV_WORKSPACE}/drive-linux/filesystem/targetfs-images/driveos-oobe-
desktop-ubuntu-20.04-rfs.MANIFEST.json"
with open(manifest) as f:
 data = f.read()
bkConfig = json.loads(data, object_pairs_hook=OrderedDict)

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 645

System Software Components and Interfaces

bkConfig["CopyTargets"] = [
 "\${COPYTARGETYAML_DIR}/copytarget-configs.yaml",
 "\${COPYTARGETYAML_DIR}/copytarget-aurix.yaml",
 "\${COPYTARGETYAML_DIR}/copytarget-aurix.yaml",
 "\${COPYTARGETYAML_DIR}/copytarget-firmware.yaml",
 "\${COPYTARGETYAML_DIR}/copytarget-headers.yaml",
 "\${COPYTARGETYAML_DIR}/copytarget-kernel-modules.yaml",
 "\${COPYTARGETYAML_DIR}/copytarget-libraries.yaml",
 "\${COPYTARGETYAML_DIR}/copytarget-samples.yaml",
 "\${COPYTARGETYAML_DIR}/copytarget-security.yaml",
 "\${COPYTARGETYAML_DIR}/copytarget-tools.yaml"
]
with open(manifest, 'w') as f:
 f.write(json.dumps(bkConfig, indent=4, sort_keys=False))
END

8. Build the nal lesystem starting from ubuntu-base:
$ sudo -E /opt/nvidia/driveos/common/filesystems/build-fs/17/bin/build_fs.py -
w ${NV_WORKSPACE}/ -i ${NV_WORKSPACE}/drive-linux/filesystem/targetfs-images/
driveos-oobe-desktop-ubuntu-20.04-rfs.MANIFEST.json -o $PWD/output/

6.4.9 File System Source Code
The lesystem source code packaged in nv-driveos-linux-ubuntu-20.04-
src_<release>-<DRIVEOS_GCID>_amd64.deb, where <DRIVEOS_GCID> is the GCID of NVIDIA
DRIVE OS Linux and <release> is the NVIDIA DRIVE OS Linux SDK version. The sources
are built using the Debian package name and version from the manifest les in the rootfs
below:

‣ /etc/nvidia/rootfilesystem-manifest/driveos-core-ubuntu-20.04-
rfs.MANIFEST.json

‣ /etc/nvidia/rootfilesystem-manifest/driveos-oobe-ubuntu-20.04-
rfs.MANIFEST.json

‣ /etc/nvidia/rootfilesystem-manifest/driveos-oobe-desktop-ubuntu-20.04-
rfs.MANIFEST.json

The source is generated by executing the following command for each package (in the
respective lesystem manifest) to obtain its source:
$ apt-get source <package>=<package_version>

The union of all the lesystem sources are delivered in the SDK.

NVIDIA DRIVE OS Linux lesystems contain a combination of Ubuntu repository and
NVIDIA CUDA repository packages. As an alternative to above source, you can get the
source of Ubuntu repository packages (from the Ubuntu repository) using the command:

Disclaimer:

Ensure that all data is saved. Execute a software shutdown command, such as
halt/shutdown to the target system to avoid data corruption; otherwise, le system
corruption may occur. Once the target system is shut down, you may use physical/electrical
shutdown or reset commands, such as tegrareset or aurixreset in the AURIX command
terminal.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 646

System Software Components and Interfaces

6.4.10 VNC
DRIVE OS LINUX lesystems support using VNC access to DRIVE platform using canonical
open source x11vnc. The solution supports both cases where a physical display is
connected to the DRIVE platform (i.e. non-headless) or without any physical display (i.e.
headless). The steps to use VNC broadly has 3 phases. The rst phase sets the VNC mode
(between headless vs non-headless), the second starts the X11 server (depending on the
lesystems), and nally starts the x11vnc server on the DRIVE platform.

Step One: Selecting VNC mode between non-headless vs headless mode

What is the non-headless mode?

The non-headless mode runs X on the physical display connected to the DRIVE platform. It
uses an accelerated nvidia driver stack and is the default mode.

The following shows xrandr output in non-headless mode:

Screen 0: minimum 8 x 8, current 1920 x 1080, maximum 32767 x 32767
DP-0 connected primary 1920x1080+0+0 (normal left inverted right x axis y axis) 477mm
 x 268mm
 1920x1080 60.00*+
 1680x1050 59.95
 1440x900 59.89
 1280x1024 75.02 60.02

Headless Mode

Headless mode is the mode where no physical display is connected to the target and VNC
uses a virtual display over the network to connect/work with the target.

The following shows xrandr output in non-headless mode:

xrandr: Failed to get size of gamma for output default
Screen 0: minimum 320 x 240, current 1920 x 1080, maximum 1920 x 1080
default connected 1920x1080+0+0 0mm x 0mm
 1920x1080 60.00*
 1680x1050 70.00 60.00
 1400x1050 70.00 60.00
 1600x900 60.00
 1280x1024 75.00 60.00

Steps to set non-headless mode

The non-headless mode is the default mode in the lesystem and there are no actions
required.

Steps to set headless mode

1. Backup current xorg.conf to xorg.conf.nvidia

a). sudo cp /etc/X11/xorg.conf /etc/X11/xorg.conf.nvidia
b). Note: To restore to non-headless copy /etc/X11/xorg.conf.nvidia over to /etc/X11/

xorg.conf.

1. sudo cp /etc/X11/xorg.conf.nvidia /etc/X11/xorg.conf

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 647

System Software Components and Interfaces

2. Copy below xorg.conf content below to /etc/X11/xorg.conf.dummy. Copy /etc/X11/
xorg.conf.dummy to /etc/X11/xorg.conf.

a). sudo cp /etc/X11/xorg.conf.dummy /etc/X11/xorg.conf

Section "Monitor"
 Identifier "Monitor0"
 HorizSync 28.0-80.0
 VertRefresh 48.0-75.0
 # https://arachnoid.com/modelines/
 # 1920x1080 @ 60.00 Hz (GTF) hsync: 67.08 kHz; pclk: 172.80 MHz
 Modeline "1920x1080_60.00" 172.80 1920 2040 2248 2576 1080 1081 1084 1118 -HSync
 +Vsync
EndSection
Section "Device"
 Identifier "Card0"
 Driver "dummy"
 VideoRam 256000
EndSection
Section "Screen"
 DefaultDepth 24
 Identifier "Screen0"
 Device "Card0"
 Monitor "Monitor0"
 SubSection "Display"
 Depth 24
 Modes "1920x1080_60.00"
 EndSubSection
EndSection

Step Two: Starting X Server on the Filesystem

Desktop FS

For the oobe-desktop lesystem, the X server is automatically launched by default by the
gdm3 display manager. No actions are required.

OOBE FS and CORE FS

For oobe/core lesystems, the X server is not launched on boot and requires manually
starting it:

sudo -b X -ac -noreset -nolisten tcp

For more information, see To start the X server.

Step Three: Running VNC server on DRIVE OS Filesystem and connecting to
it

With Xserver running, follow the steps below to set up the x11vnc server and connect to it
from the host VNC client.

Desktop FS

1. The gdm3 service automatically starts on desktop FS loading.
2. With x11vnc installed, please start x11vnc with cmdline args: (sudo is required because

we are accessing another user's Xauthority)

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 648

System Software Components and Interfaces

a). sudo DISPLAY=:0 x11vnc -auth /run/user/110/gdm/Xauthority -forever -noxdamage -
repeat -shared -loop

3. From the host side, the VNC client can connect to x11vnc (at port 5900) and see the
greeter screen.

4. Note that after providing username & password in greeter, you will reach a blank screen
because the GUI desktop gets started in a dierent X server instance.

5. To nd the Xserver instance and Xauthority le, please use the ps command as shown
below and note the Xauthority le <Xauth>:

a). ps aux | grep Xorg | grep -v 110
b). Look for the argument of the -auth option of the running Xorg
c).

d). In the above example: the Xauthority le is the argument to -auth /run/user/1000/
gdm/Xauthority. So, the Xauthority le is /run/user/1000/gdm/Xauthority.

6. Now connect x11vnc using Xauthority le from step-5 to see the desktop:

a). DISPLAY=:1 x11vnc -auth <Xauthority le> -forever -noxdamage -repeat -shared -loop
b). As per example in step-5c, example cmdline is DISPLAY=:1 x11vnc -auth /run/

user/1000/gdm/Xauthority -forever -noxdamage -repeat -shared -loop

OOBE FS and CORE FS

1. With x11vnc installed, please start x11vnc with cmdline args:

a). x11vnc -forever -noxdamage -repeat -shared -loop &
2. Connect to x11vnc from the host via vncviewer, to see a black screen because no

applications are running on the screen.
3. Open a new terminal (for example ssh connection) and execute the following

commands to run sample graphics app bubble:

a). cd /opt/nvidia/drive-linux/samples/opengles2/bubble
b). DISPLAY=:0 ./x11/bubble

6.4.11 Read-Only File System Considerations
DRIVE OS Linux le systems are supported to be mounted read-only when required by
users. When DRIVE OS Linux Initramfs sees le systems that are mounted read-only, it
enables access to a scratch partition gos0-rw-overlay of size 1 GB to receive the writes
on the le system paths: /var, /tmp, /home, /etc. This scratch partition is not persistent
across ashing and gets wiped during ashing.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 649

System Software Components and Interfaces

For more information, see DM-Verity and Read-Only File System Support.

Note: The read-only le system does not aect the support for persistent partitions.
The mounts for persistent partitions for user metadata and user data are stacked on top
of the gos0-rw-overlay partition. Therefore, writes /etc/ and /home directly go to their
respective persistent partitions instead of the gos0-rw_overlay partition.

6.5 DRIVE OS Linux Filesystems
Customization Quick Start Page
DRIVE OS Linux includes three lesystems, driveos-core-rfs, driveos-oobe-rfs, and driveos-
oobe-desktop-rfs. This section goes over the basics of the LINUX lesystem customization
tools and key examples.

6.5.1 Getting Started
To help you get started, this section provides two simple examples:

1. How to use the lesystem tool Build-FS to rebuild the SDK Linux lesystem without any
modications

2. How to add a single debian package and a single le into your customized Linux
lesystem

Prerequisites

Ensure that the following tools are installed:

‣ Build-FS

‣ CopyTarget

See Installing Build-FS tool for instructions on installing and setting up these tools.

6.5.2 Rebuilding the Linux SDK File System
Without Modications Using the Build-FS Tool
This example shows the steps to rebuild the Linux SDK le system using the le system
tool Build-FS. At the completion of this example, you will complete the following tasks:

‣ Recreate the Linux le system without any modications.

‣ Flash your recreated Linux le system image onto the platform.

‣ Boot up the target platform with your recreated Linux le system.

1. Run the build-fs tool using the following commands to create a le system without
any changes. The created le system shall be at path ${NV_WORKSPACE}/drive-linux/
filesystem/targetfs-images/nvidia-driveos-build-fs-user-rfs.img because
of the output name specied in /opt/nvidia/driveos/common/filesystems/build-

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 650

System Software Components and Interfaces

fs/17/configs/driveos-user-rfs.CONFIG.json. Copy the rebuilt le system to
replace the starting le system at ${NV_WORKSPACE}/drive-linux/filesystem/
targetfs-images/targetfs.img.
export PROD_SUFFIX=""
export NVRTKERNELNAME="$(basename $NV_WORKSPACE/drive-linux/kernel/preempt_rt
${PROD_SUFFIX}/modules/*rt*-tegra)"
sudo -E /usr/bin/python3 -B /opt/nvidia/driveos/common/filesystems/build-fs/17/
bin/build_fs.py -w ${NV_WORKSPACE}/ -i /opt/nvidia/driveos/common/filesystems/
build-fs/17/configs/driveos-user-rfs.CONFIG.json -o ${NV_WORKSPACE}/drive-linux/
filesystem/targetfs-images/
sudo rm -f ${NV_WORKSPACE}/drive-linux/filesystem/targetfs.img
sudo ln -s ${NV_WORKSPACE}/drive-linux/filesystem/targetfs-images/nvidia-driveos-
build-fs-rfs-user.img ${NV_WORKSPACE}/drive-linux/filesystem/targetfs.img

2. The NVIDIA DRIVE
®
 OS ashing tool bootburn.py PCT picks up le system by default at

path ${NV_WORKSPACE}/drive-linux/filesystem/targetfs-images/targetfs.img.
3. Use bootburn.py to ash the le system.
4. Reboot the target.
5. The target should have rebooted with your recreated Linux le system.

After step 5, the target boots the system and reaches the command prompt as shown
below:
tegra-ubuntu login:

Enter the <username>/<password> corresponding to the user account(s) created during
the initial setup of the NVIDIA DRIVE

®
 platform.

tegra-ubuntu login: <username>
password: <password>

After successful login, the console welcome prompt is seen:
<username>@tegra-ubuntu:~$

6.5.3 Adding a Single Debian Package and a Single
File to the Linux File System
This example shows the steps to add a le, a Debian package, and build the Linux le
system using the le system tools Build-FS and CopyTarget. At the completion of this
example, you will complete the following tasks:

‣ Customize your Linux le system.

‣ Flash your customized Linux le system image onto the NVIDIA DRIVE
®
 platform.

‣ Boot up the target platform with your customized Linux le system.

‣ Verify the added package and the added le on the target.

1. In this example, we have chosen to use the le ${NV_WORKSPACE}/drive-linux/
filesystem/content/samples/hello_world.txt that is part of the NVIDIA DRIVE

®
 OS

samples to add to the Linux le system.
2. You are, otherwise, welcome to use any other le you want, but the rest of this example

will refer to hello_world.txt.
3. Create the CopyTarget Manifest ${NV_WORKSPACE}/drive-linux/filesystem/

copytarget/manifest/copytarget-hello.yaml and add entry to ${NV_WORKSPACE}/

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 651

System Software Components and Interfaces

drive-linux/filesystem/content/samples/hello_world.txt as shown below. A list
of le metadata (perm, owner, group) must be specied to provide detail to describe
the le.

4. To customize the standard Linux le system, specify the le system variant that
the le hello_world.txt is part of. Importantly, you must provide the source location
(pdk_sdk_installed_path) and the destination that the le hello_world.txt should reside
in the customized Linux le system.

5. As per steps 2 and 3, an example that describes hello_world.txt is provided in the code
block below. Copy this excerpt into ${NV_WORKSPACE}/drive-linux/filesystem/
copytarget/manifest/copytarget-hello.yaml.
fileList:
 - destination: /hello_world.txt
 source:
 pdk_sdk_installed_path: ${NV_WORKSPACE}/drive-linux/filesystem/content/
samples/hello_world.txt
 perm: 644
 owner: root
 group: root

6. Further, in this example, we demonstrate adding a Linux Debian package to the le
system using the Build-FS cong. To add a package, an entry must be added to the
DebianPackages block of the cong le.

7. Update the /opt/nvidia/driveos/common/filesystems/build-fs/17/configs/
driveos-example-hello_world-rfs.CONFIG.json Build-FS cong to add the
CopyTarget YAML created above in the "CopyTargets" block and the parted Debian
package in the DebianPackages block of the cong le.
{
 "OS": "linux",
 "Output": "driveos-example-hello_world-rfs",
 "Base": "${BASE_DIR}/targetfs.img",
 "Mirrors": [
 {
 "Type": "local_debian_folder",
 "Path": "${MIRROR_DIR}"
 }
],
 "CopyTargets": [
 "${COPYTARGETYAML_DIR}/copytarget-hello.yaml"
],
 "DebianPackages": [
 "bsdmainutils"
]
}

8. Run the build-fs tool using the following commands to create a le system with
preceding customizations. The created le system shall be at path ${NV_WORKSPACE}/
drive-linux/filesystem/targetfs-images/driveos-example-hello_world-rfs.img
because of the output name specied in /opt/nvidia/driveos/common/filesystems/
build-fs/17/configs/driveos-example-hello_world-rfs.CONFIG.json. Copy the
rebuilt le system to replace the starting le system at ${NV_WORKSPACE}/drive-
linux/filesystem/targetfs.img.
export PROD_SUFFIX=""
export NVRTKERNELNAME="$(basename $NV_WORKSPACE/drive-linux/kernel/preempt_rt
${PROD_SUFFIX}/modules/*rt*-tegra)"
sudo -E /usr/bin/python3 -B /opt/nvidia/driveos/common/filesystems/build-fs/17/
bin/build_fs.py -w ${NV_WORKSPACE}/ -i /opt/nvidia/driveos/common/filesystems/

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 652

System Software Components and Interfaces

build-fs/17/configs/driveos-linux-example-hello_world-rfs.CONFIG.json -o
 ${NV_WORKSPACE}/drive-linux/filesystem/targetfs-images/
sudo rm -f ${NV_WORKSPACE}/drive-linux/filesystem/targetfs.img
sudo ln -s ${NV_WORKSPACE}/drive-linux/filesystem/targetfs-images/driveos-example-
hello_world-rfs.img ${NV_WORKSPACE}/drive-linux/filesystem/targetfs.img

9. The NVIDIA DRIVE OS ashing tool bootburn.py PCT picks up the le system by default
at path ${NV_WORKSPACE}/drive-linux/filesystem/targetfs.img.

10. Use bootburn.py to ash the le system.
11. Reboot the target.
12. The target should have rebooted with your customized Linux le system.
13. Verify that intended customizations are present:

a). Check ls at / path to verify /hello-world.txt exists:

1. $ ls /hello-world.txt

b). Use the following hexdump command to conrm the bsdmainutils package is
installed:

1. $ hexdump -C /hello-world.txt

6.6 CopyTarget
The CopyTarget tool copies les reliably from a source location to the destination location
while maintaining le metadata, which includes ownership and permission.

CopyTarget supports the following operations:

‣ Copy le

‣ Create directory

‣ Update le metadata

‣ Update directory metadata

‣ Remove le

‣ Remove empty directory

‣ Create symlink

Prerequisites

‣ Ubuntu 18.04 x86_64 host

‣ python3 (>= 3.5)

‣ python3-yaml

‣ coreutils

‣ bash

These are required to run the CopyTarget tool.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 653

System Software Components and Interfaces

6.6.1 Installing CopyTarget
The CopyTarget tool is packaged and distributed as part of DRIVE OS SDK and can
be installed by following the instructions in Installation Using DRIVE OS Local Debian
Packages.

CopyTarget is installed on the host at:

/opt/nvidia/driveos/common/filesystems/copytarget/1.4/

.

6.6.2 Using CopyTarget
‣ Execute CopyTarget:

/opt/nvidia/driveos/common/filesystems/copytarget/1.4.5-<DRIVEOS_RELEASE>/
copytarget.py ${TARGET_DIRECTORY} ${WORKSPACE} MANIFEST.yaml

Where:

‣ <DRIVEOS_RELEASE> is the release version of NVIDIA DRIVE OS.

‣ ${TARGET_DIRECTORY} is the destination directory.

‣ ${WORKSPACE} is the workspace directory.

‣ MANIFEST.yaml is the manifest le that species the le operations to execute.

6.6.2.1 Command Line Syntax
CopyTarget has the following invocation syntax with the following mandatory and optional
arguments. For more information, see Command Argument Options.
copytarget.py ${TARGET_DIRECTORY} ${WORKSPACE}
MANIFEST.yaml [MANIFEST1.yaml...] [OPTIONS]

The destination ${TARGET_DIRECTORY}, current workspace ${WORKSPACE}, and an initial
manifest must be specied. Optional and additional manifests can be specied and are
treated as if the initial manifest imported these additional manifests in its import section.

See Command Argument Options for additional options that can be specied to
CopyTarget as part of [OPTIONS].

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 654

System Software Components and Interfaces

6.6.3 Command Argument Options

Argument Description

--autocreate-
parent-
directories=AUTOCREATEPARENTDIR

Automatically create
parent directories
even if they have
not been explicitly
specied in the
manifest. Accepted
values: 'True/yes',
'False/no'. Default:
'True'

--buildfile-
header=QNXBUILDFILEHEADER

Add an header
specied using this
argument to QNX
BuildFile

--
blacklist=BLACKLISTYAMLMANIFESTFILESpecify the path to a

YAML manifest with
a list of source path
of les that should
not be copied to
TARGET_DIRECTORY.
This is an operation to
verify the CopyTarget
YAML Manifest

--buildfile-
header-
file=QNXBFHEADERFILES

Source le to include
when generating
buildles. Can be
specied multiple
times.

--version, -v Prints the program's
version number and
exits.

--create-
buildfile=QNXBUILDFILE

Convert YAML
copytarget manifests
to QNX BuildFile.

--help, -h Show this help
message and exits.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 655

System Software Components and Interfaces

Argument Description

-u UIDMAPFILE, --
user-identifier-
dictionary=UIDMAPFILE

Explicitly specify the
path to the passswd
le. This is useful
if the target root
path does not have
${TARGET_DIRECTORY}/
etc/passwd le.

-g GIDMAPFILE, --
group-identifier-
dictionary=GIDMAPFILE

Explicitly specify the
path to the group
le. This is useful
if the target root
path does not have
${TARGET_DIRECTORY}/
etc/group le.

-s SOURCETYPE,
 --source-
type=SOURCETYPE

Specify source
type. Default value:
"pdk_sdk_installed_path".

-f
 FILESYSTEMTYPE,
 --filesystem-
type=FILESYSTEMTYPE

Specify lesystem
type. Only process
items in leList
that have required
set to yes under
lesystems entry
in manifest. Default
value: "standard".

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 656

System Software Components and Interfaces

Argument Description

--no-chown Do not change
ownership of the les.

--
whitelist=WHITELISTYAMLMANIFESTFILESpecify the path to

a YAML manifest
with a list of source
path of les that
can be copied to
TARGET_DIRECTORY.
This is an operation to
verify the CopyTarget
YAML Manifest.

--verify-only
Only verify the
CopyTarget YAML
manifest. By
specifying this option
CopyTarget will only
verify the CopyTarget
manifest. At lease
one of the following
arguments are
necessary to specify
what needs to be
veried: 1) Check for
blacklisted les with --
blacklist. 2) Check for
whitelisted les with --
whitelist.

6.6.4 CopyTarget Manifest
CopyTarget operates on one or more manifest les and at least one must be provided to
the tool. Each manifest le contains the source and destination locations of the le, as
well as the metadata. Manifests follow YAML syntax, a human-readable data-serialization
language.

A manifest is specied by two sections: a header, and a le list. The header and le list
serve dierent roles. In the next section, the roles of these sections are explained in detail.

6.6.4.1 Header
The header contains information required to process the le list section of the manifest.
The header also provides information indicating the compatible CopyTarget software. The
header includes the following information as captured and detailed in the table.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 657

System Software Components and Interfaces

Attribute Description Required Default Domain Example

version Denes
the list of
CopyTarget
versions that
the
manifest is
compatible
with.

Mandatory - Decimal number version: '1.4'

exports Subsection
containing
a list of key
value pairs.
The keys
dened in
this section
are used
as variable
identiers
and using
these keys
in the lelist
expands
them into
assigned
values.

Optional Empty
list

Key: a valid variable
name

Value: any valid
YAML assignable
value

exports:

- Key1: Value1

- Key2: Value2

imports Subsection
containing
a list of
additional
manifests.

Optional Empty
list

List of zero, one,
or more valid and
compatible lepaths
to additional
CopyTarget
manifest les.

Filepaths can be
absolute or relative
to the current
manifest le; and
this relativity is
applied recursively
for each nested
manifest le.

Imported manifest
les are processed
rst before
continued
processing of the
current manifest;
however, exports
from the current
manifest are
processed and
forwarded to nested
manifests. Dening
an export in the
current manifest is
made visible to the
child and grandchild
manifests.

imports:

- manifest1.yaml

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 658

System Software Components and Interfaces

6.6.4.2 Filelist
The lelist section denes an itemized list of les to be copied from source to destination.
The list is processed in the order specied in the section. The lelist contains zero, one,
or more le sections. Each le section includes the following information as captured and
detailed in the table.

Attribute Description Required Default Domain Example(s)

destination Species the path of the
le, directory, or symlink
that needs to be copied
to or created in the target
directory.

The name of the
destination le does
not need to match the
lename specied in the
source attribute; when
there is a dierence,
the le will be renamed
accordingly.

The value specied
in destination
attribute is relative to
${TARGET_DIRECTORY},
which must be specied
to CopyTarget.

Mandatory - Valid Linux
lepath.

destination:

'/lib/nvidia/lib_nvidia.so'

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 659

System Software Components and Interfaces

Attribute Description Required Default Domain Example(s)

source Species the source path
of a le or symlink that
needs to be copied from.

Sources must be
specied using a
dictionary data type.
The key denes the
source type and the
corresponding value
species the path. While
executing copytarget,
the key to be selected
is determined by the --
source-type parameter.

This attribute should not
be set when creating a
directory or changing the
permission of an already
existing le or directory.

The value specied
in source attribute
is relative to
${WORKSPACE}, which
must be specied to
CopyTarget (except when
creating symlinks).

Optional "" Dictionary

Key: Sting

Value:
Valid Linux
lepath.

source:

pdk_sdk_installed_path: /
drive/libnvidia.so

build_tree_path: /lib/
libnvidia.so

perm Species the permission
of the le or directory in
octal notation.

Mandatory

(exception:
creating
symlinks)

- Valid Octal
notation
of Linux
permission.

perm: 0777

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 660

System Software Components and Interfaces

Attribute Description Required Default Domain Example(s)

owner Species the owner
identier of the le,
directory, or symlink
and can be assigned a
numeric UID or a string
specifying the username.

Strings are converted to
numeric UID when a User
Identier Dictionary is
provided to CopyTarget,
see Identier Dictionary
section.

Mandatory - Valid Linux
UID, or UID
alias.

owner: root

owner: 0

group Species the group
identier of the le,
directory, or symlink
and can be assigned
a numeric GID or a
string specifying the
groupname.

Strings are converted
to numeric GID when
a Group Identier
Dictionary is provided to
CopyTarget, see Identier
Dictionary section.

Mandatory - Valid Linux
GID, or GID
alias.

group: root

group: 0

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 661

System Software Components and Interfaces

Attribute Description Required Default Domain Example(s)

lesystems Species the lesystem
types that a le can be
copied into.

The key species the
name of lesystem. The
value eld is a dictionary
that denes whether
a le can be copied
into this lesystem by
setting required:yes or
required:no. The value
eld can also dene
addditional key:values for
puropses of bookkeeping.
The additional elds are
however not processed by
CopyTarget.

If this eld is not dened,
the le item is processed
for ALL lesystem-types.

Optional ALL
lesystem
types

Dictionary

Key: Sting

Value:
Dictionary

lesystems:

standard:

required: no

safety:

required: yes

jama: XYZ

create_symlink If set to true, a
symlink is created at
the destination location.
The symlink points to
the value specied in the
attribute source.

By default, this eld is set
to false.

Optional false true, false create_symlink : true

remove If set to true, the
le specied in
the destination attribute
is removed.

If
the destination attribute
points to a directory, the
directory must be empty;
otherwise, CopyTarget
reports an error; this is
intentional and prevents
inappropriate deletion.

By default, this eld is set
to false.

Optional false true, false remove: true

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 662

System Software Components and Interfaces

6.6.5 CopyTarget File Operations
CopyTarget supports a limited number of le operations and to have CopyTarget execute
a particular operation, a combination of le attributes must be specied. Any invalid
combination is raised as an error by CopyTarget and an error message with a pointer to the
oending le attribute is presented to the user to resolve.

The following sections describe each of the valid operations and the required attributes to
trigger the operation.

Copy

Copy le from ${WORKSPACE}/libraries/lib_nvidia.so to ${TARGET_DIRECTORY}/usr/lib/lib_nvidia.so
with ownership root:root and permission 0777; where ${TARGET_DIRECTORY} is the target
directory provided to CopyTarget, pdk_sdk_installed_path is the source type, and
${WORKSPACE} is the workspace directory provided to CopyTarget.

Attribute Requirement Example

destination Required. /usr/lib/lib_nvidia.so

source
Required (unless an imported manifest already
denes it).

pdk_sdk_installed_path:
libraries/lib_nvidia.so

perm
Required (unless an imported manifest already
denes it).

0777

owner
Required (unless an imported manifest already
denes it).

root

group
Required (unless an imported manifest already
denes it).

root

create_symlink
Can be absent (default is false) or must be set to
false.

false

remove
Can be absent (default is false) or must be set to
false.

false

Create Directory

Create directory at ${TARGET_DIRECTORY}/ usr /lib/ nvidia with ownership root:root
and permission 0777; where ${TARGET_DIRECTORY} is the target directory provided to
CopyTarget.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 663

System Software Components and Interfaces

Attribute Requirement Examples

destination
Required (must end with a trailing slash;
otherwise, an error is reported).

/usr/lib/nvidia/

source Must be absent.

perm
Required (unless an imported manifest already
denes it).

0777

owner
Required (unless an imported manifest already
denes it).

root

group
Required (unless an imported manifest already
denes it).

root

create_symlink
Can be absent (default is false) or must be set to
false.

false

remove
Can be absent (default is false) or must be set to
false.

false

Update File Metadata

Set le ${TARGET_DIRECTORY}/usr/lib/lib_nvidia.so with ownership nvidia:nvidia and
permission 0644; where ${TARGET_DIRECTORY} is the target directory provided to
CopyTarget.

Attribute Requirement Example

destination Required. /usr/lib/lib_nvidia.so

source Must be absent.

perm
Required (unless an imported manifest already
denes it).

0644

owner
Required (unless an imported manifest already
denes it).

nvidia

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 664

System Software Components and Interfaces

Attribute Requirement Example

group
Required (unless an imported manifest already
denes it).

nvidia

create_symlink
Can be absent (default is false) or must be set to
false.

false

remove
Can be absent (default is false) or must be set to
false.

false

Update Directory Metadata

Set directory ${TARGET_DIRECTORY}/ usr /lib/ nvidia with ownership nvidia:nvidia
and permission 0644; where ${TARGET_DIRECTORY} is the target directory provided to
CopyTarget.

Note: This operation is not recursive and only updates the metadata of
${TARGET_DIRECTORY}/usr/lib/nvidia/.

Attribute Requirement Example

destination Required. /usr/lib/nvidia/

source Must be absent.

perm
Required (unless an imported manifest already
denes it).

0644

owner
Required (unless an imported manifest already
denes it).

nvidia

group
Required (unless an imported manifest already
denes it).

nvidia

create_symlink
Can be absent (default is false) or must be set to
false.

false

remove
Can be absent (default is false) or must be set to
false.

false

Remove a File

Remove le ${TARGET_DIRECTORY}/ usr /lib/lib_nvidia.so; where
${TARGET_DIRECTORY} is the target directory provided to CopyTarget.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 665

System Software Components and Interfaces

Attribute Requirement Example

destination Required. /usr/lib/lib_nvidia.so

source Should be absent. -

perm Should be absent (if specied, is ignored). -

owner Should be absent (if specied, is ignored). -

group Should be absent (if specied, is ignored). -

create_symlink

Should be absent (default is false) or must be
set to false.

Setting this to true causes an error to be
thrown.

false

remove
Must be set to true. (unless an imported
manifest already denes it).

true

Remove Empty Directory

Remove empty directory ${TARGET_DIRECTORY}/ usr /lib/ nvidia /; where
${TARGET_DIRECTORY} is the target directory provided to CopyTarget.

Attribute Requirement Example

destination Required. /usr/lib/nvidia/

source Should be absent. -

perm Should be absent (if specied, is ignored). -

owner Should be absent (if specied, is ignored). -

group Should be absent (if specied, is ignored). -

create_symlink

Must be set to false (unless an imported
manifest already denes it).

Setting this to true causes an error to be
thrown.

false

remove
Must be set to true (unless an imported
manifest already denes it).

true

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 666

System Software Components and Interfaces

Create Symlink

Create symlink at ${TARGET_DIRECTORY}/ usr /lib/lib_nvidia.so.1 pointing to / usr
/lib/lib_nvidia.so; where ${TARGET_DIRECTORY} is the target directory provided to
CopyTarget.

Attribute Requirement Example

destination Required. /usr/lib/lib_nvidia.so.1

source
Required (unless an imported manifest already
denes it).

pdk_sdk_installed_path: /
usr/lib/lib_nvidia.so

perm Should be absent (if specied, is ignored). -

owner
Required (unless an imported manifest already
denes it).

nvidia

group
Required (unless an imported manifest already
denes it).

nvidia

create_symlink
Must be set to true (unless an imported
manifest already denes it).

true

remove

Must be set to false (unless an imported
manifest already denes it).

Setting this to true causes an error to be
thrown.

false

6.6.6 Identier Dictionary
An identier dictionary must be provided to CopyTarget if username alias and/or
groupname alias are to be translated to UID and GID, respectively. Alias is not allowed in
CopyTarget le operations due to the potential mismatches between systems. However,
alias is permitted in CopyTarget manifests but are translated to numeric identiers prior
to le operation. In order to support translation, username identier and/or groupname
identier mappings are required.

It is not required to supply both user identier and group identier dictionaries; especially,
if alias are only used in one of the two categories. If alias is used in both categories, then
it is required to provide CopyTarget with both identier dictionaries. If one or more alias is
specied in the manifest but no corresponding identier dictionary is provided, CopyTarget
will throw an error. If an identier dictionary is provided but the alias is not found within, an
error will also be thrown.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 667

System Software Components and Interfaces

Valid identier dictionaries include any valid password or group les; these are normally, /
etc/passwd, and /etc/group, respectively. Any other formatted les are uninterpretable, and
an error will be thrown.

6.6.6.1 Default Identier Dictionary
When no Identier Dictionary is specied in the corresponding category (user, or
group), CopyTarget will search for any existing Identier Dictionary relative to the
${TARGET_DIRECTORY} that is specied by the user. The default search paths are
${TARGET_DIRECTORY}/etc/passwd and ${TARGET_DIRECTORY}/etc/group and if any one
of these exist, CopyTarget will take the values from these dictionaries.

Occasionally, users may not wish to use the dictionaries residing in the
${TARGET_DIRECTORY}; however, if such dictionaries do exist, CopyTarget will attempt to
use them. If the user does not want to use default search paths, the command arguments
corresponding to the dictionaries must be provided and pointed to an empty string. This
means that one or both argument parameters should be set to empty string as in --
user_identier_dictionary="" and/or --group_identier_dictionary="".

6.6.6.2 Host Identier Dictionary
When CopyTarget is invoked on a ${TARGET_DIRECTORY} intended for the host, the user
has the option to use the default identier dictionaries (/etc/passwd and /etc/group) when
${TARGET_DIRECTORY} is "/", the root most path. This is the ideal situation.

However, if ${TARGET_DIRECTORY} refers to any other subpath location, then the user
must invoke CopyTarget with the arguments specifying the host's identier dictionaries.
This is required as the target directory does not make available the identier dictionaries,
unless of course, a dierent set of identier dictionaries are to be used, or that the
manifest does not contain any user or group name alias; then in this case, it is not required
to invoke CopyTarget with such arguments.

The following is an example of executing CopyTarget on a target directory intended for the
host but is not in the root most location.
/opt/nvidia/driveos/<DRIVEOS_RELEASE>/filesystems/
copytarget/copytarget.py /target_directory/ /workspace/
MANIFEST.yaml --user_identifier_dictionary=/etc/passwd
--group_identifier_dictionary=/etc/group

Where:

‣ <DRIVEOS_RELEASE> is the release version of NVIDIA DRIVE OS.

6.6.7 Importing Manifests
Zero, one, or more additional manifests can be specied in the parent manifest. Further
nested manifests can also be recursively achieved; since child manifests can have
additional manifest imports. This behavior allows for hierarchical overlaying.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 668

System Software Components and Interfaces

6.6.7.1 Overriding Parent Attributes
Hierarchical manifests allow for child manifests to be overridden, additional attributes to
parent to be added, or ancestor manifests.

For example, a given child manifest may dene a le attribute to have a permission
attribute of 0777 and a parent manifest can override this permission attribute at will with
another value such as 0666.

6.6.7.2 Mapping Overlays using Destination Field
Overlaying of manifests require the use of the destination key. When the destination key
matches that of one of the parent manifest's specied le attribute, any values specied in
the particular child manifest overlays (overrides) the running set of updated values, which
in turn can be updated by another intermediate parent manifest.

Therefore, for overlaying to operate eectively, destination keys must match. Any
destination keys that do not match are treated as a new le attribute, with its own set of
specied required attributes. One or more missing attributes result in an error.

6.6.7.3 Sequence of Manifest Overlaying
The sequence of manifest processing is dictated by the ordering specied in the import
section of the parent manifest and the processing of this list follows a depth rst list.

Consider the following set of manifest examples, which causes the nal le attribute
to have a resultant value depending on the ordering of the root most manifest (which is
provided rst to CopyTarget). See the result below.
#manifest0.yaml
imports:
 - manifest1a.yaml
 - manifest1b.yaml
fileList:
 - destination: /destination.txt
 source:
 pdk_sdk_installed_path: /source.txt
 perm: 644
 owner: 0
 group: 0
#manifest1a.yaml
imports:
 - manifest2a.yaml
 - manifest2b.yaml
fileList:
 - destination: /destination.txt
 source:
 pdk_sdk_installed_path: /source.txt
 perm: 644
 owner: 1000
 group: 1000
#manifest2a.yaml
fileList:
 - destination: /destination.txt
 source:
 pdk_sdk_installed_path: /source.txt

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 669

System Software Components and Interfaces

 perm: 655
 owner: 2000
 group: 1500
#manifest2b.yaml
fileList:
 - destination: /destination.txt
 source:
 pdk_sdk_installed_path: /source2.txt
 perm: 777
 group: 3000
#manifest1b.yaml
fileList:
 - destination: /destination2.txt
 source:
 pdk_sdk_installed_path: /source.txt
 perm: 644
 owner: 1000
 group: 1000

6.6.7.3.1 Resultant Table

Starting
Manifest Copied File(s) Ownership Permission

manifest0.yaml 1. /source2.txt to /
destination.txt

2. /source.txt to /
destination2.txt

1. 0:0

2. 1000:1000

1. 0644

2. 0644

manifest1a.yaml 1. /source2.txt to /
destination.txt

1. 1000:1000 1. 0644

manifest1b.yaml 1. /source.txt to /
destination2.txt

1. 1000:1000 1. 0644

manifest2a.yaml 1. /source.txt to /
destination.txt

1. 2000:1500 1. 0655

manifest2b.yaml Error, because
owner attribute is
not dened.

- -

6.6.8 Exports
The exports section can be used for variable dereferencing in the current and child
manifests.

6.6.8.1 Syntax
The syntax follows a key value pair, delimited by a colon. This is follows the standard YAML
syntax format. More than one export can be specied. The key must not have any spaces.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 670

System Software Components and Interfaces

For example, the following code statement assigns the value VALUE to the variable named
KEY.
exports:
 - KEY: VALUE

6.6.8.2 Dereferencing a Variable
To dereference or otherwise obtain the value stored in a particular key of an export,
enclose the name of the variable between opening and closing braces {} and prepended
with a dollar sign $.

For example, the variable named KEY can be dereferenced when specied as ${KEY}, as
illustrated in the following example, which sets the attribute destination to VALUE.
exports:
 - KEY: VALUE
fileList:
 - destination: ${KEY}

6.6.8.3 Overriding Parent Assigned Values
Values assigned previously to a variable from a parent manifest can be overriden by any
child manifest and thus taken forward.

Variable assignments are part of the preprocessing step, which means that all variables are
assigned the nal values prior to iteration of any lelist section. This is intended to prevent
variable value aliasing problems.

For example, in the following scenario, the attribute source of destination dest is assigned
the value FINAL3, as would the destination dest2. The source attribute of destination dest2
is never assigned the value FINAL2, even though it appears in the intermediate manifest
import because of the nature of preprocessing requirement.
#manifest1c.yaml
exports:
 - KEY: FINAL1
imports:
 - manifest2c.yaml
 - manifest2d.yaml
fileList:
 - destination: dest
 source:
 pdk_sdk_installed_path: ${KEY}
#manifest2c.yaml
exports:
 - KEY: FINAL2
fileList:
 - destination: dest
 source:
 pdk_sdk_installed_path: ${KEY}
 - destination: dest2
 source:
 pdk_sdk_installed_path: ${KEY}
#manifest2d.yaml
exports:
 - KEY: FINAL3
fileList:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 671

System Software Components and Interfaces

 - destination: dest
 source:
 pdk_sdk_installed_path: ${KEY}

6.6.9 Examples: Creating CopyTarget Manifest

6.6.9.1 Copying a File
The following le attribute instructs CopyTarget to copy the le from ${WORKSPACE}/
home/nvidia/file.txt to ${TARGET_DIRECTORY}/file.txt with permission 0644 and
ownership nvidia:nvidia, where ${TARGET_DIRECTORY} is the target directory provided to
CopyTarget and where ${WORKSPACE} is the workspace directory provided to CopyTarget.
Since filesystems eld is not dened, this le is copied to ALL lesystem-types.
fileList:
 - destination: /file.txt
 source:
 pdk_sdk_installed_path: /home/nvidia/file.txt
 perm: 644
 owner: nvidia
 group: nvidia

6.6.9.2 Copying a File to Specic FIleSystem Type
The following le attribute instructs CopyTarget to copy the le from ${WORKSPACE}/
home/nvidia/file.txt to ${TARGET_DIRECTORY}/file.txt with permission 0644, and
ownership nvidia:nvidia; where ${TARGET_DIRECTORY} is the target directory provided to
CopyTarget and where ${WORKSPACE} is the workspace directory provided to CopyTarget.
Based on the filesystems eld, this le is copied to only "safety" or "safety-debug"
lesystem-type.
fileList:
 - destination: /file.txt
 source:
 pdk_sdk_installed_path: /home/nvidia/file.txt
 perm: 644
 owner: nvidia
 group: nvidia
 filesystems:
 standard:
 required: no
 safety:
 required: yes
 jama: DRV5X-STAKEHLDREQPLCL3-2429
 safety_debug:
 required: yes
 jama: DRV5X-STAKEHLDREQPLCL3-2429

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 672

System Software Components and Interfaces

6.6.9.3 Creating a Directory
The following le attribute instructs CopyTarget to create the directory
${TARGET_DIRECTORY}/usr/bin/ with permission 0644 and ownership nvidia:nvidia,
where ${TARGET_DIRECTORY} is the target directory provided to CopyTarget.

Note:

If the destination directory already exists, the metadata of the
${TARGET_DIRECTORY}/usr/bin/ is set to values specied, overriding any original
values..

fileList:
 - destination: /usr/bin/
 perm: 644
 owner: nvidia
 group: nvidia

6.6.9.4 Updating a File's Metadata
The following le attribute instructs CopyTarget to set the le ${TARGET_DIRECTORY}/
file.txt with permission 0644 and ownership nvidia:nvidia, where
${TARGET_DIRECTORY} is the target directory provided to CopyTarget.
fileList:
 - destination: /file.txt
 perm: 644
 owner: nvidia
 group: nvidia

6.6.9.5 Removing a File
The following le attribute instructs CopyTarget to remove the le ${TARGET_DIRECTORY}/
file.txt, where ${TARGET_DIRECTORY} is the target directory provided to CopyTarget.
fileList:
 - destination: /file.txt
 remove: true

6.6.9.6 Creating a Symlink
The following le attribute instructs CopyTarget to create a symlink at
${TARGET_DIRECTORY}/link.txt that points to /file.txt, where ${TARGET_DIRECTORY} is
the target directory provided to CopyTarget.
fileList:
 - destination: /link.txt
 source:
 pdk_sdk_installed_path: /file.txt
 create_symlink: true

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 673

System Software Components and Interfaces

6.6.9.7 Comprehensive Example: copytarget-
manifest.yaml
An example of a comprehensive copytarget-manifest.yaml looks like the following.
version: '1.4'
Exports environment variables
exports:
 - SAMPLES_HOME: /home/nvidia/drive-linux/samples/
 - FILE_VERSION: 1
Itemised file list
fileList:
 # The following attribute creates a directory
"${TARGET_DIRECTORY}/nvidia/"
 # with ownership 0:0 and permission 0755; where
${TARGET_DIRECTORY} is the target directory specified to CopyTarget.
 - destination: /nvidia/
 perm: 0755
 owner: 0
 group: 0
 filesystems:
 standard:
 required: yes
 safety:
 required: yes
 jama: DRV5X-STAKEHLDREQPLCL3-2429
 safety_debug:
 required: yes
 jama: DRV5X-STAKEHLDREQPLCL3-2429
 # The following attribute copies the file from
"${WORKSPACE}/home/drive/samples/nvidia_sample"
 # to "${TARGET_DIRECTORY}/nvidia/nvidia_sample"
with ownership 1000:1000 and permission 0777 when "pdk_sdk_installed_path" source-
type is chosen.
 # The file is only copied when the chosen filesystem-type
is either safety or safety-debug.
 - destination: /nvidia/nvidia_sample
 source:
 pdk_sdk_installed_path: nvidia_sample
 build_tree_path: nvidia_sample_internal
 perm: 0777
 owner: 1000
 group: 1000
 filesystems:
 standard:
 required: no
 safety:
 required: yes
 jama: DRV5X-STAKEHLDREQPLCL3-2429
 safety_debug:
 required: yes
 jama: DRV5X-STAKEHLDREQPLCL3-2429
 # The following attribute creates a symlink at
"${TARGET_DIRECTORY}/nvidia_sample_1"
 # pointing to "/nvidia/nvidia_sample"; where
${TARGET_DIRECTORY} is the target directory specified to CopyTarget.
 # In this example, the symlink is only created for "standard" filesystem.
 - destination: /nvidia_sample_${FILE_VERSION}
 source:
 pdk_sdk_installed_path: /nvidia/nvidia_sample
 build_tree_path: /nvidia/nvidia_sample
 create_symlink: true
 filesystems:
 standard:
 required: yes
 jama: DRV5X-STAKEHLDREQPLCL3-1234

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 674

System Software Components and Interfaces

 safety:
 required: no
 safety_debug:
 required: no
 # The following attribute removes file
"${TARGET_DIRECTORY}/nvidia/nvidia_sample";
 # where ${TARGET_DIRECTORY} is the target
directory specified to CopyTarget.
 # Since filesystems field is not defined, this
item will be process for ALL filesystem-types.
 - destination: ${targetdir}/nvidia/nvidia_sample
 remove: true

6.6.10 Errors
To enable proper tracking of les and to prevent erroneous le copies, CopyTargetv1.4
enforces the following guidelines. Violations are reported with an error and the line of the
oending code.

Fault Description Error

Files cannot be
copied implicitly.

Copying directories
is not permitted.

In case of violation, CopyTarget throws an error
saying, for example, Error: CopyTarget does not
allow directory to directory copy. Please

itemize the files to copy.

Use of wildcards
in le names in
not permitted.

Wildcard expansion
is not permitted.

In case of violation, CopyTarget throws an error
saying, for example, FileNotFoundError: [Errno
2] No such file or directory: '/usr/bin/*'.

Directory path
entries must
end with a slash
(/).

Directories must end
in a trailing slash to
dierentiate from
les.

In case of violation, CopyTarget throws an error
saying Error: Directory entries must end with
a trailing slash.

Metadata of
each le must
be dened.

All metadata must
be specied.

In case of violation, CopyTarget throws an error
saying, for example, Error: Expected key
'owner' is not defined.

6.6.11 DRIVE OS SDK Copytarget Manifests
DRIVE OS SDK ships the copytarget manifest les that contain an itemized list of les in
the lesystem and their locations in the SDK. The listing of each manifest .yaml le is as
follows:

Copytarget YAML
le Description of copy listings

driveos-
core-rfs

driveos-
oobe-rfs

copytarget-congs DRIVE OS Linux conguration les, services,
helper scripts, and library metadata.

YES YES

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 675

System Software Components and Interfaces

Copytarget YAML
le Description of copy listings

driveos-
core-rfs

driveos-
oobe-rfs

copytarget-security Overlay les to enforce security features on the
lesystem.

YES YES

copytarget-
rmware

DRIVE OS Linux platform rmware images and
related les from BSP.

YES YES

copytarget-headers DRIVE OS Linux graphics opengl, khronos,
headers.

YES YES

copytarget-kernel-
modules

DRIVE OS Linux kernel modules: both realtime
and standard variant.

YES YES

copytarget-libraries DRIVE OS Linux driver and middleware libraries. YES YES

copytarget-tools DRIVE OS Linux tools and applications. YES YES

copytarget-dpx DRIVE OS Linux platform-specic applications,
middleware, and services.

YES YES

copytarget-aurix DRIVE OS AURIX rmware. YES YES

copytarget-samples DRIVE OS Linux samples for graphics,
multimedia, security, and system software
modules.

NO YES

6.7 NVIDIA Build-FS
Note: Version 17.1.5

NVIDIA Build-FS is a tool for creating and customizing Linux lesystems. It is a common
lesystem interface tool for automotive programs.

6.7.1 Key Features
‣ Supports generating and customizing target lesystem image and tarball

(uncompressed archive).

‣ Supports upstream Debian mirrors.

‣ Supports adding and updating users, groups, and memberships in the target
lesystem.

‣ Outputs manifest les describing the lesystem created.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 676

System Software Components and Interfaces

6.7.2 Prerequisites
Refer to Drive OS hardware and software requirements.
.

6.7.2.1 Package Dependencies
sudo
wget
python3
mount
qemu-user-static
binfmt-support
coreutils
tar
bash
e2fsprogs (>= 1.42.8-1ubuntu1)
dpkg-dev

6.7.3 Installing NVIDIA Build-FS
Note:

Prior to installing NVIDIA Build-FS, ensure that NVIDIA DRIVE OS Linux SDK
is installed on the system. A compatible version of NVIDIA DRIVE OS must be
installed corresponding to the version of NVIDIA Build-FS to be installed.

Note:

Prior to installing NVIDIA Build-FS, ensure that NVIDIA CopyTarget is installed
on the system. A compatible version of NVIDIA CopyTarget must be installed
corresponding to the version of NVIDIA Build-FS to be installed. For installation
instructions, see Installing CopyTarget.

The NVIDIA Build-FS tool is automatically installed as a part of DRIVE OS installation
at /opt/nvidia/driveos/common/filesystems/build-fs/<version>/. The following
instructions specify manual installation steps if DRIVE OS installation is not performed.

1. Download nv-driveos-common-build-fs-
<NV_BUILD_FS_VERSION>_<NV_BUILD_FS_VERSION>_amd64.deb.

2. Install Debian package nv-driveos-common-build-
fs<NV_BUILD_FS_VERSION>_<NV_BUILD_FS_VERSION>_amd64.deb using the apt package
manager.

3. NVIDIA Build-FS is installed to /opt/nvidia/driveos/common/filesystems/build-fs/
<NV_BUILD_FS_VERSION>/.

The following example is a walkthrough to install NVIDIA Build-FS from a BASH terminal.
Change directory to the location where nv-driveos-common-build-
fs<NV_BUILD_FS_VERSION>_<NV_BUILD_FS_VERSION>_amd64.deb has been downloaded to. In
 this example,
the Debian has been downloaded to ~/Downloads/.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 677

System Software Components and Interfaces

nvidia@nvidia:~$ cd ~/Downloads/
Install NVIDIA Build-FS.
nvidia@nvidia:~/Downloads/$ sudo apt install ./nv-driveos-common-build-
fs<NV_BUILD_FS_VERSION>_<NV_BUILD_FS_VERSION>_amd64.deb
Verify NVIDIA Build-FS has been installed successfully using the
 --version command argument. The version reported should match that which
has been installed; in this example, NVIDIA Build-FS version 9 has been installed.
nvidia@nvidia:~/Downloads/$ /opt/nvidia/driveos/common/filesystems/build-fs/
<NV_BUILD_FS_VERSION>/bin/build_fs.py --version
Build-FS Version: <NV_BUILD_FS_VERSION>

6.7.4 Editing NVIDIA Build-FS CONFIG
NVIDIA Build-FS does not come with any predened CONFIG or MANIFEST. Any predened
MANIFEST and the associated user CONFIG are downloaded and installed as part of NVIDIA
DRIVE OS.

NVIDIA Build-FS does come with a default basic CONFIG template you can build upon. The
default CONFIG template has nothing dened and produces no result when executed with
NVIDIA Build-FS but acts as a starting point for you to learn.

The default CONFIG template is located within the configs/ directory of the installation
location of NVIDIA Build-FS, which is usually located at /opt/nvidia/driveos/common/
filesystems/build-fs/<NV_BUILD_FS_VERSION>/configs/. Within the directory, you can
nd the default CONFIG template, driveos-user-rfs.CONFIG.json.

This example walkthrough edits the default CONFIG template; however, if you wish,
you may use your own or one of the NVIDIA DRIVE OS manifests or congurations for
customization. This simple example installs the Debian vim, but any other Debian can be
used. Open a BASH terminal and issue the following commands:
Edit default CONFIG template using an editor of your choice,
we chose vim for simplicity.
nvidia@nvidia:~$ vim /opt/nvidia/driveos/common/filesystems/build-fs/
<NV_BUILD_FS_VERSION>/configs/driveos-user-rfs.CONFIG.json
Once the file has been open for edit, update the section "DebianPackages"
and add the entry "vim" as shown.
"DebianPackages":
[
 "vim"
]
Also update the section Mirrors as shown below, with the Ubuntu mirror
from which "vim" Debian package can be obtained.
"Mirrors":
[
 "deb http://ports.ubuntu.com/ubuntu-ports/ focal main universe restricted"
]
Once the changes have been made, commit your changes by saving the file.
If you wish to have other changes, refer to section "NVIDIA Build-FS CONFIG
Semantics" for additional details of NVIDIA Build-FS CONFIG semantics.

You have edited your rst NVIDIA Build-FS CONFIG successfully. The following sections
describe how to generate an image and ash your image to the target platform.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 678

System Software Components and Interfaces

6.7.5 Executing NVIDIA Build-FS With the Updated
CONFIG
You can invoke NVIDIA Build-FS to produce a lesystem image. Continuing from the
example in the previous section, in the existing or newly opened BASH terminal, execute
the following walkthrough commands:
sudo -E /opt/nvidia/driveos/common/filesystems/build-fs/<NV_BUILD_FS_VERSION>/
bin/build_fs.py -w ~/driveos/ -i /opt/nvidia/driveos/common/filesystems/build-fs/
<NV_BUILD_FS_VERSION>/configs/driveos-user-rfs.CONFIG.json -o output/

Note: In this example, NVIDIA DRIVE OS is installed to ~/driveos/; if NVIDIA DRIVE OS is
installed to another directory, ensure that NVIDIA Build-FS is pointed to the appropriate
workspace location.

A lesystem image named nvidia-driveos-build-fs-rfs-user.img (the default name
specied in the default CONFIG template, but you can change the name) is generated
under the output/ directory. The lesystem image can be deployed and used to ash onto
the target platform.

6.7.6 Flashing the Customized Target File System
1. Update the symbolic link (symlink) of drive-linux/filesystem/targetfs.img to point

to your customized target le system image.
2. Flash the target.

nvidia@nvidia:~$ sudo mkdir -p ~/driveos/drive-linux/fileystem/targetfs-images/
nvidia@nvidia:~$ sudo mv output/nvidia-driveos-build-fs-rfs-user.img ~/driveos/drive-
linux/filesystem/targetfs-images/
nvidia@nvidia:~$ sudo rm -f ~/driveos/drive-linux/filesystem/targetfs.img
nvidia@nvidia:~$ sudo ln -sf targetfs-images/nvidia-driveos-build-fs-rfs-user.img ~/
driveos/drive-linux/targetfs.img
Where ~/driveos/, is the DRIVE OS Installation Directory.

6.7.7 NVIDIA Build-FS Architecture
NVIDIA Build-FS tool is a Python program that takes in a json CONFIG le as input and
outputs an ext4 lesystem image.

NVIDIA Build-FS parses the input CONFIG le to determine the target OS desired and
initializes OS specic class objects to process the lesystem creation process.

The lesystem creation process contains four stages, which are:

‣ Pre-build

‣ Build

‣ Post-build

‣ Process-output

These stages are present for all supported operating systems, but the implementation
varies depending on the OS.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 679

System Software Components and Interfaces

OS Linux

pre-build

1. Setup binfmts for executing dierent arch binaries.
2. Extract base lesystem.
3. Update Mirrors in the target lesystem with values provided

in the input CONFIG.
4. Update resolv.conf of target lesystem with host's

resolv.conf.
5. Run preinstall scripts.

build

1. Generate comprehensive list of Debian packages to be
installed.

2. Install Debian packages using package manager (apt).
3. Create users/groups and update user memberships.
4. Edit Hostname of the generated lesystem image.
5. Execute CopyTarget scripts.

post-build

1. Restore target lesystem mirrors to original in the target
lesystem.

2. Restore target lesystem resolv.conf to original in target
lesystem.

3. Run postinstall scripts.
4. Generate MANIFEST.
5. Copy MANIFEST into the target lesystem for reference

process-output

Create chosen target lesystems outputs:

1. Create ext4 lesystem image
2. Create tarball (compressed archive) of the lesystem.

All Build-FS helper scripts/temporary les used in the process of generating the lesystem
image are stored under the /tmp/ directory of the target lesystem during its required
lifetime and are deleted before the nal target lesystem image is created.

6.7.8 Command Line Arguments
These options are available when you execute build_fs.py.

Note:

Defaults are used if options are not used in the NVIDIA Build-FS command line.

6.7.8.1 Tool Information Command Line Arguments
Short Option/Long Option
Description

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 680

System Software Components and Interfaces

-h/--help
Show help message and exit.

-v/--version
Print version and exit.

6.7.8.2 Required Command Line Arguments

Short Option -i JSON_PATH

Long Option --input=JSON_PATH

Value Type JSON_PATH must be a valid UNIX lepath or the value 'STDIN'

Description

Species <JSON_PATH> as the absolute path to NVIDIA Build-FS
CONFIG le or 'STDIN' to inform build-fs that CONFIG le is coming from
standard-input.

Short Option -w

Long Option --nv-workspace=NV_WORKSPACE

Value Type NV_WORKSPACE must be a valid UNIX directory path

Description
Species NV_WORKSPACE as the absolute path to workspace location;
this is the path to the location of NVIDIA DRIVE OS.

6.7.8.3 Optional Command Line Arguments

Short Option -o OUTPUT_FOLDER

Long Option --output=OUTPUT_FOLDER

Value Type OUTPUT_FOLDER must be a valid UNIX directory path

Defaults ${PWD} (Value of the present working directory)

Required No, but recommended.

Description Species <OUTPUT_FOLDER> as the absolute path to folder for output.

Short Option N/A

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 681

System Software Components and Interfaces

Long Option --create-tar=CREATE_TAR

Value Type CREATE_TAR must be an option in list: [yes, no]

Defaults No

Required No

Description Species to create lesystem tarball compressed as BunZip2.

Short Option N/A

Long Option --create-image=CREATE_IMAGE

Value Type CREATE_IMAGE must be an option in list: [yes, no]

Defaults Yes

Required No

Description Species to create ext4 lesystem image.

Short Option N/A

Long Option --copytarget-source-type=COPYTARGET_SOURCE_TYPE

Value Type COPYTARGET_SOURCE_TYPE must be a string with printable characters

Defaults pdk_sdk_installed_path

Required No

Description

Species the type of source path in the copytarget manifest, from which
les must be copied to the target lesystem directory.

For more information, see CopyTarget.

Short Option -f FILESYSTEM_WORK_FOLDER

Long Option --lesystem-working-directory=FILESYSTEM_WORK_FOLDER

Value Type FILESYSTEM_WORK_FOLDER must be a valid UNIX directory path

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 682

System Software Components and Interfaces

Defaults None.

Required No

Description

Allows user to override the folder in which the target lesystem is
extracted and worked on. If option is not provided, target lesystem is
extracted to BUILD_KIT_TMP_DIR/targetfs.

Where BUILD_KIT_TMP_DIR is the temporary work directory created by
the tool for storing temporary les and it is deleted once the output
lesystem image/tarball is generated.

Short Option N/A

Long Option --log-level=LOG_LEVEL

Value Type
LOG_LEVEL must be an option in list: ['debug', 'info', 'warning', 'error',
'critical']

Defaults info

Required No

Description

Allows you to choose the verbosity of the build_fs tool.

1. critical: Shows only critical errors
2. error: Shows all errors in addition to messages above
3. warning: Shows all warnings in addition to messages above
4. info: Shows all info messages in addition to messages above
5. debug: Shows all debug information in addition to messages above

6.7.9 Environment Conguration
The /opt/nvidia/driveos/common/filesystems/build-fs/<NV_BUILD_FS_VERSION>/
build-fs.config le controls the execution environment of NVIDIA Build-FS.

It is a JSON le with elds:

‣ common

Variables dened in this eld are always present in the tool's execution environment.

‣ linux

Variables dened in this eld are dened if NVIDIA Build-FS CONFIG has OS set to linux.
For more information, see CONFIG Semantics.

6.7.9.1 Special Environment Variables
The following tables show Environment variables that impacts Build-FS behavior. These
variables can only be set via the environment conguration le. If these variables are

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 683

System Software Components and Interfaces

dened in the shell environment before invoking Build-FS, they are unset by the program
before reading the environment conguration le.

Variable REQUIRED_VARIABLES

Value Comma separated variable names

Default None

Use case
Checks if the variables names specied as comma separated values
are dened in the environment. Exits if they are not dened.

Variable QEMU_PATH

Value Path to qemu-aarch64-static.

Default /usr/bin/

Use case
Species the location of qemu-aarch64-static binary for chrooting
into the Linux lesystem.

Variable BUILD_FS_DIR

Value Path to NVIDIA Build-FS directory.

Default
/opt/nvidia/driveos/common/filesystems/build-fs/
<NV_BUILD_FS_VERSION>

Use case Species NVIDIA Build-FS location.

Variable COPYTARGET

Value Path to CopyTarget.

Default
/opt/nvidia/driveos/common/filesystems/copytarget/1/
copytarget.py

Use case Species the location of NVIDIA CopyTarget.

Variable PYTHON3

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 684

System Software Components and Interfaces

Variable REQUIRED_VARIABLES

Value Path to Python3.

Default /usr/bin/python3

Use case Species the location of Python3 required for invoking copytarget.

6.7.9.2 Environment Variables Available in Pre and Post
Install Scripts
The following table lists out available environment variables that can be used throughout
NVIDIA Build-FS and at which specic location. If a particular variable is not available for
use, an indicator is marked in this table.

Variable Description
PreInstall
Scripts

PostInstall
Scripts

WORK_DIR Assigned value of the
path to NVIDIA Build-FS's
workspace.

Available Available

FILESYSTEM_WORK_DIR Assigned value of the
path to target lesystem
directory located on host.

Available Available

BUILD_FS_OUTDIR Assigned value of the
path to Build-FS's output
directory.

Available Available

NV_WORKSPACE Assigned value of the
path to NVIDIA DRIVE OS
installation

Available Available

6.7.10 CONFIG Semantics
This section details the semantics of the attributes available in NVIDIA Build-FS CONFIG.
Due to JSON parsing, the last value for a duplicated attribute is the one taken; any
previously declared value is overwritten.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 685

System Software Components and Interfaces

6.7.10.1 Legend
NVIDIA Build-FS CONFIG is a valid JSON le and hence we can consider the le as a
JSON Object. The terminologies used here are from JSON (https://en.wikipedia.org/wiki/
JSON#Data_types_and_syntax).

Field List of all the keys supported by NVIDIA Build-FS CONFIG.

Type Type of Value the keys should have.

Acceptable
Values

‣ Additional information on what the Value should be.
‣ Key content -> If Value is of type object, then its keys should be

a String and must adhere to the conditions specied here.
‣ Value type -> If Value is of type object, then the object's value

must be of the type specied here.
‣ Value contents -> If Value is of type object, then the object's

value must adhere to the conditions specied here.
‣ Items type -> If Value is of type array, then the array's values

must be of the type specied here.
‣ Items contents -> If Value is of type array, then the array's

values must adhere to the conditions specied here.
‣ enum [a, b, c] -> Implies Value must be one of a, b or c.
‣ Valid UNIX lename -> Valid String, which do not contain

characters specied here: https://en.wikipedia.org/wiki/
Filename#Reserved_characters_and_words

Valid UNIX lepath -> Valid String, which is a combination of 'Valid
UNIX lename'(s) joined via /, which should point to an existing le.

REQ This row can have the following values:

1. Yes -> The Field Must be present in the CONFIG with a non-
empty value.

2. No -> If the Field is not present in the CONFIG, the default shall
be used, else specied value is used.

Default Species the Default value for 'Not Required' elds if they are
absent from the CONFIG le.

The row can have the following standard values apart from actual
default values.

‣ N/A -> Cannot have a default value. (Required)
‣ empty -> Doesn't have a default value. (Getter shall return None)

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 686

https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Filename
https://en.wikipedia.org/wiki/Filename

System Software Components and Interfaces

Syntax Species the Syntax of usage of the eld in the CONFIG le. Useful
for a Visual understanding of Type and Acceptable Values.

Instructions Additional information on how the elds are used by Build-FS and
what behavior would it cause.

Examples Example usage of the eld in the CONFIG le.

6.7.10.2 Required CONFIG Fields

Field OS

Type String

Acceptable
Values enum[linux]

Req Yes

Default N/A

Instructions Species "linux" for generating Linux target lesystem image.

Example(s) "OS": "linux"

Field Output

Type String

Acceptable
Values Valid UNIX lename without extension.

Req Yes

Default N/A

Instructions Species the prex name of the dierent lesystem output les generated

Example(s) "Output": "nvidia-driveos-build-fs-user-rfs"

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 687

System Software Components and Interfaces

6.7.10.3 Optional CONFIG Fields

Field Base

Type String

Acceptable
Values Valid UNIX dirpath or a Valid UNIX lepath.

Req No

Default None

Instructions

Species the path of the target lesystem to be used as input and to be built
on top of.

The value to this tag must either be:

1. A folder
2. A mountable image le with the extension .img in the lename
3. A bzip compressed tar le with the extension .tar.bz2 in the lename

The lename must have an extension of . img or .tar.bz2;

Base is always used when building a new lesystem.

Base can be omitted when updating an existing lesystem. If Base is not
provided, -f option is mandatory.

Example(s)

"Base": "/home/nvidia/driveos/nvidia-driveos-base-rfs/"

"Base": "/home/nvidia/driveos/nvidia-driveos-base-rfs.img"

"Base": "/home/nvidia/driveos/nvidia-driveos-base-rfs.tar.bz2"

Field PreInstalls

Type Object

Acceptable
Values

Key content: Valid UNIX lepath to a BASH script.

Value type: String Value content: enum[host, target, target_copy]

Req No

Default None

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 688

System Software Components and Interfaces

Field Base

Instructions

Species a list of zero, one, or more BASH scripts to be executed on the host
or virtualized target during the Pre-Build stage.

For each object element, the value of the element species whether the
specic script is to be executed on the host or virtualized target. A value of:

"host" is the indicator to execute existing BASH script on the host.

"target" is the indicator to execute existing BASH script on the virtualized
target.

"target_copy" is the indicator to copy existing BASH script on the host to /
tmp / of the target lesystem.

execute the script in / tmp / on the virtualized target.

remove the script in / tmp /of the target lesystem.

Host BASH scripts are useful for setting up mirrors or updating DNS servers.

The BASH scripts listed are executed in the order specied.

The error code returned by each BASH script is validated, and NVIDIA Build-FS
will terminate upon the rst error and report a message for debugging.

Example(s)

" PreInstalls ":

{

 "${BUILD_FS_DIR}/mirror-setup/setup-mirror.sh": "host",

 "setup-dns.sh": "target",

"${HOME}/crypt_checker.sh": "target_copy"

}

Field CopyTargets

Type Array

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 689

System Software Components and Interfaces

Field Base

Acceptable
Values

Items type: String

Items content: Valid UNIX lepaths to CopyTarget BASH scripts or
MANIFESTS.

or

Items type: dict

Items content:

{

"Manifest": "<path to copytarget yaml/script> (String) (Required)",

"NvWorkspace": "<path from which les listed in copytarget are copied>
(String) (Optional)",

"SourceType": "<Copytarget source type> (String) (Optional)", "Args": {

"Add": "<args to be added from copytarget cmdline> (String) (Optional)","Del":
"<args to be deleted from copytarget cmdline> (Str) (Optional)"

} (Optional)

}

Req No

Default None

Instructions

Species a list of zero, one, or more CopyTarget to be executed on the host
during Build stage.

See CopyTarget Documentation for more details.

The list of CopyTarget are executed in the order specied.

Note:

If item type is dict, to avoid overriding certain elds, do not
specify the eld in the dict.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 690

System Software Components and Interfaces

Field Base

Example(s)

" CopyTargets ":

[

 "${WORK_DIR}/copytargets/copytarget-libraries.yaml",

 "${WORK_DIR}/copytargets/copytarget-tools.yaml",

{

"Manifest": "${WORK_DIR}"/copytargets/copytarget-sdk.yaml",

"NvWorkspace": "/usr/local/bin/sdk/",

"SourceType": "custom"

},

{

"Manifest": "${WORK_DIR}"/copytargets/copytarget-sdk.yaml",

"SourceType": "custom",

"Args": {

"Add": " --string-option1 val1 --bool-option2 ",

"Del": " --string-option3 --bool-option2 "

}

}

]

Field PostInstalls

Type Object

Acceptable
Values

Key content: Valid UNIX lepath to a BASH script.

Value type: String

Value content: enum[host, target, target_copy]

Req No

Default None

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 691

System Software Components and Interfaces

Field Base

Instructions

Species a list of zero, one, or more BASH scripts to be executed on the host
or virtualized target during the Post-Build stage.

For each object element, the value of the element species whether the
specic script is to be executed on the host or virtualized target. A value of:

"host" is the indicator to execute existing BASH script on the host.

"target" is the indicator to execute existing BASH script on the virtualized
target.

"target_copy" is the indicator to

copy existing BASH script on the host to /tmp/ of the target lesystem.

execute the script in /tmp/ on the virtualized target.

remove the script in /tmp/ of the target lesystem.

Host BASH scripts are useful for setting up mirrors or updating DNS servers.

The BASH scripts listed are executed in the order specied.

The error code returned by each BASH script is validated, and NVIDIA Build-FS
will terminate upon the rst error and report a message for debugging.

Example(s)

"PostInstalls":

{

 "${BUILD_FS_DIR}/mirror-setup/teardown-mirror.sh": "host",

 "teardown-dns.sh": "target",

"${HOME}/crypt_priv_les.sh": "target_copy"

}

Field FilesystemCleanup

Type Array

Acceptable
Values

Items type: String

Items content: Valid UNIX lepaths

Req No

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 692

System Software Components and Interfaces

Field Base

Default None

Instructions
Species a list of zero, one, or more target les to be deleted as part of Post-
Build stage.

Example(s)

" FilesystemCleanup ":

[

 "/tmp/temp.txt",

 "/var/tmp/tmp.log"

]

Field ImageSize

Type String

Acceptable
Values 64-bit Unsigned Integer enclosed in double quotes.

Req No

Default 8589934592

Instructions

The size of the partition to which the current image will be expanded to
(defaults to 8GB).

This is required for determining values Filesystem Metadata values like journal
size, inode_size,

inode_byte_ratio.

This will help create the required number of inodes and journal in the smaller
lesystem image generated,

considering the image le expansion.

Example(s) "ImageSize": "4294967296"

Field FilesystemType

Type String

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 693

System Software Components and Interfaces

Field Base

Acceptable
Values String must be using characters from the set [A-Za-z0-9_-]

Req No

Default standard

Instructions

Species the type of lesystem to be created for the CONFIG. This option
is forwarded to copytarget while executing the copytarget manifests, and
instructs copytarget whether to copy the le, based on rules written inside
the copytarget manifest.

See CopyTarget Documentation for more details.

Example(s) "FilesystemType": "standard"

Field Mirrors

Type Array

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 694

System Software Components and Interfaces

Field Base

Acceptable
Values

Items type: String

Items content: Valid Debian mirrors

or

Items type: dict

Items content:

{

"Path": "<Valid Unix lepath> (String)", (Required)

"Type": "enum["local_debian_mirror", local_debian_folder", "debian"]
(String)" (Required)

}

or

{

"Path": "<Valid Debian mirror> (String)", (Required)

"Type": "enum["debian_mirror"] (String)" (Required)

}

Req No

Default None

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 695

System Software Components and Interfaces

Field Base

Instructions

Species zero, one, or more Debian mirrors hosting Debians specied in
DebianPackages.

If the value is a 'string', ensure these mirror values adhere to the package
manager's syntax of mirrors.

If the value is a dict, then depending on the value of 'Type', the le path in
'Path' is treated dierently:

local_debian_folder:

Build-FS shall copy the ".deb" les from 'Path' directory to a temporary mirror
path in the target lesystem "/var/mirror-<n>"

Build-FS shall create a local Debian mirror with the les in /var/mirror-<n>

Build-FS shall edit /etc/apt/sources.list of the target to consider /var/mirror-
<n> as a local Debian mirror while installing packages.

Build-FS shall remove these Debians while cleaning up before generating the
lesystem image.

local_debian_mirror:

Build-FS shall treat 'Path' as a valid Debian mirror

Build-FS shall mount this path to the target lesystem at a mount point /mnt/
<n>

Build-FS shall edit /etc/apt/sources.list of the target to consider /mnt/<n> as
a local Debian mirror while installing packages.

Build-FS shall umount these paths while cleaning up before generating the
lesystem image.

debian:

Build-FS shall treat the le pointed by 'Path' as a valid Debian Mirror installer.

Build-FS shall install the Mirror installer in the target lesystem.

Build-FS relies on the installer Debian to contain valid mirror conguration
les in /etc/apt/sources.list.d/. These le contents are appended to /etc/apt/
sources.list by Build-FS before installing Debian packages.

Build-FS shall purge the Mirror installer Debian before generating the
lesystem image.

debian_mirror:

Contents of 'Path' is appended to /etc/apt/sources.list.

Ensure these mirror values adhere to the package manager's syntax of
mirrors.

Ordering of Debian mirrors are preserved.

If the eld is not provided, target lesystem will not be congured with any
apt mirrors.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 696

System Software Components and Interfaces

Field Base

Example(s)

"Mirrors":

[

"deb http://ports.ubuntu.com/ubuntu-ports/ bionic main universe restricted",

{ "Type": "debian",

"Path" : "/tmp/mirror-installer.deb"},

{ "Type": "local_debian_mirror",

"Path": "/opt/deb_mirror/"},

{ "Type": "local_debian_folder",

"Path" : "/opt/deb_folder/"},

{ "Type": "debian_mirror",

"Path": "deb http://ports.ubuntu.com/ubuntu-ports/ bionic-updates main
universe restricted"}

]

Field Users

Type Object

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 697

System Software Components and Interfaces

Field Base

Acceptable
Values

Key content: Unique user identication alphanumeric string

Value type: dict

Value content:

{

 "<key >": {

"UID" : "<User-Identier in target /etc/passwd>" (String) (Required),

"Password": {

"HashedPassword" : "<Hashed-Password>" (String) (Required)

},

"Username" : "<Username in target /etc/passwd>", (String) (Required)

}

or

Key content: Valid UNIX username requirements

Value type: Array with length=2

Value content: [UID(String), passwd(String)]

Where UID must be a valid UNIX user identier and password must be a valid
UNIX password.

The latter entry is just for legacy support and not recommended to be used.

Req No

Default None

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 698

System Software Components and Interfaces

Field Base

Instructions

Species a list of zero, one, or more users to be added to the target
lesystem.

For each key-value pair in the JSON dictionary, a user account is described
by its attributes: user-identier, username, password entry. This entry will
either add and update the user account as described by workow below. The
ordering of users to be added is the order of dictionary entries.

Ensure usernames, user identiers, and user passwords are valid UNIX
standards.

User-identier is recommended to be above 1000, and not conicting with
existing user identiers; otherwise, conicting user-identiers will be reported
as an error.

The password entry (i.e. value for the key "Password") is a dictionary with
key "HashedPassword" and value hashed-password created using unix crypt
algorithm. The alternate way to provide password using plain text is also
supported but not preferred due to security reasons as shown below:

"Password": "<Password text>"

Workow:

Build-FS fetches the user entry's UID attribute in the CONFIG le and then
checks if there exists a user account whose identier matches value of UID in
the lesystem described by option "-f" or "Base" .

If the user account exists, Build-FS updates the username of that account to
what is specied in the user entry of the CONFIG le.

If the user account does not exist, Build-FS proceeds to add the user account
with the username provided in the user entry of the CONFIG le.

In all the cases, the Build-FS sets the user account password to the value
corresponding to the password attribute in the user entry of the CONFIG le.

Note that Build-FS updates the username's user-group when updating the
username of the user account. For example: when renaming username nvidia,
with user-group nvidia and UID 1000 to username nvidia2, Build-FS updates
the user's group nvidia to nvidia2 keeping same UID 1000.

Note that the previous version of Users block where one entry is :
"<username>" : ["user-id", "password"], continues to be supported to only add
users for backward compatibility but not to update users.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 699

http://manpages.ubuntu.com/manpages/bionic/man3/crypt.3.html

System Software Components and Interfaces

Field Base

Example(s)

"Users": {

"one": {

"UID": "1001",

"Username" : "nvidia2",

"Password": "driveos"

},

"two": {

"UID": "1002",

"Username" : "nvidia3",

"Password": {

"HashedPassword": "$6$4bhqDdYb$kxJApfqarvpuMhLweydYp7

.NqSFXWxML8N3JywqadmlEp9GF89553PNBAYBTdGmfBaUe7/7LxpP8PBBQlCJT70"

},

}

Field Groups

Type Object

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 700

System Software Components and Interfaces

Field Base

Acceptable
Values

Key content: Unique user identication alphanumeric string

Value type: dict

Value content:

{

 "<key >": {

"GID" : "<Group-Identier in target /etc/group>" (String) (Required),

"Groupname" : "<Group name in target /etc/group>", (String) (Required)

}

or

Key content: Valid UNIX groupname

Value type: String

Value content: Valid UNIX group identier

The latter entry is just for legacy support and not recommended to be used.

Req No

Default None

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 701

System Software Components and Interfaces

Field Base

Instructions

Species a list of zero, one, or more groups to be added to the target
lesystem.

For each key-value pair in the JSON, a group is described by its attributes:
groupname and the group-identier. This entry will either add or update the
group as described by workow below. Ordering of groups to be added is
preserved.

Ensure group names and group identiers are valid UNIX standards.

Group identier is recommended to be above 1000, and not conicting
with existing group identiers; otherwise, conicting user identiers will be
reported as an error.

Workow:

Build-FS fetches the group entry's GID attribute in the CONFIG le and then
checks if there exists a group whose identier matches value of GID in the
lesystem described by -f option or "Base" .

If the group exists, Build-FS updates the groupname of that account to what
is specied in the group entry of the CONFIG le.

If the group does not exist, Build-FS proceeds to add the group with the
groupname provided in the group entry of the CONFIG le.

Note that the previous version of Groups block where one entry is:
"<groupname>": "<group-id>", continues to be supported to only add groups
for backward compatibility but not to update groups.

Example(s)

"Groups": {

"one": {

"Groupname": "automotive",

"GID": "2001"

}

}

Field Memberships

Type Object

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 702

System Software Components and Interfaces

Field Base

Acceptable
Values

Key content: valid UNIX username

Value type: Array

Value content: [group1(String),...., groupN(String)]

Where group* must be a valid UNIX groupname or group identier.

Req No

Default None

Instructions
Species a list of zero, one, or more group memberships to be added to the
target lesystem.

Example(s)

"Memberships":

{

 "nvidia":

 [

 "1000",

 "audio",

 "cdrom",

 "dialout",

]

}

Field DebianPackages

Type Array

Acceptable
Values

Items type: String

Items content: Valid Debian package names.

Req No

Default None

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 703

System Software Components and Interfaces

Field Base

Instructions

Species a list of zero, one, or more Debian packages to be installed on target
lesystem during Build stage.

Each Debian package can be accompanied by a valid corresponding package
version but is entirely optional. If no package version is specied, the latest
version as reported by the Debian mirror will be acquired and installed

If the list of Debians and or the specied versions conict, an error will be
reported.

Example(s)

" DebianPackages ":

[

 "openssh-server=1-4ubuntu0.3",

 "vim"

]

Field Hostname

Type String

Acceptable
Values Valid UNIX hostname

Req No

Default None

Instructions

Host name of the target lesystem is updated to the one specied as the
value for HostName.

If HostName Field is not present in the CONFIG, the host name of the Base
lesystem is preserved.

Example(s) "HostName": "auto-ubuntu"

Field Mount

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 704

System Software Components and Interfaces

Field Base

Acceptable
Values

Value type: array{ "<Path of mount point> (Required) (String)": {

"Type": "<Type of the Linux Filesystem to be mounted> (Required)
 (String)",

"MountOptions": "<Mount specific options> (Required) (String)",

"Device": "<Path to the device node or the partition to mount>
 (Required)
 (String)"

},}

The values to the Mounts Field is an array of dictionaries. Each
 dictionary entry's key is
 the path to the Mount point which the directory the mount
 the storage device or the
 partition.

The dictionary entry's value following the key is the dictionary of
 3 key-value pairs where
 keys are {"Type", "MountOptions", "Device"}.

The Type is the filesystem type such as ext4, ext3, ext2, nfs,
 overlayfs, ubifs and so
 on.

MountOptions are the comma-separated specific mount options as
 required. If no specific
 options are required, it must be assigned as "defaults".

Device is the path to the device node of the partition that
 contains the filesystem in Type
 and must be mounted on the mount-point (referred above)
 with the options from
 MountOptions.

Req No

Default None

Instructions

The Mounts entry recorded in Build-FS cong is used to generate an /etc/
fstab entry and append it to be lesystem's /etc/fstab in the same order
as listed in the Mounts block. The block must be populated only when the
user is sure of the partition/device in Device contains the lesystem of Type.
Entering a Mounts entry without an existing lesystem in the Device leads to
a mount error during the lesystem runtime.

Example(s)

"Mounts": { "/home/": { "Type": "ext4", "MountOptions":
"defaults", "Device": "/dev/vblkdev3" },}

This example mounts the ext4 filesystem in /dev/vblkdev3 at /home/
 with default
 options.

Field FilesystemInclude

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 705

System Software Components and Interfaces

Field Base

Acceptable
Values

Value type: array{ ..., "<Path to file to be included> (Required)
(String)", ..., "<Path to directory to be included>/ (Required)
(String)", ...}

The FilesystemInclude block contains the subset of files and
 directory to be chosen from
 the Build-FS filesystem working directory after building
 the filesystem content. The block
 is optional and if it is absent, the entire Build-FS
 filesystem working directory goes into
 the filesystem image. The path to files and the path to
 directories slightly differ because
 the path to directory always must end with a slashs to
 indicate a directory where as the
 path of a file must not end with a slash.

The list of paths required must be expressed in absolute path
 directory in the Build-FS
 config or defined using intermediate environment variables
 and in such cases the environment
 must define variable.

Default None

Instructions

The FilesystemInclude block applies when user wishes to copy only a subset
of data from lesystem work directory to the nal image. However, if the user
wants the entire content in the workspace, FilesystemInclude block must to
be used.

Example(s)

"FilesystemInclude": ["/etc/group", "/etc/gshadow", "/etc/
passwd", "/etc/shadow", "/etc/subgid", "/etc/subuid", "/etc/
passwd", "/home/"],

This example ensures the files listed (until and excluding /home)
 are chosen along with
 /home/ directory and its contents are the subset of data
 that shall be part of the Build-FS
 created filesystem image.

Field AssociatedFilesystems

Acceptable
Values

Value type: array{ ...

"<Path to build-fs CONFIG associated with the parent CONFIG OR base
 filename of build-fs
 CONFIG> (Required) (String)",

"<Path to build-fs CONFIG associated with the parent CONFIG OR base
 filename of build-fs
 CONFIG> (Required) (String)",

...}

Req No

Default None

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 706

System Software Components and Interfaces

Field Base

Instructions

The Build-FS CONFIG in AssosciatedFilesystems block can either be an entry
to the absolute path of the CONFIG le or just a lename. If it is a lename,
then Build-FS looks for the CONFIG in Associated Filesystems in the parent
CONFIG's directory.

The Build-FS CONFIG in AssosciatedFilesystems block is a valid Build-FS
cong (no dierent than the associator's CONFIG). In fact, each CONFIG
in the AssociatedFilesystems can be executed as dedicated instances
of Build-FS. The AssociatedFilesystems block can be applied recursively
such that the Build-FS CONFIG within the AssociatedFilesystems can
request more AssociatedFilesystems. Finally, the elds within CONFIG of
AssociatedFilesystems are not attened into the parent Build-FS CONFIG's
MANIFEST but instead each CONFIG in ASsociatedFilesystems creates its
corresponding MANIFEST.

Example(s)

"AssociatedFilesystems": ["driveos-core-rfs-user-
metadata.CONFIG.json", "${BUILD_FS_DIR}/configs/driveos-core-rfs-
user-data.CONFIG.json"],

This example the first associated filesystem shall be located at
 the same directory as the
 parent's CONFIG whereas the final CONFIG must be present at
 the full path
 "${BUILD_FS_DIR}/configs/driveos-core-rfs-user-
data.CONFIG.json".

Field SELinux

Acceptable
Values

Value type: dictValue content:{

"SetFiles": <Path to the 3rdparty SELinux setfiles application>
 (String)
 (Required),

"PolicyFile": <Path to the SELinux policy binary file> (String)
 (Required),

"ContextFile": <Path to SELinux context file> (String)
(Required)}

The value is of type dictionary but the set of keys in the
 directionary is fixed to
 {"SetFiles", "PolicyFile", "ContextFile"}.

The SetFiles key holds the absolute path to host-side setfiles
 application. This
 application is provided Ubuntu host-side package check
 policycoreutils.

The PolicyFile key holds the absolute path to the SELinux
 precompiled policy binary file
 (built using checkpolicy application).

The ContextFile key holds the absolute path to SELinux context
file.

For more information on SELinux policy and SELinux context file,
 please refer to DRIVE OS
 LINUX SELinux documentation.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 707

System Software Components and Interfaces

Field Base

Req No

Default None

Instructions

The SELinux block species the required inputs for build-fs to apply
appropriate the SELinux attributes (SELinux attributes is a part of extended
attributes of a le or a directory). SELinux block is a dictionary but Build-FS
only supports and requires 3-xed keys {"SetFiles", "PolicyFile", "ContextFile"}.
The value of each of the keys must the respective absolute paths. Build-
FS supports specifying the paths using environment variables only if such
variables are dened the Build-FS environment le.

For DRIVE OS LINUX, the setles application can be obtained by installing
policycoreutils package via apt-get. Then, the app resides at path /sbin/
setles. The workow of editing policy and context le is documented in
DRIVE OS LINUX SELINUX documentation.

Example(s)

1) Explcit path to each of the entries."SELinux": { "SetFiles": "/
sbin/setfiles",

"PolicyFile":
 "${NV_WORKSPACE}/drive-linux/filesystem/contents/configs/
selinux/policy.30",

"ContextFile":
 ${NV_WORKSPACE}/drive-linux/filesystem/contents/configs/
selinux/file_contexts"}

2) Paths can be defined using build-FS environment
variable"SELinux": { "SetFiles": "${SELINUX_SETFILES_PATH}",
"PolicyFile": "${SELINUX_POLICY_PATH}", "ContextFile":
"${SELINUX_CONTEXT_PATH}"}The build-FS environment would
contain the expansion of the variables:{... "SDKPLATDIR":
"${NV_WORKSPACE}/drive-linux", "SELINUX_SETFILES_PATH": "/sbin/
setfiles",

"SELINUX_POLICY_PATH":
 "${SDKPLATDIR}/filesystem/contents/configs/selinux/
policy.30",

"SELINUX_CONTEXT_PATH":
 "${SDKPLATDIR}/filesystem/contents/configs/selinux/
file_contexts",

...}

6.7.11 Errors
Error Variable Values

No value for NV_WORKSPACE provided with the
-w option.

N/A

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 708

System Software Components and Interfaces

Error Variable Values

NV_WORKSPACE: '<path>' doesn't exist.

path:

Value provided after -w in Build-FS
command line.

No CONFIG provided with the '-i' option. N/A

CONFIG le: '<json_le>' doesn't exist.

json_le :

Value provided after -i in Build-FS
command line.

<cong_os> is not supported.

cong_os :

Value of "OS" tag in the Build-FS
CONFIG le.

<variable> is not dened.

variable:

Any required Build-FS environment
variable.

Command returned non-zero error code:

<cmd_string>

cmd_string :

Command line used to execute
binary outside Build-FS python
scripts.

Unsupported execution location:
'<run_target>'. Expecting a value from the list:
[host, target, target_copy]

run_target :

Runtime target congured for Pre-
Install/ Post-Install scripts.

Unknown Base le format: '<base>', Please
provide Base in a Build-FS supported format.

base:

Value of "Base" tag in the Build-FS
CONFIG le.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 709

System Software Components and Interfaces

Error Variable Values

Required Field: '<eld>' absent from input
CONFIG le: '<cong>'.

eld:

Field is one of the required elds of
Build-FS CONFIG.

(See NVIDIA Build-FS CONFIG
Semantics for more information).

cong:

Input CONFIG le provided to
Build-FS.

<eld>: Value is not a string in the input
CONFIG le: '<cong>'.

eld:

Field is one of the required elds of
Build-FS CONFIG.

(See NVIDIA Build-FS CONFIG
Semantics for more information).

cong:

Input CONFIG le provided to
Build-FS.

<eld>: Value is not a list in the input CONFIG
le: '<cong>

eld:

Field is one of the required elds of
Build-FS CONFIG.

(See NVIDIA Build-FS CONFIG
Semantics for more information).

cong:

Input CONFIG le provided to
Build-FS.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 710

System Software Components and Interfaces

Error Variable Values

<eld>: Value is not a dict in the input CONFIG
le: '<cong>

eld:

Field is one of the required elds of
Build-FS CONFIG.

(See NVIDIA Build-FS CONFIG
Semantics for more information).

cong:

Input CONFIG le provided to
Build-FS.

FileNotFoundError: [Errno 2] No such le or
directory: '<le>'

le:

Missing le in the host system
where Build-FS is running.

Usage: build_kit.py [options]

build_kit.py: error: no such option:
<incorrect_option>

incorrect_option:

Incorrect option provided in Build-
FS command line

Usage: build_kit.py [options]

build_kit.py: error: option --create-tar: invalid
choice: '<val>' (choose from 'yes', 'no')

val:

Value provided to --create-tar
option.

Usage: build_kit.py [options]

build_kit.py: error: option --create-image: invalid
choice: '<val>' (choose from 'yes', 'no')

val:

Value provided to --create-image
option.

6.7.12 Examples

6.7.12.1 To add users, groups, and memberships to the
lesystem
This example demonstrates how to:

1. Add user "nvidia2" with identier "1001" and password "driveos".
2. Add group "automotive" with identier "2001".
3. Assign membership between user "nvidia2" and group "automotive".

{
 "Users": {
 "one": {

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 711

System Software Components and Interfaces

 "UID": "1001",
 "Username" : "nvidia2",
 "Password": "driveos"
 }
 },
 "Groups": {
 "one": {
 "Groupname": "automotive",
 "GID": "2001"
 }
 },
 "Memberships":
 {
 "nvidia2":
 [
 "automotive"
]
 }
}

6.7.12.2 To update existing user, group and set passwd
in the lesystem
This example demonstrates how to:

1. We assume the lesystem has a user and group from above example:

a). A user with username "nvidia2", user-id "1001" and password "driveos".
b). A group "automotive" with group-id "2001".

2. Update user to username "nvidia3" and keep identier "1001" and set password to
"nvidia3".

3. Update group to groupname "auto" and keep group identier "2001".
4. The memberships (which are based on UID/GID) are automatically updated in the

lesystem.

{
 "Users": {
 "one": {
 "UID": "1001",
 "Username" : "nvidia3",
 "Password": "nvidia3"
 }
 },
 "Groups": {
 "one": {
 "Groupname": "auto",
 "GID": "2001"
 }
 }
}

6.7.12.3 To set password to given value securely using
hashed-password to the lesystem
This example demonstrates how to:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 712

System Software Components and Interfaces

1. We assume the lesystem has a user and group from above example:

a). A user with username "nvidia2", user-id "1001".
2. Set password "nvidia2" for the username "nvidia2".
3. When string "nvidia2" is hashed using crypt with salt "4bhqDdYb" it produces password

in the entry below. Tool mkpasswd can be used to get hashed-password.

{
 "Users": {
 "one": {
 "UID": "1001",
 "Username" : "nvidia2",
 "Password": {
 "HashedPassword": "$6$4bhqDdYb$kxJApfqarvpuMhLweydYp7.
NqSFXWxML8N3JywqadmlEp9GF89553PNBAYBTdGmfBaUe7/7LxpP8PBBQlCJT70"
 },
 }
 }
}

6.7.12.4 To install Debian packages from Ubuntu mirrors
This example demonstrates how to install Debian packages "vim" and "nano" from Ubuntu
mirror "deb http://ports.ubuntu.com/ubuntu-ports/ bionic main universe restricted".
{
 "Mirrors":
 [
 "deb http://ports.ubuntu.com/ubuntu-ports/ bionic main universe restricted"
],
 "DebianPackages":
 [
 "vim",
 "nano"
]
}

6.7.12.5 To copy les to the target lesystem
This example demonstrates how to:
{
 "CopyTargets":
 [
 "${WORK_DIR}/copytarget-nvidia.yaml"
]
}

The CopyTarget le copytarget-nvidia.yaml is used in the example below:
version: '1.4'
fileList:
 - destination: /home/nvidia/nvidia.txt
 source: nvidia.txt
 perm: 644
 owner: root
 group: root

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 713

System Software Components and Interfaces

6.7.12.6 To run preinstall and postinstall scripts
This example demonstrates how to:
{
 "PreInstalls":
 {
 "${WORK_DIR}/preinstall.sh": "target_copy"
 },
 "PostInstalls": {
 "${WORK_DIR}/postinstall.sh": "target_copy"
 }
}

The preinstall.sh script is used in the example below:
#!/bin/sh
echo "nameserver.nvidia.com" >> /etc/resolv.conf

The postinstall.sh script is used in the example below:
#!/bin/sh
sed -i "s/nameserver.nvidia.com//g" /etc/resolv.conf

6.8 CAN Driver
Linux releases support two instances of NVIDIA Tegra Controller Area Network (TegraCAN).
The CAN controller for Tegra family devices is the Bosch MTTCAN controller IP.

TegraCAN provides two SocketCAN interfaces in the Linux kernel. The SocketCAN interface
is similar to network interfaces in Linux kernel. SocketCAN documentation is available in
Linux kernel documentation online at:
<Top>/drive-linux/kernel/source/oss_src/kernel/Documentation/devicetree/bindings/net/
can/

For information about SocketCAN limitations, see the Release Notes.

There are two implementations of MTTCAN SocketCAN driver:

‣ mttcan driver that controls CAN controller directly through CPU running Linux

‣ mttcan-ivc that uses CAN driver services through IVC and implemented in SPE-FW.
This driver can potentially be used by both SPE rmware and Linux.

The selection of either mttcan or mttcan-ivc is done through device tree solution. Ensure
that both drivers for a given CAN controller are not simultaneously enabled through device
tree.

6.8.1 Enabling CAN Driver in Linux Kernel
You must enable the CAN driver using the following procedures.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 714

System Software Components and Interfaces

6.8.1.1 To enable SPE based mttcan_ivc driver
1. For the targeted board device tree include le, make the following device tree changes.

The supported boards include p3710-10-a01 and p3663-a01 . For custom board
congurations, make the following changes.

‣ Enable mttcan0-ivc and mttcan1-ivc in the target device tree:
mttcan0-ivc {
 status = "okay";
};
mttcan1-ivc {
 status = "okay";
};

‣ Disable mttcan driver in the target device tree:
mttcan@c310000 {
 …
 status = "disabled";
;
mttcan@c320000 {
 …
 status = "disabled";
};

2. Make sure that SPE-FW is loaded by enabling the -L ash option. Ensure that your
global_storage.cfg has SPE and Warmboot binaries enabled.

6.8.1.2 MTTCAN as a Module
Before running MTTCAN as a module, the user must ensure it is loaded on the target.

6.8.1.2.1 To install modules
1. On the target, determine whether following modules are loaded, by running the lsmod

command in the Linux shell.
can.ko
can-dev.ko
mttcan.ko
mttcan_ivc.ko

2. If the modules are not loaded, determine whether they are in following, directory:
/lib/modules

3. If the modules are not in this directory, set the following CONFIG options in defconfig
and rebuild kernel.
CONFIG_CAN=m
CONFIG_CAN_RAW=m
CONFIG_CAN_DEV=m
CONFIG_MTTCAN=m
CONFIG_MTTCAN_IVC=m

4. Alternatively, these options can be set using the instructions described in Compiling the
Kernel in the NVIDIA DRIVE OS 6.0 Linux PDK Development Guide, "To compile the kernel"
topic, steps 1-3 to:

‣ Setup the environment macros

‣ Set the kernel source directory

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 715

System Software Components and Interfaces

‣ Create an output directory and congure the kernel for the board
5. Execute the following command.

make -C kernel O=${PWD}/out-linux
DEFCONFIG_PATH=$PWD/t23x/arch/arm64/configs menuconfig
[*] Networking support --->
 <M> CAN bus subsystem support --->
 <M> Raw CAN Protocol (raw access with CAN-ID filtering)
 <M> CAN Device Drivers --->
 <M> Platform CAN drivers with Netlink support
 <M> Bosch M_TTCAN Devices
 <M> Bosch M_TTCAN IVC Devices

6. Exit and save.
7. Rebuild the kernel and copy the kernel Image from the kernel out directory to:

drive-linux/kernel

For more information, see Compiling the Kernel in the NVIDIA DRIVE OS 6.0 Linux PDK
Development Guide.

8. Reash the target.

For more information, see Flashing.
9. Load all required modules.

modprobe mttcan
modprobe mttcan_ivc

This command assumes module dependencies are properly set.
10. If the modprobe command fails, manually load the modules:

insmod /lib/modules/<KERNEL_VERSION>/kernel/net/can/can.ko
insmod /lib/modules/<KERNEL_VERSION>/kernel/drivers/net/can/can-dev.ko
insmod /lib/modules/<KERNEL_VERSION>/t18x/drivers/staging/mttcan/mttcan.ko
insmod /lib/modules/<KERNEL_VERSION>/t18x/drivers/net/can/mttcan /ivc/
mttcan_ivc.ko

Note:

The <KERNEL_VERSION> is in the form of x.x.xx-rtxx-tegra. For example, 4.4.38-rt49-
tegra.

6.8.1.3 MTTCAN as a Kernel Built-in Driver
When you build the MTTCAN driver along with the kernel, it is part of the kernel binary.

1. Follow the steps above in MTTCAN as a Module.
2. Set the following CONFIG options in defconfig.

For more information, see Compiling the Kernel in the NVIDIA DRIVE OS 6.0 Linux PDK
Development Guide.
CONFIG_CAN=y
CONFIG_CAN_RAW=y
CONFIG_CAN_DEV=y
CONFIG_MTTCAN=y

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 716

System Software Components and Interfaces

CONFIG_MTTCAN_IVC=n

Note:

Only one of the two congurations can be enabled CONFIG_MTTCAN or
CONFIG_MTTCAN_IVC. Both cannot be statically linked simultaneously.

3. Alternatively, these options can be set using the instructions described in Compiling the
Kernel in the NVIDIA DRIVE OS 6.0 Linux PDK Development Guide, "To compile the kernel"
topic, steps 1-3 to:

‣ Setup the environment macros

‣ Set the kernel source directory

‣ Create an output directory and congure the kernel for the board
4. Execute the following command.

make -C kernel O=${PWD}/out-linux
DEFCONFIG_PATH=$PWD/t23x/arch/arm64/configs menuconfig
[*] Networking support --->
 <M> CAN bus subsystem support --->
 <M> Raw CAN Protocol (raw access with CAN-ID filtering)
 <M> CAN Device Drivers --->
 <M> Platform CAN drivers with Netlink support
 <M> Bosch M_TTCAN Devices

5. Exit and save.
6. Build the kernel and copy the modules from the kernel Image and zImage as follows:

cp ${PWD}/out-linux/arch/arm64/boot/zImage
 <top>/drive-linux/kernel
cp ${PWD}/out-linux/arch/arm64/boot/Image
<top>/drive-linux/kernel

For more information, see Compiling the Kernel in the NVIDIA DRIVE OS 6.0 Linux PDK
Development Guide.

7. Reash the target system.

For more information, see Flashing.

6.8.2 Setting Up CAN Loopback
On Orin, you need a special loopback cable with termination to test CAN.

Basic Setup

‣ Connect power cable to the board

‣ Connect Aurix UART Debug MCU (see Image 1) to host via micro SUB to USB A cable

‣ Connect USB-C ashing (see Image 1) to host via USB C to USB A cable

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 717

System Software Components and Interfaces

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 718

System Software Components and Interfaces

NFS Setup

‣ Connect RJ45 EQOS port (see image above) to host via RJ45-RJ45 cable

6.8.2.1 Test Specic Setup
The following sections describe how to set up the tests.

AURIX Tests

‣ Connect harness H1 to H1/CN2 port (see Image 1)

‣ Connect harness H2 to H2/CN1 port (see Image 1)

CAN Test

‣ Connect CAN loopback connectors to H1/H2 harness as per image below:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 719

System Software Components and Interfaces

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 720

System Software Components and Interfaces

Connector 1: (P3 on harness 2)

Bridge Dongle(Dsub9 Male): Connect pin 1 and 2, connect pin 7 and 8

Connector 2: (P14 on Harness 1)

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 721

System Software Components and Interfaces

Termination dongle(Dsub9 Male): connect 120 ohm btw pin 1 and 8 and connect 120 ohm
btw pin2 and 7

Connector 3: (P12 - P13 on harness 2 AND P4 of harness 1 to P11 of Harness 2)

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 722

System Software Components and Interfaces

x2 CAN cable(Male to Male): Connect pin 1-pin 1, pin 2-pin 2, pin 7-pin 7, pin 8-pin 8

CAN Loopback Cable TS3

For CAN loopback cable TS3, connect each DSUB 9 connector using the following
guidelines and gures:

1. Ensure that the wire is 3 inches long between DSUBs.
2. Put the housing on each DSUB.
3. Put a label on each DSUB 9 connector as shown in the following gure.

CAN1<->CAN5 and CAN2<->CAN6 loopback:

‣ SMCU_CAN1: P4 - pins 2, 7

‣ SMCU_CAN2: P4 - pins 1, 8

‣ SMCU_CAN5: P11 - pins 2, 7

‣ SMCU_CAN6: P11 - pins 1, 8

CAN bridge: Short DB9 connector pin1 to pin2 and pin7 to pin8.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 723

System Software Components and Interfaces

CAN5<->FSICAN1 and CAN4<->CAN6 loopback:

‣ SMCU_CAN5: P12 - pins 2, 7

‣ SMCU_CAN6: P12 - pins 1, 8

‣ SMCU_FSICAN1: P15 - pins 2, 7

‣ SMCU_CAN4: P13 - pins 1, 8

Can terminator: Connect a 120-Ohm resistor between pin1 and pin8 as shown in the
following gure:

Ethernet Tests

Switch Loopback Tests

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 724

System Software Components and Interfaces

‣ Matenet Ports on 3718 (see image 1)

‣ Connect port 3 to port 4 via matenet cable to matenet cable

‣ Connect port 2 to port 5 via matenet cable to matenet cable

‣ Connect port 1 to port 6 via matenet cable to matenet cable

‣ HMTD ports on 3718 (see image 1)

‣ Connect J3 to J4 via Quad HMTD to Quad HMTD cable

‣ Port J3.1 to Port J4.1

‣ Port J3.2 to Port J4.2

‣ Port J3.3 to Port J4.3

‣ Port J3.4 to Port J4.4

Rework:

‣ MGBE 2/3 rework

LAN7431 Test

‣ Connect Port HMTD-LAN7431 (see image 1) to HMTD port in E3459

‣ Connect RJ45 port of E3459 to host PC

USB Test

‣ Connect USB C 3.1 ash drive to port USB-C J8 port (USB-C host port in image 1)

‣ Connect USB A 2.0 ash drive to port USB-A J11 port (USB type A (left) in image 1)

‣ Connect USB A 2.0 ash drive to port USB-A J23 port (USB type A (right) in image 1)

Rework:

‣ USB 2.0 Type A

6.8.3 Setting up SocketCAN Interface
After ensuring mttcan module is loaded or the driver is enabled, use following commands
to set up the CAN0 network interface. To enable the CAN1 interface, replace can0 with
can1.

6.8.3.1 Setting Up the CAN0 Interface

6.8.3.1.1 To set can0 interface bitrate
‣ Enter:

#ip link set can0 type can bitrate 500000

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 725

System Software Components and Interfaces

In this command, bitrate can be any valid CAN bitrate for stand CAN.

Note:

125000(125 Kbps), 250000(250 Kbps), 500000(500 Kbps) and 1000000(1Mbps)
are supported bitrates for Tegra MTTCAN driver.

Any other bitrate is not validated on Tegra MTTCAN driver.

Only 500000 (500 Kbps) bitrate is supported for Tegra MTTCAN-IVC. Other
bitrates are not enabled on Tegra MTTCAN-IVC driver out of box. Details are
available in the SPE documentation.

6.8.3.1.2 To get the supported commands
There are various parameters that can be set for CAN interface.

‣ Enter:

ip link set can0 type can help

This command prints the following help:
Usage: ip link set DEVICE type can
 [bitrate BITRATE [sample-point SAMPLE-POINT]] |
 [tq TQ prop-seg PROP_SEG phase-seg1 PHASE-SEG1
 phase-seg2 PHASE-SEG2 [sjw SJW]]
 [dbitrate BITRATE [dsample-point SAMPLE-POINT]] |
 [dtq TQ dprop-seg PROP_SEG dphase-seg1 PHASE-SEG1
 dphase-seg2 PHASE-SEG2 [dsjw SJW]]
 [loopback { on | off }]
 [listen-only { on | off }]
 [triple-sampling { on | off }]
 [one-shot { on | off }]
 [berr-reporting { on | off }]
 [fd { on | off }]
 [restart-ms TIME-MS]
 [restart]
 Where: BITRATE := { 1..1000000 }
 SAMPLE-POINT := { 0.000..0.999 }
 TQ := { NUMBER }
 PROP-SEG := { 1..8 }
 PHASE-SEG1 := { 1..8 }
 PHASE-SEG2 := { 1..8 }
 SJW := { 1..4 }
 RESTART-MS := { 0 | NUMBER }

6.8.3.1.3 To bring up the can0 interface
‣ Enter:

#ip link set up can0

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 726

System Software Components and Interfaces

6.8.3.2 Enabling the Flexible Data Rate Mode on
MTTCAN
SocketCAN currently supports classic (or standard) CAN mode and Flexible Data (FD) rate.
If the devices on your CAN network support FD, the user can enable FD rate mode on
MTTCAN.

6.8.3.2.1 To enable FD mode
1. If the interface is already up, disable it.

#ip link set down can0

2. Set the exible data rate for the dbitrate option to any valid data rate, provided that
dbitrate is greater than the specied bitrate value.
#ip link set can0 type can bitrate 500000 dbitrate 2000000 berr-reporting on fd on
 && ip link set up can0

Note:

For dbitrate support, iproute package version 2.4.0.0 or later is required.
Additionally, the maximum dbitrate support depends on PHY chip on platform.
Consult the PHY datasheet to identify and obtain the maximum allowed data
bitrate.

dbitrate 1000000 (1 Mbps) and 2000000 (2 Mbps) are supported data bitrates.
Any other dbitrate is not validated on TegraMTTCAN driver.

6.8.3.2.2 To check detail statics of the link
‣ Enter:

#ip -details -statistics link show can0

6.8.3.2.3 Miscellaneous Information About OSS SocketCAN Tools
You can use the open source can-utils package to get information about SocketCAN.
#apt-get install can-utils

6.8.4 How to Test CAN
The following section describes how to test CAN.

6.8.4.1 Test Classic (Non-FD) CAN
1. First, congure both the CAN interfaces with required bitrates:

sudo ip link set can0 type can bitrate 500000 berr-reporting on && ip link set
 up can0
sudo ip link set can1 type can bitrate 500000 berr-reporting on && ip link set
 up can1

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 727

System Software Components and Interfaces

2. Open a new ssh terminal and run the following commands to receive CAN packets sent
by can0 interface.
candump -x can0 &

3. On another terminal, run the following to send one CAN packet via the can0 interface,
where 220 is the CAN ID and 50 is data bytes.
cansend can0 220#50

The CAN packet sent by cansend is received on candump terminal.

6.8.4.2 Test FD CAN
1. Congure both the CAN interfaces with required bitrates:

sudo ip link set can0 type can bitrate 500000 dbitrate 2000000 berr-reporting on
 fd on && ip link set up can0
sudo ip link set can1 type can bitrate 500000 dbitrate 2000000 berr-reporting on
 fd on && ip link set up can1

2. Open a new ssh terminal and run the following commands to receive CAN packets sent
by can0 interface.
candump -x can0 &

3. On another terminal, run the following to send one CAN packet via the can0 interface,
where 220 is the CAN ID and 50 is data bytes. The 1 after ## denotes that the bit-rate
switching (BRS) ag is on.
cansend can0 220##150

The CAN packet sent by cansend is received on candump terminal.

6.8.5 CAN Timestamping
The MTTCAN module provides a 16-bit timestamp counter to timestamp received CAN
packets in the hardware. At the start of each CAN frame reception, it captures the TSC
counter [24-9] bits and stores it alongside the CAN frame. In order to overcome the
limitation of 16-bit timestamp, deduce all of the 64 bits of captured timestamp while
processing the CAN frame in the interrupt handler. This hardware timestamp is provided to
the application using the SocketCAN interface.

Use the candump util to dump the hardware timestamp for each received CAN packet:
candump -ta can0 &

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 728

System Software Components and Interfaces

6.8.6 Setting up MTTCAN Controller Hardware
lters
The CAN Filters interface provided by SocketCAN is software only and is specic to socket.
To program hardware lters in the hardware message RAM, the mttcan driver exposes
following /sys interfaces in Linux kernel.

Note:

Hardware lters are currently supported only for mttcan driver and not for
mttcan_ivc driver.

6.8.6.1 CAN0 sys interfaces
/sys/devices/platform/c310000.mttcan/net/can0/std_filter
/sys/devices/platform/c310000.mttcan/net/can0/xtd_filter
/sys/devices/platform/c310000.mttcan/net/can0/gfc_filter

6.8.6.2 CAN1 sys interfaces
/sys/devices/platform/c320000.mttcan/net/can1/std_filter
/sys/devices/platform/c320000.mttcan/net/can1/xtd_filter
/sys/devices/platform/c320000.mttcan/net/can1/gfc_filter

By default, sixteen Standard Message ID Filter and Sixteen Extended Message ID Filter
elements are congured in the mttcan DT node.

For information on changing the number of lters in the DT node, see Kernel
Documentation at:
drive-linux/kernel/source/oss_src/kernel/Documentation/i2c

6.8.7 Programming Global Filter Conguration
You must congure the global lter using the following procedures.

6.8.7.1 To congure the Global Filter
‣ Read/set the values with the following sys interface:

/sys/devices/platform/c320000.mttcan/net/can1/gfc_filter

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 729

System Software Components and Interfaces

6.8.7.2 To get sys interface syntax
‣ Enter echo help(h) to the sys interface to obtain the format for the parameters to be

provided in dmesg.

echo h > /sys/devices/platform/c320000.mttcan/net/can1/gfc_filter

The following is an example response from this command.
usage:anfs=0..3 anfe=0..3 rrfs=0/1 rrfe=0/1

All elds in this register are unsigned integers.

For example:
echo "anfs=2 anfe=2 rrfs=0 rrfe=0" > /sys/devices/platform/c320000.mttcan/net/can1/
gfc_filter

6.8.7.3 To read GFC conguration
‣ Enter:

cat /sys/devices/platform/c320000.mttcan/net/can1/gfc_filter

For information on conguring GFC, see section 2.3.20 in the Bosch MTTCAN user manual.

6.8.8 Programming Standard Message ID CAN
Filters
If space is reserved for Standard Message ID CAN lters in device tree node, then standard
lters can be congured using following sys interface:
/sys/devices/platform/c310000.mttcan/net/can0/std_filter

‣ Enter echo help(h) to the sys interface to obtain the format for the parameters to be
provided in dmesg.
echo h > /sys/devices/platform/c310000.mttcan/net/can0/std_filter
bash: /sys/devices/platform/c310000.mttcan/net/can0/std_filter: No such file or
 directory

Where:

‣ The sd1 and sd2 are in HEX.

‣ The sft, sfec, and idx are in unsinged integers.

‣ The idx eld is optional.

‣ If index is provided, then the given index lter is updated; otherwise the lters are
assigned incrementally.

For example:
echo "sft=0 sfec=1 sfid1=123 sfid2=123 idx=0" > /sys/devices/platform/
c310000.mttcan/net/can0/std_filter

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 730

System Software Components and Interfaces

6.8.8.1 To read standard lter conguration
‣ Enter:

cat /sys/devices/platform/c310000.mttcan/net/can0/std_filter

For information on conguring Standard Message ID lters, see section 2.4.5 in the Bosch
MTTCAN user manual.

6.8.9 Programming Extended Message ID Filters
If space is reserved in Extended Message ID CAN lters in device tree node, then extended
lters can be congured using following sys interface:
/sys/devices/platform/c310000.mttcan/net/can0/xtd_filter

‣ Enter echo help(h) to the sys interface to obtain the format for the parameters to be
provided in dmesg.
echo h > /sys/devices/platform/c310000.mttcan/net/can0/xtd_filter
bash: echo: write error: Invalid argument
[3435.907378] net can0: Invalid xtd filter
[3435.907384] usage:eft=0..3 efec=0..7 efid1=ID1h efid2=ID2h idx=i

Where:

‣ The ed1 and ed2 are in HEX.

‣ The eft, efec, and idx are in unsinged integers.

‣ The idx eld is optional.

‣ If the index is provided, then the given index lter is updated; otherwise the lters
are assigned incrementally.

For example:
echo "eft=0 efec=2 efid=0x7 efid2=0x21 idx=0" > /sys/devices/platform/
c310000.mttcan/net/can0/xtd_filter

6.8.9.1 To read extended lter conguration
‣ Enter:

cat /sys/devices/platform/c310000.mttcan/net/can0/xtd_filter

For information on conguring Extended Message ID lters, see section 2.4.6 in the Bosch
MTTCAN user manual.

6.9 Kernel Modules and Limitations
NVIDIA modies the Linux defcong to build many drivers as modules, which reduces boot
time. The following list shows examples of such modules. Kernel image update requires
updated modules from the same build; hence, mixing and matching between kernel/

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 731

System Software Components and Interfaces

module builds shall result in unpredictable behavior. NVIDIA-provided rootfs (Ubuntu/Yocto)
support auto-insmod of all required modules.

Example Supported Auto-Insmod Modules

‣ eqos_ape

‣ saf775x_hwdep

‣ rndis_host

‣ atmel_mxt_ts

‣ bluetooth

‣ snd_soc_tegra_alt_t186ref_p2382

‣ spidev

‣ mttcan

‣ bluedroid_pm

‣ can_dev

‣ bcmdhd

‣ spi_tegra186_qspi

‣ spi_tegra114

‣ serial_tegra

‣ pci_tegra

Modules Not Supporting Multiple Insmod

The following modules, however, do not currently support multiple insmod:

‣ pci_tegra

‣ bcmdhd

6.10 Crypto Interface
SE hardware module functionality is implemented in SE Server and the interface to the
SE Server is implemented in the Virtual SE driver (tegra-hv-vse driver). SE hardware crypto
functionality can be accessed using the standard Linux interfaces:

https://www.kernel.org/doc/html/v4.11/crypto/

The standard Linux kernel interface for crypto is crypto API. This includes RNG support as
well. For more information, see:

https://www.kernel.org/doc/html/v4.11/crypto/api-rng.html

Sample code provided by the kernel to verify the crypto is available at:

https://www.kernel.org/doc/html/v4.11/crypto/api-samples.html

Sample code provided by the kernel to verify that RNG is available at:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 732

https://www.kernel.org/doc/html/v4.11/crypto/
https://www.kernel.org/doc/html/v4.11/crypto/api-rng.html
https://www.kernel.org/doc/html/v4.11/crypto/api-samples.html

System Software Components and Interfaces

https://www.kernel.org/doc/html/v4.11/crypto/api-samples.html#code-example-for-
random-number-generator-usage

Note:

In the above example, "alg name" to be passed is "rng1-elp-tegra" or "rng1_trng" to
crypto_alloc_rng for TRNG..

Refer to the SE Server documentation in the NVIDIA DRIVE 6.0 < SDK > for the
functionality exposed by SE Server.

6.11 I2C Settings
The Linux SDKkernel supports the standard I2C kernel interfaces for specic devices, as
described in:
<top>/drive-linux/kernel/source/oss_src/kernel/Documentation/i2c

This topic explains Tegra I2C settings.

Adding/Removing Devices

Tegra I2C implementation supports the standard kernel I2C interface. You can
nd instructions for addition, detection, and removal of I2C devices in the kernel
documentation at:
<top>/drive-linux/kernel/source/oss_src/kernel/Documentation/i2c/writing-clients

6.12 PCIe Retimer
An eight-lane PCIe retimer is connected to Orin UPHY1[7:0]. It has a rmware inside, and
you can upgrade this rmware using Orin I2C9.

Upgrading the PCIe Retimer Firmware

Both the rmware and upgrade tool are packaged into the le system at the following
locations:

‣ Firmware

/usr/lib/firmware/astera_retimer/firmware/pt4080l/1.25.x/nvidia_p3713_x4x4/
nvidia_P3713_x4x4_X8-B2B_RETIMER-DYN_PRT_ORIENT-SRNS-CLK_IND-HOT_PLUG-
GPIO_PERST_v1_25_9.ihx

‣ Tool

/lib/firmware/astera_retimer/tools/astera_ota

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 733

https://www.kernel.org/doc/html/v4.11/crypto/api-samples.html
https://www.kernel.org/doc/html/v4.11/crypto/api-samples.html

System Software Components and Interfaces

Run the following command to upgrade the retimer rmware:
sudo /usr/lib/firmware/astera_retimer/tools/astera_ota Install /usr/lib/firmware/
astera_retimer/firmware/pt4080l/1.25.x/nvidia_p3713_x4x4/nvidia_P3713_x4x4_X8-
B2B_RETIMER-DYN_PRT_ORIENT-SRNS-CLK_IND-HOT_PLUG-GPIO_PERST_v1_25_9.ihx

If the ashing is successful, the following message appears:
nvidia@tegra-ubuntu:/usr/lib/firmware/astera_retimer/firmware/pt4080l/1.25.x/
nvidia_p3713_x4x4$ sudo /usr/lib/firmware/astera_retimer/tools/astera_ota /
usr/lib/firmware/astera_retimer/firmware/pt4080l/1.25.x/nvidia_p3713_x4x4/
nvidia_P3713_x4x4_X8-B2B_RETIMER-DYN_PRT_ORIENT-SRNS-CLK_IND-HOT_PLUG-
GPIO_PERST_v1_25_9.ihx
15:00:53 INFO aries-sdk-c/source/aries_api.c:572: Starting Main Micro assisted
 EEPROM write
15:01:19 INFO aries-sdk-c/source/aries_api.c:682: Ending Write
15:01:19 INFO aries-sdk-c/source/aries_api.c:832: Starting Main Micro assisted
 EEPROM verify mode
<snip>
15:03:17 INFO aries-sdk-c/source/aries_misc.c:432: Re-write succeeded
15:03:18 INFO aries-sdk-c/source/aries_api.c:987: End Verify
15:03:18 INFO aries-sdk-c/examples/eeprom_test.c:148: Performing PCIE HW reset ...
15:03:20 WARN aries-sdk-c/source/aries_api.c:123: No Main Micro Heartbeat
15:03:20 INFO aries-sdk-c/examples/eeprom_test.c:169: Updated FW Version is 0.0.0

After ashing, power cycle the Orin to take eect. You will notice the “Updated FW Version
is 0.0.0” message in the log. This is a known issue and does not indicate ash failure. A
solution is in progress to indicate a valid version.

Note: The tool does not prevent users from downgrading the rmware; you can ash any
version of rmware following the steps.

6.13 Suspend to RAM / SC7
SC7 is an SoC power state where NVIDIA Orin

®
 is in low-power mode and DRAM is in self-

refresh mode. SC7 is also known as Suspend to RAM mode. In SC7, all domains in Tegra
SOC will be powered down except for the AON domain. AON domain will be powered on but
in sleep mode.

Note:

‣ This section only talks about Suspend to Ram / SC7, which is one of many
Tegra SOC power states. It does not talk about the power states at the global
platform level or at the device level. You are responsible for dening power
states at the platform level.

‣ The term Suspend to RAM and SC7 are used interchangeably in this
documentation and mean the same thing.

Legal SoC Power States

For information on the dened power states, refer to the SMCU integration guide.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 734

System Software Components and Interfaces

Why Suspend to RAM / SC7

A signicant part of the system boot time is taken up in the initialization of the application,
including loading of libraries and data (DNN and map les). Achieving the boot time target
in cold-boot for all use-cases is dicult.

A way around this is to keep the DRAM pre-loaded and initialized before the system needs
to be a fully functional state. Rather than keep the system powered o when not in use,
it retains the system in SC7 state (which minimizes the power consumption while keeping
the DRAM loaded and most of the software initialized).

With SC7, data is loaded and applications are initialized (example: DNN unpacking) before
suspend that does not require external interaction. When it resumes, the application
programs the external sensor and the rest of the application init. Since most of the
initialization, which is I/O and CPU intensive, happened before suspend, the visible time is
only the resume time (and much less compared to cold boot) for the end user.

How It Works

The Tegra sequence:

‣ When the vehicle engine is turned OFF, instead of doing a shutdown, Tegra is put in the
suspend state. Optionally, before Tegra is put into suspend, KeyOFFIST can be executed.

‣ Minimal power is consumed in SC7 state and requires a timeout after which you can
shut down the system to save power.

‣ The diagram below shows SC7 transitions and actions that need to be performed by
DRIVE OS and customer applications to achieve SC7 functionality.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 735

System Software Components and Interfaces

The App Pre-Init stage can be used for initialization and loading of libraries like CUDA
and cuDNN before going into SC7 state. This can bring substantial optimizations to the
Resume time, as loading of these libraries running into Gigabytes of memory can consume
a lot of time. Binarized DNN can also be loaded during preInit state from memory.

The App Post-Init stage is used for initialization and allocation of resources which were
not done in the Pre-Init stage. This includes powering on IO peripherals like Camera
sensors, serializers-deserializers etc. The Runtime phase is meant for active processing and
streaming of data captured through the various sensors. In short pipeline creation is done
in this stage.

The App Post-DeInit stage is meant for freeing up resources allocated during the App Post
init stage. i.e Pipeline teardown needs to be done at this stage. The loaded cuDNN and
CUDA libraries shouldn’t be released at this stage and these along with other resources
should be freed during the App DeInit stage.

Since the Orin SoC is going to be in SC7 mode until the next vehicle key-on optionally HW
latent checks can be executed once in MPFDTI (every 8 hrs i.e., N=8 hours). More details are
provided in the SMCU integration guide.

If the system continues to stay in SC7 for a period of M then the tegra SOC can be
powered o from SMCU.The value of M needs to be decided by the customer.

SC7 Suspend Sequence

The diagram below shows the sequence to enter SC7, starting from the KeyOFF IST
sequence at high level. For a detailed sequence diagram please refer to SMCU integration
guide.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 736

System Software Components and Interfaces

Where:

‣ ENV - Represents the environment that provides the event that triggers the startup or
shutdown

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 737

System Software Components and Interfaces

‣ DRIVEOS - Rest of the DRIVEOS software running on the Orin chip

‣ DRIVEOS_FSI - FSI functionality delivered by DRIVE OS

‣ DRIVEOS_MCU - MCU functionality delivered by DRIVE OS

‣ GuestOSApplication - User application running on the OS in a Guest Virtual Machine

‣ USER_FSI - FSI rmware and user application integrated with DRIVEOS_FSI

‣ USER_MCU - MCU Firmware and user application integrated with DRIVEOS_MCU

SC7 Resume Sequence

The diagram below shows the sequence to resume from SC7 state.

Interfaces Exposed by DRIVEOS_MCU

Refer to the MCU Software Modules Integration Guide chapter in the NVIDIA DRIVE OS 6.0
PDK Developer Guide for details on Interfaces of NvMCU_SwModules.

Interface Description

SC7Exit Interface to wake up Tegra from suspend state.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 738

System Software Components and Interfaces

Functionality Implemented by User Software on MCU

Functionality Description

Transition2MissionMode Application on Guest OS noties the user
software on MCU that the system has
transitioned to mission mode.

Functionality Implemented by User Software on FSI

Table 3.
Functionality Description

Transition2MissionMode Application on Guest OS noties the
user software on FSI that the system has
transitioned to mission mode.

Limitations

‣ Camera pipeline context is not saved between suspend and resume so the camera
pipeline needs to be recreated after resume and purged/teardown before suspending.

‣ Any jobs submitted to any engines must be completed before SC7 is started.

Steps to Enter and Exit SC7

Prerequisite

‣ Flash and boot P3710 as per SDK documentation.

Start SC7 Suspend

In Tegra shell, execute:
common_if_testapp -enter_sc7
echo 1 > /sys/class/tegra_hv_pm_ctl/tegra_hv_pm_ctl/device/trigger_sys_suspend

Exit from SC7

In AURIX shell, execute:
exitsc7

Component-Specic Limitations

‣ NvStreams:

Before SC7 entry, ensure the following requirements for the applications using
NvStreams framework to stream data between the producer and consumers:

‣ There are no jobs that were submitted by the NvStreams applications pending in
the CPU or engine pipelines.

‣ The application is not performing any active NvSciSync fence waits.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 739

System Software Components and Interfaces

To meet the requirements, perform the following tasks before proceeding to SC7 entry,
if the NvStreams pipeline is being initialized:

‣ Wait for the buer and synchronization primitives to be allocated and the NvSciBuf
and NvSciSync objects are registered to the UMDs.

‣ For the NvSciStream application, wait for pipeline initialization to complete and all
the packets are available in the pool block.

When the application is in the streaming phase, ensure that there are no jobs pending
in the CPU or UMD engine pipelines by following the SC7 entry guidelines of the
respective UMDs and that there are no packets in ight.

‣ CUDA:

Before SC7 entry, ensure the following requirements for the applications:

‣ Any outstanding GPU tasks (for example, kernel, memcopies, and event waits) are
completed using appropriate synchronization APIs, such as cudaEventSynchronize,
cudaStreamSynchronize, and cudaDeviceSynchronize.

‣ Outstanding GPU tasks can also be cross-engine dependencies (for example,
between DLA and GPU) that are built using NvSciSync interop. Waiting on
unsignaled NvSciSync can lead to innite waits, so applications should ensure that
the signaler of such fences has unblocked all waiters on the GPU.

‣ Any ongoing CUDA APIs that are synchronous with respect to the host (for example,
cudaMalloc and cudaStreamCreate) are complete.

‣ Note that timestamps recorded by cudaEvent after returning from SC7 state will
account for the duration in which the GPU was in a suspended state, so the elapsed
time returned by cudaEventElapsedTime should be interpreted accordingly.

‣ DLA:

Before the SC7 entry, if the application fails to ensure that there are no outstanding
tasks (submitted but not completed), the DLA detects the scenario and fails the SC7
entry.

‣ PVA:

Before SC7 entry,

‣ The applications must ensure that there are no pending tasks/commands on the
PVA engine by waiting for all the previously submitted commands to nish before
entering into SC7 by calling cupva::Fence::wait().

‣ The applications must not submit any new commands to PVA while the DOS is
transitioning to SC7 suspend state.

‣ Camera:

The SIPL camera application should only request NVIDIA DRIVE
®
 OS to transition into

the SC7 power state outside of the SIPL hardware initialization and SIPL runtime states.

‣ NvDisplay:

For information on the recommendations, see OpenWFD Usage Guidelines in NvDisplay.

‣ Graphics:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 740

System Software Components and Interfaces

Before SC7 entry, ensure that any tasks submitted to GPU should not be in pending
state. To do so, applications must call vkQueueWaitIdle() for each VkQueue created.

‣ NvSciIpc:

Before SC7 entry, ensure that there are no outstanding tasks for applications using
NvSciIpc. If a peer endpoint process goes down and up because it is not running during
SC7 (that is, Trust Agent), applications must call NvSciIpcResetEndpointSafe() and
then establish connection using the NvSciIpcGetEventSafe() API after SC7 exit.

‣ NvGPU:

Before SC7 entry, ensure that there are no outstanding tasks for applications using
NVGPU. There should not be any new request to NVGPU after the suspend callback
is issued other than resume callback. Requests can be made after the driver resumes
back and sets the process state to resume done.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 741

Chapter 7. Understanding Security

NVIDIA DRIVE™ OS security services ensure the condentiality of critical system secrets
such as root keys and other device conguration information. They are also responsible
for providing user-space applications running in the Guest OS, the ability to ooad
cryptographic operations on-to SoC security hardware. These services rely on the isolation
provided by the virtualization system.

This section describes the functionality and possible customization for these security
services and is broadly divided into subsections.

Refer to the appropriate subsection for detailed information on the various services:

Acronyms and Abbreviations

The following acronyms are used throughout this section.

Term Denition

ATF ARM trusted rmware

BCT Boot Conguration Table

BDT Boot Device Tree

BR BootROM

BR-BCT BootROM Boot Conguration Table

CA Client Applications

CBC Cipher Block Chaining

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 742

Understanding Security

Term Denition

CMAC a block of Cipher-based Message Authentication code algorithm

EKS Encrypted Key Store

GP API Global Platform Application Programming Interface

HW Hardware

JTAG Joint Test Action Group IEEE 1149.1 Standard Test Access Port and
Boundary-Scan Architecture

KEK Key Encryption Key

KROM
The Key ROM (KROM in short) primarily contains two types of keys:

• Wrapped Symmetric Keys

• Public component of Asymmetric RSA Keys (Exponent only)

ODM Original Design Manufacturing

OEM Original Equipment Manufacturer

OpenSSL A general purpose cryptography library that provides an open source
implementation of the Secure Sockets Layer protocol.

OS Operating System

OSC Oscillator

OTA Over-the-Air

PCT Platform Conguration Table

PKC Public Key Cryptography

PolarSSL also known as ARM-mbed

REE Rich Execution Environment

PSC
Platform Security Controller

ROM Read-only Memory

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 743

Understanding Security

Term Denition

RPMB Replay protected memory block

RSA An encryption mechanism that uses public and private keys.

RSASSA-PSS RSA Signature Scheme with Appendix- Probabilistic Signature
Scheme (cryptography)

SBK Secure Boot Key

SDK/PDK Software Development Kit / Platform Development Kit

SDRAM Synchronous Dynamic Random Access Memory

SE Security Engine Hardware

SS Secure Storage

TA Trusted Applications

TEE Trusted Execution Environment

TOS Trusted Operating System

TSC Tegra Secure Counter

UID Unique Identication

UUID Universal Unique Identication

VM Virtual Machine

7.1 Secure Boot and Hardware Fuses
The following sections describe secure boot and hardware fuses.

7.1.1 Root of Trust and Chain of Trust
In a chain of trust, the trustworthiness of each layer of software that composes the chain
is guaranteed by the previous layer, until reaching the root of the chain, or root of trust.
Immutability and formal verication provide the foundation for a root of trust. An example
is the code present in read-only memory (ROM). The root of trust initiates the chain of
trust.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 744

Understanding Security

A chain of trust, for example, can include: bootROM to boot loader to TrustZone operating
system.

7.1.2 Secure Boot
Secure boot:

‣ Must be implemented and enabled during manufacturing.

‣ Cannot be enabled over OTA or in the eld.

‣ Denes a chain of trust.

‣ Is supported by hardware from power on to BootROM and PSC-ROM (Platform Security
Control ROM) to boot loader.

‣ Must be implemented by the boot loader.

Signing Authorities

Signing authority for Orin shall consist of NVIDIA authority and OEM authority. Since the
Root of Trust (ROT) resides within the silicon, NVIDIA shall enforce our authority in the
Chain of Trust (COT) by baking it into the ROM. Orin shall have two ROM software running
under BPMP and PSC that will establish ROT for NVIDIA. OEMs also may assert their
signing authority on top of NVIDIA authority.

NVIDIA Authority

NVIDIA authority is implemented in such a way that its crypto information cannot be
overwritten by the OEM. Thus, a KROM region is dedicated to keeping NVIDIA keys safe
within the chip. NVIDIA keys are only readable in the encrypted form by PSC-ROM.

NVIDIA has settled on one single algorithm for each type of binary for authentication.
3072-bit RSA shall be used for all NV authentication purposes. AES-GCM (256b) shall be
used for all NV authenticated encryption purposes.

‣ BPMP BootROM (BPMP-BR in short)

‣ PSC BootROM (PSC-ROM in short)

Both ROM software shall work with each other to establish the ROT and load/authenticate/
decrypt secondary boot software (MB1) from the storage device. NVIDIA signing authority
shall extend all the way to CCPLEX ARM-Core boot for T23x.

OEM Authority

OEM authority is FUSE based. FUSE is OTP entity in the chip that the OEM shall take
control of during the manufacturing process of their product. OEM has the choice of
enabling the dierent secure boot options also through the BOOT_SECURITY_INFO fuse by
selecting the enablement of Secure Boot. OEM must choose a method of authentication to
enable secure boot once SECURITY_MODE FUSE is burnt.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 745

Understanding Security

Signing Algorithms

NVIDIA authority only uses RSA3K for signing with SHA2-512 as the digest algorithm.

OEM authority has a choice of signing algorithm to choose from as stated above. The
combination of signing algorithm and digest algorithm is the following:

‣ 3072-bit RSA (Public Exponent xed at 0x10001) – SHA2-512 and RSAPSS encoding

‣ Ed25519 DSA (RFC 8032) – SHA2-512

Boot rmware signing is facilitated through Boot Component Header (BCH). The actual
binaries are not signed, but their digests are included in the BCH. BCH acting like a
certicate is then signed. During verication, the signature of the BCH is veried, and then
the digest of the rmware within BCH is veried. Detail of BCH and verication mechanism
is found in the BCH section.

For NVIDIA authority, there are signature verication public keys for each dierent
rmware component, all the public keys reside in KROM.

For OEM authority, there are three public key hashes (PKC hash) in FUSE that the OEM can
use to provision. The PKC hash is a SHA2-512 digest of a specic structure dened in SW.
More detail about this is also available in the BCH section.

The FUSE_BOOT_SECURITY_INFO on NVIDIA DRIVE devices determines which sequence is
used. The information in the FUSE_BOOT_SECURITY_INFO bits is as follows:

Bit[2:0]: authentication scheme:

‣ 001b: PKC-protected boot sequence with RSA 3K key pairs

‣ 100b: PKC-protected boot sequence with Ed25519 DSA key

7.1.3 Diagnostic Boot Mode
Diagnostic Boot Mode allows OEMs to bypass signing authority in later software boots on a
per board basis on production mode hardware to run diagnostic software.

The ow for diagnostic boot:

‣ Provide ECID signed BR-BCT and MB1-BCT.

‣ Enable diagnostic boot in BR-BCT by setting bf_bl_diag_boot and
bf_bl_skip_oem_auth_diag_boot to 1.

‣ Provide normal OEM signed components for MB1, MCE, PSC-BL1, and MEM-BCT.

MB1 skips OEM authentication of binaries after MCE, including the MB2 binary on the
CCPLEX, which can be replaced with diagnostic software. If using standard un-signed MB2,
MB2 no longer requires signed components for software it loads. In this mode, PSC-BL1,
upon exit, erases all keys used for authentication and decryptions for key slots.

OEM can disable diagnostic boot mode on their devices by setting
BOOT_SECURITY_INFO[10] to 1.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 746

Understanding Security

7.1.4 Fuse Burning Responsibilities
Applications can program a fuse by applying voltage using fuse burning routines found in
the boot loader and the kernel APIs. The fuses and ownership required for Secure Boot are
as follows:

NVIDIA Programmed

‣ 128-bit Unique ID (UID), no two Tegra chips have the same UID.

‣ NVIDIA production mode

Customer Programmed and Owned

‣ FUSE_BOOT_SECURITY_INFO

‣ 3 OEM Public keys hashed as SHA-512 in fuses with 2 revocable.

‣ ODM fuse keys, stored in PSC fuse region.

‣ ODM Production Mode (FUSE_SECURITY_MODE)

CAUTION:

ODM Production Mode fuse disables further fuse burning except eld
programmable fuses. Therefore, burn the ODM Production Mode fuse last.

7.1.4.1 Fusing a Board with a PKC Public Key Hash
Devices that implement secure boot with PKC protection have certain requirements
regarding blowing fuses and boot loader signing. This topic explains how to fuse the PKC
public key hash.

To fuse a board with a PKC public key hash you must have performed the following tasks:

1. Choose one of these options:

‣ Generating a PKC Key Pair Using OpenSSL

‣ Generating Signed Binaries and a PKC Hash

‣ Fusing the Board with the Secure Keys

Note:

EdDSA private key can be generated using OpenSSL Version 1.1.1.

OpenSSL Version 1.1.x changed its default digest from MD5 to SHA256.

7.1.4.2 Generating a PKC Key Pair using OpenSSL
Follow these steps to generate a PKC key pair using OpenSSL.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 747

Understanding Security

To install OpenSSL

1. To generate the RSA pair only, install the OpenSSL package with the following
command:
sudo apt-get install openssl

To generate an EdDSA or RSA 3K key pair for NVIDIA DRIVE AGX Orin

1. Build OpenSSL as follows:

‣ In a terminal window, navigate to the directory where you extracted OpenSSL and
execute these commands:
./config
make

‣ When the OpenSSL build is completed, copy libcrypto.so* and libssl.so* to your
local /lib/ directory.

‣ To generate the keys, execute OpenSSL from the application folder in the directory
where you extracted OpenSSL.

For more information, consult the OpenSSL README le in the extracted source
directory.

2. Generate EdDSA private key with the command:
openssl genpkey -algorithm Ed25519 --out keyfile.pem

3. Generate RSA 3K key pair with the command:
openssl genrsa -out rsa_priv.pem 3072

You can now generate the signed binaries and PKC hash.

To generate a PKC hash

1. Run the following commands on the host to generate a public key and a PKC hash.

‣ For NVIDIA DRIVE AGX Orin™ RSA 3072-bit keys:
$# cd drive-foundation
$# ./tools/flashtools/flash/tegrakeyhash --pkc
<private_key_filename> --chip 0x23

Where <private_key_filename> depends on the tool used to generate the key.

‣ For PolarSSL, use rsa_priv.txt.

‣ For OpenSSL, use rsa_priv.pem.

‣ For NVIDIA DRIVE AGX Orin EdDSA
$ cd drive-foundation
$./tools/flashtools/flash/tegrasign_v3.py --key
<private_key_filename> --pubkeyhash <public_key_filename> <hash_filename>

‣ Where:

<public_key_filename> is the name you want to give the public key le.

<hash_filename> is the name that you want to give the public key hash le.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 748

Understanding Security

<private_key_filename> depends on the tool used to generate the key. For
OpenSSL, use keyfile.pem.

‣ Without the EdDSA private key as the input:

Note: This use case is for OEMS who want to keep the private key secure, and
who only want to use the existing public key to generate the hash. The public key
format should be in OpenSSL der format.

‣ Following is the example command to create the expected der format:
openssl pkey -in keyfile.pem -pubout -outform
 DER > pubkey.der

Example Output

Following is example output of the tegrasign_v3.py command. The tegra-fuse format can
be used in FSKP Fuse Burning Tool.
<fuse name="PublicKeyHash" size="64"
value="0x0123456789abcdef0123456789abcdef0123456789abcdef
0123456789abcdef0x0123456789abcdef0123456789abcdef0123456789abcdef
0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef
0123456789abcdef0x0123456789abcdef0123456789abcdef0123456789abcdef
0123456789abcdef"/>

7.1.4.3 Fusing the Board with the Secure Keys
The BSP provides Fuse Burning Tool for fusing the board with the PKC hash. Sample XML
les to burn secure keys and enable PKC protection are as follows.

For NVIDIA DRIVE AGX Orin RSA:
<genericfuse MagicId="0x45535546" version="1.0.0">
 <fuse name="PublicKeyHash" size="64"
 value="0x0123456789abcdef0123456789abcdef01234
56789abcdef0123456789abcdef0123456789abcdef0123456789abcdef01234
56789abcdef0123456789abcdef"/>
 <fuse name="BootSecurityInfo" size="4" value="0x201"/>
 <fuse name="SecurityMode" size="4" value="0x1"/>
</genericfuse>

For NVIDIA DRIVE AGX Orin EdDSA:
<genericfuse MagicId="0x45535546" version="1.0.0">
 <fuse name="PublicKeyHash" size="64"
 value="0x0123456789abcdef0123456789abcdef01234
56789abcdef0123456789abcdef0123456789abcdef0123456789abcdef01234
56789abcdef0123456789abcdef"/>
 <fuse name="BootSecurityInfo" size="4" value="0x204"/>
 <fuse name="SecurityMode" size="4" value="0x1"/>

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 749

Understanding Security

</genericfuse>

Warning:

If used, the SecurityMode must be the last fuse command in the XML le. The
FSKP fuse burning tool burns fuses in the order specied in the XML le. After
burning the SecurityMode fuse, it disables fuse burning.

To set up the platform for secure boot

1. Generate the PKC Key and ensure ODM production fuse is burned.

‣ Generate a PKC Key Pair Using OpenSSL

‣ Ensure the ODM production fuse is burned.
2. Consult the instructions for fusing the secure keys in Factory Secure Key Provisioning.

Warning:

This step is irreversible, ensure that:

‣ The PKC key pair is a valid key pair.

‣ The PKC key pair is stored in a secure location, because all the binaries must be
signed with the private key.

3. Sign and ash the binaries.

Use “-p <private_key_filename>” option when running the bootburn.py script.

Where <private_key_filename> depends on the tool used to generate the key:

‣ For PolarSSL, use rsa_priv.txt for RSA.

‣ For OpenSSL, use rsa_priv.pem for RSA, or keyle.pem for EdDSA.

7.1.4.4 BR BCT Signing and Hash Compression
The data section in BR BCT is hashed using SHA512, and the hash digest is stored just
after the 4-byte header magic at the start of BR BCT. BR uses the digest to verify BR BCT
integrity before passing it to PSC-ROM for separate public-key authentication.

During boot the hash value is computed and compared with the stored value. If the update
tool does not nd a matching stored value, or if it nds that no value is present, the tool
stores the computed value.

7.1.5 Public-Key Cryptography
Public Key Cryptography relies on a public and private key pair, allowing the manufacturer
to sign a boot loader and BCT with its private key, never needing to disclose the private
key at any time during the manufacturing process. The public key, which is used to verify
the digital signature of the boot loader and BCT, gets stored on the secondary boot

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 750

Understanding Security

device or embedded into the boot loader and BCT images. Using PKC allows devices to be
manufactured at facilities that are not secure.

7.1.5.1 Secure Boot Details with PKC Protection
The PKC-protected boot sequence is as follows. The sequence is part of the NVIDIA Secure
Solutions infrastructure, which includes:

‣ nvimageGen utility—manages the RSA key pairs or EdDSA key and produces secure
data that includes the BCT, which can contain the BCT signatures and the public key.

‣ PSC ROM—Tegra devices contain a PSC ROM that adds support for the PKC-protected
boot sequence.

See the section Signing Algorithms under Secure Boot for details on selecting the PKC
algorithm through fuse programming

PKC Secure Boot Requirements

For the PKC-secured boot process to be used, these conditions must be met. These
requirements must be implemented in production because secure boot cannot be
implemented using OTA onto previously non-secure boot devices.

‣ The fused PKC public key hash must be non-zero.

‣ The FUSE_BOOT_SECURITY_INFO set to the appropriate algorithm described in Signing
Algorithms under Secure Boot

‣ The OEM must amend the BCT and the software components with public keys and
digital signatures. Use the nvimageGen for this task.

‣ The ODM Production Mode, Security Mode, fuse must be burned and it must be the
last fuse to be burned.

RSA Validation of the BCT and Boot Loader

The NVIDIA COT verication process that ensures the BCT is from the OEM, is as follows.
The BootROM and PSC ROM use this sequence when the conditions in PKC Secure Boot
Requirements are satised.

Note:

SHA-512 is the hash function used during any RSASSA-PSS operations (signature
verication) in the steps below. As recommended by PKCS #1 v2.1: RSA
Cryptography Standard, the manufacturer must also use SHA-512 as the same
hash function applied to the message. In addition, the salt length used in the
RSASSA-PSS signature verication and signature generation is the length of
SHA-512 hash.

1. The BootROM reads the BCT from secondary storage.
2. The PSC ROM validates the BCT.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 751

Understanding Security

a). Validates the public key by computing SHA-512 hash and comparing it with
values in fuses. If they match, the public key is stored in the PKC SE slot for BCT
verication.

The public key as well as the RSASSA-PSS signature S is contained in the BCT.

Note:

The public exponent e is assumed to always be 0x10001, so it is not stored.

For NVIDIA DRIVE AGX Orin, the public key is 3072 bits.

‣ The PSC ROM performs a RSASSA-PSS-VERIFY signature verication operation
of the BCT using the veried public key. This step validates the RSASSA-PSS
signature S of the BCT. If the result of the signature verication step is a valid
signature, it continues the secure boot process. If the hash comparison fails,
the PSC ROM resets the system and subsequent reboot tries the remaining 4
redundant copies of the BCT that are supported before the boot process gives
up and goes to RCM.

Note:

Some copies of the BCT may have failed the public key hash compare in
the beginning of Step 3, so the number of redundant copies of the BCT
still available may be less than the actual number of redundant copies
of the BCT written to secondary storage.

3. The BootROM reads the boot loader from secondary storage.
4. The PSC ROM validated the boot loader using the RSA public key to verify the boot

loader signature.

a). The RSASSA-PSS signature S gets stored in the beginning of the boot loader image
in the generic signature header. The PSC ROM performs a RSASSA-PSS-VERIFY
signature verication operation of the boot loader. If the result of the signature
verication step is a valid signature, it continues the secure boot process and
the chain-of-trust is transferred to the validated boot loader. If the signature
verication fails, the PSC ROM resets the system and the BootROM may attempt
to load a dierent boot chain on reboot, depending on Boot Chain operation
implemented, or go to RCM. The Boot Chain operation is described in the section
Using the Bootloader Recovery Mechanism.

Note:

NVIDIA DRIVE AGX Orin: the signature is veried on the image header;
where the header embedded the hash value of the bootloader image.

5. The BootROM locks down security features, clears out state information, and hangs the
processor.

6. The PSC ROM sets the reset vector of the BPMP processor to the next payload start
vector and resets the processor to start execution of the next payload.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 752

Understanding Security

7. The boot loader continues the root of trust:

‣ Write protects mass storage location of the boot loader and OS.

‣ Passes execution to the validated OS image.

EdDSA Authentication of the BCT and Boot Loader

The process for EdDSA authentication is identical to the process described under the
section RSA Validation of the BCT and Boot Loader.

Note:

NVIDIA DRIVE AGX Orin:

‣ Support is provided for EdDSA operations (signature verication) using SHA-512 hash
function.

‣ Curve25519 is the elliptic curve supported.

Secured USB Recovery Mode

In DRIVE AGX Orin, the RCM boot ow has been merged with the normal cold boot ow.
The RCM payloads are used by BootROM and PSC-ROM instead of images from secondary
storage. The payload ordering and ow is described previously, in RSA Validation of the BCT
and Boot Loader, for RSA and EdDSA Validation of the BCT and Boot Loader for EdDSA.

7.2 PKCS#11 Interface
The Security Services PKCS#11 library is a user space library available to DRIVE OS
applications running on the Guest OS that provides a sub-set of the PKCS#11 interface
as specied by the PKCS#11 v3.00 specication. In addition, some NVIDIA extensions are
included.

It exposes interfaces for cryptographic hardware ooad using the Security Engine
for typical cryptography operations like symmetric-key/asymmetric-key cryptography,
message authentication code generation, and pseudo random number generation.

Additionally, it also exposes interfaces for key management operations, including key
generation, key derivation, and access to the dedicated secure key storage solution.

All cryptographic and key management operations are tightly coupled and securely
implemented in SoC hardware, and the hardware-backed Trusted Execution Environment.

Note: The users of Security Services PKCS11 Lib APIs must ensure that API usage is as
per API description and valid input parameters are passed. They must be familiar with the
OASIS PKCS11 standard, including the OASIS standard user guide, for version 3.0, for all
relevant APIs and mechanisms; they must also follow guidance published by NVIDIA in the
present guide for the PKCS11 Library before using any PKCS11 API.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 753

Understanding Security

7.2.1 PKCS#11 – Supported Mechanism – Function
Table
The following table shows the combinations of functions and mechanisms that the
PKCS#11 library supports. An “x” mark indicates that the PKCS#11 library supports the
mechanism for the function.

A Guide to Interpret Cell Entries

‣ "Encrypt / Encrypt Message" in the column heading means both regular and message-
based encryption functions are supported with data supplied either in a single part or
over multiple parts for the matching mechanisms, unless limited within the mechanism
"x" marked row entry.

‣ "Sign (Single-part only)" in the column heading means only regular sign function with
data supplied in a single part is supported.

‣ "(Single-part)" within an "x" marked row entry means that the mechanism is limited and
only supports data supplied in a single part.

‣ "(Message Single part / Message Update only)" within an "x" marked row entry means
that the mechanism is limited and only supports message-based functions.

‣ "(Single part, non- message only)" within an "x" marked row entry means that
mechanism is limited and only supports regular functions with data supplied in a single
part.

Mechanism
Generate
Key

Public/
Private
Key
Pair
Generation

Encrypt/
Encrypt
Message

Decrypt/
Decrypt
Message

Encrypt/
Encrypt
Message
(Single-
part
only)

Decrypt/
Decrypt
Message
(Single-
part
only)

MAC
Sign/
Sign
Message

MAC
Verify/
Verify
Message

Sign
(Single-
part
only)

Verify
(Single-
part
only) Digest

Derive
Key

Unwrap
Key

Wrap
Key Notes

CKM_AES_CBC X X X X using
AES
[FIPS
197]
with
128-
bit
or
256-
bit
key
sizes

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 754

Understanding Security

Mechanism
Generate
Key

Public/
Private
Key
Pair
Generation

Encrypt/
Encrypt
Message

Decrypt/
Decrypt
Message

Encrypt/
Encrypt
Message
(Single-
part
only)

Decrypt/
Decrypt
Message
(Single-
part
only)

MAC
Sign/
Sign
Message

MAC
Verify/
Verify
Message

Sign
(Single-
part
only)

Verify
(Single-
part
only) Digest

Derive
Key

Unwrap
Key

Wrap
Key Notes

CKM_AES_CBC_PADX X using
AES
[FIPS
197]
with
128-
bit
or
256-
bit
key
sizes

CKM_AES_CTR X X using
AES
[FIPS
197]
with
128-
bit
or
256-
bit
key
sizes

CKM_AES_GCM X X X X using
AES
[FIPS
197]
with
128-
bit
or
256-
bit
key
sizes

CKM_AES_CMAC X
(Single-
part)

X
(Single-
part)

X using
AES
[FIPS
197]
with
128-
bit
or
256-
bit
key
sizes

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 755

Understanding Security

Mechanism
Generate
Key

Public/
Private
Key
Pair
Generation

Encrypt/
Encrypt
Message

Decrypt/
Decrypt
Message

Encrypt/
Encrypt
Message
(Single-
part
only)

Decrypt/
Decrypt
Message
(Single-
part
only)

MAC
Sign/
Sign
Message

MAC
Verify/
Verify
Message

Sign
(Single-
part
only)

Verify
(Single-
part
only) Digest

Derive
Key

Unwrap
Key

Wrap
Key Notes

CKM_AES_GMAC X
(Message
Single
part /
Message
Update
only)

X
(Message
Single
part /
Message
Update
only)

CKM_SHA256_HMAC X
(Single-
part)

X
(Single-
part)

X MAC
sign
and
verify
with
a
CKK_GENERIC_SECRET
key
of
32B
(256
bits)

CKM_NVIDIA_SP800_56C_TWO_STEPS_KDF X Custom
mechanism
intended
for
camera
use

CKM_SHA256 X

CKM_SHA384 X

CKM_SHA512 X

CKM_SHA3_256 X

CKM_SHA3_384 X

CKM_SHA3_512 X

CKM_NVIDIA_MACSEC_AES_KEY_WRAP X X Custom
mechanism
for
use
with
MACSEC

CKM_NVIDIA_AES_CBC_KEY_DATA_WRAP X Custom
mechanism
intended
for
camera
use

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 756

Understanding Security

Mechanism
Generate
Key

Public/
Private
Key
Pair
Generation

Encrypt/
Encrypt
Message

Decrypt/
Decrypt
Message

Encrypt/
Encrypt
Message
(Single-
part
only)

Decrypt/
Decrypt
Message
(Single-
part
only)

MAC
Sign/
Sign
Message

MAC
Verify/
Verify
Message

Sign
(Single-
part
only)

Verify
(Single-
part
only) Digest

Derive
Key

Unwrap
Key

Wrap
Key Notes

CKM_AES_KEY_GENX returning
128-
bit
or
256-
bit
key
sizes

CKM_GENERIC_SECRET_KEY_GENX returning
128-
bit
or
256-
bit
key
sizes

CKM_EC_EDWARDS_KEY_PAIR_GENX generate
EC
public/
private
key
pairs
over
the
curve
Ed25519

CKM_EC_MONTGOMERY_KEY_PAIR_GENX generate
EC
public/
private
key
pairs
over
the
curve
25519

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 757

Understanding Security

Mechanism
Generate
Key

Public/
Private
Key
Pair
Generation

Encrypt/
Encrypt
Message

Decrypt/
Decrypt
Message

Encrypt/
Encrypt
Message
(Single-
part
only)

Decrypt/
Decrypt
Message
(Single-
part
only)

MAC
Sign/
Sign
Message

MAC
Verify/
Verify
Message

Sign
(Single-
part
only)

Verify
(Single-
part
only) Digest

Derive
Key

Unwrap
Key

Wrap
Key Notes

CKM_EC_KEY_PAIR_GENX generate
EC
public/
private
key
pairs
over
the
curve
secp256r1
FIPS
186-4
Appendix
B.4.2

CKM_SP800_108_COUNTER_KDF X using
CKM_AES_CMAC
[FIPS
197]
with
128-
bit
or
256-
bit
key
sizes

CKM_SP800_108_COUNTER_KDF X using
CKM_SHA256_HMAC
[FIPS
198-1]
[FIPS
180-4]
with
128
or
256-
bit
key
sizes

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 758

Understanding Security

Mechanism
Generate
Key

Public/
Private
Key
Pair
Generation

Encrypt/
Encrypt
Message

Decrypt/
Decrypt
Message

Encrypt/
Encrypt
Message
(Single-
part
only)

Decrypt/
Decrypt
Message
(Single-
part
only)

MAC
Sign/
Sign
Message

MAC
Verify/
Verify
Message

Sign
(Single-
part
only)

Verify
(Single-
part
only) Digest

Derive
Key

Unwrap
Key

Wrap
Key Notes

CKM_ECDH1_DERIVE X Deriving
either
a
CKK_GENERIC_SECRET
or
CKK_AES.
Curve25519
or
Curve448
or
secp256r1

CKM_RSA_PKCS_PSS X using
RSA
with
3072
and
4096-
bit
key
sizes,
and
secure
hash
algorithms
SHA-256,
SHA-384,
and
SHA-512
[FIPS
180-4]
for
both
the
hash
algorithm
and
Mask
Generating
Function
(MGF1)
[PKCS1-
v2.2]

CKM_EDDSA X X curve
Ed25519ph
[RFC
8032]

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 759

Understanding Security

Mechanism
Generate
Key

Public/
Private
Key
Pair
Generation

Encrypt/
Encrypt
Message

Decrypt/
Decrypt
Message

Encrypt/
Encrypt
Message
(Single-
part
only)

Decrypt/
Decrypt
Message
(Single-
part
only)

MAC
Sign/
Sign
Message

MAC
Verify/
Verify
Message

Sign
(Single-
part
only)

Verify
(Single-
part
only) Digest

Derive
Key

Unwrap
Key

Wrap
Key Notes

CKM_EDDSA
(non
prehash)

X X
curve
Ed25519
[RFC
8032]

curve448

CKM_ECDSA X X
curve
secp256r1
[SEC2-
V2]
using
secure
hash
algorithm
SHA-256
[FIPS
180-4]

CKM_TLS12_MASTER_KEY_DERIVE_DH X using
CKM_SHA256_HMAC
deriving
384-
bit
key
size

CKM_TLS12_KEY_AND_MAC_DERIVE X using
CKM_SHA256_HMAC
with
a
CKK_GENERIC_SECRET
key
of
48B
(384
bits)
deriving
128-
bit
or
256-
bit
key
sizes

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 760

Understanding Security

Mechanism
Generate
Key

Public/
Private
Key
Pair
Generation

Encrypt/
Encrypt
Message

Decrypt/
Decrypt
Message

Encrypt/
Encrypt
Message
(Single-
part
only)

Decrypt/
Decrypt
Message
(Single-
part
only)

MAC
Sign/
Sign
Message

MAC
Verify/
Verify
Message

Sign
(Single-
part
only)

Verify
(Single-
part
only) Digest

Derive
Key

Unwrap
Key

Wrap
Key Notes

CKM_TLS12_KEY_SAFE_DERIVE X using
CKM_SHA256_HMAC
with
a
CKK_GENERIC_SECRET
key
of
48B
(384
bits)
deriving
128-
bit
or
256-
bit
key
sizes

CKM_TLS12_MAC X
(Single
part,
non-
message
only)

X
(Single
part,
non-
message
only)

using
CKM_SHA256_HMAC
with
a
CKK_GENERIC_SECRET
key
of
48B
(384
bits)

CKM_TLS12_KDF X using
CKM_SHA256_HMAC
with
a
CKK_GENERIC_SECRET
key
of
48B
(384
bits)
deriving
128-
bit
or
256-
bit
key
sizes

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 761

Understanding Security

7.2.2 PKCS#11 – Supported APIs
The following table describes supported APIs:

Category API from PKCS#11 v3.0

C_Initialize

C_Finalize

C_GetInfo

C_GetFunctionList

C_GetInterfaceList

General

C_GetInterface

C_GetSlotList

C_GetSlotInfo

C_GetTokenInfo

C_GetMechanismList

Token

C_GetMechanismInfo

C_OpenSession

C_CloseSession

C_CloseAllSessions

C_GetSessionInfo

C_SessionCancel

C_Login

Session

C_Logout

C_CreateObject

C_CopyObject

C_DestroyObject

C_GetAttributeValue

C_SetAttributeValue

C_FindObjectsInit

C_FindObjects

Object

C_FindObjectsFinal

C_EncryptInit

C_Encrypt

C_EncryptUpdate

C_EncryptFinal

C_DecryptInit

C_Decrypt

Symmetric Encrypt and Decrypt

C_DecryptUpdate

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 762

Understanding Security

Category API from PKCS#11 v3.0

C_DecryptFinal

C_DigestInit

C_Digest

C_DigestUpdate

Digest

C_DigestFinal

C_SignInit

C_Sign

C_VerifyInit

Sign and Verify Signatures and MACs

C_Verify

C_GenerateKey

C_GenerateKeyPair

C_WrapKey

C_UnwrapKey

Key Operations

C_DeriveKey

RNG C_GenerateRandom

C_MessageSignInit

C_SignMessage

C_SignMessageBegin

C_SignMessageNext

C_MessageSignFinal

C_MessageVerifyInit

C_VerifyMessage

C_VerifyMessageBegin

C_VerifyMessageNext

Message-based Sign and Verify signatures and
MACs

C_MessageVerifyFinal

C_MessageEncryptInit

C_EncryptMessage

C_EncryptMessageBegin

C_EncryptMessageNext

C_MessageEncryptFinal

C_MessageDecryptInit

C_DecryptMessage

C_DecryptMessageBegin

C_DecryptMessageNext

Symmetric Message-based Encrypt and Decrypt

C_MessageDecryptFinal

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 763

Understanding Security

NVIDIA Extensions

The following table shows NVIDIA API extensions:

NVIDIA Extensions API

C_NVIDIA_EncryptGetIV

C_NVIDIA_CommitTokenObjects

C_NVIDIA_InitializeChannel

C_NVIDIA_OpenSession

C_NVIDIA_FinalizeChannel

C_NVIDIA_SetKATParameters

NVIDIA Extensions Error Return

CKR_NVIDIA_SECURE_STORAGE_FAILED

CKR_NVIDIA_SECURE_STORAGE_TAMPERED

CKR_NVIDIA_CHANNEL_NOT_FOUND

CKR_NVIDIA_CHANNEL_CANNOT_OPEN

7.2.3 PKCS#11 – Supported Objects
PKCS#11 library supports the following objects:

‣ Public key (CKO_PUBLIC_KEY)

‣ Private key (CKO_PRIVATE_KEY)

‣ Secret key (CKO_SECRET_KEY)

‣ Data Object (CKO_DATA)

7.2.4 PKCS#11 – Persistent Object Secure Storage
Support
The following APIs can operate on the objects in both token (persistent) and session
(ephemeral) mode if the token secure storage is available.

‣ C_CopyObject

‣ C_DestroyObject

‣ C_SetAttributeValue

‣ C_GenerateKey

‣ C_UnwrapKey

‣ C_WrapKey

‣ C_DeriveKey

‣ C_CreateObject

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 764

Understanding Security

Token Storage Status

The status of a token's secure storage and the status of a token itself can be established
by calling C_GetTokenInfo.

Token Information ags have been extended in the PKCS#11 library implementation. These
follow on from “CKF_ERROR_STATE” dened in Table 6 of PKCS#11 v3.00 specication.

NVIDIA Extensions Token Information Flags

CKF_NVIDIA_TOKEN_OK

CKF_NVIDIA_SECURE_STORAGE_FAILED

CKF_NVIDIA_SECURE_STORAGE_TAMPERED

CKF_NVIDIA_KEYLOAD_TIMEOUT

CKF_NVIDIA_KEYLOAD_FAILED

CKF_NVIDIA_TOKEN_ERROR

The PKCS#11 Library CK_TOKEN_INFO structure contains the following values:

ulMaxSessionCount PKCS#11 Specication:
maximum number of sessions
that can be opened with the
token at one time by a single
application.

NVIDIA Implementation:
represents the total number of
sessions available to a library
instance across all tokens.

ulMaxRwSessionCount PKCS#11 Specication:
Maximum number of read/write
sessions that can be opened
with the token at one time by a
single application.

NVIDIA Implementation:
When both the token and
token secure storage status
are OK, it represents the
total number of read/write
sessions available to a library
instance across all tokens;
otherwise, it will remain as
CK_UNAVAILABLE_INFORMATION.

To conrm the status, the application recommended sequence is:

‣ C_Initialize()

‣ C_GetSlotList(), and then nd the slot/token you require

‣ C_GetTokenInfo(), and then check the ags entry for CKF_NVIDIA_TOKEN_OK

7.2.5 PKCS#11 – Supported Attributes
Create EC and RSA Public Key Attributes Support

The following table lists attributes that dier by key types. It indicates whether a given
attribute in a template is supported for a particular key type being created.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 765

Understanding Security

Table Entry Meaning

Yes
Indicates that PKCS#11 library supports the attribute for the specic
key type.

No
Indicates that PKCS#11 library does not support the attribute for the
specic key type.

Read-only The attribute is set to read-only for the specic key type.

An empty cell in Default Value column indicates no specic value is
assigned to the attribute.

(Result of library
function)

Indicates that the attribute value is determined by the PKCS#11 library.

C_CreateObject

Attributes KeyTypes Default Values Note

EC
Public

RSA
Public

CKA_CLASS Yes Yes CKO_PUBLIC_KEY
Mandatory template
attribute.

CKA_TOKEN
Read-
only

Read-
only

FALSE
NVIDIA® limitation.
Create token public
key not supported.

CKA_PRIVATE
Read-
only

Read-
only

TRUE
NVIDIA limitation. All
objects are private.

CKA_LABEL Yes Yes

CKA_VALUE No No

CKA_TRUSTED
Read-
only

Read-
only

FALSE

NVIDIA limitation.
Cannot create a
trusted wrapping key
at runtime.

CKA_CHECK_VALUE No No

CKA_KEY_TYPE Yes Yes
Mandatory template
attribute.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 766

Understanding Security

C_CreateObject

Attributes KeyTypes Default Values Note

EC
Public

RSA
Public

CKA_SUBJECT No No
NVIDIA limitation.
Attribute not
supported.

CKA_ID Yes Yes Mandatory template .

CKA_SENSITIVE No No

CKA_ENCRYPT
Read-
only

Read-
only

FALSE
NVIDIA limitation.
Public key encryption
is not supported.

CKA_DECRYPT No No

CKA_WRAP
Read-
only

Read-
only

FALSE
NVIDIA limitation.
Public key wrap is not
supported.

CKA_UNWRAP No No

CKA_SIGN No No

CKA_VERIFY Yes Yes FALSE
NVIDIA limitation.
Observe single
purpose rules

CKA_VERIFY_RECOVER No No
NVIDIA limitation.
Attribute not
supported.

CKA_DERIVE
Read-
only

Read-
only

FALSE
NVIDIA limitation.
Cannot derive from a
Public key.

CKA_START_DATE Yes Yes

CKA_END_DATE Yes Yes

CKA_MODULUS No Yes
Mandatory template
attribute.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 767

Understanding Security

C_CreateObject

Attributes KeyTypes Default Values Note

EC
Public

RSA
Public

CKA_MODULUS_BITS No
Read-
only

(Result of library function)
Must not be template
attribute.

CKA_PUBLIC_EXPONENT No Yes
Mandatory template
attribute.

CKA_PUBLIC_KEY_INFO No No
NVIDIA limitation.
Attribute not
supported.

CKA_VALUE_LEN No No

CKA_EXTRACTABLE No No

CKA_LOCAL
Read-
only

Read-
only

FALSE
Must not be template
attribute.

CKA_NEVER_EXTRACTABLENo No

CKA_ALWAYS_SENSITIVE No No

CKA_KEY_GEN_MECHANISM
Read-
only

Read-
only

CK_UNAVAILABLE_INFORMATION
Due to CKA_LOCAL
set FALSE.

CKA_MODIFIABLE Yes Yes TRUE

CKA_COPYABLE Yes Yes TRUE

CKA_DESTROYABLE Yes Yes TRUE

CKA_EC_PARAMS Yes No
Mandatory template
attribute.

CKA_EC_POINT Yes No
Mandatory template
attribute.

CKA_WRAP_WITH_TRUSTEDNo No

CKA_WRAP_TEMPLATE No No
 NVIDIA limitation.
Not supported.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 768

Understanding Security

C_CreateObject

Attributes KeyTypes Default Values Note

EC
Public

RSA
Public

CKA_UNWRAP_TEMPLATE No No

CKA_ALLOWED_MECHANISMSYes Yes
Mandatory template
attribute.

CKA_NVIDIA_CALLER_NONCENo No

Create Secret Key Attributes Support

The table below lists attributes that dier by key types. It indicates whether a given
attribute in a template is supported for a particular key type being created.

Table Entry Meaning

Yes Indicates that PKCS#11 library supports the
attribute for the specic key type.

No Indicates that PKCS#11 library does not support
the attribute for the specic key type.

Read-only The attribute is set to read-only for the specic
key type.

An empty cell in Default Value column indicates
there is no specic value assigned to the
attribute.

(Result of library function) Indicates that the PKCS#11 library determines
the attribute value.

C_CreateObject

Attributes Key Type Default Value Note

Generic Secret AES

CKA_CLASS Yes Yes CKO_SECRET_KEY Mandatory
template
attribute.

CKA_TOKEN Yes Yes FALSE

CKA_PRIVATE Read-only Read-only TRUE NVIDIA limitation.
All objects are
private.

CKA_LABEL Yes Yes

CKA_VALUE Yes Yes Mandatory
template
attribute.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 769

Understanding Security

C_CreateObject

Attributes Key Type Default Value Note

Generic Secret AES

CKA_TRUSTED Read-only Read-only FALSE NVIDIA limitation.
Cannot create a
trusted wrapping
key at runtime.

CKA_CHECK_VALUENo No NVIDIA limitation.
Attribute not
supported.

CKA_KEY_TYPE Yes Yes Mandatory
template
attribute.

CKA_SUBJECT No No NVIDIA limitation.
Attribute not
supported.

CKA_ID Yes Yes Mandatory
template
attribute.

CKA_SENSITIVE Read-only Read-only TRUE NVIDIA limitation.
No access to
secret key
material.

CKA_ENCRYPT No Yes FALSE NVIDIA limitation.
Observe single
purpose rules.

CKA_DECRYPT No Yes FALSE NVIDIA limitation.
Observe single
purpose rules.

CKA_WRAP No Yes FALSE

CKA_UNWRAP No Yes FALSE NVIDIA limitation.
Observe single
purpose rules.

CKA_SIGN Yes Yes FALSE NVIDIA limitation.
Observe single
purpose rules.

CKA_VERIFY Yes Yes FALSE NVIDIA limitation.
Observe single
purpose rules.

CKA_VERIFY_RECOVERNo No

CKA_DERIVE Yes Yes FALSE NVIDIA limitation.
Observe single
purpose rules.

CKA_START_DATE Yes Yes

CKA_END_DATE Yes Yes

CKA_MODULUS No No

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 770

Understanding Security

C_CreateObject

Attributes Key Type Default Value Note

Generic Secret AES

CKA_MODULUS_BITSNo No

CKA_PUBLIC_EXPONENTNo No

CKA_PUBLIC_KEY_INFONo No

CKA_VALUE_LEN Read-only Read-only (Result of library
function)

Must not
be template
attribute.

CKA_EXTRACTABLEYes Yes FALSE

CKA_LOCAL Read-only Read-only FALSE Must not
be template
attribute.

CKA_NEVER_EXTRACTABLERead-only Read-only FALSE Must not
be template
attribute.

CKA_ALWAYS_SENSITIVERead-only Read-only FALSE Must not
be template
attribute.

CKA_KEY_GEN_MECHANISMRead-only Read-only CK_UNAVAILABLE_INFORMATIONDue to
CKA_LOCAL set
FALSE.

CKA_MODIFIABLE Yes Yes TRUE

CKA_COPYABLE Yes Yes TRUE

CKA_DESTROYABLEYes Yes TRUE

CKA_EC_PARAMS No No

CKA_EC_POINT No No

CKA_WRAP_WITH_TRUSTEDYes Yes FALSE

CKA_WRAP_TEMPLATENo No NVIDIA limitation.
Not supported

CKA_UNWRAP_TEMPLATENo No NVIDIA limitation.
Not supported.

CKA_ALLOWED_MECHANISMSYes Yes Mandatory
template
attribute.

CKA_NVIDIA_CALLER_NONCERead-only Read-only FALSE

Generate Secret Key Attributes Support

The following table lists attributes that dier by key types. It indicates whether a given
attribute in a template is supported for a particular key type being generated.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 771

Understanding Security

Table Entry Meaning

Yes
Indicates that PKCS#11 library supports the attribute for the specic
key type.

No
Indicates that PKCS#11 library does not support the attribute for the
specic key type.

Read-only The attribute is set to read-only for the specic key type.

An empty cell in the Default Value column indicates there is no
specic value assigned to the attribute.

(Result of library
function)

Indicates that the attribute value is determined by the PKCS#11
library.

C_GenerateKey

Attributes Key Type Default Value Note

Generic Secret AES

CKA_CLASS Read-only Read-only CKO_SECRET_KEY Implied by
generation
mechanism.

Cannot be
changed.

CKA_TOKEN Yes Yes FALSE

CKA_PRIVATE Read-only Read-only TRUE NVIDIA limitation.
All objects are
private.

CKA_LABEL Yes Yes

CKA_VALUE Read-only Read-only (Result of library
function)

Is set by
mechanism.

CKA_TRUSTED Read-only Read-only FALSE NVIDIA limitation.
Cannot create a
trusted wrapping
key at runtime.

CKA_CHECK_VALUENo No NVIDIA limitation.
Attribute not
supported.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 772

Understanding Security

C_GenerateKey

Attributes Key Type Default Value Note

CKA_KEY_TYPE Read-only Read-only (Result of library
function)

Is set by
mechanism
Cannot be
changed.

CKA_SUBJECT No No

CKA_ID Yes Yes Mandatory
template
attribute.

CKA_SENSITIVE Read-only Read-only TRUE NVIDIA limitation.
No access to
Secret key
material.

CKA_ENCRYPT No Yes FALSE NVIDIA limitation.
Observe single
purpose rules.

CKA_DECRYPT No Yes FALSE NVIDIA limitation.
Observe single
purpose rules.

CKA_WRAP No Yes FALSE

CKA_UNWRAP
No

Yes FALSE NVIDIA limitation.
Observe single
purpose rules.

CKA_SIGN Yes Yes FALSE NVIDIA limitation.
Observe single
purpose rules.

CKA_VERIFY Yes Yes FALSE NVIDIA limitation.
Observe single
purpose rules.

CKA_VERIFY_RECOVERNo No

CKA_DERIVE Yes Yes FALSE NVIDIA limitation.
Observe single
purpose rules.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 773

Understanding Security

C_GenerateKey

Attributes Key Type Default Value Note

CKA_START_DATE Yes Yes

CKA_END_DATE Yes Yes

CKA_MODULUS No No

CKA_MODULUS_BITSNo No

CKA_PUBLIC_EXPONENTNo No

CKA_PUBLIC_KEY_INFONo No

CKA_VALUE_LEN Yes Yes 16 Mandatory
template
attribute.

CKA_EXTRACTABLEYes Yes FALSE

CKA_LOCAL Read-only Read-only TRUE Must not
be template
attribute.

CKA_NEVER_EXTRACTABLERead-only Read-only (Result of library
function)

Must not
be template
attribute.

CKA_ALWAYS_SENSITIVERead-only Read-only TRUE Must not
be template
attribute. NVIDIA
limitation. No
access to Secret
key material.

CKA_KEY_GEN_MECHANISMRead-only Read-only (Result of library
function)

Must not
be template
attribute.

CKA_MODIFIABLE Yes Yes TRUE

CKA_COPYABLE Yes Yes TRUE

CKA_DESTROYABLEYes Yes TRUE

CKA_EC_PARAMS No No

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 774

Understanding Security

C_GenerateKey

Attributes Key Type Default Value Note

CKA_EC_POINT No No

CKA_WRAP_WITH_TRUSTEDYes Yes FALSE

CKA_WRAP_TEMPLATENo No NVIDIA limitation.
Not supported.

CKA_UNWRAP_TEMPLATENo No NVIDIA limitation.
Not supported.

CKA_ALLOWED_MECHANISMSYes Yes Mandatory
template
attribute.

CKA_NVIDIA_CALLER_NONCERead-only Read-only FALSE

Generate Public / Private Key Pair Attributes Support

The following table lists attributes that dier by key types. It indicates whether a given
attribute in a template is supported for a particular key type being generated.

Table Entry Meaning

Yes Indicates that PKCS#11 library supports the
attribute for the specic key type.

No Indicates that PKCS#11 library does not support
the attribute for the specic key type.

Read-only The attribute is set to read-only for the specic
key type.

An empty cell in Default Value column indicates
there is no specic value assigned to the
attribute.

(Result of library function) Indicates that the PKCS#11 library determines
the attribute value.

C_GenerateKeyPair

Attributes Key Type Default Value Note

EC Public EC Private

CKA_CLASS Read-only Read-only (Result of library
function)

CKA_TOKEN Yes Yes FALSE Same value for
both templates.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 775

Understanding Security

C_GenerateKeyPair

Attributes Key Type Default Value Note

EC Public EC Private

CKA_PRIVATE Read-only Read-only TRUE NVIDIA limitation.
All objects are
private.

CKA_LABEL Yes Yes

CKA_VALUE No No

CKA_TRUSTED Read-only No FALSE NVIDIA limitation.
Cannot create a
trusted wrapping
key at runtime.

CKA_CHECK_VALUENo No

CKA_KEY_TYPE Read-only Read-only (Result of library
function)

CKA_SUBJECT No No NVIDIA limitation.
Attribute not
supported.

CKA_ID Yes Yes Mandatory
template
attribute, they
must be identical.

CKA_SENSITIVE No Read-only TRUE NVIDIA limitation.
No access to
private key
material.

CKA_ENCRYPT Read-only No FALSE NVIDIA limitation.
Public key
encryption is not
supported.

CKA_DECRYPT No Read-only FALSE NVIDIA limitation.
Private key
decryption is not
supported.

CKA_WRAP Read-only No FALSE NVIDIA limitation.
Public key wrap is
not supported.

CKA_UNWRAP No Read-only FALSE NVIDIA limitation.
Private key
unwrap is not
supported.

CKA_SIGN No Yes FALSE NVIDIA limitation.
Observe single
purpose rules.

CKA_SIGN_RECOVERNo No - NVIDIA limitation.
Attribute not
supported.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 776

Understanding Security

C_GenerateKeyPair

Attributes Key Type Default Value Note

EC Public EC Private

CKA_VERIFY Yes No FALSE NVIDIA limitation.
Observe single
purpose rules.

CKA_VERIFY_RECOVERNo No - NVIDIA limitation.
Attribute not
supported.

CKA_DERIVE Read-only Yes FALSE NVIDIA limitation.
Cannot derive
from a public key.

CKA_START_DATE Yes Yes

CKA_END_DATE Yes Yes

CKA_MODULUS No No

CKA_MODULUS_BITSNo No

CKA_PUBLIC_EXPONENTNo No

CKA_PUBLIC_KEY_INFONo No NVIDIA limitation.
Attribute not
supported.

CKA_VALUE_LEN No No

CKA_EXTRACTABLENo Yes FALSE

CKA_LOCAL Read-only Read-only TRUE Must not
be template
attribute.

CKA_NEVER_EXTRACTABLENo Read-only (Result of library
function)

Must not be
template attribute

CKA_ALWAYS_SENSITIVENo Read-only TRUE Must not
be template
attribute. NVIDIA
limitation. No
access to private
key material.

CKA_KEY_GEN_MECHANISMRead-only Read-only (Result of library
function)

Must not
be template
attribute.

CKA_MODIFIABLE Yes Yes TRUE

CKA_COPYABLE Yes Yes TRUE

CKA_DESTROYABLEYes Yes TRUE

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 777

Understanding Security

C_GenerateKeyPair

Attributes Key Type Default Value Note

EC Public EC Private

CKA_EC_PARAMS Yes Read-only
Public key:
mandatory
template
attribute.

Private key: must
not be template
attribute.

CKA_EC_POINT Read-only No (Result of library
function)

CKA_WRAP_WITH_TRUSTEDNo Yes FALSE

CKA_WRAP_TEMPLATENo No NVIDIA limitation.
Not supported.

CKA_UNWRAP_TEMPLATENo No NVIDIA limitation.
Not supported.

CKA_ALLOWED_MECHANISMSYes Yes Mandatory
template
attribute.

CKA_ALWAYS_AUTHENTICATENo No NVIDIA limitation.
Not supported for
private keys.

CKA_NVIDIA_CALLER_NONCENo No

Derive Secret Key Attributes Support

The table below lists attributes that dier by key types. It indicates whether a given
attribute in a template is supported for a particular key type being derived.

Table Entry Meaning

Yes
Indicates that PKCS#11 library supports the attribute for the specic
key type.

No
Indicates that PKCS#11 library does not support the attribute for the
specic key type.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 778

Understanding Security

Table Entry Meaning

Read-only The attribute is set to read-only for the specic key type.

An empty cell in Default Value column indicates there is no specic
value assigned to the attribute.

(Result of library
function)

Indicates that the PKCS#11 library determines the attribute value.

C_DeriveKey

Attributes Key Type Default Value Note

Generic
SecretAES

CKA_CLASS
Read-
only

Read-
only

CKO_SECRET_KEY
NVIDIA limitation. Can
only derive a Secret key.

CKA_TOKEN Yes Yes FALSE
NVIDIA limitation. Can
only derive a Token key
from a Token key.

CKA_PRIVATE
Read-
only

Read-
only

TRUE
NVIDIA limitation. All
objects are private.

CKA_LABEL Yes Yes

CKA_VALUE
Read-
only

Read-
only

(Result of library function)

CKA_TRUSTED
Read-
only

Read-
only

FALSE
NVIDIA limitation.
Cannot create a trusted
wrapping key at runtime.

CKA_CHECK_VALUE No No
NVIDIA limitation. Not
supported.

CKA_KEY_TYPE Yes Yes
Mandatory template
attribute.

CKA_SUBJECT No No

CKA_ID Yes Yes
Mandatory template
attribute.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 779

Understanding Security

C_DeriveKey

Attributes Key Type Default Value Note

Generic
SecretAES

CKA_SENSITIVE Yes Yes TRUE

NVIDIA limitation.
Any Secret Key with
CKA_SENSITIVE
False cannot be used
for cryptographic
operations.

CKA_ENCRYPT No Yes FALSE
NVIDIA limitation.
Observe single purpose
rules.

CKA_DECRYPT No Yes FALSE
NVIDIA limitation.
Observe single purpose
rules.

CKA_WRAP No Yes FALSE

CKA_UNWRAP No Yes FALSE
NVIDIA limitation.
Observe single purpose
rules.

CKA_SIGN Yes Yes FALSE
NVIDIA limitation.
Observe single purpose
rules.

CKA_VERIFY Yes Yes FALSE
NVIDIA limitation.
Observe single purpose
rules.

CKA_VERIFY_RECOVER No No

CKA_DERIVE Yes Yes FALSE
NVIDIA limitation.
Observe single purpose
rules.

CKA_START_DATE Yes Yes

CKA_END_DATE Yes Yes

CKA_MODULUS No No

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 780

Understanding Security

C_DeriveKey

Attributes Key Type Default Value Note

Generic
SecretAES

CKA_MODULUS_BITS No No

CKA_PUBLIC_EXPONENT No No

CKA_PUBLIC_KEY_INFO No No

CKA_VALUE_LEN Yes Yes 16
Mandatory template
attribute.

CKA_EXTRACTABLE Yes Yes FALSE

CKA_LOCAL
Read-
only

Read-
only

FALSE
Must not be template
attribute.

CKA_NEVER_EXTRACTABLE
Read-
only

Read-
only

Inherited from base
key depending on
CKA_EXTRACTABLE history*

Must not be template
attribute.

CKA_ALWAYS_SENSITIVE
Read-
only

Read-
only

Inherited from base
key depending on
CKA_SENSITIVE history**

Must not be template
attribute.

CKA_KEY_GEN_MECHANISM
Read-
only

Read-
only

CK_UNAVAILABLE_INFORMATION
Due to CKA_LOCAL set
FALSE

CKA_MODIFIABLE Yes Yes TRUE

CKA_COPYABLE Yes Yes TRUE

CKA_DESTROYABLE Yes Yes TRUE

CKA_EC_PARAMS No No

CKA_EC_POINT No No

CKA_WRAP_WITH_TRUSTEDYes Yes FALSE

CKA_WRAP_TEMPLATE No No
NVIDIA limitation. Not
supported.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 781

Understanding Security

C_DeriveKey

Attributes Key Type Default Value Note

Generic
SecretAES

CKA_UNWRAP_TEMPLATE No No
NVIDIA limitation. Not
supported.

CKA_ALLOWED_MECHANISMSYes Yes
 Mandatory template
attribute

CKA_NVIDIA_CALLER_NONCEYes Yes FALSE

NVIDIA Extension
May be TRUE only for
encrypt/decrypt session
keys derived using
CKM_TLS12_KEY_AND_MAC_DERIVE
or
CKM_TLS12_KEY_SAFE_DERIVE

* If the base key has its CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE, then the
derived key will too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the
opposite value from its CKA_EXTRACTABLE attribute.

** If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, then the
derived key will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to
CK_TRUE, then the derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same
value as its CKA_SENSITIVE attribute.

Unwrap Key Attributes Support with CKM_AES_GCM

PKCS#11 library does not support Cryptoki attributes supplied within a template to
be applied to the unwrapped key with CKM_AES_GCM mechanism. The key attributes
are instead supplied via the optional AAD (additional authenticated data) input when
CKM_AES_GCM mechanism is called with C_UnwrapKey.

Unwrap Secret Key Attributes Support with CKM_AES_CBC

PKCS#11 library does support Cryptoki attributes supplied within a template to be applied
to the unwrapped key with CKM_AES_CBC mechanism.

The following table lists attributes that dier by key types. It indicates whether a given
attribute in a template is supported for a particular key type being created.

Table Entry Meaning

Yes Indicates that PKCS#11 library supports the
attribute for the specic key type.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 782

Understanding Security

Table Entry Meaning

No Indicates that PKCS#11 library does not support
the attribute for the specic key type.

Read-only The attribute is set to read-only for the specic
key type.

An empty cell in Default Value column indicates
that there is no specic value assigned to the
attribute.

(Result of library function) Indicates that the attribute value is determined
by the PKCS#11 library

C_UnwrapKey

Attributes Key Type Default Value Note

Generic Secret AES

CKA_CLASS Yes Yes CKO_SECRET_KEY Mandatory
template
attribute.

CKA_TOKEN Read-only Read-only FALSE NVIDIA limitation.
Only EPHEMERAL
keys can be
unwrapped if
attribute template
is supported.

CKA_PRIVATE Read-only Read-only TRUE NVIDIA limitation.
All objects are
private.

CKA_LABEL Yes Yes

CKA_VALUE No No

CKA_TRUSTED Read-only Read-only FALSE NVIDIA limitation.
Cannot create a
trusted wrapping
key at runtime.

CKA_CHECK_VALUENo No NVIDIA limitation.
Attribute not
supported.

CKA_KEY_TYPE Yes Yes Mandatory
template
attribute.

CKA_SUBJECT No No NVIDIA limitation.
Attribute not
supported.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 783

Understanding Security

C_UnwrapKey

Attributes Key Type Default Value Note

Generic Secret AES

CKA_ID Yes Yes Mandatory
template
attribute.

CKA_SENSITIVE Read-only Read-only TRUE NVIDIA limitation.
No access to
secret key
material.

CKA_ENCRYPT No Yes FALSE NVIDIA limitation.
Observe single
purpose rules.

CKA_DECRYPT No Yes FALSE NVIDIA limitation.
Observe single
purpose rules.

CKA_WRAP No Yes FALSE

CKA_UNWRAP No Yes FALSE NVIDIA limitation.
Observe single
purpose rules.

CKA_SIGN Yes Yes FALSE NVIDIA limitation.
Observe single
purpose rules.

CKA_VERIFY Yes Yes FALSE NVIDIA limitation.
Observe single
purpose rules.

CKA_VERIFY_RECOVERNo No

CKA_DERIVE Yes Yes FALSE NVIDIA limitation.
Observe single
purpose rules.

CKA_START_DATE Yes Yes

CKA_END_DATE Yes Yes

CKA_MODULUS No No

CKA_MODULUS_BITSNo No

CKA_PUBLIC_EXPONENTNo No

CKA_PUBLIC_KEY_INFONo No

CKA_VALUE_LEN Yes Yes Mandatory
template
attribute.

CKA_EXTRACTABLEYes Yes FALSE NVIDIA limitation.
Default False on
Unwrap.

CKA_LOCAL Read-only Read-only FALSE Must not
be template
attribute.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 784

Understanding Security

C_UnwrapKey

Attributes Key Type Default Value Note

Generic Secret AES

CKA_NEVER_EXTRACTABLERead-only Read-only FALSE Must not
be template
attribute.

CKA_ALWAYS_SENSITIVERead-only Read-only FALSE Must not
be template
attribute.

CKA_KEY_GEN_MECHANISMRead-only Read-only CK_UNAVAILABLE_INFORMATIONMust not
be template
attribute.

CKA_MODIFIABLE Yes Yes TRUE

CKA_COPYABLE Yes Yes TRUE

CKA_DESTROYABLEYes Yes TRUE

CKA_EC_PARAMS No No

CKA_EC_POINT No No

CKA_WRAP_WITH_TRUSTEDYes Yes FALSE

CKA_WRAP_TEMPLATENo No NVIDIA limitation.
Not supported.

CKA_UNWRAP_TEMPLATENo No NVIDIA limitation.
Not supported.

CKA_ALLOWED_MECHANISMSYes Yes Mandatory
template
attribute.

CKA_NVIDIA_CALLER_NONCERead-only Read-only FALSE

Unwrap Private Key Attributes Support with CKM_AES_CBC

The table below lists attributes that dier by key types. It indicates whether a given
attribute in a template is supported for a particular key type being created.

Table Entry Meaning

Yes Indicates that PKCS#11 library supports the
attribute for the specic key type.

No Indicates that PKCS#11 library does not support
the attribute for the specic key type.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 785

Understanding Security

Table Entry Meaning

Read-only The attribute is set to read-only for the specic
key type.

An empty cell in Default Value column indicates
that there is no specic value assigned to the
attribute.

(Result of library function) Indicates that the PKCS#11 library determines
the attribute value.

C_UnwrapKey

Attributes Key Type Default Value Note

EC Private

CKA_CLASS Yes CKO_PRIVATE_KEY Mandatory template
attribute.

CKA_TOKEN Read-only FALSE NVIDIA limitation. Only
EPHEMERAL keys
can be unwrapped if
attribute template is
supported.

CKA_PRIVATE Read-only TRUE NVIDIA limitation. All
objects are private.

CKA_LABEL Yes

CKA_VALUE No

CKA_TRUSTED No

CKA_CHECK_VALUE No

CKA_KEY_TYPE Yes Mandatory template
attribute.

CKA_SUBJECT No NVIDIA limitation.
Attribute not
supported.

CKA_ID Yes Mandatory template
attribute.

CKA_SENSITIVE Read-only TRUE NVIDIA limitation. No
access to private key
material.

CKA_ENCRYPT No

CKA_DECRYPT Read-only FALSE NVIDIA limitation.
Private key decryption
is not supported.

CKA_WRAP No

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 786

Understanding Security

C_UnwrapKey

Attributes Key Type Default Value Note

CKA_UNWRAP Read-only FALSE NVIDIA limitation.
Private key unwrap is
not supported.

CKA_SIGN Yes FALSE NVIDIA limitation.
Observe single purpose
rules.

CKA_VERIFY No

CKA_VERIFY_RECOVER No

CKA_DERIVE Yes FALSE NVIDIA limitation.
Observe single purpose
rules.

CKA_START_DATE Yes

CKA_END_DATE Yes

CKA_MODULUS No

CKA_MODULUS_BITS No

CKA_PUBLIC_EXPONENTNo

CKA_PUBLIC_KEY_INFO No

CKA_VALUE_LEN No

CKA_EXTRACTABLE Yes FALSE NVIDIA limitation.
Default False on
Unwrap.

CKA_LOCAL Read-only FALSE Must not be template
attribute.

CKA_NEVER_EXTRACTABLERead-only FALSE Must not be template
attribute.

CKA_ALWAYS_SENSITIVERead-only FALSE Must not be template
attribute.

CKA_KEY_GEN_MECHANISMRead-only CK_UNAVAILABLE_INFORMATIONMust not be template
attribute.

CKA_MODIFIABLE Yes TRUE

CKA_COPYABLE Yes TRUE

CKA_DESTROYABLE Yes TRUE

CKA_EC_PARAMS Yes Mandatory template
attribute.

CKA_EC_POINT No

CKA_WRAP_WITH_TRUSTEDYes FALSE

CKA_WRAP_TEMPLATE No

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 787

Understanding Security

C_UnwrapKey

Attributes Key Type Default Value Note

CKA_UNWRAP_TEMPLATENo NVIDIA limitation. Not
supported

CKA_ALLOWED_MECHANISMSYes Mandatory template
attribute

CKA_NVIDIA_CALLER_NONCENo

Copy Key Attributes Support

The following table lists attributes that dier by key types. It indicates whether a given
attribute in a template is supported for a particular key type being copied.

Table Entry Meaning

Yes
Indicates that PKCS#11 library supports the attribute for the specic
key type.

No
Indicates that PKCS#11 library does not support the attribute for the
specic key type.

Read-only The attribute is set to read-only for the specic key type.

An empty cell in Default Value column indicates that there is no
specic value assigned to the attribute.

(Result of library
function)

Indicates that the PKCS#11 library determines the attribute value.

C_CopyObject

Attributes Key Type Default Value Note

EC
Private

EC
Public

RSA
Public

Generic
SecretAES

CKA_CLASS
Read-
only

Read-
only

Read-
only

Read-
only

Read-
only

Inherited from Object
being copied

CKA_TOKEN
Read-
only

Read-
only

Read-
only

Read-
only

Read-
only

Inherited from Object
being copied

NVIDIA limitation. A
token key cannot be
copied into a session
key or vice versa.

CKA_PRIVATE
Read-
only

Read-
only

Read-
only

Read-
only

Read-
only

Inherited from Object
being copied

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 788

Understanding Security

C_CopyObject

Attributes Key Type Default Value Note

EC
Private

EC
Public

RSA
Public

Generic
SecretAES

CKA_LABEL Yes Yes Yes Yes Yes
Inherited from Object
being copied

CKA_VALUE No No No
Read-
only

Read-
only

Inherited from Object
being copied

CKA_TRUSTED No Read-
only

Read-
only

Read-
only

Read-
only

Inherited from Object
being copied

CKA_CHECK_VALUENo No No No No
 NVIDIA limitation.
Attribute not
supported.

CKA_KEY_TYPE
Read-
only

Read-
only

Read-
only

Read-
only

Read-
only

Inherited from Object
being copied

CKA_SUBJECT No No No No No
NVIDIA limitation.
Attribute not
supported.

CKA_ID Yes Yes Yes Yes Yes
Mandatory template
attribute.

CKA_SENSITIVE
Read-
only No No

Read-
only

Read-
only

Inherited from Object
being copied

CKA_ENCRYPT No Read
only

Read
only

No Read-
only

Inherited from Object
being copied

NVIDIA limitation.
Key usage
immutability.

CKA_DECRYPT
Read-
only No No No Read-

only
Inherited from Object
being copied

NVIDIA limitation.
 Key usage
immutability.

CKA_WRAP No Read-
only

Read-
only

No Read-
only

Inherited from Object
being copied

NVIDIA limitation.
Key usage
immutability.

CKA_UNWRAP
Read-
only No No No Read-

only
Inherited from Object
being copied

NVIDIA limitation.
 Key usage
immutability.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 789

Understanding Security

C_CopyObject

Attributes Key Type Default Value Note

EC
Private

EC
Public

RSA
Public

Generic
SecretAES

CKA_SIGN
Read-
only No No

Read-
only

Read-
only

Inherited from Object
being copied

NVIDIA limitation.
 Key usage
immutability.

CKA_SIGN_RECOVERNo No No No No

NVIDIA limitation.
Attribute not
supported for private
keys.

CKA_VERIFY No Read-
only

Read-
only

Read-
only

Read-
only

Inherited from Object
being copied

NVIDIA limitation.
 Key usage
immutability.

CKA_VERIFY_RECOVERNo No No No No
NVIDIA limitation.
Attribute not
supported.

CKA_DERIVE
Read-
only

Read-
only

Read-
only

Read-
only

Read-
only

Inherited from Object
being copied

NVIDIA limitation.
 Key usage
immutability.

CKA_START_DATE
Read-
only

Read-
only

Read-
only

Read-
only

Read-
only

Inherited from Object
being copied

CKA_END_DATE
Read-
only

Read-
only

Read-
only

Read-
only

Read-
only

Inherited from Object
being copied

CKA_MODULUS No No
Read-
only

No No
Inherited from Object
being copied

CKA_MODULUS_BITSNo No
Read-
only

No No
Inherited from Object
being copied

CKA_PUBLIC_EXPONENTNo No
Read-
only

No No
Inherited from Object
being copied

CKA_PUBLIC_KEY_INFONo No No No No
NVIDIA limitation.
Attribute not
supported

CKA_VALUE_LEN No No No
Read-
only

Read-
only

Inherited from Object
being copied

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 790

Understanding Security

C_CopyObject

Attributes Key Type Default Value Note

EC
Private

EC
Public

RSA
Public

Generic
SecretAES

CKA_EXTRACTABLE
Read-
only No No

Read-
only

Read-
only

Inherited from Object
being copied

CKA_LOCAL
Read-
only

Read-
only

Read-
only

Read-
only

Read-
only

Inherited from Object
being copied

CKA_NEVER_EXTRACTABLE
Read-
only No No

Read-
only

Read-
only

Inherited from Object
being copied

CKA_ALWAYS_SENSITIVE
Read-
only No No

Read-
only

Read-
only

Inherited from Object
being copied

CKA_KEY_GEN_MECHANISM
Read-
only

Read
only

Read
only

Read-
only

Read-
only

Inherited from Object
being copied

CKA_MODIFIABLE
Read-
only

Read-
only

Read-
only

Read-
only

Read-
only

Inherited from Object
being copied

CKA_COPYABLE
Read-
only

Read-
only

Read-
only

Read-
only

Read-
only

Inherited from Object
being copied

CKA_DESTROYABLE
Read-
only

Read-
only

Read-
only

Read-
only

Read-
only

Inherited from Object
being copied

CKA_EC_PARAMS
Read-
only

Read-
only

No No No
Inherited from Object
being copied

CKA_EC_POINT No Read-
only

No No No
Inherited from Object
being copied

CKA_WRAP_WITH_TRUSTED
Read-
only No No

Read-
only

Read-
only

Inherited from Object
being copied

CKA_WRAP_TEMPLATENo No No No No
NVIDIA limitation.
Not supported.

CKA_UNWRAP_TEMPLATENo No No No No
NVIDIA limitation.
Not supported.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 791

Understanding Security

C_CopyObject

Attributes Key Type Default Value Note

EC
Private

EC
Public

RSA
Public

Generic
SecretAES

CKA_ALLOWED_MECHANISMS
Read-
only

Read-
only

Read-
only

Read-
only

Read-
only

Inherited from Object
being copied

CKA_ALWAYS_AUTHENTICATENo No No No No NVIDIA limitation.
Not supported.

CKA_NVIDIA_USER_NONCENo No No Read-
only

Read-
only

Inherited from Object
being copied

Set Attributes Support

Note:

Only a single attribute may be set at a time.

The following table lists attributes that dier by key types. It indicates whether a given
attribute in a template is supported for a particular key type operation.

Table
Entry

Meaning

Yes Indicates that PKCS#11 Library supports set attribute for the specic key type.

No
Indicates that PKCS#11 Library does not support set attribute for the specic
key type.

C_SetAttributeValue

Attributes Key Type Note

EC
Private
EC
Public

RSA
Public

Generic
SecretAES

CKA_LABEL YesYes Yes YesYes NVIDIA limitation. Set a single attribute at a time.

CKA_TRUSTED NoNo No NoNo
NVIDIA limitation. Cannot create a trusted
wrapping key at runtime.

CKA_CHECK_VALUE NoNo No NoNo NVIDIA limitation.

CKA_SUBJECT NoNo No NoNo NVIDIA limitation.

CKA_ID YesYes Yes YesYes NVIDIA limitation. Set a single attribute at a time.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 792

Understanding Security

C_SetAttributeValue

Attributes Key Type Note

EC
Private
EC
Public

RSA
Public

Generic
SecretAES

CKA_SENSITIVE NoNo No NoNo NVIDIA limitation.

CKA_ENCRYPT NoNo No NoNo
NVIDIA limitation. Observe single purpose
immutability rule.

CKA_DECRYPT NoNo No NoNo
NVIDIA limitation. Observe single purpose
immutability rule.

CKA_WRAP NoNo No NoNo
NVIDIA limitation. Observe single purpose
immutability rule.

CKA_UNWRAP NoNo No NoNo
NVIDIA limitation. Observe single purpose
immutability rule.

CKA_SIGN NoNo No NoNo
NVIDIA limitation. Observe single purpose
immutability rule.

CKA_SIGN_RECOVER NoNo No NoNo NVIDIA limitation.

CKA_VERIFY NoNo No NoNo
NVIDIA limitation. Observe single purpose
immutability rule.

CKA_VERIFY_RECOVER NoNo No NoNo NVIDIA limitation.

CKA_DERIVE NoNo No NoNo
NVIDIA limitation. Observe single purpose
immutability rule.

CKA_START_DATE NoNo No NoNo NVIDIA limitation.

CKA_END_DATE NoNo No NoNo NVIDIA limitation.

CKA_PUBLIC_KEY_INFO NoNo No NoNo NVIDIA limitation.

CKA_EXTRACTABLE NoNo No NoNo NVIDIA limitation.

CKA_NVIDIA_USER_NONCE NoNo No NoNo

Get Attributes Support

The following table lists attributes that dier by key types. It indicates whether a given
attribute in a template is supported for a particular key type.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 793

Understanding Security

Table
Entry

Meaning

Yes Indicates that PKCS#11 Library supports the attribute for the specic key type.

No
Indicates that PKCS#11 Library does not support the attribute for the specic
key type.

No Get Indicates that the attribute is sensitive and cannot be revealed.

C_GetAttributeValue

AttributesKey Type Note

EC Private
EC
Public

RSA
Public

Generic
Secret AES

CKA_CLASSYes Yes Yes Yes Yes

CKA_TOKENYes Yes Yes Yes Yes

CKA_PRIVATEYes Yes Yes Yes Yes

CKA_LABELYes Yes Yes Yes Yes

CKA_VALUENo No No No Get No Get NVIDIA
limitation.
Attribute
always
sensitive
and not
returned.

CKA_TRUSTEDNo Yes Yes Yes Yes

CKA_CHECK_VALUENo No No No No NVIDIA
limitation.
Attribute
not
supported.

CKA_KEY_TYPEYes Yes Yes Yes Yes

CKA_SUBJECTNo No No No No NVIDIA
limitation.
Attribute
not
supported.

CKA_ID Yes Yes Yes Yes Yes

CKA_SENSITIVEYes No No Yes Yes

CKA_ENCRYPTNo Yes Yes No Yes

CKA_DECRYPTYes No No No Yes

CKA_WRAPNo Yes Yes No Yes

CKA_UNWRAPYes No No No Yes

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 794

Understanding Security

C_GetAttributeValue

AttributesKey Type Note

EC Private
EC
Public

RSA
Public

Generic
Secret AES

CKA_SIGN Yes No No Yes Yes

CKA_SIGN_RECOVERNo No No No No NVIDIA
limitation.
Attribute
not
supported
for
Private
keys.

CKA_VERIFYNo Yes Yes Yes Yes

CKA_VERIFY_RECOVERNo No No No No NVIDIA
limitation.
Attribute
not
supported
for public
keys.

CKA_DERIVEYes Yes Yes Yes Yes

CKA_START_DATEYes Yes Yes Yes Yes

CKA_END_DATEYes Yes Yes Yes Yes

CKA_MODULUSNo No Yes No No

CKA_MODULUS_BITSNo No Yes No No

CKA_PUBLIC_EXPONENTNo No Yes No No

CKA_PUBLIC_KEY_INFONo No No No No NVIDIA
limitation.
Attribute
not
supported
for public
keys.

CKA_VALUE_LENNo No No Yes Yes

CKA_EXTRACTABLEYes No No Yes Yes

CKA_LOCALYes Yes Yes Yes Yes

CKA_NEVER_EXTRACTABLEYes No No Yes Yes

CKA_ALWAYS_SENSITIVEYes No No Yes Yes

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 795

Understanding Security

C_GetAttributeValue

AttributesKey Type Note

EC Private
EC
Public

RSA
Public

Generic
Secret AES

CKA_KEY_GEN_MECHANISMYes Yes Yes Yes Yes Contains
a valid
value
only if
CKA_LOCAL
is TRUE.
Else is
CK_UNAVAILABLE_INFORMATION.

CKA_MODIFIABLEYes Yes Yes Yes Yes

CKA_COPYABLEYes Yes Yes Yes Yes

CKA_DESTROYABLEYes Yes Yes Yes Yes

CKA_EC_PARAMSYes Yes No No No NVIDIA
limitation.
Contains
CK_UNAVAILABLE_INFORMATION.

CKA_EC_POINTNo Yes No No No

CKA_WRAP_WITH_TRUSTEDYes No No Yes Yes

CKA_WRAP_TEMPLATENo No No No No NVIDIA
limitation.
Not
supported.

CKA_UNWRAP_TEMPLATENo No No No No NVIDIA
limitation.
Not
supported.

CKA_ALLOWED_MECHANISMSYes Yes Yes Yes Yes

CKA_ALWAYS_AUTHENTICATENo No No No No NVIDIA
limitation.
Not
supported.

CKA_NVIDIA_USER_NONCENo No No Yes Yes

Create Data Object Attributes Support

The following table indicates whether a given attribute in a template is supported for a
Data Object being created.

Table Entry Meaning

Yes Indicates that PKCS#11 library supports the
attribute for a Data Object.

No Indicates that PKCS#11 library does not support
the attribute for a Data Object.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 796

Understanding Security

Table Entry Meaning

Read-only The attribute is set to read-only for a Data
Object.

An empty cell in Default Value column indicates
that there is no specic value assigned to the
attribute.

(Result of library function) Indicates that the attribute value is determined
by the PKCS#11 library

C_CreateObject

Attributes Data Object Default Value Note

CKA_CLASS Yes CKO_DATA Mandatory template
attribute.

CKA_TOKEN Yes FALSE

CKA_PRIVATE Read-only TRUE NVIDIA limitation. All
objects are private.

CKA_LABEL Yes

CKA_VALUE Yes -

CKA_ID Yes - Mandatory template
attribute.

CKA_VALUE_LEN Read-only (Result of library
function)

Must not be template
attribute.

CKA_MODIFIABLE Yes TRUE

CKA_COPYABLE Yes TRUE

CKA_DESTROYABLE Yes TRUE

CKA_APPLICATION Yes

CKA_OBJECT_ID Yes

Copy Data Object Attributes Support

The table below indicates whether a given attribute in a template is supported for a Data
Object being copied.

Table Entry Meaning

Yes Indicates that PKCS#11 library supports the
attribute for a Data Object.

No Indicates that PKCS#11 library does not support
the attribute for a Data Object.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 797

Understanding Security

Table Entry Meaning

Read-only The attribute is set to read-only for a Data
Object.

An empty cell in Default Value column indicates
that there is no specic value assigned to the
attribute.

(Result of library function) Indicates that the PKCS#11 library determines
the attribute value.

C_CopyObject

Attributes Data Object Default Value Note

CKA_CLASS Read-only Inherited from Object
being copied

-

CKA_TOKEN Read-only Inherited from Object
being copied

CKA_PRIVATE Read-only Inherited from Object
being copied

-

CKA_LABEL Yes Inherited from Object
being copied

CKA_VALUE Yes Inherited from Object
being copied

-

CKA_ID Yes - Mandatory template
attribute.

CKA_VALUE_LEN Read-only Inherited from Object
being copied

-

CKA_MODIFIABLE Read-only Inherited from Object
being copied

CKA_COPYABLE Read-only Inherited from Object
being copied

CKA_DESTROYABLE Read-only Inherited from Object
being copied

CKA_APPLICATION Read-only Inherited from Object
being copied

CKA_OBJECT_ID Read-only Inherited from Object
being copied

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 798

Understanding Security

Set Data Object Attributes Support

The following table below indicates whether a given attribute in a template is supported
for a Data Object set attribute operation after being created.

Table Entry Meaning

Yes Indicates that PKCS#11 library supports set
attribute for a Data Object.

No Indicates that PKCS#11 library does not support
set attribute for a Data Object.

C_SetAttributeValue

Attributes Data Object Note

CKA_LABEL Yes NVIDIA limitation. Set a single
attribute at a time.

CKA_VALUE Yes NVIDIA limitation. Set a single
attribute at a time.

CKA_ID Yes NVIDIA limitation. Set a single
attribute at a time.

CKA_APPLICATION No

CKA_OBJECT_ID No -

Get Data Object Attributes Support

The following table indicates whether a given attribute in a template is supported for a
Data Object attribute being fetched after creation.

Table Entry Meaning

Yes Indicates that PKCS#11 library supports the
attribute for a Data Object.

No Indicates that PKCS#11 library does not support
the attribute for a Data Object.

C_GetAttributeValue

Attributes Data Object Note

CKA_CLASS Yes

CKA_TOKEN Yes

CKA_PRIVATE Yes

CKA_LABEL Yes

CKA_VALUE Yes

CKA_ID Yes

CKA_VALUE_LEN Yes

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 799

Understanding Security

C_GetAttributeValue

Attributes Data Object Note

CKA_MODIFIABLE Yes

CKA_COPYABLE Yes

CKA_DESTROYABLE Yes

CKA_APPLICATION Yes

CKA_OBJECT_ID Yes

Key Exclusive Usage Rules

PKCS#11 library limits key usage attributes such that a key is only usable for a single
purpose, or for a single class of purposes. The following purposes and purpose
combinations are valid:

‣ Encryption (CKA_ENCRYPT)

‣ Decryption (CKA_DECRYPT)

‣ Encryption and decryption (CKA_ENCRYPT | CKA_DECRYPT)

‣ Signature generation (CKA_SIGN)

‣ Signature verication (CKA_VERIFY)

‣ Signature generation and verication (CKA_SIGN | CKA_VERIFY)

‣ Key unwrapping (CKA_UNWRAP)

‣ Key wrapping (CKA_WRAP)

‣ Key unwrapping and wrapping (CKA_UNWRAP | CKA_WRAP)

‣ Key derivation (CKA_DERIVE)

Key Usage Immutability

PKCS#11 library does not allow modication of key usage attributes after key creation.

CKA_ID

PKCS#11 library requires that any CKA_ID generated by the client application satises the
following constraints:

‣ A byte array of CK_BYTEs must be padded with space character to 32 bytes

‣ No NULL character

‣ Must not start with "NV"

‣ Unique

Returns CKR_ATTRIBUTE_VALUE_INVALID if any of these conditions are not met.

Attribute Repeated in Template

PKCS#11 library returns CKR_TEMPLATE_INCONSISTENT if a template for an object
species the same attribute more than once.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 800

Understanding Security

Surplus Attributes in Template

PKCS#11 library returns CKR_TEMPLATE_INCONSISTENT if a template for an object
species attributes surplus to expectation.

Unwrap Template Not Supported

The attribute CKA_UNWRAP_TEMPLATE is not supported.

Wrap Template Not Supported

The attribute CKA_WRAP_TEMPLATE is not supported.

Unique ID Not Supported

The attribute CKA_UNIQUE_ID is not supported.

7.2.6 PKCS#11 – Sample Application
PKCS#11 library includes sample application code for customer reference to demonstrate
use of the following:

‣ How to nd a token by using the CK_TOKEN_INFO model eld

‣ How to use NVIDIA channel extension

‣ Mechanisms:

‣ CKM_EDDSA

‣ CKM_SP800_108_COUNTER_KDF

‣ CKM_SHA256

‣ CKM_SHA512

‣ CKM_AES_GCM

Refer to the following README for instructions to build the sample application,
pkcs11_reference_application:
samples/nvpkcs11/external/README

7.2.7 PKCS#11 – Implementation Details
Slots and Tokens

A PKCS#11 token represents a combination of persistent object storage, and access to
cryptographic hardware. In releases prior to 6.0.5.0, the NVIDIA PKCS#11 implementation
supported a single token instance– a single persistent storage area (ID 2) and a single set
of hardware (CCPLEX). In 6.0.5.0 and future releases, multiple tokens are supported.

Three types of hardware are supported; these need to be represented in dierent PKCS#11
tokens, as they represent dierent hardware:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 801

Understanding Security

‣ CCPLEX (the largest set of cryptographic hardware support).

‣ TSEC(TSEC is a special hardware that supports AES CMAC sign and verify exclusively.
The TSEC hardware can only perform CMAC operations with keys in the safety token.
To use TSEC, rstly install all required keys in the dynamic token as token objects,
commit them, and then reboot. After this, the safety token will be able to use the
previously installed keys for AES CMAC operations.)

‣ FSI (key management only, no cryptographic operations supported).

There is a requirement for object access control for CCPLEX. This is to allow dierent
applications to use the same CCPLEX hardware, but with access to dierent sets of
objects. For example, you can have an application that processes sensor data with one set
of keys and a webstore application with a dierent set of keys. Each application must not
be able to access the other set of objects but must execute operations on the same set
of cryptographic hardware. This is implemented by having multiple PKCS#11 tokens for
CCPLEX hardware, each with their own storage areas and access protection GIDs.

There is a requirement to protect safety applications from changes to token objects while
they are running (UNECE 156a 7.2.2.1.3). There may also be other, non-safety critical
applications that need the ability to change token objects at runtime. To allow for this,
each conguration of hardware and access control will have a dynamic token view and a
safety token view. The dynamic token allows for token objects to be added, updated, and
deleted, and once added can be used immediately. The safety token has a static view of
the content of the persistent storage as it was at boot time - objects can be accessed, but
not altered, added, or deleted in this view.

To alter the objects in the safety view:

‣ Make the changes in the dynamic view of the same storage ID

‣ Call C_NVIDIA_CommitTokenObjects() with no PKCS#11 sessions open on any safety
token (this is to prevent safety-critical operations stalling as the commit happens)

‣ Either reboot, or go through an SC7 cycle (calling C_Finalize() before suspending and
C_Initialize() after resuming)

Twenty seven tokens are supported, which will have the following model names listed in
the CK_TOKEN_INFO structure:

Model name GID Custom Ability
Secure storage
instance ID

Supported
hardware,
safety or
dynamic Notes

NVPKCS11_FSI_DYNAMIC_1_MODEL_NAME6002 nvtzvault/
pkcs11ks_dynamic_token_1_ability
nvtzvault/crypto_ability

1 FSI, dynamic

NVPKCS11_CCPLEX_SAFETY_2_MODEL_NAME6003 nvtzvault/
pkcs11ks_safety_token_2_ability
nvtzvault/crypto_ability nvvse/
Engines:0-2

2
CCPLEX,

safety

Safety equivalent of original
single token

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 802

Understanding Security

Model name GID Custom Ability
Secure storage
instance ID

Supported
hardware,
safety or
dynamic Notes

NVPKCS11_CCPLEX_DYNAMIC_2_MODEL_NAME6004 nvtzvault/
pkcs11ks_dynamic_token_2_ability
nvtzvault/crypto_ability nvvse/
Engines:0-2

2 CCPLEX,
dynamic

Functionality equivalent to
original single token

NVPKCS11_TSEC_SAFETY_3_MODEL_NAME6005 nvtzvault/
pkcs11ks_safety_token_3_ability
nvtzvault/crypto_ability nvvse/
Engines:6

3 TSEC, safety Token keys only. AES CMAC
sign and verify support only.

NVPKCS11_TSEC_DYNAMIC_3_MODEL_NAME6006 nvtzvault/
pkcs11ks_dynamic_token_3_ability
nvtzvault/crypto_ability nvvse/
Engines:6

3 TSEC, dynamic No cryptographic
operations support. AES
key management support
with create, unwrap,
generate and derive using
CKM_SP800_108_COUNTER_KDF
only

NVPKCS11_CCPLEX_SAFETY_4_MODEL_NAME6007 nvtzvault/
pkcs11ks_safety_token_4_ability
nvtzvault/crypto_ability nvvse/
Engines:0-2

4 CCPLEX,
safety

NVPKCS11_CCPLEX_DYNAMIC_4_MODEL_NAME6008 nvtzvault/
pkcs11ks_dynamic_token_4_ability
nvtzvault/crypto_ability nvvse/
Engines:0-2

4 CCPLEX,
dynamic

NVPKCS11_CCPLEX_SAFETY_5_MODEL_NAME6009 nvtzvault/
pkcs11ks_safety_token_5_ability
nvtzvault/crypto_ability nvvse/
Engines:0-2

5 CCPLEX,
safety

NVPKCS11_CCPLEX_DYNAMIC_5_MODEL_NAME6010 nvtzvault/
pkcs11ks_dynamic_token_5_ability
nvtzvault/crypto_ability nvvse/
Engines:0-2

5 CCPLEX,
dynamic

...

NVPKCS11_CCPLEX_SAFETY_13_MODEL_NAME6025 nvtzvault/
pkcs11ks_safety_token_13_ability
nvtzvault/crypto_ability
nvvse/Engines:0-2 nvtzvault/
macsec_tos_ability

13 CCPLEX,
safety

NVIDIA reserved for
MACSEC

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 803

Understanding Security

Model name GID Custom Ability
Secure storage
instance ID

Supported
hardware,
safety or
dynamic Notes

NVPKCS11_CCPLEX_DYNAMIC_13_MODEL_NAME6026 nvtzvault/
pkcs11ks_dynamic_token_13_ability
nvtzvault/crypto_ability
nvvse/Engines:0-2 nvtzvault/
macsec_tos_ability

13 CCPLEX,
dynamic

NVIDIA reserved for
MACSEC

NVPKCS11_CCPLEX_SAFETY_14_MODEL_NAME6027 nvtzvault/
pkcs11ks_safety_token_14_ability
nvtzvault/crypto_ability nvvse/
Engines:0-2

14 CCPLEX,
safety

NVIDIA reserved for Drive
Update

NVPKCS11_CCPLEX_DYNAMIC_14_MODEL_NAME6028 nvtzvault/
pkcs11ks_dynamic_token_14_ability
nvtzvault/crypto_ability nvvse/
Engines:0-2

14 CCPLEX,
dynamic

NVIDIA reserved for Drive
Update

The PKCS#11 sample app demonstrates how to use C_GetTokenInfo to identify and open a
token that matches that name (NVPKCS#11_CCPLEX_DYNAMIC_2_MODEL_NAME).

Accessing the Token

To use a token, your application must have access to both keys in a persistent storage area
and access to cryptographic hardware engines. The permissions for these are handled
using GIDs and QNX custom abilities.

There are 27 unique key storage area custom abilities, one for each of the supported
tokens.

There is 1 nvtzvault/crypto_ability custom ability required by every PKCS#11 library
application.

To use a CCPLEX token, your application must also have access permission to all three GP-
SE channels, by adding nvvse/Engines:0-2 custom abilities.

To use a TSEC token the application requires nvvse/Engines:6 custom ability.

For an application using a CCPLEX token to also have access to the TZ-SE cryptographic
hardware, you add nvvse/Engines:3-5 custom abilities.

The PKCS#11 sample app README le demonstrates how to run the sample app as non-
root with correct custom ability to use NVPKCS11_CCPLEX_DYNAMIC_2_MODEL_NAME.

Note: The existing client application code must be updated to choose a token explicitly
and to use the new GIDs and custom abilities.

Choosing the Token

If your application is safety related, it should use a safety token. This is to prevent
interference from any other applications or updates.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 804

Understanding Security

If your application needs to update objects in secure storage, it will need to use a dynamic
token. Note that the safety token will not see those changes until after a reboot or an SC7
cycle has taken place.

If your application requires access to persistently stored objects, and also requires that
those objects are not accessible to any other applications, then use a unique secure
storage instance ID.

The following example shows how secure storage updates can be performed, and also how
the isolation between safety and dynamic tokens works.

Step 1

System is powered o. Secure storage for ID 4 contains four keys.

Step 2

Power on. System boots. Two PKCS11 tokens are created for CCPLEX hardware with secure
storage ID 4.

Each token contains a copy of the secure storage content.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 805

Understanding Security

Step 3

A safety critical application connects to the CCPLEX_SAFETY_4 token, and starts to use
key 1 for an operation.

Step 4

An update app connects to CCPLEX_DYNAMIC_4. This is app is not safety critical. It also
uses key 1.

Step 5

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 806

Understanding Security

The update app needs to replace key 1. It will begin by deleting that key. Note that the
original key still exists in the safety token, and in secure storage.

The safety app continues to function without interruption.

Step 6

A new key (5) is added to CCPLEX_DYNAMIC_4. The new key is visible to any app that uses
the CCPLEX_DYNAMIC_4 token.

The CCPLEX_SAFETY_4 token has no way to see this key. It is not yet in secure storage, so
would be lost if a reboot were to happen.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 807

Understanding Security

Step 7

The update app now checks that key 5 is functional by performing some operations with it.

Secure storage cannot be updated yet, as the safety app is still using CCPLEX_SAFETY_4.

Step 8

Safety app has terminated. The update app then commits the changes to secure storage
by calling C_NVIDIA_CommitTokenObjects().

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 808

Understanding Security

Step 9

A reboot then takes place. Key 1 is no longer usable by CCPLEX_SAFETY_4 or
CCPLEX_DYNAMIC_4, and both tokens can use key 5.

Multi-Threaded Application

PKCS#11 library only supports multi-threaded access by an application using the native
operating system primitives.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 809

Understanding Security

Session Type

PKCS#11 library supports read/write (R/W) user sessions on dynamic tokens, and
read-only (R/O) user sessions on all tokens. To update secure storage in a R/W session,
C_NVIDIA_CommitTokenObjects() must be called as outlined previously.

Active Operation Abandonment

PKCS#11 library fails any cryptographic initialization functions for a session if there are
any active operations of the same type on that session. The active operation will reset and
return to the idle state.

PKCS#11 library additionally allows C_MessageSignInit and C_MessageVerifyInit to be
called with pMechanism set to NULL_PTR to terminate an active operation

.

Operations That Cannot Be Canceled by C_SessionCancel

PKCS#11 library shall return CKR_OPERATION_CANCEL_FAILED if any of the following
operations are included in the request to C_SessionCancel:

‣ CKF_GENERATE_KEY_PAIR

‣ CKF_GENERATE

‣ CKF_WRAP

‣ CKF_UNWRAP

‣ CKF_DERIVE

User Type

PKCS#11 library only supports the user type: normal user.

Read-Only User Authentication

PKCS#11 library supports normal user login to a read only session without the need for a
PIN.

pPin from client application is NULL_PTR.

Read/Write User Authentication

PKCS#11 library supports login of an authenticated normal user login to a Read/Write
session without the need for a PIN.

pPin from client application is NULL_PTR.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 810

Understanding Security

Encrypt Input Data Length

PKCS#11 library restricts the data length of all multi-part encrypt update operations
using CKM_AES_CBC_PAD mechanism to be a multiple of the cryptographic operation
block size. The exception is the last encrypt update part, which does not have to be a
multiple of the block size.

Encrypt operations using CKM_AES_CTR mechanism restricts data length to multiples of
16 bytes only.

Decrypt Input Data length

PKCS#11 library restricts the data length of multi-part decrypt update operations to be a
multiple of the cryptographic operation block size.

Decrypt operations using CKM_AES_CTR mechanism restricts data length to multiples of
16 bytes only.

Session Object Limit

PKCS#11 library restricts the number of session objects that may be created, generated,
derived, or unwrapped across all sessions of a single application to a total of 88 keys split
as 64 secret, 8 RSA public, 8 EC public and 8 EC private keys and 8 data objects, subject to
the support of those objects by the tokens in use.

Cryptoki Function Calls

PKCS#11 library does not support every function in the Cryptoki API. It has a stub for every
unsupported function and returns the value CKR_FUNCTION_NOT_SUPPORTED.

Callback Function Not Supported

PKCS#11 library does not support surrender callbacks.

Find Key by ID and Class

PKCS#11 library restricts key object search to the template attribute CKA_ID and
CKA_CLASS only.

Deriving Additional Key

PKCS#11 library limits key derivation to a single derived key per one C_DeriveKey() call.

Derivation From Fuse-based Keys

The support for NV_OEM_KEY1 and NV_OEM_KEY2 for key derivation using SP800-108-
Counter-KDF-HMAC-SHA256(Key=FUSE_KEYS_KDK0_0_0 (ODM_KDK0), L=256,
Label=<as_required>, Context=<as_required>) scheme has been added. Refer to the

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 811

Understanding Security

following table for derivation data values. The purpose of these keys are set to HMAC in
the key manifest, meaning the API is responsible for preparing the input in the format
mentioned in the scheme. PKCS#11 Library provides interfaces for key derivation using
these two keys.

The two (2) keys (NV_OEM_KEY1 and NV_OEM_KEY2) are derived from ODM_KDK0
using the same SP800-108-Counter-KDF-HMAC-SHA256 scheme. However, the two
keys are dierent in the sense that the label and context used to derive these keys from
ODM_KDK0 are dierent. While NV_OEM_KEY1 is same for all devices, if ODM KDK0 is a
class key i.e. same for all devices, NV_OEM_KEY2 is a device-specic key as Exclusive Chip
ID (ECID), which is unique to each device, is used as the context for the derivation of this
key.

Fused Key Hierarchy

Refer below for derivation data values of NV_OEM_KEY1 and NV_OEM_KEY2

PRF Input Data Field Identier Format Value

[i] CK_SP800_108_ITERATION_VARIABLEBig Endian 32 bit
integer

Value for
NV_OEM_KEY1 &
NV_OEM_KEY2 is
0x00000001

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 812

Understanding Security

PRF Input Data Field Identier Format Value

Label CK_SP800_108_BYTE_ARRAY1 to 32 bytes NV_OEM_KEY1 -
"NV_OEM_DERIVED_1"NV_OEM_KEY2
-
"NV_OEM_DERIVED_2"

0x00 CK_SP800_108_BYTE_ARRAY1 byte "00" in HexString
Format

Context CK_SP800_108_BYTE_ARRAY1 to 32 bytes Value for
NV_OEM_KEY1 - "00" in
HexString Format and
size is 1 Byte

Value for
NV_OEM_KEY2 - <ECID
in HexString Format>
and size is 16 Bytes

[L] CK_SP800_108_DKM_LENGTHBig Endian 32 bit
integer

Key Length for
NV_OEM_KEY1 and
NV_OEM_KEY2 will
be 256 bits, value is
0x00000100

PKCS#11 library supports derivation from the following named fuse-based keys:

CKA_ID

"NV_OEM_KEY1 "
A general purpose OEM-dened key

"NV_OEM_KEY2 " A general purpose device-unique key

CKM_SP800_108_COUNTER_KDF Input Parameters

PKCS#11 library limits the counter mode key derivation function, denoted
CKM_SP800_108_COUNTER_KDF, to use the following PRF input data denitions.

SP800-108 section 5.1 outlines a sample Counter Mode KDF, which denes the following
PRF input:

PRF (KI, [i] || Label || 0x00 || Context || [L])

where || is the concatenation operation in which the order of the values are dened and KI
is the base key being derived from.

The following table lists the PRF input data eld types, meanings, limitations, and order
that are supported within the CK_PRF_DATA_PARAM structure:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 813

Understanding Security

PRF
Input Data Field Identier Format Description Comment

[i] CK_SP800_108_ITERATION_VARIABLE

Big
Endian
8 or
32 bits
wide

Counter integer that is
the iteration variable.
 Value shall be 1 for
SHA_256_HMAC or
AES_CMAC PRF

Default: Use 32
bits wide. 8 bits
wide support
is for MACSEC
wpa-supplicant
application

Label CK_SP800_108_BYTE_ARRAY
1 to 32
bytes

Client Application
supplied byte array that
identies the purpose
for the derived keying
material. The byte 0x00 is
not allowed.

0x00 CK_SP800_108_BYTE_ARRAY 1 byte

An all zero octet. Used to
indicate a separation of
dierent variable length
data elds

ContextCK_SP800_108_BYTE_ARRAY
1 to 32
bytes

Client Application
supplied byte array
containing the
information related to
the derived key. The byte
0x00 is not allowed.

[L] CK_SP800_108_DKM_LENGTH

Big
Endian
16 or
32 bits
wide

An integer specifying
the length (in bits) of the
derived key.

Default: Use 32
bits wide. 16 bits
wide support
is for MACSEC
wpa-supplicant
application

Secret Key Material Protection

PKCS#11 library does not allow access to secret key material or secret key check value.

Added Allowed Function Return Values

PKCS#11 library allows CKR_OPERATION_ACTIVE return value for C_Digest, C_Encrypt,
and C_Decrypt functions. The current operation will reset and return to idle state upon
returning CKR_OPERATION_ACTIVE. The approach taken warns of a potential programming
error rather than silently accepting it.

PKCS#11 library allows CKR_MECHANISM_INVALID return value for C_xxUpdate, C_xxFinal
if C_xxInit is called with mechanism CKM_AES_GCM.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 814

Understanding Security

PKCS#11 library allows CKR_OPERATION_NOT_INITIALIZED return value for
C_xxMessageBegin, C_EncryptMessage functions.

PKCS#11 library allows CKR_OPERATION_ACTIVE return value for C_xxMessageNext,
C_EncryptMessage, C_DecryptMessage functions. The current operation will reset and
return to idle state upon returning CKR_OPERATION_ACTIVE. The approach taken warns of
a potential programming error rather than silently accepting it.

PKCS#11 library allows CKR_SESSION_READ_ONLY_EXISTS return value for C_OpenSession
function.

PKCS#11 library allows CKR_ARGUMENTS_BAD return value for C_EncryptMessageBegin
function.

PKCS#11 library allows CKR_MECHANISM_INVALID return value for C_xxMessageBegin
functions.

PKCS#11 library allows CKR_FUNCTION_NOT_SUPPORTED return value for C_SignUpdate,
C_SignFinal, C_VerifyUpdate and C_VerifyFinal functions.

PKCS#11 library allows C_VerifyMessageNext to continue on CKR_SIGNATURE_INVALID.

Symmetric Key Block Mode

When using PKCS#11 APIs to generate, derive, or unwrap symmetric keys, users of DRIVE
OS must specify at most one block mode in the CKA_ALLOWED_MECHANISMS template
attribute for any particular key.

Exception: Specifying CKM_AES_CBC and CKM_AES_CBC_PAD for the same key is
acceptable.

CMAC Message Length

PKCS#11 library does not support Signature requests using CKM_AES_CMAC with a 0
(zero)-length message.

Mutually Exclusive KDF Mechanism Support

When using PKCS#11 APIs to derive from a base key, that base key can support either one
of CKM_SP800_108_COUNTER_KDF or CKM_NVIDIA_SP800_56c_TWO_STEPS_KDF but
not both together.

C_Finalize Prior to SC7 Entry

All applications that use PKCS#11 library must call C_Finalize prior to SC7 entry. If this is
not done, then you will receive unexpected errors when attempting to use PKCS#11 APIs.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 815

Understanding Security

C_WrapKey with CKM_AES_CBC output IV handling

For C_WrapKey with CKM_AES_CBC mechanism the IV buer provided by the caller as part
of the mechanism parameters is an output and is overwritten by an internally generated
random IV.

GCM with zero-length Data

PKCS#11 library supports encrypt or decrypt operations using CKM_AES_GCM with 0
(zero)-length data.

7.3 Security Engine
The Security Engine is a general-purpose hardware accelerator for performing
Cryptographic Operations and it is virtualized through SE Virtualization Software. SE
Virtualization software architecture is based on para-virtualization technique, where a
dedicated virtualization system partition (a.k.a. SE resource manager server OR SE Server)
is responsible for managing the security engine hardware and a message based interface is
exposed to the virtual machines for requesting security engine services.

Refer to the PKCS#11 Interface section for more details on performing a hardware ooad
of cryptographic operations using Security Engine.

Error Reporting

The security engine reports hardware errors to HSM directly. CCPLEX does not handle error
reporting and hardware errors.

7.4 Persistent Key Object Support
NVIDIA DRIVE OS Security Services provide the ability to persistently store custom
key objects on dedicated secure storage media. The format of the objects adheres
to the PKCS#11 specication. The NVIDIA DRIVE OS PDK provides users the ability
to generate customized wrapped PKCS#11 Key Objects and reference code that

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 816

Understanding Security

demonstrates how to provision said objects into the dedicated secure SPI-NOR hardware.

The following section describes the annotations in the “Provisioning of Persistent PKCS#11
Objects” image above.

PKCS#11 Object Spec Files

These les are the input to the PKCS#11 Object Generation Tool that specify secret
key material and metadata associated with each key object. These input les must be
generated in a secure environment to prevent disclosure of secret key material and
associated metadata.

Refer to the Generating PKCS#11 Key Objects section for more details.

PKCS#11 Object Generation Tool

The PKCS#11 Object Generation Tool takes the inputs from the PKCS#11 Spec les
and a secret key (refer the Derivation From Fuse-based Keys section under PKCS#11 –
Implementation Details) to generate binaries associated with each key object.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 817

Understanding Security

Refer to the Generating PKCS#11 Key Objects section for more details.

Important:

The PKCS#11 Object Generation Tool is implemented in a way to facilitate
deployment on custom HSM solutions. By default, all cryptographic primitives use
openSSL but are abstracted in a separate source le and can be easily replaced
with HSM-specic constructs.

Important:

PKCS#11 Key Object format is not guaranteed to be forward compatible and
is subject to change in subsequent releases. The PKCS#11 Object Generation
Tool ensures that the generated object format is aligned with DRIVE OS internal
services.

Please consult with an NVIDIA representative before making changes to the object
format. Any modications to the PKCS#11 Object format in the generation tool
may result in a failure during key object provisioning.

Wrapped PKCS#11 Key Objects

These are the binary outputs of the PKCS#11 Object Generation Tool. These wrapped
objects are authenticated and encrypted and must be securely transferred over to the
target le system where the application will access them.

Application to provision PKCS#11 Key Objects into Secure SPI-NOR hardware

Once the binary output les generated using the PKCS#11 Object Generation Tool are
moved over to the Guest OS lesystem, and application must read these binaries and
provision them into the Secure SPI-NOR hardware using the following PKCS#11 API:
C_UnwrapKey()

Refer to the Provisioning PKCS#11 Key Objects section for more information.

PKCS#11 Library (QNX)

The user-space library that exposes Security Services to applications in the QNX Guest OS.
Refer to the PKCS#11 Interface for a detailed description and documentation.

Secure SPI-NOR Hardware

The dedicated secure storage media that stores the key objects persistently. This is the
destination of the UnwrapKey operation.

Condentiality, Authenticity and Integrity

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 818

Understanding Security

The secure storage media, along with its software driver, provides condentiality,
authenticity and integrity for the objects stored using device-specic keys. Attackers
cannot read out any part of the objects in plaintext. When there is tampering against the
media, errors are returned to the PKCS#11 library.

Rollback Detection

The secure storage media, along with its software driver, provides rollback attack detection
for the stored PKCS#11 Key Objects. When there are rollback attacks against the media,
errors are returned to the PKCS#11 library.

SPI Error Reporting

When uncorrectable errors happen during Secure SPI-NOR data transfer through SPI bus,
these errors are reported to FSI.

Congurable Persistent Storage Capacity

The SPI-NOR space is divided into multiple secure storage instances on top of which
the tokens are developed. Access (Read/Write) to each such instance is provided to
client through a pair of Safety and Dynamic token (refer to: PKCS#11 – Implementation
Details). The DRIVE OS supports conguring the maximum number of dierent PKCS#11
Persistent Objects that can be stored in an instance through PCT. The PCT is expected to
be congured with the maximum number of objects for each supported PKCS#11 object
type.

Update the tos_keystore_conf structure of the drive_av PCT guest conguration
to congure secure storage instances with the required Object Capacity. The
tos_keystore_conf is dened in the pct and details of the structure are below. In the PCT
and some other scripts, we use the term `group` to refer to a secure storage instance for
convenience, so the two terms can be treated interchangeably:

‣ num_groups

‣ Description:

‣ Specied the num of groups that would be congured through PCT

‣ Values:

‣ Can take from the range 0 to 6 (i.e., a maximum of six groups can be congured
through PCT)

‣ ss_group_cong

‣ Object Capacity conguration of a particular Secure Storage Group and contains
the below attributes

‣ ss_group_id

‣ Description

‣ ID of the Secure Storage Group that needs to be congured

‣ Values

‣ Can take from the range 1 to 6

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 819

Understanding Security

‣ sym_key_capacity

‣ Description

‣ Max number of Symmetric keys the Secure Storage Group needs to support

‣ Values

‣ Valid values are determined as below (Validity of a PCT conguration)

‣ rsa_pub_key_capacity

‣ Description

‣ Max number of RSA Public Keys the Secure Storage Group needs to support

‣ Values

‣ Valid values are determined as below (Validity of a PCT conguration)

‣ ecc_pub_key_capacity

‣ Description

‣ Max number of ECC Public keys the Secure Storage Group needs to support

‣ Values

‣ Valid values are determined as below (Validity of a PCT conguration)

‣ ecc_priv_key_capacity

‣ Description

‣ Max number of ECC Private Keys the Secure Storage Group needs to support

‣ Values

‣ Valid values are determined as below (Validity of a PCT conguration)

‣ generic_data_object_capacity

‣ Description

‣ Max number of Generic Data Objects the Secure Storage Group needs to
support

‣ Values

‣ Valid values are determined as below (Validity of a PCT conguration)

‣ ss_group_cfg[PCT_MAX_SS_GROUP_COUNT = 6]

‣ Description:

‣ An array of ss_group_cong to congure multiple Secure Storage Groups

Examples

Following are examples of Object Capacity and the views of the tos_keystore_conf for the
corresponding Object Capacity:

Example 1

If it is required that the...

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 820

Understanding Security

1. NVPKCS11_TSEC_DYNAMIC_3_MODEL_NAME is expected to support a maximum
number of 200 Symmetric Key Objects

2. NVPKCS11_CCPLEX_DYNAMIC_2_MODEL_NAME is expected to support a maximum of
16 Symmetric Keys, 4 RSA Public, 2 ECC Public, 2 ECC Private, 2 Generic Data Objects

3. NVPKCS11_CCPLEX_DYNAMIC_4_MODEL_NAME is expected to support a maximum of
0 Symmetric Keys, 0 RSA Public, 0 ECC Public, 0 ECC Private, 10 Generic Data Objects

The PCT conguration should be:
.tos_keystore_conf = {
 .num_groups = 3,
 .ss_group_cfg[0] =
 {
 3U, // Group ID of the Secure Storage Group (for Token
 NVPKCS11_TSEC_DYNAMIC_3_MODEL_NAME)
 200U, // Max number of Symmetric keys to be supported on this group
 0U, // Max number of RSA Public Keys to be supported on this group
 0U, // Max number of ECC Public Keys to be supported on this group
 0U, // Max number of ECC Private Keys to be supported on this group
 0U, // Max number of Generic Data Objects to be supported on this group
 },
 .ss_group_cfg[1] =
 {
 2U, // Group ID of the Secure Storage Group (for Token
 NVPKCS11_CCPLEX_DYNAMIC_2_MODEL_NAME)
 16U, // Max number of Symmetric keys to be supported on this group
 4U, // Max number of RSA Public Keys to be supported on this group
 2U, // Max number of ECC Public Keys to be supported on this group
 2U, // Max number of ECC Private Keys to be supported on this group
 2U, // Max number of Generic Data Objects to be supported on this group
 },
 .ss_group_cfg[2] =
 {
 4U, // Group ID of the Secure Storage Group (for Token
 NVPKCS11_CCPLEX_DYNAMIC_4_MODEL_NAME)
 0U, // Max number of Symmetric keys to be supported on this group
 0U, // Max number of RSA Public Keys to be supported on this group
 0U, // Max number of ECC Public Keys to be supported on this group
 0U, // Max number of ECC Private Keys to be supported on this group
 10U, // Max number of Generic Data Objects to be supported on this group
 },
}

Example 2

If it is required that the...

1. NVPKCS11_TSEC_DYNAMIC_3_MODEL_NAME is expected to have a maximum number
of 400 Symmetric Key Objects

2. NVPKCS11_CCPLEX_DYNAMIC_2_MODEL_NAME is expected to have 68 Symmetric
Keys, 0 RSA Public, 0 ECC Public, 0 ECC Private, 5 Generic Data Objects

3. NVPKCS11_CCPLEX_DYNAMIC_4_MODEL_NAME is expected to have 16 Symmetric
Keys, 0 RSA Public, 10 ECC Public, 10 ECC Private, 10 Generic Data Objects

.tos_keystore_conf = {
 .num_groups = 3,
 .ss_group_cfg[0] = {2U, 68U, 0U, 0U, 0U, 5U},
 .ss_group_cfg[1] = {3U, 400U, 0U, 0U, 0U, 0U},
 .ss_group_cfg[2] = {4U, 16U, 0U, 10U, 10U, 10U}
}

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 821

Understanding Security

Example 3

If it is expected to support only NVPKCS11_TSEC_DYNAMIC_3_MODEL_NAME and
expected to have a maximum number of 300 Symmetric Key Objects

.tos_keystore_conf = {
 .num_groups = 4,
 .ss_group_cfg[0] = {1U, 0U, 0U, 0U, 0U, 0U},
 .ss_group_cfg[1] = {2U, 0U, 0U, 0U, 0U, 0U},
 .ss_group_cfg[2] = {3U, 300U, 0U, 0U, 0U, 0U},
 .ss_group_cfg[3] = {4U, 0U, 0U, 0U, 0U, 0U}
}

Default Cong

Note: If not congured through PCT to a certain Object Capacity, a Secure Storage Group
is initialized to a default cong, as shown below.

.ss_group_cfg[0] = {1U, 500U, 1U, 4U, 4U, 5U}, // Group corresponding to FSI token

.ss_group_cfg[1] = {2U, 68U, 16U, 16U, 16U, 16U}, // Group corresponding to Default
 CCPLEX
.ss_group_cfg[2] = {3U, 3200U, 0U, 0U, 0U, 0U}, // Group corresponding to TSEC tokens
.ss_group_cfg[3] = {4U, 16U, 2U, 2U, 2U, 2U},
.ss_group_cfg[4] = {5U, 16U, 2U, 2U, 2U, 2U},
.ss_group_cfg[5] = {6U, 16U, 2U, 2U, 2U, 2U},

If required to not allocate any storage to a particular Secure Storage Group, please initialize
the particular Secure Storage Group Object Capacity to 0U using the PCT.

Validity of a PCT Conguration

The SPI-NOR available to the DRIVE-OS customers is 432 blocks (each block is 4KB).
Dividing this space into multiple groups through the PCT conguration is allowed with
certain restrictions. The DRIVE-OS clients are expected to congure the PCT with a valid
conguration, where a valid conguration is

‣ Usage space of cumulative of all Secure Storage Groups cannot exceed 432 4KB-blocks.

‣ Total number of objects (sum of maximum supported of each object type) of a
particular secure storage group cannot exceed 4000

The DRIVE-OS customers can conrm the validity of a PCT conguration with the Python3
script `token_size_validation.py` provided. The script `token_size_validation.py` can be
used as below to validate a PCT conguration. The script can be found at this path on the
DRIVE OS PDK:

drive-foundation/tools/security/pkcs11/token_size_validation/token_size_validation.py

The PCT conguration validation tool does the following things:

‣ Check the conguration does not violate the above restriction

‣ Provide the usage space of each token. Given the numbers and types of objects of a
token, the script performs a depth-rst-search algorithm to nd the maximum space
the token can occupy in case of worst fragmentation in the lesystem.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 822

Understanding Security

‣ Provide the remaining available space out of <customer_size> or report the
conguration is too big and invalid

The steps to use the tool:

python3 token_size_validation.py --current-config <current_config.json> --new-config
 <new_config.json>
python3 token_size_validation.py --ignore-current-config --new-config
 <new_config.json>

Using a new conguration without comparing it with the existing conguration (via `--
ignore-current-cong`) should only be used in the following scenarios to avoid existing
objects on the persistent SNOR exceeding the limit of the new conguration:

1. The board is a dev board (FUSE_SECURITY_MODE_0 is 0) and the developer is accepting
the risk of Drive OS persistent object functionality becoming unfunctional.

2. The board is a dev board (FUSE_SECURITY_MODE_0 is 0) and the developer will use the
'wipe_secure_nor' MB2 BCT ag (adding in 6.0.7) to wipe the Secure SPI-NOR during
the rst boot after ash.

3. The board is new and hasn't been ashed before, which implies the SNOR is brand new.

Compatibility Restrictions

In production, customer cannot OTA a new version of DRIVE-OS with a PCT conguration
that reduces the maximum number of objects supported for a particular group. For
example, if in current release Secure Storage Instance 4 allows maximum 20 symmetric key
objects, reducing it to 10 in the next OTA release will cause DRIVE OS to treat the existing
objects as an error as they exceed the new limitation.

This will result in a functionality failure and will lead to the unavailability of PKCS#11
Persistent Object functionality.

It is strongly recommended to only congure the minimal required numbers of objects in
each group to preserve space for future OTA releases.

7.4.1 Secure SPI-NOR Provisioning
The SPI-NOR ash is an external secure NOR ash used by the Trusted Execution
Environment on the Tegra device for persistent storage of cryptographic assets. The SPI-
NOR ash supports authenticated memory access, which relies on a shared symmetric
secret known by both the Trusted Execution Environment and the SPI-NOR ash. FSKP
programs this shared secret and device security settings into the ash.

One time SPI-NOR provisioning occurs automatically during the next boot after the board
FUSE_SECURITY_MODE is burnt. This is the recommended secure NOR provisioning ow
for production boards.

For customer development, a MB2 BCT ag snor_provisioning_dev_only is introduced
so that a customer engineer can provision the secure NOR without burning the
FUSE_SECURITY_MODE, which is not desired for specic development requirements.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 823

Understanding Security

A one-time SPI-NOR provisioning occurs during the next boot after the MB2 BCT
snor_provisioning_dev_only ag is set to 1.

The MB2 BCT ag can be found at the following location:
drive-foundation/platform-config/hardware/nvidia/platform/<board>/common/bct/misc/
tegra234-mb2-bct-auto-common.dtsi

Caveats

1. NOR Provisioning ow always locks down the NOR rst before provisioning its keys for
security reasons, so the NOR provisioning can only happen once. If a NOR is provisioned,
all future triggers to provision the secure NOR are ignored.

2. Do not modify the fuse keys after provisioning the NOR. The shared secret between the
NOR and the host, as well as the data stored on the NOR, are encrypted with the fuse
keys. Any change to the fuse keys will cause the persistent key object support to fail
completely or partially.

3. The recommended ow to provision the secure SPI-NOR is:

a). For developers:Burn fuse keys → Trigger secure NOR provisioning using MB2 BCT
ag snor_provisioning_dev_only→ Start to use NVIDIA Drive OS® persistent key
object functionalities → Burn FUSE_SECURITY_MODE if needed → Continue to use
NVIDIA Drive OS persistent key object functionalities (the lesystem and stored
objects will persist)

b). For production: Run SPI-NOR Mods test → Burn fuse keys and other fuses → Burn
FUSE_SECURITY_MODE, which automatically triggers NOR provisioning during rst
boot → Start to use NVIDIA Drive OS persistent key object functionalities

7.4.2 Disable Provisioning for NOR Less
Congurations
On NOR less congurations, persistent key object is not supported because the Secure
SPI-NOR chip is not available on the board. Therefore, SPI-NOR provisioning must be
disabled by setting the disable_snor_provisioning MB2 BCT ag to 1.

The MB2 BCT ag is at the following location:
drive-foundation/platform-config/hardware/nvidia/platform/<board>/common/bct/misc/
tegra234-mb2-bct-auto-common.dtsi

7.5 Generating PKCS#11 Key Objects
The PKCS#11 Object Generation Tool is a python3-based tool that helps users of DRIVE OS
generate wrapped key objects on a host machine to later provision on target platforms.

The tool can be found at this path on the DRIVE OS PDK:
drive-foundation/tools/security/pkcs11/keywrap/nv_wrap_keys.py

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 824

Understanding Security

7.5.1 Provisioning PKCS#11 Key Objects
PKCS#11 library also provides sample application code for reference. This reference code
demonstrates usage of the C_UnwrapKey API. The reference code shows how to consume
the output of the PKCS#11 Object Generation Tool and invoke the C_UnwrapKey API to
provision the PKCS#11 Key Objects onto the dedicated storage media.

Important:

DRIVE OS PDK reference code demonstrates using the PKCS#11 APIs to provision
wrapped 128-bit AES key objects from Guest OS.However, this code is not
qualied for use in production and should be treated as reference code only.

Refer to the following README for instructions to build the sample application,
pkcs11_reference_application:
samples/nvpkcs11/external/README

7.6 Enabling JTAG Support on Secure
Targets
On secure targets, where the ODM production fuse has been blown, MB1 locks the JTAG
connection interface. To enable the JTAG interface on such a target, a special BCT is
required where certain parameters are set.

To enable the JTAG interface on a secure target

1. Set the desired debugging features through the BCT section of the ashing
conguration le.

2. Generate a new BCT image.

To enable debugging features through the BCT conguration le

1. In the BCT partition of the ashing conguration le, set the uid attribute
to the UID of the target device if needing to update the debug features in
u32_secure_debug_control_ecid_checked.

2. Set either u32_secure_debug_control_not_ecid_checked or
u32_secure_debug_control_ecid_checkedelds to specify the debugging features
desired.

The u32_secure_debug_control_not_ecid_checked attribute collection of bit elds are as
follows.

Bits Feature enabled by a ‘1’ bit

31:18 Reserved

17 FSI non-secure NIDEN

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 825

Understanding Security

Bits Feature enabled by a ‘1’ bit

16 Reserved

15 APE secure debug

14 DCE secure debug

13 Reserved

12 PVA0 secure debug

11 RCE secure debug

10 SCE secure debug

9 SPE secure debug

8:5 Reserved

4 NIDEN (disabled when
DEBUG_AUTHENTICATION[1] fuse set)

3:0 Reserved

The u32_secure_debug_control_ecid_checked attribute collection of bit elds are as
follows.

Bits Feature enabled by a ‘1’ bit

31 Ramdump

30:26 Reserved

25 FSI secure NIDEN

24 FSI secure DBGEN

23:20 FSI Cluster core debug [3:0]

19 FSI non-secure HNIDEN

18 FSI non-secure HIDEN

17 FSI non-secure NIDEN

16 FSI non-secure DBGEN

5 DBGEN

4 NIDEN

3 SPIDEN

2 SPNIDEN

1 DEVICEEN

0 JTAG_ENABLE

On secure targets MB1 compares the UID of the chip to the UID in the BCT and enables
debug features for u32_secure_debug_control_ecid_checked if the UIDs match. The
MB1 enables debug features for u32_secure_debug_control_non_ecid_checked without
verifying the UID.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 826

Understanding Security

An example of a ashing conguration le, that species the UID value for
a specic target device, to enable the JTAG interface with all features in
u32_secure_debug_control_ecid_checked except Ramdump, is as follows:
[partition]
name=bct
allocation_policy=sequential
filesystem_type=basic
uid=0xa18010016419f105000000000a010380
u32_secure_debug_control_ecid_checked=0x03FF003F
size=0x80000
partition_attribute=0

7.7 Linux-Based Disk Encryption
Disk encryption ensures that les are always stored on disk in an encrypted form. The
les become available to the operating system and applications in readable form while the
system is running and unlocked by a trusted user. An unauthorized user inspecting the
contents of the disk directly nds garbled random-looking data instead of the actual les.

With user data encryption enabled, the /home directory in the le system is encrypted and
user data is available when the system is running. The user /home partition is mounted on a
separate disk partition and block level encryption is enabled for that disk.

The NVIDIA implementation uses the dm-crypt kernel module, which is the standard
device-mapper interface for encryption functionality provided by the Linux kernel. It is
inserted between the disk driver and the le system to transparently encrypt and decrypt
the data blocks.

Consult the Linux documentation on dm-crypt at:
https://wiki.archlinux.org/index.php/Disk_encryption

The management of dm-crypt is performed with the dmsetup user-space utility.

7.7.1 dmsetup
The dmsetup utility sets up disk encryption based on dmcrypt kernel module.

Consult the Linux documentation on dmsetup at:
https://gitlab.com/cryptsetup/cryptsetup/-/wikis/DMCrypt

7.7.2 User Data Encryption
User data encryption is disabled by default on DRIVE OS Linux. Once enabled, all reads and
writes to the /home directory are encrypted. On boot, during le system setup, the startup
scripts mount the user data in the encrypted /home directory.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 827

https://wiki.archlinux.org/index.php/Disk_encryption
https://gitlab.com/cryptsetup/cryptsetup

Understanding Security

7.7.2.1 To change the size of the user data disk
 1. Modify the size parameter for the gos0-demo-ufs partition.

The default size is 10 GB.
 2. After boot, dump the disk partitions by executing the command:

$df -h

The new encrypted partition is displayed with the name /dev/mapper/home-encrypted.
 3. To obtain more information about the encrypted partition, execute the command:

$dmsetup status /dev/mapper/home-encrypted

 4. Execute this command also provides information about the encrypted partition.
$dmsetup status

A systemd service (nv_cpu_encrypted_user_partition.service) mounts the
encrypted disk at the /home directory on every boot. All accesses to the disk are then
encrypted. This occurs transparently without user interference.

7.7.3 Steps to Enable Data Encryption
By default, user data encryption is disabled on the NVIDIA DRIVE

®
 OS Linux. Follow these

steps to enable:

1. Flash the DRIVE OS Linux le system by using the instructions from the SDK Flashing
section and boot the system.

2. After booting the board, ensure that the /dev/vblkdev50 partition is visible in cat /
proc/partition.

3. Enable EFS-related systemd service by running the following commands:

‣ sudo su

‣ systemctl enable
 nv_cpu_encrypt_run_once.service

4. Reboot the board.
5. Check the output of the mount command.

Note that /home should be mounted on the /dev/mapper/home-encrypted/ partition.

7.7.4 Data Encryption Impact on Boot Times
On the rst boot, after ashing, setting up the encrypted partition takes about 30
seconds. These steps are executed by nv_cpu_encrypt_run_once.service systemd
service. The setup involves:

‣ Creating and encrypting VEK (Volume Encryption key) using PKCS#11 app. VEK is
stored in /etc/nvidia/efs/

‣ Decrypting VEK using PKCS#11 app.

‣ Setup encrypted partition using dmsetup passing VEK and other information.

‣ Initializing the encrypted partition with random data

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 828

Understanding Security

‣ Creating ext4 lesystem on encrypted partition

‣ Copying the contents from /home to encrypted partition

‣ Mounting the encrypted partition on /home directory

After the rst boot, subsequent reboots do NOT have an impact on boot times.

These steps are executed by nv_cpu_encrypted_user_partition.service systemd
service Steps involved in subsequent boot for EFS are as follows:

‣ Decrypting VEK using PKCS#11 app.

‣ Mounting the encrypted partition on /home directory

7.7.4.1 Encryption Algorithm
The cipher mode used for disk encryption is aes-cbc-essiv:sha256. The cipher generator
consists of three parts: cipher-chainmode-IVmode. So here cipher is AES, chainmode is
CBC, and IV mode is essiv:sha256.

Consult the Linux documentation for more information at:
https://wiki.archlinux.org/index.php/Disk_encryption#Ciphers_and_modes_of_operation

7.7.5 Volume Encryption Key Management
Dierent keys are involved in Encrypted File System (EFS) functionality:

‣ Volume Encryption Key (VEK) : The Volume encryption key ensures the data owing
between the le system and the disk is encrypted and decrypted. It is passed as input
to dmsetup tool which in turn passes it to kernel dm-crypt layer which uses it for
encryption/decryption of data at block level. VEK is generated using HW RNG (Random
Number Generator) via PKCS#11 app.

‣ VEK Encryption Key : VEK Encryption key is used to encrypt and decrypt VEK. This key
is derived from OEM_K1 fuse key using NIST SP800-108 Counter KDF (HMAC-SHA256)
with unique derivation string and label inputs using PKCS#11 app. In later releases, VEK
Encryption key will be derived from OEM_KDK0 instead of OEM_K1.

7.7.5.1 Encryption of VEK
The diagram below shows Encryption of VEK using PKCS#11 app. It includes following
steps:

1. App passes VEK and Key derivation Strings to PKCS#11 library via their APIs.
2. PKCS#11 Library talks to TOS to derive VEK Encryption key based on key derivation

Strings input.
3. PKCS#11 Library talks to SE Server to encrypt the VEK and returns Encrypted VEK.
4. App stores the Encrypted VEK in the lesystem (/etc/nvidia/efs/)

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 829

https://wiki.archlinux.org/index.php/Disk_encryption

Understanding Security

7.7.5.1.1 Decryption of VEK and Use by dm-crypt
The diagram below shows decryption of VEK and its use by dm-crypt via dmsetup. It
includes following steps:

1. App reads Encrypted VEK from the lesystem (/etc/nvidia/efs/)
2. App passes Encrypted VEK and Key derivation Strings to PKCS#11 library via their APIs.
3. PKCS#11 Library talks to TOS to derive VEK Encryption key based on key derivation

Strings input.
4. PKCS#11 Library talks to SE Server to decrypt the Encrypted VEK and stores the

decrypted VEK in the le passed as input (/tmp/*).
5. EFS Systemd service reads the decrypted VEK from le in /tmp
6. EFS Systemd service will pass decrypted VEK as input to dmsetup which in turn is

passed to kernel dm-crypt module for disk encryption and decryption operations.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 830

Understanding Security

7.7.5.2 Building Sample PKCS#11 App for VEK
Generation, Encryption, and Decryption
The platform contains sample PKCS#11 app, which is used for:

‣ Generation, encryption, and decryption of VEK.

‣ Derivation of VEK encryption key from OEM_K1 with derivation strings as input.

The sources, headers, and build scripts are available at:

drive-linux/samples/security/efs_key

To build efs_key

‣ Execute the command:
$ make

This generates efs_key executable.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 831

Understanding Security

To rebuild efs_key

‣ Execute these commands for incremental builds:
$ cd drive-linux/samples/security/efs_key
$ make

‣ Execute these commands for clean builds:
$ cd drive-linux/samples/security/efs_key
$ make clean
$ make

7.7.5.3 EFS Sample App Command Line Usage
The table below lists the dierent options for EFS sample app:

Short Option Long Option Description

-e --encrypt Encrypt VEK using derived
key. This will also include VEK
generation.

-d <lename> --decrypt=<lename> Decrypt VEK using derived
key, writing the output to
<lename>. <lename> must
be a regular le under /tmp/
with mode 0600 and size 0. File
must be present before passing
it as input.

-p <string> --derivation-string=<string> Specify key derivation string
(required, max 32 bytes). Used
for deriving VEK Encryption Key
from OEM_K1.

-c <string> --context-string=<string> Specify context string (optional,
max 32 bytes. Default:
context). Used for deriving VEK
Encryption Key from OEM_K1.

-f <string> --vek-name=<string> Name sux for lename
storing key and IV (optional)

--verbose Print verbose information

-h --help Show usage

Example Usage for Creation and Encryption of VEK

./efs_key --encrypt --derivation-string=test --context-string=context –
vek_name=homedir

The command above:

‣ Creates and encrypts VEK

‣ /etc/nvidia/efs/vek_homedir_enc.key le has the encrypted VEK and IV.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 832

Understanding Security

Example Usage for Decryption of VEK

./efs_key --decrypt=<tmp-input-file> --derivation-string=test --context-
string=context –vek_name=homedir

The command above:

‣ Decrypts the encrypted VEK from /etc/nvidia/efs/vek_homedir_enc.key

‣ The decrypted VEK is written to <tmp-input-file> as a hexadecimal stream, one
character per 4-bits.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 833

Chapter 8. System Programming

This section provides guidance on adapting components to t special needs. The tasks
only apply if you modify and rebuild the kernel, boot loader, or device tree binaries.

8.1 Compiling the Kernel (Kernel 5.10)
This topic contains instructions for compiling the Linux Kernel Source in your Linux
product.

1. Set up the environment macros: The LOCAL_VERSION environment variable appends
-tegra to the kernel version and modules, please ensure $NV_WORKSPACE is set to
<top> of the PDK install directory.
export ARCH=arm64
export CROSS_COMPILE=${PWD}/toolchains/aarch64--glibc--stable-2022.03-1/
bin/aarch64-buildroot-linux-gnu-
export LOCALVERSION="-tegra"
export NV_BUILD_KERNEL_OPTIONS="5.10"

2. Set the kernel source directory as the current working directory:
cd $NV_WORKSPACE/drive-linux/kernel/source/oss_src

3. Enter the following command to apply the rt-patches.
cd kernel/scripts
bash rt-patch.sh apply-patches
cd ../../

4. Install the packages to ready the kernel building workspace:
sudo apt-get update
sudo apt-get -f -y install imagemagick graphviz dvipng python3-venv fonts-
noto-cjk latexmk librsvg2-bin texlive-xetex flex bison

5. Create an output directory and clean up.
mkdir out-linux
make -C kernel O=${PWD}/out-linux clean

6. Congure the kernel to the standard kernel with the command. To build a production
kernel instead of a standard kernel, please use tegra_prod_defcong instead of
tegra_defcong.
make -C kernel O=${PWD}/out-linux tegra_defconfig

7. Build the kernel.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 834

System Programming

make -j3 -C kernel O=${PWD}/out-linux

Note: If the preceding command fails, enter the make command without the
j<number> option.

8. Consolidate the built kernel modules in the build directory with the following
commands:
export INSTALL_MOD_PATH=${PWD}/out-linux
make -C kernel O=${PWD}/out-linux modules_install

9. Recompile the display kernel modules.

a). Untar the display source code.

The NVIDIA-kernel-module-source-<Version>.tar.xz source code is supplied as a
.xz le. Untar the le. Its location is <NV_WORKSPACE>/drive-linux_src/.
cd $NV_WORKSPACE/drive-linux/kernel/source/oss_src
tar -xvf $NV_WORKSPACE/drive-linux_src/NVIDIA-kernel-module-source-
TempVersion.tar.xz

b). Compile the display kernel module.
export IGNORE_PREEMPT_RT_PRESENCE=1
cd NVIDIA-kernel-module-source-TempVersion
make \
 modules \
 SYSSRC=$NV_WORKSPACE/drive-linux/kernel/source/oss_src/kernel \
 SYSOUT=$NV_WORKSPACE/drive-linux/kernel/source/oss_src/out-linux \
 CC=${CROSS_COMPILE}gcc \
 LD=${CROSS_COMPILE}ld.bfd \
 AR=${CROSS_COMPILE}ar \
 CXX=${CROSS_COMPILE}g++ \
 OBJCOPY=${CROSS_COMPILE}objcopy \
 TARGET_ARCH=aarch64 \
 ARCH=arm64

c). Copy the display modules to the module_install path:
mkdir -p $NV_WORKSPACE/drive-linux/kernel/preempt_rt${PROD_SUFFIX}/
modules/<kernel_version>extra/opensrc-disp/
cd kernel-open
cp nvidia.ko nvidia-modeset.ko nvidia-drm.ko $NV_WORKSPACE/drive-linux/
kernel/preempt_rt${PROD_SUFFIX}/modules/<kernel_version>extra/opensrc-
disp/

10. To ash the built kernel, please update the kernel Image, kernel modules, and then the
lesystem:

a). Copy the uncompressed (Image) kernel images to the top of the kernel directory
with the following command:
export PROD_SUFFIX=<str> # If using production kernel, please set <str>
 to "_prod" else set to empty string ""
sudo rm -fv $NV_WORKSPACE/drive-linux/kernel/preempt_rt${PROD_SUFFIX}/
images/*
sudo cp -v ${PWD}/out-linux/arch/arm64/boot/Image ${PWD}/out-linux/
vmlinux ${PWD}/out-linux/System.map $NV_WORKSPACE/drive-linux/kernel/
preempt_rt${PROD_SUFFIX}/images/
CAUTION: Before copying the new kernel images, please back up the default kernels
provided.

b). Copy the built modules to the SDK kernel modules path:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 835

System Programming

sudo rm -rf $NV_WORKSPACE/drive-linux/kernel/preempt_rt${PROD_SUFFIX}/
modules/*
sudo cp -a ${PWD}/out-linux/lib/modules/* $NV_WORKSPACE/drive-linux/
kernel/preempt_rt${PROD_SUFFIX}/modules/

c). Copy the built modules to the root le system path with the following commands:

1. To copy the updated modules into the root le system, use the following Build-
FS steps:

a). Create a Build-FS JSON with the following content using the editor of your
choice. Name it update_rfs.CONFIG.json and put it in $PWD. The parameter
<fstype> should be standard, production, production_debug depending on
the list of modules to be copied to the lesystem.
{
 "OS": "linux",
 "Output": "driveos-updated-rfs",
 "Base": "${BASE_DIR}/targetfs.img",
 "FilesystemType": "<fstype>",
 "CopyTargets": [
 "${COPYTARGETYAML_DIR}/copytarget-kernel-modules.yaml"
],
 "PostInstalls": {
 "/etc/nvidia/run-once/nv-run-once-run-ldconfig": "target",
 "/etc/nvidia/run-once/nv-run-once-run-depmod": "target"
 }
}

b). Execute Build-FS with the preceding conguration to rebuild the lesystem.
Set NV_WORKSPACE to opt for SDK install directory (containing drive-linux
directory).
export NVRTKERNELNAME="$(basename $NV_WORKSPACE/drive-linux/
kernel/preempt_rt${PROD_SUFFIX}/modules/*rt*-tegra)"
sudo -E /usr/bin/python3 -B /opt/nvidia/driveos/common/
filesystems/build-fs/17/bin/build_fs.py -w ${NV_WORKSPACE}/ -
i $PWD/update_rfs.CONFIG.json -o ${NV_WORKSPACE}/drive-linux/
filesystem/targetfs-images/
sudo rm -f ${NV_WORKSPACE}/drive-linux/filesystem/targetfs.img
sudo ln -s ${NV_WORKSPACE}/drive-linux/filesystem/targetfs-images/
driveos-updated-rfs.img ${NV_WORKSPACE}/drive-linux/filesystem/
targetfs.img

11. Flash the target using the SDK Bootburn tool to the board.
12. Boot up the board where the built kernel modules are auto-loaded on boot.

8.2 Compiling the Kernel (Kernel 5.15)
This topic contains instructions for compiling the Linux kernel source in your Linux SDK
product.

1. Set up the environment macros: The LOCAL_VERSION environment variable appends -
rt-tegra to the kernel version and modules, please ensure $NV_WORKSPACE is set to
<top> of the PDK install directory.
export ARCH=arm64
export CROSS_COMPILE=${PWD}/toolchains/aarch64--glibc--stable-2022.03-1/
bin/aarch64-buildroot-linux-gnu-

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 836

System Programming

export LOCALVERSION="-rt-tegra"

2. Set the kernel source directory as the current working directory:
cd $NV_WORKSPACE/drive-linux/kernel/source/oss_src

3. Enter the following command to apply the rt-patches.
cd kernel/scripts
bash generic-rt-patch.sh apply-patches
cd ../../

4. Install the packages to ready the kernel building workspace:
sudo apt-get update
sudo apt-get -f -y install imagemagick graphviz dvipng python3-venv fonts-
noto-cjk latexmk librsvg2-bin texlive-xetex flex bison

5. Create an output directory and clean up.
mkdir out-linux
make -C kernel O=${PWD}/out-linux clean

6. Congure the kernel to the standard kernel with the command. To build a production
kernel instead of a standard kernel, please use tegra_prod_defcong instead of
defcong.
make -C kernel O=${PWD}/out-linux defconfig

7. Build the kernel:
make -j3 -C kernel O=${PWD}/out-linux
Note: If the preceding command fails, enter the make command without the j<number>
option.

8. Build OOT modules:
ln -s -f ${PWD}/nvidia-oot /tmp/nv-oot
make -j3 -C ${PWD}/out-linux M=/tmp/nv-oot srctree.nvidia-oot=/tmp/nv-oot
 srctree.nvidia=/tmp/nv-oot V=1 modules CONFIG_TEGRA_OOT_MODULE=m
Note: If the preceding command fails, enter the make command without the j<number>
option.

9. Consolidate the built kernel modules in the build directory with the following
commands:
export INSTALL_MOD_PATH=${PWD}/out-linux
make -C kernel O=${PWD}/out-linux modules_install
make -C ${PWD}/out-linux M=/tmp/nv-oot modules_install
rm /tmp/nv-oot

10. Recompile the display kernel modules.

a). Unify headers and Module.symvers for display module compilation:
cd $NV_WORKSPACE/drive-linux/kernel/source/oss_src
cat nvidia-oot/Module.symvers >> out-linux/Module.symvers
rsync -avzpq nvidia-oot/include/ out-linux/include
rsync -avzpq nvidia-oot/drivers/gpu/host1x/include/ out-linux/drivers/
gpu/host1x/include

b). Untar the display source code.

The NVIDIA-kernel-module-source-<Version>.tar.xz source code is supplied as a
.xz le. Untar the le. Its location is <NV_WORKSPACE>/drive-linux_src/
tar -xvf $NV_WORKSPACE/drive-linux_src/NVIDIA-kernel-module-source-
TempVersion.tar.xz

c). Compile the display kernel module.
export IGNORE_PREEMPT_RT_PRESENCE=1
cd NVIDIA-kernel-module-source-TempVersion

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 837

System Programming

make \
 modules \
 SYSSRC=$NV_WORKSPACE/drive-linux/kernel/source/oss_src/kernel \
 SYSOUT=$NV_WORKSPACE/drive-linux/kernel/source/oss_src/out-linux \
 SYSSRCHOST1X=$NV_WORKSPACE/drive-linux/kernel/source/oss_src/nvidia-
oot/drivers/gpu/host1x/include\
 CC=${CROSS_COMPILE}gcc \
 LD=${CROSS_COMPILE}ld.bfd \
 AR=${CROSS_COMPILE}ar \
 CXX=${CROSS_COMPILE}g++ \
 OBJCOPY=${CROSS_COMPILE}objcopy \
 TARGET_ARCH=aarch64 \
 ARCH=arm64

d). Copy the display modules to the module_install path.
mkdir -p $NV_WORKSPACE/drive-linux/kernel/preempt_rt${PROD_SUFFIX}/
modules/<kernel_version>extra/opensrc-disp/
cd kernel-open
cp nvidia.ko nvidia-modeset.ko nvidia-drm.ko $NV_WORKSPACE/drive-linux/
kernel/preempt_rt${PROD_SUFFIX}/modules/<kernel_version>extra/opensrc-
disp/

11. To ash the built kernel, update the kernel Image, kernel modules, and then the
lesystem:

a). Copy the uncompressed (Image) kernel images to the top of the kernel directory
with the following command:
export PROD_SUFFIX=<str> # If using production kernel, set <str> to
 "_prod" else set to empty string ""
sudo rm -fv $NV_WORKSPACE/drive-linux/kernel/preempt_rt${PROD_SUFFIX}/
images/*
sudo cp -v ${PWD}/out-linux/arch/arm64/boot/Image ${PWD}/out-linux/
vmlinux ${PWD}/out-linux/System.map $NV_WORKSPACE/drive-linux/kernel/
preempt_rt${PROD_SUFFIX}/images/
CAUTION: Before copying the new kernel images, please back up the default kernels
provided.

b). Copy the built modules to the SDK kernel modules path:
sudo rm -rf $NV_WORKSPACE/drive-linux/kernel/preempt_rt${PROD_SUFFIX}/
modules/*
sudo cp -a ${PWD}/out-linux/lib/modules/* $NV_WORKSPACE/drive-linux/
kernel/preempt_rt${PROD_SUFFIX}/modules/

c). Copy the built modules to the root le system path with the following commands:

1. To copy the updated modules into the root le system, use the following Build-
FS steps:

a). Create a Build-FS JSON with the following content using the editor of your
choice. Name it update_rfs.CONFIG.json and put it in $PWD. The parameter
<fstype> should be standard, production, production_debug depending on
the list of modules to be copied to the lesystem.
{
 "OS": "linux",
 "Output": "driveos-updated-rfs",
 "Base": "${BASE_DIR}/targetfs.img",
 "FilesystemType": "<fstype>",
 "CopyTargets": [
 "${COPYTARGETYAML_DIR}/copytarget-kernel-modules.yaml"
],
 "PostInstalls": {

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 838

System Programming

 "/etc/nvidia/run-once/nv-run-once-run-ldconfig": "target",
 "/etc/nvidia/run-once/nv-run-once-run-depmod": "target"
 }
}

b). Execute Build-FS with the preceding conguration to rebuild the lesystem.
Set NV_WORKSPACE to opt for SDK install directory (containing drive-linux
directory).
export NVRTKERNELNAME="$(basename $NV_WORKSPACE/drive-linux/
kernel/preempt_rt${PROD_SUFFIX}/modules/*rt*-tegra)"
sudo -E /usr/bin/python3 -B /opt/nvidia/driveos/common/
filesystems/build-fs/17/bin/build_fs.py -w ${NV_WORKSPACE}/ -
i $PWD/update_rfs.CONFIG.json -o ${NV_WORKSPACE}/drive-linux/
filesystem/targetfs-images/
sudo rm -f ${NV_WORKSPACE}/drive-linux/filesystem/targetfs.img
sudo ln -s ${NV_WORKSPACE}/drive-linux/filesystem/targetfs-images/
driveos-updated-rfs.img ${NV_WORKSPACE}/drive-linux/filesystem/
targetfs.img

12. Update initramfs kernel modules with the ones built.

a). If Building a production kernel, then please set

1. export INITRAMFS_IMAGE=$NV_WORKSPACE/drive-linux/filesystem/prod-
initramfs.cpio

b). Else If building a standard kernel, please set

1. export INITRAMFS_IMAGE=$NV_WORKSPACE/drive-linux/filesystem/initramfs.cpio

c). Extract the initramfs.

1. sudo rm -rf ./initramfs; sudo mkdir -p ./initramfs; cd
 ./initramfs

2. sudo cpio -imdu --quiet < ${INITRAMFS_IMAGE}

d). Run copytarget to copy kernel modules.
 export PROD_SUFFIX=<str> # If using production kernel, please set <str> to
 "_prod" else set to empty string ""
 export NVRTKERNELNAME="$(basename $NV_WORKSPACE/drive-linux/kernel/
preempt_rt${PROD_SUFFIX}/modules/*rt*-tegra)"
 export NV_SDK_NAME_LINUX=drive-linux
 sudo rm -rf lib/modules/*
 sudo -E /opt/nvidia/driveos/common/filesystems/copytarget/1/copytarget.py
 $PWD $NV_WORKSPACE/ $NV_WORKSPACE/drive-linux/filesystem/copytarget/manifest/
copytarget-kernel-modules.yaml --filesystem-type boot_initramfs

e). Re-create updated initramfs:

1. sudo find . | sudo cpio --quiet -H newc -o >
 ${INITRAMFS_IMAGE}

13. Flash the target using the SDK Bootburn tool to the board.
14. Boot up the board where the built kernel modules are auto-loaded on boot.

8.3 NVIDIA Supported Cross Toolchains
A cross toolchain refers to the compiler, linker, and target's C library that executes on the
host (x86 or x86_64) but generates code for the ARM architecture. The C library is used for
linking compiled code to create the target application.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 839

System Programming

The toolchains provided in the SDK(in $TOP/toolchains) are described in the table below.

Directory Components
Where to use the
toolchain Sources

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 840

System Programming

Directory Components
Where to use the
toolchain Sources

armv7-eabihf-
stable-2020.08-1

GCC - 9.3.0 Binutils
- 2.31 glibc-2.33
STDC++: 6.0.28
(GLIBCXX_3.4.28)
Origin - Bootlin

Building 32-bit
modules for trusted OS

Debian Installer:

nv-driveos-
foundation-oss-src-
<release><GCID>_amd64.deb

Files:

<top>/drive-
foundation_src/
bootlin/toolchain-
sources_stable-2020.08-1_src.tar.gz

Sources from
upstream:

https://
toolchains.bootlin.com/
downloads/releases/
sources/

Buildroot decong:
Extract <top>/drive-
foundation_src/
bootlin/toolchain-
sources_stable-2020.08-1_src.tar.gz
<top>/drive-
foundation_src/
bootlin/toolchain-
sources_stable-2020.08-1_src/
armv7-eabihf-glibc-
stable-2020.08-1.defconfig|

aarch64-
stable-2022.03-1

GCC - 9.3.0 Binutils
- 2.31 glibc-2.33
STDC++: 6.0.28
(GLIBCXX_3.4.28)
Origin - Bootlin

Binding a guest PCT
to the hypervisor,
building 64-bit
Quickboot,Building 64-
bit Trusted OS, and
building user-space
components

Debian Installer:

nv-driveos-
foundation-oss-src-
<release><GCID>_<release><GCID>_amd64.deb

Files:

<top>/drive-
foundation_src/
bootlin/toolchain-
sources_stable-2020.08-1_src.tar.gz

<top>/drive-
foundation_src/
bootlin/toolchain-
sources_stable-2022.03-1_src.tar.gz

Sources from
upstream:

https://
toolchains.bootlin.com/
downloads/releases/
sources/

Also contains Nvidia
customized GCC
source code in <top>/
drive-foundation_src/
bootlin/toolchain-
sources_stable-2022.03-1_src.tar.gz

Buildroot decong:
Extract <top>/drive-
foundation_src/
bootlin/toolchain-
sources_stable-2022.03-1_src.tar.gz
<top>/drive-
<TBD_platform_ver>-
stable-2022.03-1.defconfig

armv5-eabi-
stable-2020.08-1

GCC - 9.3.0 Binutils
- 2.31 glibc-2.33
STDC++: 6.0.28
(GLIBCXX_3.4.28)
Origin - Bootlin

For ADSP rmware
and ADSP plugins
compilation

Debian Installer:

nv-driveos-
foundation-oss-src-
<release><GCID>_amd64.deb

Files:

<top>/drive-
foundation_src/
bootlin/toolchain-
sources_stable-2020.08-1_src.tar.gz

Sources from
upstream:

https://
toolchains.bootlin.com/
downloads/releases/
sources/

Buildroot decong:
Extract <top>/drive-
foundation_src/
bootlin/toolchain-
sources_stable-2020.08-1_src.tar.gz
<top>/drive-
<TBD_platform_ver>-
stable-2020.08-1.defconfig|

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 841

https://toolchains.bootlin.com/downloads/releases/sources/
https://toolchains.bootlin.com/downloads/releases/sources/
https://toolchains.bootlin.com/downloads/releases/sources/
https://toolchains.bootlin.com/downloads/releases/sources/
https://toolchains.bootlin.com/downloads/releases/sources/
https://toolchains.bootlin.com/downloads/releases/sources/
https://toolchains.bootlin.com/downloads/releases/sources/
https://toolchains.bootlin.com/downloads/releases/sources/
https://toolchains.bootlin.com/downloads/releases/sources/
https://toolchains.bootlin.com/downloads/releases/sources/
https://toolchains.bootlin.com/downloads/releases/sources/
https://toolchains.bootlin.com/downloads/releases/sources/

System Programming

8.3.1 Steps to Rebuild the Toolchain
Obtain buildroot-toolchains_toolchains.bootlin.com-stable-2020.08-1.tar.gz and toolchain-
sources_stable-2020.08-1_src.tar.gz after installing nv-driveos-foundation-oss-src-
<release>_<GCID>_amd64.deb

The les are under <top>/drive-foundation_src/bootlin/

Common

1. mkdir build

2. tar -C build -xpf toolchain-sources_stable-2020.08-1_src.tar.gz

aarch64-glibc-stable-2022.03-1

1. tar -C build -xpf buildroot-toolchains_toolchains.bootlin.com-
stable-2022.03-1.tar.gz

2. tar -C build -xpf toolchain-sources_stable-2022.03-1_src.tar.gz

3. Add the following lines to build/aarch64-glibc-stable-2022.03-1.defcong:

a). BR2_GCC_ENABLE_OPENMP=y

b). BR2_HOST_DIR="$(TOPDIR)/build"

4. cp build/aarch64-glibc-stable-2022.03-1.defconfig build/.config

5. cd build && make olddefconfig && make sdk && cd -

6. Toolchain is available in build/output/images/aarch64-buildroot-linux-gnu_sdk-
buildroot.tar.gz

armv5-eabi-glibc-stable-2020.08-1

1. tar -C build -xpf buildroot-toolchains_toolchains.bootlin.com-
stable-2020.08-1.tar.gz

2. cp build/armv5-eabi-glibc-stable-2020.08-1.defconfig build/.config

3. cd build && make olddefconfig && make sdk && cd -

4. Toolchain is available in build/output/images/armv5-eabi-buildroot-linux-
gnu_sdk-buildroot.tar.gz.

armv7-eabihf-glibc-stable-2020.08-1

1. tar -C build -xpf buildroot-toolchains_toolchains.bootlin.com-
stable-2020.08-1.tar.gz

2. cp build/armv7-eabihf-glibc-stable-2020.08-1.defconfig build/.config

3. cd build && make olddefconfig && make sdk && cd -

4. Toolchain is available in build/output/images/armv7-eabihf-buildroot-linux-
gnu_sdk-buildroot.tar.gz.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 842

System Programming

8.4 DRIVE OS Linux Yocto Components
This topic contains instructions on building the NVIDIA Yocto project-based components
such as kernel, root le systems, and toolchains. With the Yocto Project, embedded Linux
developers can build customized le systems that satisfy embedded constraints. The
Yocto Project consolidates the eorts of the BitBake and OpenEmbedded communities.
Those projects enable users to easily dene, congure, and cross-compile components
required for embedded applications.

NVIDIA DRIVE
®
 OS Linux provides the following Yocto root le system images:

‣ Yocto-Drive OS AV (tegra-drive-os-av-image)

‣ Cold-boot initramfs (tegra-initramfs-boot/tegra-knext-initramfs-boot/tegra-prod-
knext-initramfs-boot)

‣ Recovery initramfs (tegra-initramfs-recovery)

The Yocto DRIVE OS AV image consists of OSS components in accordance with Yocto 3.1
released baseline, NVIDIA proprietary platform enablement and acceleration components.
This image is a suitable starting point for algorithm and application development for
Autonomous Vehicle systems.

8.4.1 Building the Yocto Project Components for
NVIDIA DRIVE Orin

8.4.1.1 Host Prerequisites
‣ Ubuntu 20.04.2

‣ Fast host CPU like Intel Core i5 or better (to reduce build time)

‣ 50 GB Free space on HDD or more

‣ 4GB RAM or more

The Yocto build is supported with two kinds of development kits, PDK and SDK. The SDK
builds equivalently as the PDK, except for a few components, for which prebuilts are copied
instead of compiled. To build DRIVE OS AV rootfs from the PDK, versions of PDK Debian
les must be installed.

The Yocto build tool, bitbake, detects for the presence of the version-nv-<pdk/sdk>.txt
le at <top>/drive-linux/lib-target, and builds the corresponding development kit.

8.4.1.2 Setting Up Linux Foundation and Compute Bits
Using Debian Packages
Follow steps in the NVIDIA DRIVE OS Installation Guide, in the "Installation Using DRIVE OS
Local Debian Packages" topic, to get the Debian packages.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 843

System Programming

Install the following packages to set up NVIDIA DRIVE OS PDK for Yocto build:
nv-driveos-build-<PDK>-linux-<RELEASE>-<BUILD>-<GCID>
nv-driveos-linux-oss-src-<RELEASE>-<BUILD>-<GCID>
nv-driveos-linux-yocto-<RELEASE>-<BUILD>-<GCID>
nv-driveos-linux-yocto-oss-src-<RELEASE>-<BUILD>-<GCID>
nv-driveos-foundation-oss-src-<RELEASE>-<BUILD>-<GCID>
nv-driveos-linux-tegra2aurix-updater-<RELEASE>-<BUILD>-<GCID>

Installing and Setting Up the Toolkits

Note: CUDA, CuDNN, TensorRT, and DriveWorks packages for Yocto are distributed
through NVOnline. Contact your NVIDIA representative for access to these packages.

Follow these steps to install and set up the toolkits:

1. Install CUDA Toolkit on the Host.
2. Install CuDNN Packages if Including cuDNN from Yocto.
3. Install TensorRT Packages if Including TensorRT from Yocto.
4. Install NVIDIA Driveworks if Including NVIDIA Driveworks from Yocto.

Install CUDA Toolkit on the Host

Note: This step is mandatory if CUDA is enabled with Yocto. CUDA toolkit must be
installed on the host before Yocto build initialization. Skip this section if CUDA toolkit is
already installed.

1. Follow the installation steps described in Installing CUDA Debian Packages under.
2. Copy the CUDA arm64 Debian package into a specic path as follows:

mkdir <top>/drive-linux/toolkits/cuda/drive-os-av/
cp cuda-tegra-repo-ubuntu*_arm64.deb <top>/drive-linux/toolkits/cuda/drive-os-av/

Install CuDNN Packages if Including cuDNN from Yocto

1. Follow the installation steps described in Installing cuDNN Debian Packages.
2. Copy the cuDNN deb le into a specic path:

mkdir <top>/drive-linux/toolkits/cudnn/
cp cudnn-local-tegra-repo-ubuntu2004-<CUDNN_MAJOR_VER>-<CUDNN_MINOR_VER>-
local_1.0-1_arm64.deb <top>/drive-linux/toolkits/cudnn

Install TensorRT Packages if Including TensorRT from Yocto

1. Follow the installation steps described in Installing TensorRT Debian Packages.
Additionally, install tensorrt-safe-cross-aarch64 package if DriveWorks is enabled.

Note: Install the tensorrt-safe-cross-aarch64 package if DriveWorks is enabled.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 844

System Programming

2. Copy the TensorRT deb le into a specic path:

mkdir -p <top>/drive-linux/toolkits/tensorRT
cp nv-tensorrt-repo-ubuntu2004-cuda${CUDA_VER}trt${TRT_VER}-d6l-target-
ga<BUILD_ID>-1_arm64.deb <top>/drive-linux/toolkits/tensorRT

Install NVIDIA Driveworks if Including NVIDIA Driveworks from Yocto

Note:

Before including NVIDIA Driveworks in Yocto builds, you must install CUDA,
CuDNN, and TensorRT toolkits and set up the respective Debian packages on the
host as described in the preceding sections.

1. Follow the installation steps:
sudo apt install -y ./driveworks_<dw-ver>-<GCID>_amd64.deb
sudo apt install -y ./driveworks-data_<dw-ver>-<GCID>_all.deb
sudo apt install -y ./driveworks-cross_<dw-ver>~linux<release-ver><GCID>_amd64.deb
sudo apt install -y ./driveworks-samples_<dw-ver>-<GCID>_amd64.deb
sudo apt install -y ./driveworks-stm_<dw-ver>-<GCID>_amd64.deb
sudo apt install -y ./driveworks-stm-cross_<dw-ver>~linux<reease-ver>-
<GCID>_amd64.deb
sudo apt install -y ./driveworks-stm-samples_<dw-ver>-<GCID>_amd64.deb
sudo apt install -y ./driveworks-cgf_<dw-ver>-<GCID>_amd64.deb
sudo apt install -y ./driveworks-cgf-data_<dw-ver>-<GCID>_all.deb
sudo apt install -y ./driveworks-cgf-cross_<dw-ver>~linux<release-ver>-
<GCID>_amd64.deb
sudo apt install -y ./driveworks-cgf-samples_<dw-ver>-<GCID>_amd64.deb

2. [OPTIONAL] Execute the steps below only if enabling STM and CGF with Yocto:
mkdir <top>/drive-linux/toolkits/driveworks
cp driveworks-cgf_<dw-ver>~linux<release-ver>-<GCID>_arm64.deb <top>/drive-
linux/toolkits/driveworks
cp driveworks-stm_<dw-ver>~linux<release-ver>-<GCID>_arm64.deb <top>/drive-linux/
toolkits/driveworks

For more information, see To build NVIDIA Driveworks with tegra-drive-os-av-image.

8.4.1.3 Yocto DRIVE OS Linux Boot KPI
1. Follow the instructions in the “Disabling Foundation Logs” and “Disabling BPMP

Logs” sections in the DRIVE Linux Boot KPI chapter in the NVIDIA DRIVE OS 6.0 PDK
Developer Guide.

2. Modify <TOP>/drive-linux/kernel/source/oss_src/kernel/arch/arm64/configs/
tegra_defconfig

3. Replace CONFIG_DEBUG_FS=y with CONFIG_DEBUG_FS=m”
4. Refer to Building the Yocto Project Components for NVIDIA DRIVE Orin and follow the

steps to build Yocto.
5. Flash the board following instructions in Flashing Yocto Image and Running the

Samples on Target.
6. When the board is ashed and successfully booted, on the target side replace the le /

usr/bin/nv_camera_display.sh with the following:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 845

System Programming

For IMX728
#!/bin/bash

Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
NVIDIA CORPORATION and its licensors retain all intellectual property
and proprietary rights in and to this software, related documentation
and any modifications thereto. Any use, reproduction, disclosure or
distribution of this software and related documentation without an express
license agreement from NVIDIA CORPORATION is strictly prohibited.

set -x

linux=$(uname -r);
display=false;

mkdir -m 0755 -p /root
mkdir -p /tmp
mkdir -p /dev/shm/

/sbin/insmod /lib/modules/$linux/kernel/drivers/platform/tegra/
tegra_bootloader_debug.ko

echo "modprobe cdi_mgr cdi_tsc" > /sys/kernel/tegra_bootloader/add_profiler_record
/sbin/modprobe -a cdi_mgr cdi_tsc

echo "insmod nvmap.ko" > /sys/kernel/tegra_bootloader/add_profiler_record
/sbin/insmod /lib/modules/$linux/kernel/drivers/video/tegra/nvmap/nvmap.ko

if ["$display" = true]; then
 echo "insmod nvidia.ko" > /sys/kernel/tegra_bootloader/add_profiler_record;/sbin/
insmod /lib/modules/$linux/extra/opensrc-disp/nvidia.ko rm_firmware_active="all";echo
 "insmod nvidia-modeset.ko" > /sys/kernel/tegra_bootloader/add_profiler_record;/sbin/
insmod /lib/modules/$linux/extra/opensrc-disp/nvidia-modeset.ko;echo "insmod nvidia-
drm.ko" > /sys/kernel/tegra_bootloader/add_profiler_record;/sbin/insmod /lib/modules/
$linux/extra/opensrc-disp/nvidia-drm.ko modeset=1;echo "insmod nvgpu.ko" > /sys/
kernel/tegra_bootloader/add_profiler_record;/sbin/insmod /lib/modules/$linux/kernel/
drivers/gpu/nvgpu/nvgpu.ko;echo "launching app" > /sys/kernel/tegra_bootloader/
add_profiler_record;/usr/bin/nvsys_init_time -c "F008A120RM0A_CPHY_x4_s" -r 1 -d 1 --
disableISP2Output > /home/nvidia/nvsys_init_time_out.txt
else
 echo "launching app" > /sys/kernel/tegra_bootloader/add_profiler_record;/usr/bin/
nvsys_init_time -c "V1SIM728S1RU3120NB20_CPHY_x4" -m "0x0001 0x0000 0x0000 0x0000" -r
 1 > /home/nvidia/nvsys_init_time_out.txt
fi

echo "starting systemd" > /sys/kernel/tegra_bootloader/add_profiler_record
exec /lib/systemd/systemd

For AR0820 Camera Cong
#!/bin/bash

Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
NVIDIA CORPORATION and its licensors retain all intellectual property
and proprietary rights in and to this software, related documentation
and any modifications thereto. Any use, reproduction, disclosure or
distribution of this software and related documentation without an express
license agreement from NVIDIA CORPORATION is strictly prohibited.

set -x

linux=$(uname -r);
display=false;

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 846

System Programming

mkdir -m 0755 -p /root
mkdir -p /tmp
mkdir -p /dev/shm/

/sbin/insmod /lib/modules/$linux/kernel/drivers/platform/tegra/
tegra_bootloader_debug.ko

echo "modprobe cdi_mgr cdi_tsc" > /sys/kernel/tegra_bootloader/add_profiler_record
/sbin/modprobe -a cdi_mgr cdi_tsc

echo "insmod nvmap.ko" > /sys/kernel/tegra_bootloader/add_profiler_record
/sbin/insmod /lib/modules/$linux/kernel/drivers/video/tegra/nvmap/nvmap.ko

if ["$display" = true]; then
 echo "insmod nvidia.ko" > /sys/kernel/tegra_bootloader/add_profiler_record;/sbin/
insmod /lib/modules/$linux/extra/opensrc-disp/nvidia.ko rm_firmware_active="all";echo
 "insmod nvidia-modeset.ko" > /sys/kernel/tegra_bootloader/add_profiler_record;/sbin/
insmod /lib/modules/$linux/extra/opensrc-disp/nvidia-modeset.ko;echo "insmod nvidia-
drm.ko" > /sys/kernel/tegra_bootloader/add_profiler_record;/sbin/insmod /lib/modules/
$linux/extra/opensrc-disp/nvidia-drm.ko modeset=1;echo "insmod nvgpu.ko" > /sys/
kernel/tegra_bootloader/add_profiler_record;/sbin/insmod /lib/modules/$linux/kernel/
drivers/gpu/nvgpu/nvgpu.ko;echo "launching app" > /sys/kernel/tegra_bootloader/
add_profiler_record;/usr/bin/nvsys_init_time -c "F008A120RM0A_CPHY_x4_s" -r 1 -d 1 --
disableISP2Output > /home/nvidia/nvsys_init_time_out.txt
else
 echo "launching app" > /sys/kernel/tegra_bootloader/add_profiler_record;/
usr/bin/nvsys_init_time -c "F008A120RM0A_CPHY_x4_s" -r 1 > /home/nvidia/
nvsys_init_time_out.txt
fi

echo "starting systemd" > /sys/kernel/tegra_bootloader/add_profiler_record
exec /lib/systemd/systemd

Create a Symbolic Link and Modify Permission

1. Create a symlink and modify le permissions to 777.
sudo ln -sf /usr/bin/nv_camera_display.sh /sbin/init
sudo chmod 777 /usr/bin/nv_camera_display.sh

2. Reboot the board. The nvsys_init_time application runs before systemd.
3. Run the following command to get the proling data:

sudo cat /sys/kernel/tegra_bootloader/profiler

4. Post where the boot KPI logs will be generated (in /var/log/syslog).

8.4.1.4 To build NVIDIA Yocto Project based components
 1. Install the dependent packages:

‣ Ensure the host system is connected to the Internet.

‣ On the host, enter the following commands:

sudo add-apt-repository ppa:openjdk-r/ppa; sudo apt-get update; sudo apt-get
 install openjdk-8-jdk
sudo apt-get install gawk wget git-core diffstat unzip texinfo gcc-multilib
 build-essential chrpath socat xterm make xsltproc docbook-utils fop dblatex xmlto
 manpages-pl manpages-fr-extra qemu-user libpulse-dev xxd python3-distutils

 2. Change to the build directory on the host system with the following command:
cd <top>/drive-linux_src/yocto

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 847

System Programming

Where <top> is the directory on the host where the release is installed.
 3. Extract the contents of nvidia-layer.tgz and oss-packages.tgz with the following

command:
tar xzf nvidia-layer.tgz
tar xzf oss-packages.tgz

 4. Export TEMPLATECONF to use templates from the meta-drive6 layer with the following
command:
export TEMPLATECONF=$PWD/layers/meta-drive6/conf

 5. Initialize the Yocto project build environment with the following command:
source oss/dunfell/poky/oe-init-build-env

 6. Select the type of Image by setting the value of IMAGE_TYPE:
export IMAGE_TYPE=<full|minimal|samples|debug-utils>

‣ minimal : Rootfs with upstream OSS (baseline Yocto distro) and Tegra SW libraries.

‣ samples : Rootfs with contents of minimal, plus DRIVE OS samples (NVmedia, Gfx
etc. samples).

‣ debug-utils : Rootfs with contents of minimal, plus utilities to support debug and
proling (OSS and NV-proprietary debug utils).

‣ full : Superset rootfs with everything in minimal, samples and debug-utils packaged.

Note: Default image type is set to full.

 7. Enable network with Yocto build and download sources from upstream by setting
BB_NO_NETWORK as follows:
export BB_NO_NETWORK='0'

 8. Select the version of kernel by setting the value of KERNEL_VER:
export KERNEL_VER="5.10"

Note: The default kernel version is 5.15.

 9. Build component, image, or SDK/PDK depending on the recipe with the following
command:
bitbake <recipe>

Recipes of interest are:

bitbake <recipe> Function / Remarks

tegra-drive-os-av-image Yocto DRIVE OS AV rootfs

tegra-initramfs-boot Cold boot initramfs with K5.10

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 848

System Programming

bitbake <recipe> Function / Remarks

tegra-knext-initramfs-boot Cold boot initramfs with K5.15

tegra-prod-knext-initramfs-boot Cold boot initramfs with K5.15 production
cong

tegra-initramfs-recovery Recovery initramfs

Note: PDK packages must be installed before launching bitbake for recovery initramfs.

Note: SELinux support is enabled in Yocto with default mode as permissive. If you
need to begin testing system behavior in enforcing mode, you must modify the
DEFAULT_ENFORCING to "enforcing" in <top>/drive-linux_yocto/yocto/layers/
meta-drive6/recipes-security/refpolicy/refpolicy-minimum_%.bbappend.

Note: Steps to enable read-only root lesystem and dm-verity kernel security features
are described in DM-Verity and Read-Only File System Support.

8.4.1.5 To build CUDA with tegra-drive-os-av-image
Note:

For the supported CUDA toolkit version, see the Release Notes.

Build CUDA <CUDA-toolkit-version> with Yocto DRIVE OS AV rootfs for DRIVE OS 6.0
platforms.

 1. Export CUDA_ENABLE with <CUDA-toolkit-version>:
export CUDA_ENABLE=<CUDA-toolkit-version>

 2. Build or rebuild the image:
bitbake tegra-drive-os-av-image

8.4.1.6 To build CuDNN with tegra-drive-os-av-image
Note:

For the supported CuDNN toolkit version, see product Release Notes.

Build CuDNN <CuDNN-toolkit-version> with Yocto DRIVE OS AV rootfs for DRIVE OS 6.0
platforms.

 1. Export the CUDNN_ENABLE variable:
export CUDNN_ENABLE=<CuDNN-toolkit-version>

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 849

System Programming

 2. Build or rebuild the image:
bitbake tegra-drive-os-av-image

Note: The WARNING message "Unable to get checksum for cudnn-samples SRC_URI
entry cudnnTest-<CUDA_VER>-ubuntu<>-aarch64-v<CUDNN_VER>.tgz: le could not
be found" is expected when CUDNN_ENABLE is set.

8.4.1.7 To build TensorRT with tegra-drive-os-av-image
Note:

For the supported TensorRT toolkit version, see product Release Notes.

Build TensorRT <TensorRT-toolkit-version> with Yocto DRIVE OS AV rootfs for DRIVE OS 6.0
platforms.

 1. Export the TENSORRT_ENABLE variable:
export TENSORRT_ENABLE=<TensorRT-toolkit-version>

 2. Build or rebuild the image:
bitbake tegra-drive-os-av-image

8.4.1.8 To build NVIDIA Driveworks with tegra-drive-os-
av-image

Note: Before building NVIDIA Driveworks with Yocto, you must install and enable CUDA,
CuDNN, and TensorRT. For the supported NVIDIA Driveworks version, see the product
Release Notes.

Build NVIDIA Driveworks <DriveWorks-version> with Yocto Drive OS AV rootfs for DRIVE OS
6.0 platforms.

1. Export the following toolkit variables:
export DW_ENABLE=<Driveworks-version> # eg export DW_ENABLE=5.2
export CUDA_ENABLE=<CUDA_VER> # pre-requisite
export CUDNN_ENABLE=<CUDNN_VER> # pre-requisite
export TENSORRT_ENABLE=<TENSORRT_VER> # pre-requisite

2. Build or rebuild the image:
bitbake tegra-drive-os-av-image

8.4.2 Flashing Yocto Image and Running the
Samples on Target
By default, bootburn does not pick up Yocto built, such as quickboot, kernel, and so on, for
ashing due to known limitations.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 850

System Programming

8.4.2.1 To ash Yocto built Images via bootburn
These steps update the Yocto built images back to the release so that bootburn picks
them up:

1. Change to the Yocto deploy directory:
cd <top>/drive-linux_src/yocto/build/tmp/deploy/images/${MACHINE}

2. Copy the linux-DTBs to the release:
cp *.dtb <top>/drive-linux/kernel/preempt_rt/

3. Copy the kernel images and modules to the release:
cp Image <top>/drive-linux/kernel/preempt_rt/images/
cp vmlinux <top>/drive-linux/kernel/preempt_rt/images/
cp System.map <top>/drive-linux/kernel/preempt_rt/images/

For K5.15:
cd <top>/drive-linux/kernel/preempt_rt/modules
tar xf <top>/drive-linux_src/yocto/build/tmp/deploy/images/${MACHINE}/modules-
${MACHINE}.tgz
find ./ -name '*rt-tegra*' -exec mv -t ./ {} +
For K5.15 with production config :
cd <top>/drive-linux/kernel/preempt_rt_prod/modules
tar xf <top>/drive-linux_src/yocto/build/tmp/deploy/images/${MACHINE}/modules-
${MACHINE}.tgz
find ./ -name '*rt-tegra*' -exec mv -t ./ {} +

4. Copy the initramfs to the release:
For K5.10 :
cp tegra-initramfs-boot-*.cpio <top>/drive-linux/filesystem/initramfs.cpio
For K5.15 :
cp tegra-knext-initramfs-boot-*.cpio <top>/drive-linux/filesystem/initramfs.cpio
For K5.15 with production config :
cp tegra-prod-knext-initramfs-boot-*.cpio <top>/drive-linux/filesystem/prod-
initramfs.cpio

5. Copy the recovery initramfs to the release:
cp tegra-initramfs-recovery-*.cpio <top>/drive-linux/filesystem/recovery-
initramfs.cpio

6. Place the drive-os-av rootFS image at the location specified by the
bootburn configurations:
cd <top>/drive-linux/filesystem/targetfs-images
cp tegra-drive-os-av-image-${MACHINE}.img <top>/drive-linux/filesystem/targetfs-
images
ln -sf <top>/drive-linux/filesystem/targetfs-images/tegra-drive-os-av-image
${MACHINE}.img <top>/drive-linux/filesystem/targetfs.img

After following the steps above, all binaries are replaced by the Yocto built versions.
Executing bootburn now automatically picks up these updated binaries. This applies to
both native, as well as hypervisor ashing. For information on ashing steps, see the
Flashing Customization topic in the NVIDIA DRIVE OS 6.0 Linux SDK Developer Guide.

8.4.2.2 Running Yocto built Apps on Target
 1. Note: Export LD_LIBRARY_PATH=/usr/local/cuda-<CUDA-VERSION>/targets/

aarch64-linux/lib before running CUDA sample apps.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 851

System Programming

Run CUDA applications:

CUDA samples are packaged at /home/root/samples/cuda.
./sample-application>

 2. Run TensorRT applications:

TensorRT samples are packaged at /home/root/samples/tensorrt

The following sample applications are available:
sample_char_rnn
sample_googlenet
sample_movielens
sample_fasterRCNN

sample_fasterRCNN requires the TensorRT model le to be present in the data/faster-
rcnn/ subfolder. Download the model le here:

https://dl.dropboxusercontent.com/s/o6ii098bu51d139/faster_rcnn_models.tgz?dl=0

Note: Export LD_LIBRARY_PATH=/usr/local/cuda-<CUDA-VERSION>/targets/
aarch64-linux/lib before running CUDA sample apps.

 3. Run the NVIDIA DriveWorks applications:

The NVIDIA DriveWorks 'core' samples are packaged at /usr/local/driveworks-<DW-
VERSION>/bin.
./<sample-application>

If DriveWorks samples fail, export LD_LIBRARY_PATH:

export LD_LIBRARY_PATH=/usr/local/driveworks-<DW-VERSION>/lib:/usr/local/cuda-
<CUDA-VERSION>/targets/aarch64-linux/lib

Note: The test data les required by some of the DriveWorks samples are not
packaged in the rootfs by default, due to their large size. Samples from DW add-on
packages are also not packaged.

In order to run the DriveWorks sample apps that require test data les, the scp utility
may be used to push the required les into the target at /usr/local/driveworks-<DW-
VERSION>/data/.

The additional DriveWorks samples may be pushed via scp onto the target, at /usr/
local/driveworks-<DW-VERSION>/bin/.

 4. For running any OpenGLES based applications on the target, kernel module nvidia_drm
should be loaded by using insmod on target device:
insmod /lib/modules/<kernel_version>-rt63-tegra/extra/opensrc-disp/nvidia-drm.ko
 modeset=1

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 852

https://dl.dropboxusercontent.com/s/o6ii098bu51d139/faster_rcnn_models.tgz?dl=0

System Programming

8.4.2.3 Setting the PATH for NVIDIA User
By default, bash-3.2 included with DRIVE-OS-AV rootfs excludes the following PATH
settings for user nvidia:
/sbin
/usr/sbin
/usr/local/sbin

Since many utilities, such as ifconfig, are present under these directories, you must
update the PATH setting include them by executing the following command on the target
device:

export PATH=$PATH:/sbin:/usr/sbin:/usr/local/sbin

Also add that command to the .bashrc for user nvidia, so that the updated settings are
available in subsequent logins.

8.4.3 DM-Verity and Read-Only File System
Support
The NVIDIA DRIVE

®
 OS LINUX Yocto Cold-boot Initramfs (tegra-initramfs-boot) provides

special support for DM-Verity when you want to ash and boot the Rootfs image whose
integrity is veried and remains across system use. In DM-Verity workow, the le system
image content is validated on boot using the DM-verity root-hash and mounted read-only.
DM-Verity workow does not allow Rootfs to mount read/write as modifying the Rootfs
partition changes its contents. The Initramfs enables Rootfs to write operations to go to a
scratch partition to ensure normal operations (like logging). Both DM-Verity and handing of
Rootfs write operations are detailed below.

Mounting Rootfs with DM-Verity Enabled

1. Without DM-Verity, the Rootfs ext4 image is ashed to the gos0-fs partition, which is
mounted as read/write (unless explicitly set to read-only) in the PCT conguration.

2. With DM-Verity, the Rootfs ext4 is processed by NVIDIA DRIVE OS Bootburn to create
the Rootfs Image having the ext4 image content with the verity header information
appended. This content is ashed to the gos0-fs partition.

3. The Initiramfs checks the kernel command line to see if the string verity=1 is present.
If verity=1 is absent or verity=0, DM-Verity is disabled.

4. If the verity=1 string is present, DM-Verity is enabled and proceeds to read the string
starting from verityinfo and parses it to get the root-hash, root-hash oset, and
the raw device containing the verity-enabled Rootfs image (by default, this is /dev/
vblkdev0p1).

5. The Initramfs runs the cmd veritysetup with inputs: root-hash, root-hash oset,
and the raw device containing the verity-enabled Rootfs image (for example, /dev/
vblkdev0p1) to create the virtual plus mountable device: /dev/mapper/vroot.

6. /dev/mapper/vroot is mounted read-only and proceeds to prepare the scratch
partition for Rootfs writes.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 853

System Programming

Using Scratch Partition for Rootfs Writes (Like Logging) When Rootfs Is
Mounted Read-Only

The Rootfs can be mounted as read-only regardless of the state of DM-verity. If DM-Verity
is enabled, the Rootfs must always be mounted as read-only. In this case, the Initramfs
takes the following steps to use the scratch partition to enable Rootfs writes.

1. NVIDIA DRIVE OS PCT contains the writable gos-rw-overlay (by default, this is /dev/
vblkdev4) partition of size 1 GB, and the mounted Rootfs (read-only) contains the
directory /rw_overlay.

2. The device /dev/vblkdev4 is mounted on /rw_overlay to create mount points for
further mounts: /rw_overlay/var, /rw_overlay/tmp, /rw_overlay/home, and /
rw_overlay/etc/.

3. Finally, to route the Rootfs partition writes from /tmp, /etc/, /home, and /var to /
rw_overlay, Initramfs mounts as follows:

a). Mount overlayfs from /rw_overlay/var to /var.
b). Mount overlayfs from /rw_overlay/etc/ to /etc/.
c). Mount overlayfs from /rw_overlay/home to /home.

1. Overlayfs mounts a, b, and c allow Rootfs to see the existing les in the
respective directory, and route write operations to /rw_overlay/*.

d). Bind the mount directory /rw_overlay/tmp to /tmp.

1. In this case, /tmp in the Rootfs starts empty, and all read/write from /tmp to /
rw_overlay/tmp.

8.5 Kernel Conguration
The Linux kernel used in this release is based on 5.15 major revision. Additionally, an
optional package with 5.10 based kernel (which has been the primary kernel in prior
releases) is shipped as well to help with the transition (though it has undergone minimal
QA). The 6.0.7 release is the last release to support K5.10 kernel.

NVIDIA Linux PDK and SDK packages use the Linux kernel with PREEMPT-RT patches
applied and the images shipped with the package are with PREEMPT-RT patches applied.

PREEMPT-RT patches can be obtained here and are applied on top of the Linux kernel.
Additionally, some patches added by NVIDIA to resolve specic issues are also included.

The PREEMPT-RT patch les are available in the kernel/rt-patches folder in the Linux
source (provided as a package as part of the release).

The primary change included with PREEMPT-RT patches is to convert spinlocks to mutex to
make it preemptable.

The benet of using PREEMPT-RT patches includes enabling real-time capabilities and
reducing system latency, which are critical for NVIDIA DRIVE

®
 OS based products.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 854

https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/

System Programming

There may be slight degradation in performance in some cases with the kernel with
PREEMPT-RT patches compared to the kernel without PREEMPT-RT patches.

For more information on PREEMPT-RT, see the Linux Foundation documentation.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 855

https://wiki.linuxfoundation.org/realtime/start

Chapter 9. Bootloader Programming

The following sections describe bootloader programming.

9.1 Understanding the Boot Flow Process
Note:

NVIDIA checks all binary integrity up to primary IFS image being loaded. Internal
detail is not fully disclosed.

With Orin, the PSC processor handles all security (such as authentication/
decryption) for BPMP_BR and MB1. Later in the process, PSC also owns all security
keys for the system.

Upon power-up of the device, the boot ow sequence of events is as follows:

Notice that the BPMP processor runs:

‣ BootROM

‣ MB1

‣ BPMP-FW

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 856

Bootloader Programming

Notice that the CCPLEX processor runs:

‣ MB2

Notice that the PSC processor runs:

‣ PSC-BootROM

‣ PSC_BL

‣ PSC-FW

9.1.1 Boot ROM
The boot ROM is hard-wired in the NVIDIA Orin chip to:

‣ Initialize the necessary registers to access the desired boot media.

‣ Load the boot components according to the boot sequence.

The initial boot medium is selected by using the strap resistor conguration BOOT-
SELECT_CODE or by setting the RESERVED_SW and optionally BOOT_DEVICE_INFO fuse
elds.

The PSC-ROM is also hard-wired in the NVIDIA Orin chip to:

‣ Securely load the OEM keys from fuses and the NVIDIA keys from RTL into the Security
Engine.

‣ Authenticate and decrypt the binaries loaded by the boot ROM.

The early boot ow sequence is as follows:

Note: MB1-BCT is optionally decrypted depending on the BOOT_SECURITY_INFO fuse
setting.

The boot ROM and PSC-ROM use the boot conguration table named BR_BCT, which
contains information such as:

‣ Storage location of BCH for MB1, PSC-BL1, and MB1-BCT

‣ Boot chain parameters

‣ Debug ags used by PSC-ROM

‣ Validation

Verify the SHA-512 hash in the BCH/BCT that matches the computed value.

‣ Authentication

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 857

Bootloader Programming

Verify public signature by using the public key in the BCH/BCT, which is veried against
its digest in fuses. The BCH contains the SHA-512, which is then validated again by
PSC-ROM. For authentication and validation information, see Understanding Security.

‣ BR_BCT is not customer congurable except the customer_data elds.

9.1.2 Microboot 1 and PSC-BL1
After the BootROM has completed execution, PSC-ROM/PSC-BL1 releases reset on the
BPMP R5 to start Microboot1 (MB1) in the boot ow process as follows:

MB1 extends BootROM to provide the same security level in conjunction with PSC-BL1.
During MB1 sequence, these tasks are executed:

‣ Set clock and security settings

‣ Initialize the platform conguration settings from MB1_BCT

‣ Initialize the SDRAM based on the MB1 boot conguration table, MB1_BCT, and
MEM_BCT.

‣ Initialize the CCPLEX including MCE FW

‣ Load/authenticate the NVDEC, BPMP-FW, PSC-FW and TSEC rmwares

‣ Load the SC7 rmwares and prepare SC7 context

‣ Load/authenticate

MB1_BCT is NOT customer congurable.

9.1.3 Microboot 2
The next stage of the boot sequence is Microboot 2 (MB2). The sequence is as follows:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 858

Bootloader Programming

In step 2, MB2 has ability to utilize QSPI, eMMC, or UFS as the boot device for the
remaining boot payloads. This is determined through the NV Partition Table settings.

MB2 loads and validates additional OEM rmware that congures the SoC to run more
complex software components. The additional rmware components are as follows:

Firmware Component Description

Audio Processor Engine Firmware (APE-FW) Provides the facilities for audio processing.

ATF/TOS image Provide EL3 and Secure EL1 support.

Functional Safety Island Firmware (FSI-FW) Provide the monitoring and reporting of
functional safety errors.

Realtime Engine Firmware (RCE-FW) Provides the realtime camera processing engine

SPE-FW Provide debugging support in standard builds

Display Control Engine Firmware (DCE-FW) Provides the realtime display processing engine.

Foundation image Provides the Hypervisor stack and servers.

9.1.4 Authentication and Validation of Binaries
All rmware binaries and calibration data (i.e., BCTs, DTBs) loaded by BootROM, MB1, MB2,
and Partition Loader are validated, authenticated, and optionally decrypted. The following
category of binaries go through this process:

‣ BPMP related rmware binaries including MB1, BPMP_FW, and associated calibration
data

‣ PSC related rmwares including PSC-BL1 and PSC-FW

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 859

Bootloader Programming

‣ CCPLEX related rmware binaries including MB2, MCE, ARM Trusted Firmware, Secure
OS, partition table, and associated calibration data

‣ CCPLEX virtualization binaries including Hypervisor, servers, Partition Loader, and
associated calibration data

‣ Auxiliary rmwares including FSI, DCE, RCE, PVA, APE

‣ Key IST rmware binaries and calibration data

‣ Runtime IST rmware binaries and calibration data

‣ SC7 support binaries

‣ Guest OS binaries including kernel, Primary IFS, and associated calibration data

A Binary Component Header (BCH) contains information about the binaries in a binary
group. It is attached to the top of each binary or can be attached to one binary in the
binary group. Up to four binaries can belong to a group. A BCH has an array of four
elements, which contain:

‣ Size of the binary

‣ Version number

‣ Hash value

For more information about BCH refer to Grouping of Boot Images.

Dual Authentication of Firmware

MB1 rmware, BPMP rmware, and CPU rmware are delivered in binary form and are
signed with the NVIDIA and OEM RSA keys. As a result, two validation steps are required:

1. Authentication and validation with the OEM key
2. Authentication and validation with the NVIDIA key

Recovery Support

For authentication and validation information consult Understanding Security.

SecureOS

The SecureOS (TOS) runs in EL3 mode and provides SecureMode support.

Hypervisor-based Flow

The hypervisor-based ow is as follows:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 860

Bootloader Programming

Virtual Machine

The Virtual Machine (VM) is an emulation of a native system. It is a software container
that functions as an independent system with its own dedicated hardware and operating
system, called guest OS in the context of Hypervisor.

Partition Loader

The PartitionLoader (PL) is a special purpose boot loader image embedded into the
Hypervisor. It acts as Virtual boot ROM for the virtual machine.

9.1.5 Grouping of Boot Images
Authenticating each boot rmware binary to maintain chain of trust requires a great deal
of time. Consequently, for boot time optimization, a new mechanism to group boot binaries
is provided. A minimum of one, and up to a maximum of four, binaries can be made to form
a group and refer to a single header as Boot Component Header (BCH) for a group. BCH
has sha512 checksum for each binary in the group. BCH is prepended to the binary that is
loaded rst in that group.

During boot, BCH is authenticated and rmware binaries in the group are hash validated.
This mechanism helps avoid authentication time for individual binaries.

For best practices and good design, consider these limitations when grouping the boot
binaries:

1. Firmware loaded by the same loader can form a group.

For example:

‣ Firmware loaded by the kernel, kernel-dtb and ramdisk can form a group.

‣ Firmware loaded by MB2 i.e. bpmp-fw, bpmp-dtb, cpu-bootloader can form a group.

‣ Firmware loaded by dierent loader cannot be part of a single group; the system
cannot boot.

2. BCH must be prepended to the rst binary loaded in the group. Consequently, the load
order must be veried before grouping.

For example, if kernel, kernel-dtb and ramdisk are grouped together then BCH must be
present on kernel.

3. Boot image partition under a group must be updated together.
4. Grouping of NVIDIA signed binaries such as MB1, MTS-Preboot, MTS-BootPack cannot

be changed by the OEM.

9.1.6 Grouping a Secure Boot Chain

Each boot chain when booted can be veried as a group of secure binaries in its entirety by
enabling the partition version information table (PVIT) feature.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 861

Bootloader Programming

The PVIT is a structure, which contains the version and sha512 of each binary loaded in the
normal boot ow. After the PVIT is securely loaded and authenticated using its associated
Boot Component Header (BCH), each rmware is veried to match its corresponding
entry’s sha512 hash value as shown in the following table before execution or consumption
of the data. The PVIT structure is passed on to the next stage of boot until the entire chain
is veried.

The PVIT structure is dened as follows:

The PVIT feature is enabled in the MB2-BCT by setting the enable_pvit eld and adding
the appropriate PVIT partition in the boot chain.

9.2 Using the Bootloader Recovery
Mechanism

Note:

The default option is for GPIO boot chain select. When
bf_bl_gpio_select_boot_chain_1b is enabled (=1), the emergency fail over does not
work by default. If you want emergency failover from chain A to chain B on error,
disable bf_bl_gpio_select_boot_chain_1b. If you want to use marker-based chain
selection, then disable bf_bl_gpio_select_boot_chain_1b.

The bootloader includes:

‣ BootROM

‣ Microboot 1 (MB1)

‣ Microboot 2 (MB2)

‣ Quickboot (QB)

‣ Hypervisor which includes:

‣ Partition Loader (PL)

These components load additional rmware components including:

‣ Boot images

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 862

Bootloader Programming

‣ Partition images

‣ Other rmware

The bootloader fails to load if:

‣ Image corruption is declared: during boot, hash validation and signature authentication
is performed. If the validation or authentication fails, the system declares that the
image is corrupt.

‣ Device read failure occurs during boot, if hardware issues are detected, the system
returns a device read error.

These failures result in a boot process failure and therefore require using the provided
bootloader recovery mechanism.

During the boot process, the bootloader recovery mechanism ensures a functioning
rmware is loaded.

To ensure the recovery mechanism functions awlessly, be aware of:

‣ Firmware components have dependencies on each other.

For example, the BPMP rmware and kernel are dependent on each other. If the BPMP
rmware version and the kernel version are functionally incompatible, the system
functioning may be abnormal and operation may not be as expected.

‣ Firmware updating process failures.

For example, if a power outage occurs while the rmware is being updated the BPMP
rmware may be updated with the latest version while the kernel retains the outdated
version. Due to this version mismatch, the system malfunctions and operation may not
be as expected.

Therefore, redundant copies are a set of all the rmware components that are functionally
compatible with each other. This set of rmware components is called Boot Chain.

‣ The primary rmware components are on one boot chain.

‣ Redundant rmware components are on another boot chain.

9.2.1 Recovery Mechanism Boot Chains
The recovery mechanism maintains up to three boot chains:

‣ Boot Chain A

‣ Boot Chain B

‣ Boot Chain C

One bootchain is active at any given time.

‣ The active boot chain is referred to as: Active Boot Chain.

‣ The inactive boot chains are referred to as: Inactive Boot Chain.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 863

Bootloader Programming

9.2.1.1 Boot Chain Process
During normal operation, the bootloaders load the rmware components in the Active Boot
Chain. If the system cannot boot the Active Boot Chain, the system resets to boot the
other boot chain if marker-based boot chaining is enabled.

‣ The BootROM, as a root of the boot chain, selects an initial Active Boot Chain.

‣ Every bootloader must load rmware components from the Active Boot Chain.

‣ If a bootloader fails to load a rmware component, the system switches the Inactive
Boot Chain to the Active Boot Chain.

Advantages

The boot chaining process provides these advantages:

‣ Handles cases of partial update so that the system is always bootable.

‣ Except for a ratchet update case, each chain can be updated independently.

‣ Compatibility issues between rmware components is eliminated.

Side Eects

A corrupted rmware component in each chain can cause an unusable system. For
example, if using two boot chains and if the BPMP rmware in the Active Boot Chain is
corrupted, and the kernel image in the Inactive Boot Chain is corrupted, the system is
unable to boot any of the boot chains and cannot ever boot.

Components Outside the Boot Chain

Some rmware components are NOT included in any boot chain because of the nature of
the components or due to BootROM limitation. For these components, multiple copies
exist in the system. The boot loader locates the valid component from among the multiple
copies.

‣ The BootROM BCT selects the Active Boot Chain.

‣ The Global Partition Table denes the images that belong to each boot chain.

Consequently, these components cannot belong to the boot chain.

9.2.2 Boot Recovery Mechanism Flow
Boot recovery implementation is as follows:

The data types used for the recovery mechanism include:

‣ Scratch register

‣ BootROM BCT

‣ Soft fuses

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 864

Bootloader Programming

9.2.2.1 Scratch Register
The PMC scratch register, SCRATCH_SECURE_RSV109_SCRATCH_0, also referred to as
SCRATCHr, holds the Active Boot Chain and the Invalid Chain eld.

The register bit denition is as follows:

Bit Default Setting Description

31:6 0 RSVD Do NOT modify this
value. It is reserved.

5:4 X ACTIVE_BOOT_CHAIN
When cleared to 0, the
Active Boot Chain is set
to 0, or Boot Chain A.

When set to 1, the
Active Boot Chain is set
to 1, or Boot Chain B.

When set to 2, the
Active Boot Chain is set
to 2, or Boot Chain C.

3 0 RSVD Do NOT modify this
value. It is reserved.

2 0 INVALID_CHAINC
When set to one,
indicates chain is
corrupted.

When cleared to 0,
indicates chain is not
corrupt.

1 0 INVALID_CHAINB
When set to one,
indicates chain is
corrupted.

When cleared to 0,
indicates chain is not
corrupt.

0 0 INVALID_CHAINA
When set to one,
indicates chain is
corrupted.

When cleared to 0,
indicates chain is not
corrupt.

The contents of the scratch register are retained across soft reboots.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 865

Bootloader Programming

The scratch register is written when:

‣ User wishes to boot a particular boot chain and the user writes the boot chain in the
scratch register then issues a system reboot.

‣ A bootloader detects corruption and the user updates the INVALID_CHAINx register bit
and then sets a new Active Boot Chain.

‣ Upon a normal cold boot, the BootROM initializes the register with the selected boot
chain.

The contents of the scratch register are read when:

‣ At any stage during boot, a bootloader reads the scratch register to nd the Active
Boot Chain. Once the rmware determines the Active Boot Chain, it loads the next
stage rmware images in the chain.

‣ Before beginning a system update, the Update tool reads the value to determine
whether the system has booted the desired boot chain.

All bootloaders, except the hypervisor, have read and write permissions for the scratch
register. Hypervisor access permissions for the scratch register are as follows:

‣ Read access: The Partition Loader and Operating System Loader of each guest have
read access to the scratch register. Additionally, the Monitor server has read access to
the scratch register.

‣ Write access: The Monitor server has write access to the scratch register. The PL, and
Guest OS do NOT have write access.

9.2.2.2 BootROM BCT
The BootROM BCT includes the following data types to select the primary boot chain:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 866

Bootloader Programming

Data Type Description

u32_non_gpio_select_boot_chain_eldIndicates the primary boot chain when the GPIO selection
is NOT enabled.

0 = Boot Chain A

1 = Boot Chain B

2 = Boot Chain C

Valid values are 0 to (u32_num_boot_chains – 1)

bf_bl_gpio_select_boot_chain_1bToggles to enable or disable the GPIO selection of the
boot chain.

‣ 0 = disable GPIO selection and use the boot chain
selected by u32_non_gpio_select_boot_chain_eld.

‣ 1= enable GPIO selection and use the boot chain
selected by GPIO inputs.

SOC_GPIO31 controls lower bit for selection.

SOC_GPIO41 controls upper bit for selection. Only used
when u32_num_boot_chains > 2.

u32_num_boot_chains Indicates the number of boot chains in the system. Valid
values are 1 – 3.

For guidance on connecting a GPIO to enable selection of the boot chain, refer to the Orin
Interface Design Guide (DG-08535-001).

9.2.2.3 Soft Fuse
Soft fuses determine the recovery action to take when a bootloader fails to load a
rmware component. The settings include:

Data Type Description

SwitchBootChain If set, switches the boot chain.

MB1 overwrites the value to 0 when GPIO selection is
enabled.

ResetToRecovery Used when the system does not switch the boot chain.

When set to 1, the system reboots to forced recovery
mode.

When cleared to 0, the system hangs.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 867

Bootloader Programming

9.2.2.4 Selecting the Active Boot Chain by BootROM
The BootROM, which is the root boot chain, is responsible for selecting the Active Boot
Chain after the system powers up. The selection sequence is as follows:

‣ Read bf_bl_gpio_select_boot_chain_1b, u32_num_boot_chains and
u32_non_gpio_select_boot_chain information from BR BCT.

‣ If bf_bl_gpio_select_boot_chain_1b is enabled, read the value of
u32_num_boot_chains.

If u32_num_boot_chains is less than 3, then read only SOC_GPIO31 and use the input
value as a Boot Chain. A GPIO value of 0 sets Boot Chain A as an Active Boot Chain,
while a GPIO value of 1 sets Boot Chain B as an Active Boot Chain.

If u32_num_boot_chains is 3, then read SOC_GPIO31 for bit 0 and SOC_GPIO41 for bit 1 of
chain selection. For GPIOs value of 00b sets Boot Chain A as an Active Boot Chain, for
GPIOs value of 01b sets Boot Chain B as an Active Boot Chain, and for GPIOs value of
10b sets Boot Chain C as an Active Boot Chain.

‣ If bf_bl_gpio_select_boot_chain_1b is not enabled and it is a cold boot, BootROM
uses u32_non_gpio_select_boot_chain value in BR BCT as an Active Boot Chain. Value
0 sets Boot Chain A, value of 1 sets Boot Chain B as Active Boot Chain, and value of 2
set Boot Chain C if supported.

‣ If bf_bl_gpio_select_boot_chain_1b is not enabled and it is not a cold boot, BootROM
uses the active boot chain dened in the SCRATCHr register.

The ow is as follows:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 868

Bootloader Programming

9.2.2.5 Selecting the Boot Chain by the Loader
Each bootloader checks the contents of the SCRATCHr register to identify the Active Boot
Chain. The bootloader then loads the next stage rmware components in the boot chain.

9.2.2.6 Triggering the Recovery Mechanism Inside a
Guest OS Container
The recovery mechanism discussed under topic Triggering Recovery Mechanism by Loader
is true until Hypervisor binary is loaded. Once Hypervisor boots up, it is no longer true due
to the following reasons:

‣ More than one guest OS is congured in the PCT. Each guest OS boots up
independently in its guest OS environment provided by Hypervisor. Guest OSes do not
have information about other guest OSes.

‣ It may be possible that one or more guest OS boot fails, and other guest OSes boot
up ne. There may be multiple boot failure scenarios here. How is each failure scenario
handled?

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 869

Bootloader Programming

‣ If one or more guest OS boot fails, then how and who decides whether to trigger
recovery mechanism or reboot that guest OS?

‣ Triggering recovery mechanism in a guest OS environment involves informing
Hypervisor. Hypervisor makes the nal decision to trigger recovery.

To handle boot failures inside a guest OS environment, a dierent recovery mechanism
policy is required inside the guest OS environment.

9.2.2.6.1 Scratch Registers
SCRATCH_SECURE_RSV109_SCRATCH_0: Bits 0-2 of this scratch register is called corrupt
bit. It indicates whether inactive chain is good or corrupted. Value of 0 indicates inactive
chain is good and 1 indicates inactive chain is corrupt.

9.2.2.6.2 Privileged Guest OS
The notion of privileged guest OS means that guest OS is allowed to read and write to
the SCRATCH_SECURE_RSV109_SCRATCH_0 register. The request to read and write to
the scratch register is sent to Hypervisor and Hypervisor in turn reads and writes to the
physical scratch register. Privileged guest OS also has the ability to trigger a system reset.
Hypervisor receives the system reset request and prepares the system for reboot.

9.2.2.6.3 Unprivileged Guest OS
This guest OS is also allowed to read and write to the
SCRATCH_SECURE_RSV109_SCRATCH_0 register. The request to read and write is sent
to Hypervisor and Hypervisor in turn does not read or write to the physical scratch
register. Here, Hypervisor emulates the read and write. Unprivileged guest OS can request
Hypervisor to perform a system reset but Hypervisor ignores the request and does
nothing.

9.2.2.6.4 Marking a Guest OS as Privileged Guest OS
You must mark a guest OS as privileged guest OS in the PCT before ashing the system.
Inside the PCT folder, in the guest_config.h le, set the system_reset attribute for a
particular guest OS to mark it as privileged guest OS.

9.2.2.6.5 Assumptions
‣ There must only be one privileged guest OS in the system.

‣ System is booted using BR-BCT based boot chain selection mechanism. Recovery
mechanism inside the guest OS environment does not work for GPIO based boot chain
selection mechanism.

9.2.2.7 Triggering the Recovery Mechanism by BootROM
The BootROM loads MB1 from the Active Boot Chain.

‣ If BootROM fails to load the MB1 image in the Active Boot Chain, the sequence is as
follows:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 870

Bootloader Programming

‣ Switch the Active Boot Chain and set the invalid boot chain to 1.

‣ Load MB1 from the next new Active Boot Chain.

‣ If a failure occurs again, attempt to load next chain, if supported, or boot into forced
recovery mode.

‣ Soft fuse values are NOT used by BootROM.

Because BR BCT does NOT belong to any boot chain, recovery for this component takes
place as follows:

‣ A single partition is provided for storing BR BCT.

‣ The partition is shared by both boot chains. The partition contains multiple copies of BR
BCT. All copies are identical.

‣ Each copy is placed at the beginning of the boot storage device.

‣ The BootROM handles the recovery of BR BCT. If one copy of BR BCT is found to be
corrupted, the BootROM proceeds with the next copy of the BR BCT until a valid copy is
located. If a valid copy is not located, BootROM resets into forced recovery mode.

‣ At the time of the system update, each copy of BR BCT is updated to the new version
to ensure all copies are at the same version.

9.2.2.8 Triggering Recovery Mechanism by Loader
During boot, when any bootloader, except BootROM, fails to load the next stage rmware,
the recovery mechanism is triggered as follows:

‣ Attempts to load the next stage rmware in the Active Boot Chain.

‣ If the next stage rmware is loaded successfully, the loader continues to boot.

‣ If the next stage rmware is NOT successfully loaded, the recovery mechanism is
triggered.

‣ If the INVALID_CHAINx bit in the SCRATCHr register is set to 1 or the switch_boot_chain
soft fuse value is cleared to 0, these recovery actions are performed:

‣ If the reset_to_recovery soft fuse value is set to 1, the system goes into forced
recovery mode.

‣ If the reset_to_recovery soft fuse value is cleared to 0, the system hangs.

‣ If the INVALID_CHAINx bit is NOT set, and the switch_boot_chain soft fuse value is set
to 1, then set the INVALID_CHAINx bit to 1 and change the ACTIVE_BOOT_CHAIN eld
in the SCRATCHr register and issue a reboot so that the system boots a dierent boot
chain.

The ow for triggering the recovery mechanism by the loader is as follows:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 871

Bootloader Programming

MB2 and Quickboot load the Global Partition Table. Because this rmware component does
not belong to any boot chain, the recovery ow is as follows:

‣ There is a single partition to store the global partition table of the system.

‣ The single partition contains multiple signed copies of the partition table. If one copy is
corrupted, the system uses the next copy.

‣ The global partition table contains information for both boot chains of the system. As
a result, the global partition table must NOT be erased during the update. If the global
partition table is erased, the system cannot be recovered without reashing the entire
images.

9.2.2.9 Partition Layout
The partition layout on ash is organized to support the recovery mechanism as follows:

‣ For each partition, other than BR BCT and Global Partition Table, there are up to three
partitions: Boot Chain A, Boot Chain B, and Boot Chain C.

‣ For BR BCT, there is single common partition. This partition contains multiple copies of
BR BCT residing at the beginning boot storage device.

‣ For global partition table, there is single partition containing multiple copies of the
partition table.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 872

Bootloader Programming

9.3 Ratcheting
There is a chance that the boot code may be updated due to a system aw. It may also be
possible that a security breach is identied in the software and that it is xed in a newer
version. The known vulnerabilities in the older versions of software can be leveraged by
attackers to exploit the system security. Hence, the obsolete binaries must be prohibited
from running on the chip.

Nonetheless, those antiquated binaries used to possess eective credentials to pass the
secure boot authentication. Therefore, a version control mechanism is required to preclude
the old binaries from passing the authentication so that these cannot be utilized by the
attackers to exploit the system aws. Rollback prevention checks, during the boot, the
version of the software binaries against a known hardware version stored in a fuse and
blocks the binaries from continuing if the software versions are found to be unacceptably
old. Ratcheting is NVIDIA's rollback prevention mechanism.

The software checks for a monotonically increasing counter in the hardware that cannot be
decreased once it is increased to a certain level. Ratcheting prevents binaries designed for
an old chip from executing on a new chip. But the binaries designed for a new chip can run
on an old chip to maintain the backward compatibility.

9.3.1 Software and Hardware Ratchet Versions
Ratcheting is achieved by maintaining a version. There is a software ratchet version and a
hardware ratchet version.

9.3.1.1 Software Ratchet Version
Software has this version number maintained as a part of the binary. This version number
is added to the signed section of generic header that is added at the beginning of the
binary. This is used to nd the ratchet level of the given binary without loading and booting
it.

9.3.1.2 Hardware Ratchet Version
Hardware ratchet version is a monotonically increasing counter maintained on the chip. On
the SoC, there are fuses reserved to hold this value.

9.3.2 Ratchet Constraints
‣ Let SW_Ratchet_Version denote the version of the software run on the chip.

‣ Let HW_Ratchet_Version denote the version corresponding to the ratchet value from
fuses.

Ratcheting has the following constraints:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 873

Bootloader Programming

‣ If SW_Ratchet_Version < HW_Ratchet_Version : Abort boot and trigger recovery ow.
This case is considered as ratchet check failure.

Ratchet check failure results in either resetting to RCM or an alternate boot chain trigger
based on softfuses in BR_BCT. See Recovery Mechanism.

‣ If SW_Ratchet_Version = HW_Ratchet_Version : Allow boot. The software is built exactly
for that specic chip and, therefore, can run on the chip.

‣ If SW_Ratchet_Version > HW_Ratchet_Version : Allow boot. Software is built for a
higher version, so it has a required set of security patches applied already. In this
case, it is running on an older chip, so allow it to run. In this case, updating the fuse is
recommended.

Thus, older chips will continue to run new software if it is backward compatible. However,
old software will not work on new chips/updated devices if the ratchet version on those
devices is updated.

9.3.3 Opt-in Fuse
There is a dedicated fuse for opt-in. Based on its value, MB2 decides whether to perform
in-eld ratchet update or to skip it.

If OEM wants to opt-in for in-eld ratchet update, opt-in fuse should be programmed to 1.
The MB2 checks whether the opt-in fuse is burned before proceeding with the hardware
ratchet update. Note that this check is software enforced only.

Opt-In Fuse Name Bits

FUSE_OPT_CUSTOMER_OPTIN_FUSE_0 [0] 1 Bit

9.3.4 External Factors for Fuse Burning
The MB2 checks if the following conditions are favorable for fuse burning before actually
burning the fuses.

‣ VDD

‣ VQPS

‣ SoC Temperature

If all the above conditions are met, MB2 burns the fuses. If a condition is not met, it
continues booting without burning the fuse and tries again on the next boot.

9.3.5 Software Components Protected by
Ratcheting
The following software components are protected by ratcheting against any rollback
attacks:

‣ MB1

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 874

Bootloader Programming

‣ SC7 Firmware

‣ MTS Firmware

‣ Falcon Firmware

‣ OEM Software Owned Components

9.3.6 Ratchet Levels for NVIDIA Owned Software
Components
There are two sets of fuses dedicated for implementing the ratcheting for NVIDIA owned
software components (i.e., NVIDIA owned ratchet fuse and OEM owned (or eld) ratchet
fuse).

The ratchet value for an NVIDIA owned software component is the sum of the ratchet
value of NVIDIA owned ratchet fuse and OEM owned ratchet fuse.

9.3.6.1 NVIDIA Ratchet Level
‣ The NVIDIA ratchet fuses are burned at the NVIDIA production line.

‣ These fuses cannot be programmed from software.

‣ For NVIDIA owned rmware, if any security loophole is found, then based on the
criticality of the issue, the NVIDIA ratchet level can be updated.

‣ An N bit NVIDIA ratchet fuse eld can represent numeric value 0-2^N-1. (i.e., an
absolute value is programmed in NVIDIA ratchet fuse).

9.3.6.2 OEM Ratchet Level
‣ They are eld programmable fuses and can be updated when the device is in the eld.

‣ This ratchet value is a thermometer encoded numerical value between 0 to N (i.e.,
number for bits set from LSB denote the fuse value).

9.3.6.3 Ratchet Level for OEM Owned Software
Components
For implementing ratcheting for OEM owned software components, there are no NVIDIA
owned ratchet fuses allocated. Only OEM owned ratchet fuses are allocated. The ratchet
update happens in-eld only.

9.3.6.4 OEM Firmware Ratchet Level
‣ Only MB1-BCT is ratchet protected using hardware fuses.

‣ Fuses are eld programmable and can be updated when the device is in the eld.

‣ The ratchet value is thermometer encoded (a numerical value between 0 to N). For
example, the number of bits set from LSB denotes the ratchet value.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 875

Bootloader Programming

‣ Besides MB1-BCT, all OEM owned rmware loaded during boot are ratcheted using
their absolute ratchet value in MB1-BCT.

‣ OEM owned rmware ratchet versions are set in MB1-BCT and their corresponding
BCH during ashing or oine image creation. For more information, see Bootburn.

For more details, see Ratchet Fuse Programming for OEM Owned Software Components.

9.3.7 Ratcheting for Falcon Firmware
Falcon rmware performs a self-enforced ratchet check.

9.3.7.1 Scratch Registers
There are no scratch registers allocated for storing the Falcon rmware ratchet version.
Since the ratchet check for Falcon rmware is performed by the bootloader itself, not MB1,
there is no requirement for the scratch register.

9.3.7.2 Fuses for Falcon Firmware

Fuse Ownership Fuse Name Bits Bits

FUSE_FALCON_UCODE_NV_REV_0
[2:0]

3 Bits TSECA

FUSE_FALCON_UCODE_NV_REV_0
[4:3]

2 Bits NVDEC

NV Owned

FUSE_FALCON_UCODE_NV_REV_0
[6:5]

2 Bits TSECB

FUSE_CCPLEX_UCODE_MB1_FALCON_UCODE_FIELD_RATCHET2_0
[15:0]

16 Bits TSECA

FUSE_CCPLEX_UCODE_MB1_FALCON_UCODE_FIELD_RATCHET2_0
[31:16]

16 Bits NVDEC

OEM Owned (Field)

FUSE_CCPLEX_UCODE_MB1_FALCON_UCODE_FIELD_RATCHET3_0
[15:0]

16 Bits TSECB

9.3.8 Ratchet Fuse Programming for OEM Owned
Software Components
‣ MB1-BCT ratchet fuse programming follows the same sequences as dened for NV

Owned Firmware.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 876

Bootloader Programming

‣ All OEM rmware (that are loaded during boot until guest ramdisk) have their ratchet
version set in MB1-BCT and corresponding BCH set during ashing and during oine
binaries generation. For more information about how to set the rmware ratchet
version, see Bootburn.

9.3.8.1 Scratch Registers

Software Component Scratch Register Bits

MB1-BCT SECURE_RSV98_SCRATCH_0 [31:0] 32 Bits

9.3.8.2 Fuses for OEM Field Ratcheting

Fuse Ownership Fuse Name Bits

NV Owned N/A N/A

fuse_system_fw_eld_ratchet0[31:0] 32 Bits

fuse_system_fw_eld_ratchet1[31:0] 32 Bits

fuse_system_fw_eld_ratchet2[31:0] 32 Bits

OEM Owned (Field)

fuse_system_fw_eld_ratchet3[31:0] 32 Bits

Passing Ratchet Status to Guest OSes

Ratchet fuse burning status is passed to guest OS via the kernel device tree. There are
separate nodes for MB1, MTS, and MB1-BCT at the following location under the /proc
interface.
/proc/device-tree/chosen/ratchet-status

Each node has two elds: status and error.

‣ "error" has the appropriate ratchet error value.

‣ "status" can have following status strings:

Ratcheting Status Description

not_tried Default status. Ratchet check path is skipped.

skipped_a Active Boot Chain rmware ratchet matches
with HW fuses.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 877

Bootloader Programming

Ratcheting Status Description

skipped_b Inactive Boot Chain rmware ratchet matches
with HW fuses.

updated Ratchet fuses are successfully updated with SW
ratchet value.

failed Ratchet fuse update(burning) failed.

no_option Ratchet update check skipped as Opt-in fuse is
not set by OEM

Lock Fuse Burning

If the SecurityMode fuse is burned, the quickboot locks fuse burning at the end of ratchet
handling before kernel hando to prevent malicious over-ratcheting.

Set bit #0 of register FUSE_DISABLEREGPROGRAM_0.

9.4 Ratchet Checks

9.4.1 Ratchet Check for NVIDIA Owned Software
Components
For NVIDIA owned software binary, the true hardware ratchet level is obtained by taking
sum of the NVIDIA owned ratchet level and OEM owned ratchet level.

This combined ratchet level is then compared with the software ratchet version of the
binary.

The ratchet check is both self-enforced and loader enforced.

‣ Self-enforced ratchet check:

‣ This check resides within the same code that the rollback is trying to protect. In
other words, the binary that is executing performs its own ratchet check.

‣ It is basically a self-check to ensure that older binary does not continue execution
on newer systems.

‣ Loader enforced check:

‣ This check happens before the binary is even executed.

‣ The ratchet version of the binary being loaded is available as part of its boot
component header, making the loader capable to fully investigate the rollback
status.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 878

Bootloader Programming

If any ratchet check fails in Boot ROM, recovery mode is triggered.

If any ratchet check fails in MB1, then either boot with alternate chain is triggered or the
target is put into recovery mode, depending on the soft fuses for boot chain options.

9.4.1.1 Ratchet Check for MB1
‣ Boot ROM performs the loader enforced ratchet check for MB1.

‣ MB1 performs a self-enforced ratchet check.

9.4.1.2 Ratchet Check for SC7 Firmware
‣ Boot ROM and MB1 perform the loader enforced ratchet check for SC7.

‣ SC7 performs a self-enforced ratchet check.

9.4.1.3 Ratchet Check for MTS Firmware
‣ MB1 performs the loader enforced ratchet check for MTS.

‣ MTS performs a self-enforced ratchet check.

9.4.1.4 Ratchet Check for Falcon Firmware
‣ Falcon rmware performs a self-enforced ratchet check.

‣ Loader enforced ratchet check for Falcon rmware is to be determined.

9.4.1.5 Ratchet Check for OEM Owned Software
Components
‣ There is no self-enforced ratchet check available for OEM owned software components.

‣ The loader enforced ratchet check is performed by the corresponding loader of the
binaries.

‣ Apart from MB1-BCT, all OEM owned rmware ratchet levels are set in MB1-BCT and
in the Binary Component Header (BCH) while ashing the target or generating binaries
oine.

‣ The loader for the binaries compares the ratchet value of the binary in BCH too see
whether it is lower or equal to its ratchet value in MB1-BCT.

‣ MB1-BCT is the only OEM owned rmware that is hardware ratcheted using hardware
fuses dedicated for MB1-BCT.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 879

Bootloader Programming

9.5 Rachet Fuse Programming
The following sections describe ratchet fuse programming for NVIDIA owned software
components.

9.5.1 Ratcheting for MB1/SC7 and MTS Firmware
The overall ow:

‣ MB1 passes the ratchet version of itself and SC7-FW to the bootloader via a scratch
register dedicated for MB1 and SC-FW.

‣ MTS passes the OEM ratchet version of itself to the bootloader via a scratch register
dedicated for MTS ratchet.

‣ The bootloader compares the ratchet versions of MB1, SC7, and MTS in their
corresponding scratch register with respective hardware fuse values.

‣ Perform ratchet check and program the ratchet fuse.

For each of the binaries (MB1/SC7 and MTS), if ratchet version in scratch is greater than
the hardware ratchet, then the minimum of the ratchet version of binary in boot chain A

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 880

Bootloader Programming

and ratchet version of binary in boot chain B is programmed in the ratchet fuse, provided
the following criteria are met:

‣ Opt-in fuse is burned.

‣ External operating conditions are satised.

The bootloader then passes the ratchet status to guest OS. For more information, see
Passing Ratchet Status to Guest OSes.

9.5.1.1 Scratch Registers

Software Component Scratch Register Bits

MB1 SECURE_RSV82_SCRATCH_0 [31:0] 32 Bits

SC7 SECURE_RSV98_SCRATCH_1 [31:0] 32 Bits

MTS SECURE_RSV82_SCRATCH_1 [31:0] 32 Bits

9.5.1.2 Fuses for MB1/SC7

Fuse Ownership Fuse Name Bits

NVIDIA Owned FUSE_MB1_NV_REV_0 [6:0] 7 Bits

OEM Owned (Field) FUSE_CCPLEX_UCODE_MB1_FALCON_UCODE_FIELD_RATCHET0_0
[31:0]

32 Bits

Note that there is only one fuse allocated for storing the ratchet of both MB1 and SC7.

9.5.1.3 Fuses for MTS

Fuse Ownership Fuse Name Bits

NVIDIA Owned FUSE_CCPLEX_UCODE_NV_REV_0
[6:0]

7 Bits

OEM Owned (Field) FUSE_CCPLEX_UCODE_MB1_FALCON_UCODE_FIELD_RATCHET1_0
[31:0]

32 Bits

9.5.2 Ratcheting for Falcon Firmware
Falcon rmware performs a self-enforced ratchet check.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 881

Bootloader Programming

Scratch Registers

There are no scratch registers allocated for storing the Falcon rmware ratchet version.
Since the ratchet check for Falcon rmware is performed by the bootloader itself, not MB1,
there is no requirement for the scratch register.

Fuses for Falcon Firmware

Fuse
Ownership Fuse Name Bits Bits

FUSE_FALCON_UCODE_NV_REV_0 [2:0] 3 Bits TSECA

FUSE_FALCON_UCODE_NV_REV_0 [4:3] 2 Bits NVDEC

NV Owned

FUSE_FALCON_UCODE_NV_REV_0 [6:5] 2 Bits TSECB

FUSE_CCPLEX_UCODE_MB1_FALCON_UCODE_
FIELD_RATCHET2_0 [15:0]

16 Bits TSECA

FUSE_CCPLEX_UCODE_MB1_FALCON_UCODE_
FIELD_RATCHET2_0 [31:16]

16 Bits NVDEC

OEM Owned
(Field)

FUSE_CCPLEX_UCODE_MB1_FALCON_UCODE_
FIELD_RATCHET3_0 [15:0]

16 Bits TSECB

9.6 Passing Ratchet Status to Guest
OSes
Ratchet fuse burning status is passed to guest OS via the kernel device tree. There are
separate nodes for MB1, MTS, and MB1-BCT at the following location under the /proc
interface.
/proc/device-tree/chosen/ratchet-status

Each node has two elds: status and error.

‣ "error" has the appropriate ratchet error value.

‣ "status" can have following status strings:

Ratcheting Status Description

not_tried Default status. Ratchet check path is skipped.

skipped_a Active Boot Chain rmware ratchet matches
with HW fuses.

skipped_b Inactive Boot Chain rmware ratchet matches
with HW fuses.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 882

Bootloader Programming

Ratcheting Status Description

updated Ratchet fuses are successfully updated with SW
ratchet value.

failed Ratchet fuse update(burning) failed.

no_option Ratchet update check skipped as Opt-in fuse is
not set by OEM

9.7 Lock Fuse Burning
If the SecurityMode fuse is burned, the MB2 locks fuse burning at the end of ratchet
handling before kernel hando to prevent malicious over-ratcheting.

Set bit #0 of register FUSE_DISABLEREGPROGRAM_0.

9.8 Passing Customer Data to Guest
OSes
Certain Customer Data, contained in the signed and unsigned sections of the BRBCT, is
passed to guest OS via the kernel device tree. There are separate nodes for the supported
BRBCT elds at the following location under the /proc interface.

/proc/device-tree/chosen/nvidia

Corresponding BRBCT eld Device Tree node

Serial ID serialnumber

MAC_ID_INFO[n] ether-mac<n>

SKU_INFO
sku

sku_version

PROD_INFO
prodinfo

prodver

BOARD_NAME board_name

CHIP_EXT_INFO chip_ext

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 883

Bootloader Programming

9.9 Conguring MB1 Boot Conguration
Table
Use these procedures to customize the Microboot 1 (MB1) Boot Conguration Table (BCT)
with static platform-specic settings. The BCT settings that can be customized include:

‣ SDRAM timing

‣ Pinmux conguration

‣ Security

‣ Firmware conguration

During a system boot sequence, MB1 bootloader uses the MB1 BCT to congure platform-
specic static settings. MB1 executes before other CPUs are enabled. The MB1 stage is
owned by NVIDIA and signed by NVIDIA and the OEM.

For more information, see Boot Flow.

9.9.1 Understanding the MB1 Boot Conguration
Table
MB1 BCT species platform-specic data. When the bootburn script is called to ash a
platform, it calls the tegrabct_v2 tool to create the MB1 BCT using:

‣ Platform conguration les

‣ tegrabl_mb1_bct.h header le

The BCT that is required by this stage is signed by the OEM. The MB1 stage performs
platform specic initialization and sets up the secure control register (SCR).

For more information, see Flashing with Bootburn.

The platform-specic conguration les specify:

‣ Conguring the Pinmux and GPIO

‣ Conguring the Prod Setting

‣ Conguring the Pad Voltage Setting

‣ Conguring the PMIC Setting

‣ Conguring the Secure Register for BootROM

The conguration les are available at:
<top>/drive-foundation/platform-config/
t23x/automotive/bct/<board>/pinmux/

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 884

Bootloader Programming

9.9.2 Conguring the Pinmux and GPIO
The pinmux conguration le provides pinmux and GPIO conguration information. The
typical format for this data is register address and data, as a pair. MB1 allows writes to the
pinmux and GPIO address range from the pinmux conguration table.

The pinmux conguration le is available at:
<top>/drive-foundation/platform-config/t23x/
automotive/bct/<board>/pinmux/tegra234-mb1-bct-pinmux-gpio-
<board>-<sku_id>-<rev>-t<a|b|c>.dtsi

For example:
tegra234-mb1-bct-pinmux-gpio-p3710-0001-b01-ta.dtsi

For information about converting the pinmux, GPIO, and pad DTS les to CFG format, see
the Pinmux Generation Tool section in the NVIDIA DRIVE OS6.0 Linux PDK Developer Guide.

For denitions of the <board>-<sku_id>-<rev>-t<a|b|c>, see the Release Notes.

9.9.2.1 Usage
The command-line usage syntax is as follows:
pinmux.<address> = <value>;

Where:

‣ pinmux is the domain name for GPIO and pinmux conguration data.

‣ <address> is the absolute register address.

‣ <value> is the 32-bit data value.

9.9.2.1.1 Device-side Implementation
The device side implementation is as follows:
write(value, address);

For example:
Pinmux for used pins
pinmux.0x02434060 = <value1>; # gen1_i2c_scl_pc5.PADCTL_CONN_GEN1_I2C_SCL_0
pinmux.0x02434064 = <value2>; # gen1_i2c_scl_pc5.PADCTL_CONN_CFG2TMC_GEN1_I2C_SCL_0
pinmux.0x02434068 = <value1>; # gen1_i2c_sda_pc6.PADCTL_CONN_GEN1_I2C_SDA_0
pinmux.0x0243406C = <value2>; # gen1_i2c_sda_pc6.PADCTL_CONN_CFG2TMC_GEN1_I2C_DA_0
 ::::
Pinmux for unused pins for low-power configuration
pinmux.0x02434040 = <value1>; # gpio_wan4_ph0.PADCTL_CONN_GPIO_WAN4_0
pinmux.0x02434044 = <value2>; # gpio_wan4_ph0.PADCTL_CONN_CFG2TMC_GPIO_WAN4_0
pinmux.0x02434048 = <value1>; # gpio_wan3_ph1.PADCTL_CONN_GPIO_WAN3_0
pinmux.0x0243404C = <value2>; # gpio_wan3_ph1.PADCTL_CONN_CFG2TMC_GPIO_WAN3_0

9.9.3 Conguring the Prod Setting
The prod setting provides the conguration of the settings for:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 885

Bootloader Programming

‣ system characterization

‣ Interface

‣ Controller

These conguration settings are required to ensure the interface works in the platform.
The prod setting is set at the controller level, and separately at the pinmux level. The
examples provided describe the pinmux conguration.

The format of the conguration is a tuple of register address, mask, and data value.
MB1 reads data from address, modies it based on mask and value, and writes it back to
address.

The prod conguration le is available at:
<top>/drive-foundation/platform-config/t23x/automotive
/bct/<board>/prod/tegra194-mb1-bct-prod-<board>-
<sku_id>-<rev>-t<a|b|c>.cfg

For example:
tegra194-mb1-bct-prod-e3550-0001-b01-ta.cfg

For denitions of the <board>-<sku_id>-<rev>-t<a|b|c>, see the Release Notes.

9.9.3.1 Usage
The command line usage syntax is as follows:
prod.<address>.<mask> = <value>;

Where:

‣ prod is the domain name prex for the setting

‣ <address> is the pad control register address

‣ <mask> is the mask value with 4 bytes, unsigned

‣ <value> is the data value with 4 bytes, unsigned

9.9.3.1.1 Device-side Implementation
The device side implementation is as follows:
val = read(address)
val = (val & ~mask) | (value & mask);
write(val, address);

For example:
prod.0x02436010.0x00006000 = 0x00002000; # SDMMC4_DAT7,
DRV_TYPE: DRIVE_2X
prod.0x02436014.0x00006000 = 0x00002000; # SDMMC4_DAT6,
DRV_TYPE: DRIVE_2X
prod.0x02436018.0x00006000 = 0x00002000; # SDMMC4_DAT5,
DRV_TYPE: DRIVE_2X
prod.0x0243601c.0x00006000 = 0x00002000; # SDMMC4_DAT4,
DRV_TYPE: DRIVE_2X
prod.0x02436020.0x00006000 = 0x00002000; # SDMMC4_DAT3,

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 886

Bootloader Programming

DRV_TYPE: DRIVE_2X

9.9.4 Conguring Pad Voltage Setting
Pins and pads support multiple voltage levels at a given interface. They can operate at
1.2 volts (V), 1.8 V or 3.3 V. Based on the interface and power tree of a given platform,
the software must write the correct voltage of these pads to enable the interface. If pad
voltage is higher than the Input/Output power rail, the pin does NOT function on that
level. If pad voltage is lower than Input/Output power rail, the SOC pads can be damaged.
Consequently, it is required to congure the correct pad voltage based on the power tree.

The pad conguration le is available at:
<top>/drive-foundation/platform-config/t23x/automotive/bct/<board>/padvoltage/
tegra194-mb1-bct-pad-<board>-<sku_id>-<rev>-t<a|b|c>.cfg

For example:
tegra194-mb1-padvoltage-e3550-0001-b01-ta.cfg

For denitions of the <board>-<sku_id>-<rev>-t<a|b|c>, see the Release Notes.

9.9.4.1 Usage
The command line usage syntax is as follows:
pad-voltage.<address> = <value>;

Where:

‣ pad-voltage is the domain name prex for the setting

‣ <address> is the absolute register address

‣ <value> is the 32-bit data value

9.9.4.1.1 Device-side implementation
The device side implementation is as follows:
write(value, address);

For example:
pad-voltage.0x0c36003c = 0x00000070; # PMC_IMPL_E_18V_PWR_0
pad-voltage.0x0c360040 = 0x00000053; # PMC_IMPL_E_33V_PWR_0

9.9.5 Conguring the PMIC Setting
During system boot, MB1 enables system power rails such as CPU, SRAM, and CORE as
well as some system PMIC congurations. The typical congurations are:

‣ Enabling rails

‣ Setting rail voltages

‣ FPS congurations

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 887

Bootloader Programming

Enabling and setting of voltages of rails may require:

‣ I2C command to devices

‣ MMIO access to Tegra registers, either read-modify-write or write-only

‣ Delay after the commands

Rail-specic congurations, such as I2C commands, MMIO access, and delays, are
platform-specic. The MB1 BCT conguration le must provide conguration information.

The MB1-CFG format supports:

‣ I2C commands and MMIO commands on any sequence.

‣ Any I2C controller instance.

‣ Any 7-bit secondary address of the device.

‣ MMIO commands on read-modify-write format to support read only and Read-modify-
write format.

‣ I2C commands are read-modify-write format to support read only and Read-modify-
write format.

‣ Any amount of delay between commands.

‣ Write only commands for I2C/MMIO.

‣ Any size of device registers address and data size for i2c commands.

‣ I2c command on the 400 KHz.

‣ The sequence may be

‣ 1 MMIO, 1 I2C

‣ 1 I2C, 1 MMIO

‣ 2 MMIO, 1 I2C

‣ 1 MMIO, 2 I2C

The typical rail/congurations are divided into these PMIC command domains:

‣ Generic: General PMIC congurations

‣ GPU: Command related to CPU rails

‣ GPU: Commands related to GPU

‣ SRAM: Commands related to SRAM

‣ CORE: Commands related to CORE

‣ MEM: Commands related to Memory

If the conguration for given rail is NOT specied, it is not necessary to provide the
command sequence of that rail. MB1 device side code ignores the conguration of that
rail.

Each rail is dened with a unique ID to enable the parsing and BCT binary. The unique IDs
are as follows:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 888

Bootloader Programming

Rail Name ID

GENERIC 1

CPU 2

CORE 3

SRAM 4

GPU 5

MEM 6

The PMIC conguration le is available at:
<top>/drive-foundation/platform-config/t23x/
automotive/bct/<board>/pmic/tegra194-mb1-bct-pmic-
<board>-<sku_id>-<rev>-t<a|b|c>.cfg

For example:
tegra194-mb1-bct-pmic-e3550-0001-b01-ta.cfg

For denitions of the <board>-<sku_id>-<rev>-t<a|b|c>, see the Release Notes.

9.9.5.1 Usage
The command line usage syntax for the common parameters are as follows:
pmic.<parameter> = <value>;

The command line usage syntax for the rail-specic parameters are as follows:
pmic.<rail-names>.<rail-id>.<parameters> = <value>;

Where <parameters> is as follows:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 889

Bootloader Programming

Parameter Description

command-retries-count Species the number of allowed command
attempts.

wait-before-start-bus-
clear-us

Species the wait timeout, in microseconds,
before issuing the bus clear command. The wait
time is calculated as:

1 << n microseconds

Where i>n is as provided by this parameter.

rail-count Species the number of rails in this conguration
le that must be congured.

For example:
pmic.command-retries-count = <value>;
pmic.wait-before-start-bus-clear-us = <value>;
pmic.rail-count = <value>;

9.9.5.1.1 Rail-Specic Parameters
Rail-specic parameters take the following format:

‣ The rail specic commands are divided into blocks.

‣ Each rail can have one or more blocks. Each block of given rails are indexed starting
from 0.

‣ Each block contains either MMIO or I2C commands. If both MMIO and I2C commands
are required then commands are broken into multiple blocks.

‣ If block contains I2C type of commands then all commands are sent to same device.
If it is require having i2c commands for multiple devices then it needs to split into
multiple blocks.

‣ If commands on given blocks are I2C type the device address, register address size,
register data size are parameters which is not needed for MMIO commands.

‣ Given block can contain more than one commands but all commands are same type.

‣ Delay is provided after each commands of a given blocks. The delay are same for all
commands. If dierent delay are required then it need to split into multiple blocks.

The details for each paramater are as follows:

Parameter Description

pmic.<rail-name>.<rail-id> Species the rail specic parameters prexes.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 890

Bootloader Programming

Parameter Description

pmic.<rail-name>.<rail-
id>.block-count = <value>;

Species the block count.

Where <value> for the block count is the
number of command blocks for a given rail.

pmic.<rail-name>.<rail-
id>.block[index]

Species the block identication, where all
blocks are indexed, starting from 0.

type Species the command type. Available types
include:

‣ MMIO (0)
‣ I2C (1)

delay Species the delay, in microseconds, after each
command in a given block.

count Species the number of commands in a block.

9.9.5.1.2 I2C type-specic Parameters
The I2C type specic parameters are as follows:

Parameter Description

I2c-controller-id Species the controller ID of I2C.

slave-add Provides the 7-bit secondary address.

reg-data-size Species the register size in bits:

0 or 8:1 byte

16: 2 byte

reg-add-size Species the register address size in bits:

0 or 8:1 byte

16: 2 byte

‣ Commands can be MMIO or I2C.

‣ The information is in the format <address>.<mask> = <data>, to support the read-
modify-write sequence.

‣ All commands are indexed, to facilitate multiple commands in a given block.

‣ Commands are sent to device is in sequence, starting from index 0.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 891

Bootloader Programming

The command syntax is as follows:
commands[command-index].<addr>.<mask> = <data>;

9.9.5.2 Generic Format
The code snippets show the common and rail specic parameters in a generic format.

The common parameters are:
pmic.command-retries-count = <u32>;
pmic.wait-before-start-bus-clear-us = <u32>;
pmic.rail-count = <u32>;

The rail-specic parameters are:
pmic.<rail-name>.block-count

The generic format is as follows:
BLOCK 0
pmic.<rail-name>.<rail-id>.block[0].type = <0 for MMIO, 1 for I2C>
pmic.<rail-name>.<rail-id>.block[0].delay = <u32>
pmic.<rail-name>.<rail-id>.block[0].count = <calculated>;
#For I2C specific
pmic.<rail-name>.<rail-id>.block[0].I2c-controller-id = <u32>;
pmic.<rail-name>.<rail-id>.block[0].slave-add = <u32>;
pmic.<rail-name>.<rail-id>.block[0].reg-data-size = <u32>;
pmic.<rail-name>.<rail-id>.block[0].reg-add-size = <u32>;
#I2C and MMIOs
pmic.<rail-name>.<rail-id>.block[0].commands[0].<addr>.<mask> = <data>;
pmic.<rail-name>.<rail-id>.block[0].commands[1].<addr>.<mask> = <data>;
pmic.<rail-name>.<rail-id>.block[0].commands[2].<addr>.<mask> = <data>;
pmic.<rail-name>.<rail-id>.block[0].commands[3].<addr>.<mask> = <data0>;
::::
BLOCK 1
pmic.<rail-name>.<rail-id>.block[1].type = <0 for MMIO, 1 for I2C>
pmic.<rail-name>.<rail-id>.block[1].delay = <u32>
pmic.<rail-name>.<rail-id>.block[1].count = <Calculated>
#For I2C
pmic.<rail-name>.<rail-id>.block[1].I2c-controller-id
pmic.<rail-name>.<rail-id>.block[1].slave-add
pmic.<rail-name>.<rail-id>.block[1].reg-data-size
pmic.<rail-name>.<rail-id>.block[1].reg-add-size
#I2C and MMIOs
pmic.<rail-name>.<rail-id>.block[1].commands[0].<addr>.<mask> = <data>;
pmic.<rail-name>.<rail-id>.block[1].commands[1].<addr>.<mask> = <data>;
pmic.<rail-name>.<rail-id>.block[1].commands[2].<addr>.<mask> = <data>;
pmic.<rail-name>.<rail-id>.block[1].commands[3].<addr>.<mask> = <data0>;
::::

For example, the usage is as follows:
pmic.command-retries-count = 1;
pmic.wait-before-start-bus-clear-us = 0;
pmic.rail-count = 6;
###############GENERIC RAIL (ID = 1) DATA ###############
pmic.generic.1.block-count = 1;
1. Set PMIC MBLDP = 1, CNFGGLBL1 bit 6 = 1
pmic.generic.1.block[0].type = 1; # I2C Type
pmic.generic.1.block[0].i2c-controller-id = 4;
pmic.generic.1.block[0].slave-add = 0x78; # 7BIt:0x3c
pmic.generic.1.block[0].reg-data-size = 8;
pmic.generic.1.block[0].reg-add-size = 8;

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 892

Bootloader Programming

pmic.generic.1.block[0].delay = 10;
pmic.generic.1.block[0].count = 1;
pmic.generic.1.block[0].commands[0].0x00.0x40 = 0x40;
#####################CORE RAIL (ID = 3) DATA ############
pmic.core.3.block-count = 2;
1. Set 950mV voltage.
pmic.core.3.block[0].type = 1; # I2C Type
pmic.core.3.block[0].i2c-controller-id = 4;
pmic.core.3.block[0].slave-add = 0x70; # 7BIt:0x38
pmic.core.3.block[0].reg-data-size = 8;
pmic.core.3.block[0].reg-add-size = 8;
pmic.core.3.block[0].delay = 1000;
pmic.core.3.block[0].count = 1;
pmic.core.3.block[0].commands[0].0x07.0xFF = 0x2E;
2. Set GPIO3 Power down slot to 6.
pmic.core.3.block[1].type = 1; # I2C Type
pmic.core.3.block[1].i2c-controller-id = 4;
pmic.core.3.block[1].slave-add = 0x78; # 7BIt:0x3c
pmic.core.3.block[1].reg-data-size = 8;
pmic.core.3.block[1].reg-add-size = 8;
pmic.core.3.block[1].delay = 10;

9.9.6 AO Block Parameters

Parameter Description

aoblock-count Species the number of AO sets described in the
le.

command-retries-count Species the number of allowed command
attempts.

delay-between-
commands-us

Species the wait timeout, in microseconds,
before issuing the bus clear command. The wait
time is calculated as:

1 << n microseconds

Where n is provided by this parameter.

wait-before-start-bus-
clear-us

Species the wait time, in microseconds, before
issuing the bus clear command.

block-count Species the number of blocks in the AO block.

9.9.6.1 I2C type-specic parameters
The I2C type specic parameters are as follows:

Parameter Description

I2c-controller-id Species the controller ID of I2C.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 893

Bootloader Programming

Parameter Description

slave-add Species the 7-bit secondary address.

reg-data-size Species the register size in bits:

0 or 8:1 byte

16: 2 byte

reg-add-size Species the register address size in bits:

0 or 8:1 byte

16: 2 byte

‣ Commands can be either MMIO or I2C.

‣ The information is in the format <address> = <data>, to support the write-only
sequence.

‣ All commands are indexed, to facilitate multiple commands in a given block.

‣ Commands are sent to the device is in sequence, starting from index 0, in the following
format

The command syntax is as follows:
commands[command-index].<addr> = <data>;

All reset conditions support 3 AO blocks, initialized as follows:
bootrom.<reset-name>.aocommand[0] = <ao block ID>
bootrom.<reset-name>.aocommand[1] = <ao block ID>
bootrom.<reset-name>.aocommand[2] = <ao block ID>

Where <reset_name> is one of the following: watchdog5, watchdog4, sc7, sc8, soft-reset,
sensor-aotag, vfsensor, or hsm.

For example:
bootrom.aoblock-count = 2;
Automatic power cycling: Set MAX77620
Register ONOFFCNFG2, bit SFT_RST_WK = 1 (default is "0" after cold boot),
Register ONOFFCNFG1, bit SFT_RST = 1
bootrom.aoblock[0].command-retries-count = 1;
bootrom.aoblock[0].delay-between-commands-us = 1;
bootrom.aoblock[0].wait-before-start-bus-clear-us = 1;
bootrom.aoblock[0].block-count = 1;
bootrom.aoblock[0].block[0].type = 0; # I2C Type
bootrom.aoblock[0].block[0].slave-add = 0x3c; # 7BIt:0x3c
bootrom.aoblock[0].block[0].reg-data-size = 8;
bootrom.aoblock[0].block[0].reg-add-size = 8;
bootrom.aoblock[0].block[0].count = 2;
bootrom.aoblock[0].block[0].commands[0].0x42 = 0xda;
bootrom.aoblock[0].block[0].commands[1].0x41 = 0xf8;
Shutdown: Set MAX77620
Register ONOFFCNFG2, bit SFT_RST_WK = 0
Register ONOFFCNFG1, bit SFT_RST = 1
bootrom.aoblock[1].command-retries-count = 1;

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 894

Bootloader Programming

bootrom.aoblock[1].delay-between-commands-us = 1;
bootrom.aoblock[1].wait-before-start-bus-clear-us = 1;
bootrom.aoblock[1].block-count = 1;
bootrom.aoblock[1].block[0].type = 0; # I2C Type
bootrom.aoblock[1].block[0].slave-add = 0x3c; # 7BIt:0x3c
bootrom.aoblock[1].block[0].reg-data-size = 8;
bootrom.aoblock[1].block[0].reg-add-size = 8;
bootrom.aoblock[1].block[0].count = 2;
bootrom.aoblock[1].block[0].commands[0].0x42 = 0x5a;
bootrom.aoblock[1].block[0].commands[1].0x41 = 0xf8;
Shutdown in sensor/ao-tag
#reset in soft reset.
no commands for other case
bootrom.sensor-aotag.aocommand[0] = 1;
bootrom.soft-reset.aocommand[0] = 0;

9.9.7 Conguring the Security Conguration
Registers
Tegra has separate registers for conguring bridge client security and bridge rewalls,
known as security conguration registers (SCRs). SCRs are either congured by the
platform or re-congured for custom platforms. The custom conguration is provided
using MB2 BCT at the MB2 stage. The SRC conguration le is available at:

<top>/drive-foundation/platform-config/platform/t23x/common/bct/firewall/tegra234-
firewall-config-base.dtsi

Format of the entries in dtsi:

reg@XYZ

{ exclusion-info = <2>; value = <0x80000000>; }
;

Exclusion-info is a bit-map (4 bits) with each bit signifying the following:

BIT[0] - SC7 SKIP
BIT[1:2] - PROGRAM_IN
 0 -> BEFORE_MB2
 1 -> MB2
 2 -> AFTER_MB2
BIT[3] - PRODUCTION ONLY

MB2 will program the SCRs only if the PROGRAM_IN eld is set to MB2. SCRs that are to
be programmed only on platforms with production fuses blown have PRODUCTION_ONLY
ag set in exclusion-info. MB2 will check if the fuses are blown and programs the SCRs.

9.9.7.1 Usage
The command line usage syntax is as follows:
scr.<reg_index>.<exclusion-info> = <32 bit value>; # <reg_name>

Where:

‣ scr is the domain name prex for the setting.

‣ <reg_index> is the matching MB1 and CFG le sequence, beginning at 0.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 895

Bootloader Programming

‣ <exclusion-info> is one of the values as follows:

Value Description

0 Include:regular SCRs loaded from BCT in cold boot, from stored
context in warm boot.

1 Exclude: Present data in the CFG le but do not load data from
the BCT. Allows SCR programming in MB2 or later.

2 SC7 resume: Program from BCT in cold boot, but exclude for
warm boot.

MB1 code lists SCR register absolute addresses in an indexed list.

For example:
SCR register configurations
scr.134.5 = 0x3f008080; # APS_AST_SCR_AST_REG_3_SEC_CONTROL_0
scr.135.5 = 0x3f008080; # APS_AST_SCR_AST_REG_4_SEC_CONTROL_0

9.9.8 Miscellaneous Congurations
The miscellaneous conguration le is available at:
<top>/drive-foundation/platform-config/
bct/t194/misc/tegra194-mb1-bct-misc-<auto>.cfg

The elds contained in misc<auto>.cfg are as follows:

Field Description Conguration Example

enable_can_boot Controls early CAN initialization. If
set, spe-can rmware loading spe-r5
processor boot is done.

enable_can_boot = 1;

enable_blacklisting Controls DRAM ECC blacklisting:

0: Disable ECC denylisting

1: Enable ECC denylisting

enable_blacklisting = 0;

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 896

Bootloader Programming

Field Description Conguration Example

disable_sc7 Controls SC7 state entry:

0: Enable sc7

1: Disable sc7

disable_sc7 = 0;

fuse_visibility Certain fuses cannot be read or written
by default because they are not visible.
If this eld is set, MB1 enables fuse
visibility for such fuses.

fuse_visibility = 1;

enable_vpr_resize Controls enablement of VPR resize
functionality.

enable_vpr_resize=0

9.9.8.1 Debug
There are debug functionality which can be enabled or disabled using BCT ag.

Debug Control Fields Description Conguration Example

uart_instance Congures the UART instance for
console prints.

debug.uart_instance = 1;

enable log Enables/disables console logging. debug.enable_log = 1;

enable_secure_settings Unused. -

9.9.8.2 AOTAG
The AO-TAG register is programmed in the MB1, which controls the maximum temperature
at which Tegra platform is allowed to operate. If the temperature exceeds that limit, an
automatic shutdown is triggered.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 897

Bootloader Programming

AOTag Control Fields Description Conguration Example

boot_temp_threshold Boot temperature threshold in
millicentigrade. If temperature
is higher than the temperature
specied in this eld, MB1 waits
or shuts down the device.

aotag.boot_temp_threshold
= 105000;

cooldown_temp_threshold Cool down temperature threshold
in millicentigrade. MB1 resumes
booting when the device
has cooled to this threshold
temperature.

aotag.cooldown_temp_threshold
= 85000;

enable_shutdown If set to 1, enables shutdown
using aotag if temperature
is above boot temperature
threshold.

aotag.enable_shutdown =
1;

The clock control elds in the following table hold the clock divider values for the various
modules that MB1 programs.

Clock Control Fields Description Conguration Example

bpmp_cpu_nic_divider Program the cpu nic divider to control
the BPMP CPU frequency.

A value 1 less than the value in the
eld is directly written to the register.

clock.bpmp_cpu_nic_divider
= 1;

bpmp_apb_divider Program the apb divider to control
the APB bus frequency.

A value 1 less than the value in the
eld is directly written to the register.

clock.bpmp_apb_divider =
1;

axi_cbb_divider Program the axi_cbb divider to
control the AXI-CBB bus frequency.

A value 1 less than the value in the
eld is directly written to the register.

clock.axi_cbb_divider = 1;

se_divider Program the se divider to control the
SE Controller frequency.

A value 1 less than the value in the
eld is directly written to the register.

clock.se_divider = 1;

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 898

Bootloader Programming

Clock Control Fields Description Conguration Example

aon_cpu_nic_divider Program the cpu_nic divider to
control the AON(SPE) CPU frequency.

A value 1 less than the value in the
eld is directly written to the register.

clock.aon_cpu_nic_divider
= 1;

aon_apb_divider Program the apb divider to control
the AON(SPE) APB frequency.

A value 1 less than the value in the
eld is directly written to the register.

clock.aon_apb_divider = 1;

aon_can0_divider Program the can0 divider to control
the CAN0 controller frequency.

A value 1 less than the value in the
eld is directly written to the register.

clock.aon_can0_divider =
1;

aon_can1_divider Program the can1 divider to control
the CAN1 controller frequency.

A value 1 less than the value in the
eld is directly written to the register.

clock.aon_can1_divider =
1;

osc_drive_strength Unused -

pllaon_divp Program the P value of PLL-AON.

A value 1 less than the value in the
eld is directly written to the register.

clock.pllaon_divp = 2;

pllaon_divn Program the N value of PLL-AON.

A value 1 less than the value in the
eld is directly written to the register.

clock.pllaon_divn = 25;

pllaon_divm Program the M value of PLL-AON.

A value 1 less than the value in the
eld is directly written to the register.

clock.pllaon_divm = 1;

9.9.8.3 AST setting
The AST settings for various rmware is loaded by MB1/MB2. These are the virtual
addresses of the rmware. MB1/MB2 programs corresponding physical addresses based

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 899

Bootloader Programming

on the location where it loaded the rmware in memory (DRAM). Normally, it is not
necessary to change these settings.

Fields Description Conguration Example

bpmp_fw_va Virtual address for BPMP-
FW

ast.bpmp_fw_va = 0x50000000;

mb2_va Virtual address for MB2-FW ast.mb2_va = 0x52000000;

sce_fw_va Virtual address for SCE-FW ast.sce_fw_va = 0x70000000;

apr_va Virtual address for Audio-
protected region used by
APE-FW

ast.apr_va = 0xC0000000;

ape_fw_va Virtual address for APE-FW ast.ape_fw_va = 0x80000000;

9.9.8.4 I2C setting
The I2C settings specify the operating frequency of the I2C bus in MB1/MB2. The default is
100 KHz.

Field Description Conguration Example

0 Specify the clock for I2C controller instance 0 i2c.0 = 400;

4 Specify the clock for I2C controller instance 4 i2c.4 = 1000;

9.9.8.5 SW Carveout
The SW carveout settings specify the address and size for BL carveout.

Field Description Conguration Example

cpubl_carveout_addr Start location of the CPU-BL
Carveout

sw_carveout.cpubl_carveout_addr =
0x96000000;

cpubl_carveout_size Size of the CPU-BL Carveout sw_carveout.cpubl_carveout_size =
0x02000000;

mb2_carveout_size Size of the MB2 Carveout sw_carveout.mb2_carveout_size =
0x00400000;

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 900

Bootloader Programming

9.9.8.6 CPU Param
The CPU parameter settings contain the initial settings passed to CPU-Init FW. Contact
NVIDIA before changing these settings.

Field Description Conguration Example

Bootcpu Specify Boot CPU. 4 means A57 cpu0
and 0 mean Denver0. For automotive
applications use A57-cpu0.

cpu.bootcpu = 4

ccplex_platform_featuresPlatform feature passed to the CPU-
Init FW.

cpu.ccplex_platform_features
= 0x581;

lsr_dvcomp_params_b_clusterContains setting for initializing ADC
and DVC, which need to be functional
before CPU rails are brought up

cpu.lsr_dvcomp_params_b_cluster
= 0xC0780F05C;

lsr_dvcomp_params_m_clusterContains setting for initializing ADC
and DVC, which need to be functional
before CPU rails are brought up

cpu.lsr_dvcomp_params_m_cluster
= 0xC0780F05C;

nal_m_cluster_data Initial NAFLL settings for cluster for
Denver

cpu.nal_m_cluster_data =
0x11F04461;

nal_b_cluster_data Initial NAFLL settings for cluster for
A57

cpu.nal_b_cluster_data =
0x11F04461;

9.9.8.7 Dev-param
The DEV parameters are the device settings used by MB1/MB2.

Field Description Conguration Example

qspi.clk_src Specify the clock source. The value
corresponds to what is mentioned in
the QSPI CLK SRC register.

0: pllp_out0

4: pllc4_muxed

devinfo.qspi.clk_src = 0; #

qspi.clk_div clk_div = N+1;Hence N = 3 & clk_rate
= 163.2 MHz = (408 MHz / ((N / 2) +
1))

devinfo.qspi.clk_div = 4;

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 901

Bootloader Programming

Field Description Conguration Example

qspi.width Specify the width of the QSPI BUS
during transfer

0 : 1 bit (x1 mode)

1 : 2 bit (x2 mode)

2 : 4 bit (x4 mode)

devinfo.qspi.width = 2

qspi.dma_type Specify which DMA to use for
transfer if mode of transfer is DMA.
For QSPI, in MB1/MB2, BPMP-DMA
should be used.

0 : GPC-DMA

1 : BPMP-DMA

devinfo.qspi.dma_type = 1

qspi.xfer_mode Specify mode of transfer 0: PIO

1: DMA

devinfo.qspi.xfer_mode = 1;

qspi.read_dummy_cyclesThe dummy cycles allow the device
internal circuits additional time for
accessing the initial address location.
During the dummy cycles the data
value on IOs are "don't care" and may
be high impedance.

devinfo.qspi.read_dummy_cycles
= 9

qspi.trimmer_val1 tx_clk_tap_delay for QSPI devinfo.qspi.trimmer_val1 =
0

qspi.trimmer_val2 rx_clk_tap_delay for QSPI devinfo.qspi.trimmer_val2 =
0

9.10 Restricting Power Controls
Because maintaining a safe operating state is crucial, the power controls, including clocks,
resets, and power states of NVIDIA Tegra® hardware IPs, are access restricted through
rewalls to the BPMP-FW software.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 902

Chapter 10. Mass Storage Partition
Conguration

This section describes how to congure the mass storage partition.

The platform supports formatting mass storage media into multiple partitions for storing
data, such as device OS images and boot loader images. Data inside these partitions are
not end-user visible through the typical OS lesystems.

The platform also supports the GUID partition table GPT scheme for dening the layout of
the partition table on a physical hard disk.

Creating Partitions

Options for creating partitions dier between boot media and non-boot-media.

‣ For boot media (for QSPI media), the partition layout is passed from the kernel
command line or via the DT node. The partition layout is a kernel interpretation. The
boot loader continues to use the partition table (PT).

‣ For non-boot-media (eMMC/SD card), you can create partitions from user-space or by
using bootburn. However, if you update the partition from user-space, the partition
layout for the boot loader will go out of sync with the partitions. This is because user-
space uses GPT for storing partition layout. In contrast, Boot loader uses the PT
denitions.

For best practices, expose non-system partitions to user-space, excluding the system
partitions like BCT, PT, boot loaders, and kernel partitions. To update system partitions
using update tools, it is recommended that whole ash be exposed to user-space in the
kernel.

For information about the ashing ow, see Flashing with Bootburn.

Multipartition Architecture

The partition properties are:

‣ Base address, expressed as bytes

‣ Length, expressed as bytes

‣ Name, maximum 20 character-length string

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 903

Mass Storage Partition Conguration

‣ Storage device ID

‣ File system type

‣ Flag indicating whether the partition is to be write-protected on boot.

10.1 Partition Overview
Two conguration (CFG) versions are supported. The existing CFG format is identied as
“legacy” or “v1,” while the 3-level CFG format is identied as “v2.”

The usage for each type of partition is as follows:

‣ Guest OS Partitions

‣ Native Partitions

10.1.1 Native Partitions
The partition names for the primary and recovery partitions are as follows.

‣ For CFG v1, each recovery partition’s name is the primary partition’s name suxed with
‘r’.

‣ For CFG v2, only the recovery partitions in the top-level CFG have their names suxed
with ‘r’.

‣ The other recovery partitions in CFG v2 maintain the same name as their primary
counterparts; the recovery partitions are dierentiated based on the boot chain they
belong to (i.e. A or B).

Partition name Applies to Description

Bct Contains the Boot
Conguration Table.

mb1-bootloader Contains the MB1 boot loader.

mb1-bct Contains the BCT conguration
le for MB1.

mb2-bootloader Contains the MB2 boot loader
for the BPMP.

mts-preboot Contains preboot rmware for
the CPU.

mts-bootpack Contains the CPU rmware.

bpmp-fw Contains the power-
management rmware.

bpmp-fw-dtb Contains the power-
management rmware DTB.

ramdisk Contains the primary copy of
the ramdisk image.

secure-os Contains the recovery copy of
the ramdisk image.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 904

Mass Storage Partition Conguration

Partition name Applies to Description

Pt Contains the Partition Table.

kernel Contains the kernel image.

kernel-dtb Contains the device tree binary
image required by kernel.

eks Contains the eks.dat object,
which is an encrypted Widevine
key.

spe-fw Contain the rmware for SPE-
R5.

sc7-fw Contains the rmware for SC7
resume.

sce-fw Contains the rmware for SCE-
R5. This can be either Camera
rmware or Safety rmware,
based on use case.

adsp-fw Contains the rmware for
Audio processor.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 905

Mass Storage Partition Conguration

Partition name Applies to Description

gp1 or fs-gp1
Contains the primary GUID
Partition Table.

The GPT partitioning scheme
must be used. Extended boot
record partitions (ER<n>)
are not required with GPT
partitioning. Do not use the
lename partition attribute
when creating a GP1 partition.

This partition type signies the
start of the GPT partitioning.
All the partitions between GP1
to GPT partition are counted as
partitions in GPT creation.

GP1 partition size must be
greater than or equal to 17,408
bytes. Similarly, GPT partition
size must be greater than or
equal to 16,896 bytes.

For more information about
using GPT, see Conguring GPT
Devices.

gpt or fs-gpt
Contains the secondary GUID
Partition Table. This partition
must be at the end of the
device.

The GPT partitioning scheme
must be used. Extended boot
record partitions (ER<n>)
are not required with GPT
partitioning. Do not use the
lename partition attribute
when creating a GPT partition.

GPT partition size must be
greater than or equal to 16,896
bytes.

For information about using
GPT, see Conguring GPT
Devices.

A_<type>_chain

or

B_<type>_chain

Contains the partitions that
belong to a particular boot
chain (i.e. A or B). It points to a
subsidiary CFG le that denes
those partitions. <type>
indicates the storage device
type as emmc or qspi.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 906

Mass Storage Partition Conguration

10.1.2 Guest OS Partitions
The supported guest partition names, and their legal values, is as follows.

Partition Name Description

Applies to DRIVE OS Linux: guest-
linux

In CFG v1, species the global partition for the rst guest.
In CFG v2, species the global partition for any given
guest.

In either case it points to sub_storage_cfg, which denes
the internal layout of that guest.

gos0-gp1 Species the primary GPT partition for the storage device
used by Guest OS 0 (GOS0).

gos1-gp1 Species the primary GPT partition for the storage device
used by Guest OS 1 (GOS1).

gos0-gpt Species the back-up GPT partition for the storage device
used by GOS0.

pt Species the NVIDIA-specic implementation of the
Partition Table, which stores the information on the
locations of the partitions in storage_cfg.

10.2 Customizing the Conguration File
Customize the mass storage partitions on the target by modifying the conguration le
ashed to the target.

Conguration les (CFG les) consist of mass storage device declarations followed by
partition declarations. The NVIDIA tools use the conguration le to create the images on
the host and ash the target device on the specied memory locations.

The platform includes a default conguration le used by the ashing scripts. Use the
default conguration le as a starting point for any customization, and backup the original
le before attempting modications.

For an example of the dual Linux OS partition conguration, see the Example Virtual
Partition Conguration chapter in the NVIDIA DRIVE OS 6.0 Linux PDK Development Guide.
For an example of a native OS (not virtual) partition conguration, see the Example Native
OS Partition Conguration chapter in the NVIDIA DRIVE OS 6.0 Linux PDK Development
Guide.

Note:

Two CFG versions are supported. The existing CFG format is identied as “legacy”
or “v1,” while the 3-level CFG format is identied as “v2.”

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 907

Mass Storage Partition Conguration

The default conguration le for a platform is adequate for initial product development.
However, consider creating a custom conguration le for these stages:

‣ Finalizing production

‣ Flashing updated images

There are several advantages to using a custom conguration le. It can specify:

‣ Dierent kernel images for recovery and primary partitions

‣ Temporary partition

‣ RamDisk or other feature in recovery partition or vice-versa

If there is a need to repeatedly switch between NFS and MMC, it is recommended to create
and use separate conguration les for each.

10.2.1 Customizing Partitions
When partitions are nally customized (for example, you have modied or added partition
denitions in the conguration le, run the ashing script to ash the device and set the
partitions as dened.

By default, the ashing scripts use the default conguration le. If you customized a
conguration le, specify that le when calling the ash script.

For more information, consult Flashing the Board.

10.2.2 Conguration File Entries
Declarations consist of attribute/value pairs. The conguration le format is:

‣ [meta]—(optional) Species CFG metadata.

‣ <attr>=<val>—Species attribute/value pairs for the device.

‣ [device n]—(required) Species a mass-storage device.

‣ <attr>=<val>—Species attribute/value pairs for the device.

‣ [partition]—Species a partition in the current device.

‣ <attr>=<val>—Species attribute/value pairs for the partition.

‣ # - comments

Mandatory conguration le entries are:

‣ Device type.

‣ Partition for the device partition table.

‣ Partition for the OS image.

‣ Partition for the kernel.

‣ Partition for the boot loader.

‣ BCT partition for the boot conguration table.

‣ Size of partition, which can be the exact le size being programmed in bytes provided
it be erase_block size aligned for the ash. However, to minimize changes to partition

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 908

Mass Storage Partition Conguration

sizes in the CFGpartition, it is recommended to set the partition size in the CFG le
greater than actual le size to be ashed in the partition.

Note:

The partition size always aligns to the erase block size.

10.2.3 Setting Attributes
The possible values for the meta, device, and partition attributes are as follows.

10.2.3.1 Meta Attributes Table
The following table shows supported device attributes and their legal values.

Device Values Description

Version 1 (default) or 2
Species the CFG version.

• 1: legacy (v1)

• 2: 3-level (v2)

10.2.3.2 Device Attributes Table
The following table shows supported device attributes and their legal values.

Device Values Description

type
qspi/spi

sdmmc

ide

ufs_lun

ufs_boot

Species the type of mass
storage device.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 909

Mass Storage Partition Conguration

Device Values Description

instance <instance_num>
Species the controller
instance.

Xavier has four sdmmc
controller instances. Each
instance drives one end point,
as follows:

• instance=0 species
SDMMC1.

• instance=1 species
SDMMC2.

• instance=2 species
SDMMC3.

• instance=3 species
SDMMC4.

For type-ufs, the instance will
correspond to the SCSI device
instance. System partitions, if
any, must be present on LUN 0,
and LUN 0 must enumerate at /
dev/sda.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 910

Mass Storage Partition Conguration

Device Values Description

size <device_size> Species the size of the mass
storage device. Required if
GPT partition is created during
bootburn.

linux_name <linux_name>
Species the name of the
device in bootburn.

For QSPI devices: /dev/block/
mtdblock<id>

Where <id> identies the
device.

• For MMC devices: /dev/block/
mmcblk<id>

• For mSATA/USB/UFS devices:

/dev/block/sda

Note: With multiple mSATA/
USB devices connected,
enumeration varies as sda,
sdb, etc. Instead of path,
<linux_name> is specied with
the controller address-space.
For example:

/dev/block/34600000.sdhci

lun 0-7 Logical unit number for the
device.

10.2.3.3 Partition Attributes Table
The following table shows supported partition attributes and their legal values.

Partition Attribute Values Description

encryption_derivation_string Binary Hex String For normal partitions, this is
a max 32 byte hex string. For
name=bct, this is a max 8 byte
hex string. The string can be
proceeded by 0x. Default is
zero.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 911

Mass Storage Partition Conguration

Partition Attribute Values Description

derivation_const1_string Binary Hex String For name=bct only, this is a max
16 byte hex string. The string
can be proceeded by 0x. Default
is zero.

derivation_const2_string Binary Hex String For name=bct only, this is a max
16 byte hex string. The string
can be proceeded by 0x. Default
is zero.

derivation_const_tz_string Binary Hex String For name=bct only, this is a max
16 byte hex string. The string
can be proceeded by 0x. Default
is zero.

derivation_const_gp_string Binary Hex String For name=bct only, this is a max
16 byte hex string. The string
can be proceeded by 0x. Default
is zero.

derivation_const_fsi_string Binary Hex String For name=bct only, this is a max
16 byte hex string. The string
can be proceeded by 0x. Default
is zero.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 912

Mass Storage Partition Conguration

Partition Attribute Values Description

virtual_storage_ivc_ch 32-bit unsigned number. The
following table describes the
virtual_storage_ivc_ch attribute
bit eld:

Bits Description

31 Is Virtual
Storage Flag
[virt = 1, non-
virt = 0]

30-24 Storage
Server ID [int
value from
0-0x7F]

23 Shared
Partition Flag
[Shared = 1 ,
Exclusive =
0]

22 Reserved for
attributes.

21:18 Partition
Priority.
[Values
from 1 thru
5 where 1
is highest
priority]

17 Disable Pass-
through [1 =
Disable, 0 =
Enable]

16 Read only
ag [RO = 1,
RW = 0]

15:8 Mempool
ID [int value
from 0-0xFF]

7:0 IVC Queue
ID [int value
from 0-0xFF]

Example: Virtualized GOS
 persistent storage with
 IVC Queue=0xEC, Mempool
 ID=0x0x35, Read Write
 partition, Passthrough
 disabled, Priority
 Partition of 4, exclusive
 partition.

[partition]
name=gos0-misc-pers
allocation_policy=sequential
filesystem_type=basic
size=0x6600000
partition_attribute=<GID_GUEST0_VM
+1>
virtual_storage_ivc_ch=0x8<GID_VSC_SERVER>1235EC

Every virtualized partition must
have the virtual_storage_ivc_ch
attribute. The VSC server relies
on this attribute to congure
the virtualization aspects of
storage partitions.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 913

Mass Storage Partition Conguration

Partition Attribute Values Description

encryption <true or false> Optional: true to encrypt
with either global key or
encryption_key.

encryption_key <lename> Optional: Partition-specic
encryption key. Encryption
must be true for partition to be
encrypted.

name <name>
Species up to a 20-character
name for the partition. This
name is used when opening a
partition for read/write access.

Names longer than 20
characters are not supported.

id <identier> Identier.

type
boot_cong_table

bootloader

partition_table

extended_boot_record

GP1

GPT

data

Species the type of partition.

• boot_cong_table is for the
BCT.

• partition_table is for the
partition table.

• extended_boot_record is for
the EBR.

• GP1 is for the primary GPT
partition.

• GPT is for the secondary GPT
partition.

• data is for the remaining
partitions.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 914

Mass Storage Partition Conguration

Partition Attribute Values Description

type (continued)
mb1_boot_cong_table

mb2_bootloader

mts_preboot

mts_bootpack

bpmp_fw

bpmp_fw_dtb

bootloader_cpu

secure_os

kernel_dtb

kernel

ramdisk

WB0

spe-fw

ape-fw

sce-fw

allocation_policy
absolute

sequential

extended

Species the type of allocation
policy.

sequential—The begin
immediately after the
preceding partition.

absolute—The partition begins
at the location specied by the
start_location attribute.

extended—The partition
is extended until end of
the device just before GPT
partition. Only one extended
partition is allowed per device.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 915

Mass Storage Partition Conguration

Partition Attribute Values Description

lesystem_type
basic

ext2

ext3

ext4

qnx

Species the type of lesystem
formatted on the partition
when the partition is created.
The value may be:

basic—No le system. The
partition can be overloaded
with a le system image by
providing a lename for the
partition (see the lename
entry in this table), or by
formatting the partition after it
is created.

ext2, ext3, or ext4—An ext2,
ext3, or ext4 lesystem.

Applies to: eMMC, SD card, and
NOR media in Linux: UBIFS for
QSPI media.

qnx—A qnx6 lesystem.

Applies to DRIVE OS QNX:

External le system support
depends on the support
available in the ashing tool.

For a qnx6 lesystem the
following environment variables
must be set:

$ export
QNX_HOST=<QNX_TOOLCHAIN_BASE>/
host/linux/x86_64/

$ export
QNX_TARGET=<QNX_TOOLCHAIN_BASE>/
target/qnx7/

Where
<QNX_TOOLCHAIN_BASE> is
the pathname of the toolchain
base.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 916

Mass Storage Partition Conguration

Partition Attribute Values Description

start_location <start> Species the starting location
of the partition in the mass
storage device. Valid for
absolute partitions only.

size <size>
Species the size of the
partition in bytes. Decimal and
hexadecimal values are valid.
The boot loader requires that
the partition size be aligned
and the alignment size be:

• For QSPI: 128K (131072) bytes

• For eMMC/SD card: 8K (8192)
bytes

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 917

Mass Storage Partition Conguration

Partition Attribute Values Description

partition_attribute 32-bit unsigned number
For CFG v1:

For virtualization, this property
species to which guest
this partition belongs.
Partition_attribute must be
equal to guest_id + 1 as dened
in the PCT. Additionally, per
device only one partition can be
allocated to a given guest.

For CFG v2:

The bits of partition_attribute
have the following denitions:

•Bit 31: Set if the partition’s
storage device is the boot
medium for the guest.

•Bit 30: Set if the partition
holds a blob for boot-chain
(and sub_cfg_le is present if
the partition is present on the
global boot device).

•Bit 29: Set if the partition
holds a blob for guest
partitions (and sub_cfg_le is
present).

•Bit 28: Set if the partition
holds a blob for user partitions
(and sub_cfg_le is present).

•Bits 4:0: guest ID.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 918

Mass Storage Partition Conguration

Partition Attribute Values Description

lename
<lename>

See Notes at the end of this
table.

Species the name of the le
to write into the partition. The
le must be present in the
directory in which nvimagegen
is running or named with an
absolute path.

The lename attribute cannot
be used with the following
attributes:

• dirname

• imagepath

rcm_lename
<lename*>

See Notes at the end of this
table.

Species the recovery mode
binary for use in microboot 1
(NVC) or microboot 2 (MB2).
The le must be present in the
directory in which nvimagegen
is running or named with an
absolute path.

The lename attribute cannot
be used with the following
attributes:

• dirname

dirname
<Directory Path*>

See Notes at the end of this
table.

Species the directory path for
creating the lesystem image
(based on the lesystem_type
attribute) and burning the
same to the media. This
attribute applies to the ext2/3
external le system.

For detailed information, see
the *_fs.cfg le.

The dirname and lename
attributes cannot be used in
the same partition.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 919

Mass Storage Partition Conguration

Partition Attribute Values Description

imagepath
<le name*>

See Notes at the end of this
table.

Species the kernel image
path, which is usually an OS
kernel partition. The Flashing
tools create the kernel image,
which will be ashed based on
the other specied. For detailed
information, see the *_fs.cfg
le.

The imagepath and lename
attributes cannot be used in
the same partition.

os_args <String>
Kernel command line to be
passed to the kernel. Key-
value pairs are separated by
spaces. root= is required and,
depending on the root=value,
rootfstype= may also be
required.

The supported key-value pairs
are specied in:

kernel/Documentation/kernel-
parameters.txt

For more information, see
Aligning os_args and the Mass
Storage Layout.

Valid only with the kernel_dtb
partition.

ramdisk_path
<lename*>

See Notes at the end of this
table.

Species the name of the
ramdisk image le. The
specied le must be present
in the directory in which
nvimagegen is running or the
name must be an absolute
path.

Valid only with the imagepath
attribute.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 920

Mass Storage Partition Conguration

Partition Attribute Values Description

os_load_address <address>
Species address where boot
loader must load the kernel
image.

When the image is zImage
(specied in imagepath), set
this property to 0xA00800.
When the image is Image, set it
to 0x8000.

ramdisk_load_address <address> Species the load address for
Ram-disk.

decompression_algorithm <lzf | zlib | none>
Species the algorithm
that Quickboot uses for
decompressing images.

lzf is the preferred algorithm.

Ensure that the partition has
enough space to hold the
image, especially when ashing
an uncompressed image
(decompression_algorithm=none).

• If this eld is not specied,
by default, lzf is used as the
decompression algorithm.

• Quickboot decompresses
images in parallel with loading
the image.

• Use only when the imagepath
or ramdisk_path attribute
points to an image.

Applies to: QSPI media only.

write_protect

0 or 1
Not currently supported.

Species whether to write-
protect a given partition. Write-
protection prevents partition
erasures.

This attribute has no eect
during ashing. All partitions
are unprotected before
ashing.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 921

Mass Storage Partition Conguration

Partition Attribute Values Description

sub_cong_le
<cfg_pathname*>

See Notes at the end of this
table.

Species the path to the
conguration le that contains
the layout for the guest. The
ashing system, including
the main conguration le,
assumes this is a single blob
le.

load_address Numeric_value Species the load address
for the binary in the given
partition.

entry_point Numeric_value Species the entry_point
for the binary in the given
partition.

version Numeric_value Species the version for the
given binary.

image_type <linux | android | integrity |
hypervisor | ramdisk | mods> Species the type of image.

Valid only for kernel and
ramdisk partitions.

Currently, mods is for internal
use.

stream_validation <yes|no>
Species whether to validate
the image in parallel with
loading an decompressing the
image.

If decompression_algorithm
is selected, this attribute is
ignored.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 922

Mass Storage Partition Conguration

Partition Attribute Values Description

authentication_group <number>
Species the partition to
a group. All the partitions
grouped will be authenticated
together.

The minimum group number
is 1 and the maximum group
number is 15. Group number 0
means not in a group.

For more information, see
Grouping of Boot Images.

virtual_storage_ivc_ch 32-bit unsigned number Every virtualized partition must
have the virtual_storage_ivc_ch
attribute. The VSC server relies
on this attribute to congure
the virtualization aspects of
storage partitions.

ispersistent <yes|no> If ispersistent=yes, an image
le is specied for the partition
and --init-persistent-partitions
is specied on bootburn.py
or create_bsp_images.py
command line and the value
specied in the image le is
written to persistant partition.

The following table describes the virtual_storage_ivc_ch attribute bit eld.

Bits Description

31 Is Virtual Storage Flag [virt = 1, non-virt = 0]

30-24 Storage Server ID [int value from 0-0x7F]

23 Shared Partition Flag [Shared = 1 , Exclusive = 0]

22 Reserved for attributes.

21:18 Partition Priority. [Values from 1 thru 5 where 1 is highest priority]

17 Disable Pass-through [1 = Disable, 0 = Enable]

16 Read only ag [RO = 1, RW = 0]

15:8 Mempool ID [int value from 0-0xFF]

7:0 IVC Queue ID [int value from 0-0xFF]

Example: Virtualized GOS persistent storage with IVC Queue=0xEC, Mempool ID=0x0x35,
 Read Write partition, Passthrough disabled, Priority Partition of 4, exclusive
 partition.

[partition]
name=gos0-misc-pers
allocation_policy=sequential

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 923

Mass Storage Partition Conguration

filesystem_type=basic
size=0x6600000
partition_attribute=<GID_GUEST0_VM+1>
virtual_storage_ivc_ch=0x8<GID_VSC_SERVER>1235EC

Note: *To avoid Bootburn errors, do not use special characters in directory names. Such
special characters include the plus sign (+) and pound sign (#).

Conguration les that congure the Flashing tool for an eMMC, or QSPI media depend
upon the targeted OS. You can nd the conguration les in these locations:
<top>/drive-foundation/tools/flashtools/bootburn_t23x/*.cfg

For best practices, retain the le as provided and add optional partitions based on project
requirements.

10.2.4 Aligning os_args Values and the Mass
Storage Layout
When ashing a device, the ashing script uses the conguration le to determine how to
ash individual partitions. os_args attributes provide a kernel command line that species
le system and partition attributes. Of particular interest are the settings for Memory
Technology Device (MTD) devices, which use QSPI ash.

If you change your ash partition layout, you must also modify the attributes in os_args
to be consistent with the mass storage layout. For example, if you move the data partition,
you must also update the osets or indices in the os_args value. Such modications are
required to ensure non-overlapping partitions.

By default, the OS kernel has no knowledge of the mass storage layout created when
ashing (i.e., QSPI partition oset and size, and le system type). At runtime, the kernel
cannot determine all layout settings. In particular, the os_args attribute may need to
specify the Linux kernel settings described in the following table.

os_args Settings Description

rootfstype=ubifs Required if the root le system is UBIFS. Unlike
the ext2/ext3/ext4 le systems, the kernel
cannot at runtime detect UBIFS.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 924

Mass Storage Partition Conguration

os_args Settings Description

root=ubi<n>_<m>

Where:

<n> is the sequential number of the UBI device
(usually 0)

<m> is the "id" attribute on the partition.

Required if the root device is a UBI volume.

The alternative form of this value is
ubi<n>:<name>, where <name> is the partition
name, such as EARLY_FS_VIDEO.

ubi.mtd=<x>

Where <x> is an MTD partition number.

Required to attach the UBI to the MTD partition
at boot, for example, if the root device is a UBI
volume.

mtdparts=tegra-

nor:<size>@<offset>(<name>)

Where:

• <size> is the partition size in kilobytes.

• <offset> species the beginning of the
partition.

• <name> is the symbolic name for the partition.
For example: whole_device or userspace.

Required to export NOR partitions as mtdN
and mtdblockN devices. For example, use this
key-value pair to export the partition at oset
<offset> so UBI can attach itself to such
devices. You can get the value for <size>and
<offset> from the default CFG le for your
platform.

tegra-nor is the ash device name and must
not be changed.

For information on all supported kernel command parameters, see the following le.
kernel/Documentation/kernel-parameters.txt

10.2.5 Conguring GPT Devices
GUID Partition Table (GPT) is a standard for the layout of the partition table on a physical
hard disk. For general information on GPT, see GUID Partition Table at:

http://en.wikipedia.org/wiki/GUID_Partition_Table

1. In the kernel conguration le, enable the following partition types:
CONFIG_PARTITION_ADVANCED=y
CONFIG_EFI_PARTITION=y

2. In your ash.cfg conguration le, specify the GP1 partition.

Partitions between this partition and GPT are exposed, although only those selected to
mount are mounted.

Among other attributes for GP1 partitions, the following attributes must be set as
specied here:
filesystem_type=basic
type=GP1

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 925

http://en.wikipedia.org/wiki/GUID_Partition_Table

Mass Storage Partition Conguration

3. Specify the GPT partition.

Among other attributes for GPT partitions, the following attributes must be set:
filesystem_type=basic
type=GPT
size=0xFFFFFFFFFFFFFFFF

4. Note: The GPT partition must be the last partition.

5. Specify ll and extension attributes, depending on your platform. For Orin, set the GPT
partition allocation_policy attribute to sequential.

10.3 Flashing Partitions with a File
System and Kernel Image
When the conguration le contains imagepath partition attributes, the ashing script
ashes a le system and kernel image. Internally, ashing tools create the kernel image
that is ashed based on the other partition attributes. The following partition attributes
aect the le system:

‣ lesystem_type

‣ lename

‣ dirname

‣ imagepath

In addition to these attributes, the imagepath or ramdisk_path attribute uses the following
attributes:

‣ os_args

‣ ramdisk_path

‣ os_load_address

‣ stream_decompression

‣ decompression_algorithm

‣ os_load_address/ramdisk_load_address or load_address

‣ stream_validation

‣ decompression_algorithm

See the Example Native OS Partition Conguration chapter in the NVIDIA DRIVE OS 6.0
Linux PDK Development Guide for an example that uses the imagepath and dirname
partition attributes.

The ashing script invokes Flashing tools to perform actions for specic partitions.

For the dirname partition attribute:

‣ Flashing tool creates the le system image based on lesystem_type partition
attribute.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 926

Mass Storage Partition Conguration

‣ Bootburn then sends that image for writing to the media. This is the same as using the
lename option in the conguration le.

The Flashing tools perform other actions.

For the imagepath and ramdisk_path partition attribute, the Flashing tool does the
following:

‣ Creates a compressed image based on the decompression_algorithm partition
attributes.

‣ Creates a nal kernel image.

10.4 Managing Mass Storage Partitions
in Virtualization
Virtualization enables managing independent partitions. It supports independent ashing,
loading, and restarting of individual VM partitions.

You can enable this feature for individual partitions using the Partition Conguration Table
(PCT) by setting a load_using_pl ag in your partition conguration.

If this ag is not enabled for a partition, then during the binding step all partition
images are combined into a single bootable image with Hypervisor and other Foundation
components. This image gets loaded into memory at once during system boot and
reloading or rebooting such a partition at runtime is not possible.

Enabling the load_using_pl ag for a partition species that the system:

‣ Stores partition images independently (boot loader, OS kernel, le system)

‣ Enables independent ashing of partition images

‣ Requires the Partition Loader to load and execute partition boot images

‣ Enables partition restarting

10.4.1 Partition Loader
The Partition Loader is a special purpose boot loader image that is embedded into
Hypervisor. During the boot process, Hypervisor:

1. Creates a VM container according to the PCT
2. Maps a Partition Loader image into guest OS memory space
3. Then passes control to it

Partition Loader is responsible for loading and starting guest OS boot images.

Note: While being a part of the Hypervisor image, Partition Loader is executed in a context
of a guest OS VM and can only access physical memory or storage devices that belong to
the OS according to the PCT.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 927

Mass Storage Partition Conguration

When a partition restarts after resetting partition state, Hypervisor passes control back to
Partition Loader for subsequent reloading of Guest OS images.

10.4.2 Storage Layout
Independent partition ashing and loading requires special storage device layout
conguration. Conguration information is part of PCT and is used by ashing tools to
program partition images and Partition Loader to load the images during system boot or
partition restart.

For CF v1, the storage layout is dened by the following 2 conguration les:

‣ Global layout conguration le—denes partitions that are globally visible on all storage
devices in the system, such as boot loader, Foundation image, and root le system
images.

‣ VM partition layout conguration le—denes storage partitions that are visible to
individual VMs. It describes the locations of partition images (OS loader, OS kernel) and
boot parameters, such as OS command line.

For CFG v2, the storage layout is dened by these conguration les:

‣ Global layout conguration le: Denes partitions that are globally visible on all storage
devices in the system and are common to both boot chains, such as BR BCT and MB1
boot loader.

‣ Boot chain layout conguration le: Denes partitions that are globally visible on all
storage devices in the system and belong to a particular boot chain (i.e. A or B), such as
Foundation image, and root le system images.

‣ VM partition storage layout conguration le: Denes storage partitions that are visible
to individual VMs. This le describes the locations of partition images (OS loader, OS
kernel) and boot parameters, such as OS command line.

The above storage layouts are dened using the NVIDIA Mass Storage conguration
format.

For more information, see Partition Storage Layout Conguration Example.

10.4.2.1 To change the global layout
‣ In the PCT directory, edit the following le:

<global_storage_qspi.cfg>

‣ Where <global_storage_qspi.cfg> is the name of the le referenced by the
sub_config_file property in the virtual machine (VM) partition layout le. There are no
requirements for naming VM partition layout les.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 928

Mass Storage Partition Conguration

10.4.2.2 Examples
The PCT examples are available at:
<top>/drive-foundation/virtualization/pct

The default conguration les for DRIVE OS Linux are as follows.

Global Storage Conguration File Description

Dual Linux setup /linux-linux/global_storage_qspi.cfg

First Linux partition storage conguration /linux-linux/linux1_storage_emmc.cfg

Second Linux partition storage conguration /linux-linux/linux2_storage_emmc.cfg

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 929

Chapter 11. NVIDIA DRIVE Utilities

Use the information in this section to understand the utilities available in this NVIDIA
DRIVE® product. This information includes topics such as how to use PuTTY and Minicom
utilities to communicate with the boards on your platform.

11.1 Device Tree Structure
A device tree is a tree-structured data format that represents information about the
devices on a board.

Using device trees provides:

‣ Fewer "machine code" and "board" les

‣ A single unmodied kernel used for many platforms

For developing a product with the platform, the device tree data is automatically included
in the ashed image.

The device tree data must be included in the ashed image when upgrading a product
from an earlier release. Future kernel versions are expected to support device trees and to
deprecate board les.

11.1.1 Device Tree Format
A device tree is a tree structure containing kernel-level information about hardware,
including:

‣ Device characteristics

‣ Connections between devices (buses)

‣ Device conguration information

A device tree represents the hardware. The information in a device tree comes from
sources such as hardware specications and board schematics.

Device tree data is represented in the following formats:

‣ Device Tree source les (*.dts and *.dtsi les)

‣ Flattened device tree (FDT) structures

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 930

NVIDIA DRIVE Utilities

The resolved DTS and DTSI les for a device are represented as an FDT structure.

For information on the FDT format, see: http://elinux.org/Device_Trees.

‣ Binary les known as device tree blobs or DTBs (*.dtb les)

The device tree compiler (DTC) compiles the FDT structure into a DTB le.

11.1.2 Device Tree Files in the BSP Framework
The BSP framework from NVIDIA includes device tree source les that describe the
supported platforms. It provides source les that support hardware dierences among the
variants of each platform.

A hierarchy of DTSI les describes each platform. From highest (most general) to lowest
(most specic), the hierarchy levels are:

A hierarchy of DTSI les describes each platform:
 |-- Base Platform DTS
 |-- Platform Intermediate DTSI
 |-- Platform Common DTSI
 |-- SoC DTSI

Files named with this syntax contain a device tree for the platform with the specied Tegra
version.

The SDKsupplies the DTS les in the following directories:
<top>/hardware/nvidia/soc/t234/
<top>/hardware/nvidia/platform/t234

‣ tegra234-vcm31_<e3550a01-t186a | e3550a01-t186b | e3550a03-t186a |
e3550a03-t186b>-base-*.dtsi

Files named with this syntax contain chip-specic nodes common for boards that have
the Tegra version in question.

‣ tegra234-vcm31t234-common.dtsi

Files named with this syntax contain a Device Tree for the vcm31 platform with the
specied Tegra version.

DTS and DTSI les refer to each other using include statements. This allows the reuse of
pre-existing device tree nodes. A board-00 DTS le includes the relevant board DTSI le,
which includes the relevant chip-specic DTSI le, which in turn includes the relevant SoC
DTSI le.

11.1.3 Example: Platform Common DTSI
The tegra234-soc/tegra234-common.dtsi le is included in the platform intermediate
DTSI le for each platform. It is included in the platform intermediate DTSI.
#include "address_map_new.h"
#include "clk-t234.h"
#include "reset-t234.h"

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 931

http://elinux.org/Device_Trees

NVIDIA DRIVE Utilities

#include "tegra234-irq.h"
#include "tegra234-vcm31-thermal.dtsi"
#include "tegra234-camera.dtsi"
#include "tegra234-safety-sce.dtsi"
#include "t18x/tegra234-gpcdma-sid.h"
#include "t18x/tegra-t23x-agic.h"
#include "tegra234-soc-prod.dtsi"
/ {
 #address-cells = <2>;
 #size-cells = <2>;
 chosen {
 stdout-path = &uartb;
 };

11.1.4 Example: SoC DTSI
The tegra234-soc/tegra234-common.dtsi le is the SoC-specic DTSI le. It is included in
the platform common DTSI.
#include "address_map_new.h"
#include "clk-t234.h"
#include "reset-t234.h"
#include "tegra234-irq.h"
#include "tegra234-camera.dtsi"
#include "t18x/tegra234-gpcdma-sid.h"
#include "t18x/tegra-t23x-agic.h"
/ {
 #address-cells = <2>;
 #size-cells = <2>;
 chosen {
 };

11.1.5 Viewing Pinmux Settings in the DTS
Quickboot congures the pinmux; the kernel does not congure them.

The device tree entries for pinmux are visible in the following procfs location. It contains
the dierent states dened for dynamic pinmux conguration.
/proc/device-tree/pinmux@70000868

11.1.6 Kernel DTS Compilation and Flashing
The framework build system compiles the kernel DTS and DTSI les for your platform into
DTB data, which is included in the ash image. Along with the kernel, DTB les are built
automatically.

The boot loader uses the libfdt library to manage DTB data. With this library, Quickboot
performs the following tasks:

1. Reads the DTB from the kernel-dtb partition, if it exists.
2. Modies the DTB to add device tree nodes that are specic to the platform.
3. Passes the modied DTB to the kernel, if Quickboot initially read the DTB from the

kernel-dtb partition.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 932

NVIDIA DRIVE Utilities

11.1.6.1 To ash a custom DTB le
‣ Flash the le with the bootburn -u option and provide the path to your customized

DTB le.

The default path is tegra186-<board>-010-a01-00-base.dtb.

11.1.7 Conguring Device Tree Support
By default, the board conguration les enable device tree support for a DTB partition
device. The TARGET_KERNEL_DT_NAME conguration contains the prex for the DTB/DTSI
les for your platform.

11.1.8 Device Tree Data Format
The device tree data format represents information for the devices on a board. It has these
characteristics:

‣ A tree structure of nodes and properties

‣ A single root node "/"

‣ Child nodes with properties

‣ Key-value pairs represent properties

‣ Keys used as property identiers

‣ Values are empty or byte streams

‣ Data types of streams:

‣ Strings "Value"

‣ List of strings: "Value_1", "Value_1"

‣ Binary data: [0x1 0x2 0x3]

‣ Cell: <0x1 0x2 0x3>

The device tree data format is part of the Open Firmware industry standard (IEEE 1275).

11.1.9 SW-EDID
SW-EDID is a mechanism to provide EDID as a blob in a DTB. The driver reads the EDID
data from the device tree instead of from the panel or monitor. SW-EDID is useful in the
following cases:

‣ The DDC channel of HDMI is not connected and another method is required to provide
mode information to the driver. Instead of hard-coding the board le, the EDID blob is
supplied in the DTB for the driver to read at runtime.

‣ Debugging or experimental purposes where there is a need to override the EDID.

SW-EDID supports HDMI, DP, and LVDS drivers.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 933

NVIDIA DRIVE Utilities

11.1.10 Device Tree Binding Document
The device tree binding (DTB) document provides information about device tree properties
supported by the kernel device tree binding documents, which are available as part of the
Linux kernel source.

Device tree binding documentation is in the Linux kernel source released with the package
at the following path:
kernel/Documentation/devicetree/bindings/
nvidia/Documentation/devicetree/bindings/

11.2 Device Tree Cleaner (delnode)
The delnode.sh tool removes disabled device tree nodes from Device Tree Blob (DTB) les
that are used by the system. Removing disabled device tree node reduces the le sizes of
the DTB les, which in turn speeds up the boot process. The speed up happens because
optimized DTB les are faster to decompress and load.

11.2.1 Calling delnode
‣ From the Foundation or Linux/QNX build paths, enter:

 delnode.sh <dtb_file> <build_dir> <dtc_compiler_to_use>

Where the arguments specify:

Note:

delnode.sh is invoked as part of bind makele.

Please update the _av_qnx_guest_dtbs section in delnode.sh to include any newer
DTB les that delnode should clean up.

11.2.2 Example
The following example shows DTBs (converted to Device Tree Source (DTS) version) before
and after delnode processes them.

11.2.2.1 Before
 usb3 {
 lanes {
 usb3-0 {
 status = "okay";
 #phy-cells = <0x0>;
 nvidia,function = "xusb";
 linux,phandle = <0x94>;
 phandle = <0x94>;
 };

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 934

NVIDIA DRIVE Utilities

 usb3-1 {
 status = "disabled";
 #phy-cells = <0x0>;
 };
 usb3-2 {
 status = "disabled";
 #phy-cells = <0x0>;
 nvidia,function = "xusb";
 };
 usb3-3 {
 status = "disabled";
 #phy-cells = <0x0>;
 };
 };
 }

11.2.2.2 After
 usb3 {
 lanes {
 usb3-0 {
 status = "okay";
 #phy-cells = <0x0>;
 nvidia,function = "xusb";
 linux,phandle = <0x94>;
 phandle = <0x94>;
 };
 };
 };
 };

11.3 Terminal Emulation
With utilities PuTTY or Minicom, you can communicate from the host machine to the
target board over a serial line. NVIDIA recommends using the Minicom terminal emulation
program for better display of the setup prompts, but information is also provided on
options to improve display of setup prompts.

It is recommended to use the tcu_muxer utility to demultiplex the console output from
the virtualized processors to be able to connect to the Guest OS and other VM consoles. If
the tcu_muxer is not used, it is possible that input at the console may be corrupted.

11.3.1 Determining the USB Port and Serial ID
This topic explains how to get the USB port number and serial number port settings of
your target device. Use this information to congure Minicom, depending on your product.

On Linux hosts, USB serial ports typically appear as:
/dev/ttyACM<number> or /dev/ttyUSB<number>

Where <number> is the port number.

Applies to: Releases supporting Windows:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 935

NVIDIA DRIVE Utilities

A host machine may contain internal hardware for serial ports that have no external
connector. So, if the host machine contains one normal serial connector in the back of the
machine and one hidden internal serial port, then the serial port on the back can appear as
/dev/ttyS2 not /dev/ttyS1.

The device USB port numbers and serial IDs are as follows:

Serial ID USB Port

P3710 /dev/ttyACM1AURIX safety MCU

P3663 /dev/ttyUSB1

P3710 /dev/ttyACM0Orin debug UART

P3663 /dev/ttyUSB0

For Orin debug UART, use the output of the tcu_muxer utility to get the virtual console for
the Guest OS. As shown in the following example, the Guest OS console is /dev/pts/40.
/dev/pts/7 RCE
/dev/pts/9 FSI
/dev/pts/10 PSCFW
/dev/pts/11 DCE
/dev/pts/30 BPMP
/dev/pts/33 SCE
/dev/pts/34 SPE
/dev/pts/38 TZ
/dev/pts/40 CCPLEX: 0
/dev/pts/41 CCPLEX: 1
/dev/pts/43 CCPLEX: 2
/dev/pts/44 CCPLEX: 3
/dev/pts/45 CCPLEX: 4
/dev/pts/46 CCPLEX: 5
/dev/pts/48 CCPLEX: 6
/dev/pts/49 CCPLEX: 7
/dev/pts/50 CCPLEX: 8
/dev/pts/59 CCPLEX: 9
/dev/pts/60 CCPLEX: 10
/dev/pts/61 CCPLEX: 11
################################# 001 ##
 /dev/pts/40 [Guest VM 0]
 /dev/pts/41 [Update service]
 /dev/pts/43 [Resource Manager Server]
 /dev/pts/44 [Storage Server]
 /dev/pts/45 [sysmgr]
 /dev/pts/46 [bpmp_server_native]
 /dev/pts/48 [se_server_native]
 /dev/pts/61 [Hypervisor]

For all ports, the settings should be as follows:
baudrate 115200
bits 8
parity N
stopbits 1
rtscts No
xonxoff No

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 936

NVIDIA DRIVE Utilities

11.3.2 About PuTTY
PuTTY is both a serial communication program and a terminal emulator that uses the SSH
or TELNET protocol. PuTTY supports the full UTF-8 character-set.

11.3.2.1 Installing PuTTY
PuTTY is installable via apt-get from Canonical mirrors. Use the following command to
install PuTTY:
$ sudo apt-get install putty

11.3.2.2 PuTTY: Connect to Serial Port
Before connecting to a serial port, you must start PuTTY as a superuser (or as root user)
using following command. This command opens the putty conguration dialog box.
$ sudo putty

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 937

https://www.chiark.greenend.org.uk/~sgtatham/putty/

NVIDIA DRIVE Utilities

In the above dialog box:

1. Choose Connection type as Serial.
2. In Serial line enter the USB Serial port path obtained above /dev/ttyACM<number> or /

dev/ttyUSB<number> or /dev/pts/<number>.
3. Enter Speed to 115200.
4. Click Open

Steps 1-3 opens a new window to receive serial data from the DRIVE platform.

11.3.2.3 PuTTY: Save and Load sessions
PuTTY allows users to save entered conguration into session entry which can be loaded
later.

To save a session, enter the terminal settings from above section from steps 1-3 and enter
in Saved Sessions box, your choice of session-name.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 938

NVIDIA DRIVE Utilities

When putty is launched, it lists saved sessions in a list. Please click the choice of session,
click load and click open. This loads and opens the chosen saved session.

11.3.3 About Minicom
Minicom is a serial communication program that enables an admin user to communicate
using the serial port. In DRIVE OS SDK, we use Minicom communicate from host machine
to DRIVE platform.

11.3.3.1 Conguring Minicom
This topic explains how to modify the Minicom conguration le for the USB port and
serial ID for your device. The default serial port settings depend on your development
board. If your port diers from the default, you must modify the Minicom conguration le
for your device (procedure below).

Note:

Although the Minicom conguration le contains the following statement, it is
recommended that you manually edit the le for your changes. This approach is
less error-prone than using the Minicom -s option.

Machine-generated file - use "minicom -s" to change parameters.

11.3.3.1.1 Port Settings
By default, the serial port settings are shown below. You must modify the port to the actual
device for the serial port.
port /dev/ttyS0
baudrate 115200
bits 8
parity N
stopbits 1
rtscts No
xonxoff No

11.3.3.2 Running Minicom

11.3.3.2.1 Prerequisites
‣ You have modied the Minicom conguration le for your device's USB port and serial

ID.

‣ You have connected the device to your host system.

‣ The device is on and awake.

‣ The hardware ow control is turned o.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 939

http://manpages.ubuntu.com/manpages/bionic/man1/minicom.1.html

NVIDIA DRIVE Utilities

11.3.3.2.2 To run Minicom
‣ In a shell window, enter the following command:

sudo minicom -w -D /dev/pts/<number> -R utf8 -t xterm

The -w option enables line-wrapping, -R utf8 enables UTF-8 character set.

11.3.3.2.3 To congure Minicom
1. In the Minicom console, enter the following command (without spaces between the

letters):
CTRL-A O

2. Scroll to "Serial port setup" and hit ENTER.

3. Enter A to enter the serial Device number.
4. Enter E to congure the speed and other comm parameters of the port.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 940

NVIDIA DRIVE Utilities

5. When nished, hit ENTER to exit the screen. Hit ENTER again if there are no further
changes to the serial port setup screen, and then scroll down to Exit to exit the
conguration screen.

11.3.3.3 Toggling the Line Wrap Setting on Minicom
The Minicom command line in Running Minicom includes the -w option, which enables line
wrapping. You can use the W conguration setting to change that behavior.

11.3.3.3.1 To toggle line wrap on/o
‣ In the Minicom console, enter the following command (without spaces between the

letters):

CTRL-A Z W

11.3.3.4 Toggling the Line Feed Setting on Minicom
By default, Minicom enables line-wrapping. With that option, Minicom adds a line feed
before every carriage return displayed on the screen.

Some terminals, have poor attribute handling (serial instead of parallel). If you are using
such a terminal, you must start Minicom with the following option:
-a off

Or you must toggle o the line feed, as described in the following instructions.

11.3.3.4.1 To toggle line feed on/o
‣ In the Minicom console, enter the following command:

CTRL-AZA

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 941

NVIDIA DRIVE Utilities

11.4 Tegra Combined UART and the
tcu_muxer Utility
The Tegra Combined UART (TCU) is a system that multiplexes debug information from the
processors in the CCPLEX cluster with information from other processors. The multiplexing
is accomplished in the Sensor Processing Engine (SPE), but involves all of the processors
that supply information.

tcu_muxer is a utility which runs on a host system and demultiplexes the debug
information multiplexed by the TCU.

This diagram shows the relationship of the components for a native (non-virtualized)
target.

On a virtualized target, the Virtualized Debug UART multiplexes debug information from
the VMs in the CCPLEX cluster and passes the multiplexed data stream to the TCU. The
TCU multiplexes it with debug information from the other R5 components. On the host,
the CCPLEX debug information customarily is passed from tcu_muxer to uart_muxer, which
demultiplexes the individual VMs' debug information.

This diagram shows the relationship of the components in a virtualized system.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 942

NVIDIA DRIVE Utilities

11.4.1 tcu_muxer Tool

11.4.1.1 Usage
./tcu_muxer [OPTION] …

This table describes the command line options recognized by tcu_muxer:

Command line option Meaning

-h Prints this help screen.

-i Enables the patch for line ending.

-u Use separate uart_muxer tool for Guest console.

-g <int> Spawns <int> consoles for Hypervisor. Defaults to 1.

-d <dev> Species the device name of the host UART that receives
debug data from the target. Defaults to /dev/ttyUSB3.

-r <rate> Species data rate of the UART in bits/second. Defaults to
115200.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 943

NVIDIA DRIVE Utilities

Command line option Meaning

-b <int> Print Hypervisor broadcast only on console <int>.This value
starts from 0 (zero).

-s <path> Saves the output to a directory <path>.

-l <path> Saves the raw output with tags to a log le <path>

11.4.1.2 Output
tcu_muxer displays pseudo terminal number mapping to dierent CPU clusters. All
messages from these CPU clusters are redirected to the corresponding pseudo terminal.

tcu_muxer and the helper scripts are located at:
$<top>/drive-foundation/tools/muxer/tcu_muxer/

11.4.2 tcu_muxer Usage in NVIDIA Native OS
System
This creates multiple pseudo terminals for each R5 and CCPLEX. Access Native OS shell
through the terminal corresponding to CCPLEX.
$<top>/drive-foundation/tools/muxer/tcu_muxer/tcu_muxer -d <device>
/dev/pts/52 RCE
/dev/pts/55 BPMP
/dev/pts/56 SCE
/dev/pts/57 SPE
/dev/pts/58 TZ
/dev/pts/59 CCPLEX: 0

11.4.3 tcu_muxer Usage in NVIDIA Virtualization
System
Virtualization System executing on CCPLEX cluster additionally has multiple UART streams
corresponding to partition(s) running over Hypervisor. The tcu_muxer tool supports
Virtualization and allows creation of pseudo terminals for each of the partition.

11.4.3.1 Usage
$<top>/drive-foundation/tools/muxer/tcu_muxer/tcu_muxer -g <guest_nr> -b <hyp_nr> -d
 <device>

Where:

‣ guest_nr: represents the number of virtual machines

‣ hyp_nr: represents the pseudo terminal for Hypervisor

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 944

NVIDIA DRIVE Utilities

Depending on the requirement, the tcu_muxer tool can be launched in dierent modes:

11.4.3.2 Usage mode #1
In this mode, tools similar to minicom are used to attach to each of the UART terminal.
$<top>/drive-foundation/tools/muxer/tcu_muxer/tcu_muxer -g 11 -b 10 -d /dev/ttyACM0
Opening: /dev/pts/16 RCE
Opening: /dev/pts/17 BPMP
Opening: /dev/pts/18 SCE
Opening: /dev/pts/19 SPE
Opening: /dev/pts/20 TZ
Opening: /dev/pts/22 CCPLEX: 0
Opening: /dev/pts/23 CCPLEX: 1
Opening: /dev/pts/24 CCPLEX: 2
Opening: /dev/pts/25 CCPLEX: 3
Opening: /dev/pts/26 CCPLEX: 4
Opening: /dev/pts/27 CCPLEX: 5
Opening: /dev/pts/28 CCPLEX: 6
Opening: /dev/pts/29 CCPLEX: 7
Opening: /dev/pts/30 CCPLEX: 8
Opening: /dev/pts/31 CCPLEX: 9
Opening: /dev/pts/32 CCPLEX: 10
################################# 001 ##
/dev/pts/22 [Guest 0]
/dev/pts/23 [BPMP]
/dev/pts/24 [Resource Manager]
/dev/pts/25 [Monitor Partition]
/dev/pts/26 [System Manager]
/dev/pts/27 [Storage]
/dev/pts/28 [Security Engine]
/dev/pts/29 [Debug Server]
/dev/pts/30 [TrustZone Server]
/dev/pts/32 [Hypervisor]

CCPLEX: 0 corresponds to VM0, CCPLEX: 1 corresponds to VM1 and so on. CCPLEX:10
corresponds to Hypervisor as mentioned by -b switch.

11.4.3.3 Usage mode #2 (terminal logging)
In this mode, output from all the terminals is logged in their respective log le.
$<top>/drive-foundation/tools/muxer/tcu_muxer/tcu_muxer -g 11 -b 10 -d /dev/ttyACM0 -
s /path/to/logging/dir/
Opening: /dev/pts/16 RCE
Opening: /dev/pts/17 BPMP
Opening: /dev/pts/18 SCE
Opening: /dev/pts/19 SPE
Opening: /dev/pts/20 TZ
Opening: /dev/pts/22 CCPLEX: 0
Opening: /dev/pts/23 CCPLEX: 1
Opening: /dev/pts/24 CCPLEX: 2
Opening: /dev/pts/25 CCPLEX: 3
Opening: /dev/pts/26 CCPLEX: 4
Opening: /dev/pts/27 CCPLEX: 5
Opening: /dev/pts/28 CCPLEX: 6
Opening: /dev/pts/29 CCPLEX: 7
Opening: /dev/pts/30 CCPLEX: 8
Opening: /dev/pts/31 CCPLEX: 9
Opening: /dev/pts/32 CCPLEX: 10
################################# 001 ##
/dev/pts/22 [Guest 0]

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 945

NVIDIA DRIVE Utilities

/dev/pts/23 [BPMP]
/dev/pts/24 [Resource Manager]
/dev/pts/25 [Monitor Partition]
/dev/pts/26 [System Manager]
/dev/pts/27 [Storage]
/dev/pts/28 [Security Engine]
/dev/pts/29 [Debug Server]
/dev/pts/30 [TrustZone Server]
/dev/pts/32 [Hypervisor]
$ ls /path/to/logging/dir/
BPMP.txt CCPLEX10.txt CCPLEX2.txt CCPLEX4.txt CCPLEX6.txt CCPLEX8.txt raw-logs.txt
 SCE.txt TZ.txt
CCPLEX0.txt CCPLEX1.txt CCPLEX3.txt CCPLEX5.txt CCPLEX7.txt CCPLEX9.txt RCE.txt
 SPE.txt

Each le contains the respective terminal's output.

11.4.3.4 Usage mode #3 (raw logging)
In this mode, a raw le is additionally created that contains the output of all the terminals.
$<top>/drive-foundation/tools/muxer/tcu_muxer/tcu_muxer -g 11 -b 10 -d /dev/ttyACM0 -
l /path/to/logging/file
Opening: /dev/pts/16 RCE
Opening: /dev/pts/17 BPMP
Opening: /dev/pts/18 SCE
Opening: /dev/pts/19 SPE
Opening: /dev/pts/20 TZ
Opening: /dev/pts/22 CCPLEX: 0
Opening: /dev/pts/23 CCPLEX: 1
Opening: /dev/pts/24 CCPLEX: 2
Opening: /dev/pts/25 CCPLEX: 3
Opening: /dev/pts/26 CCPLEX: 4
Opening: /dev/pts/27 CCPLEX: 5
Opening: /dev/pts/28 CCPLEX: 6
Opening: /dev/pts/29 CCPLEX: 7
Opening: /dev/pts/30 CCPLEX: 8
Opening: /dev/pts/31 CCPLEX: 9
Opening: /dev/pts/32 CCPLEX: 10
################################# 001 ##
/dev/pts/22 [Guest 0]
/dev/pts/23 [BPMP]
/dev/pts/24 [Resource Manager]
/dev/pts/25 [Monitor Partition]
/dev/pts/26 [System Manager]
/dev/pts/27 [Storage]
/dev/pts/28 [Security Engine]
/dev/pts/29 [Debug Server]
/dev/pts/30 [TrustZone Server]
/dev/pts/32 [Hypervisor]

/path/to/logging/file contains the raw le with the control characters that can
be demuxed oine using the $<top>/drive-foundation/tools/muxer/tcu_muxer/
tcu_muxer_raw_log_dump.py script.
$<top>/drive-foundation/tools/muxer/tcu_muxer/tcu_muxer_raw_log_dump.py -h
Usage: ./tcu_muxer_raw_log_dump.py -l path [-g|-c]
 -l, --logfile : Path of the file containing the raw logs captured using tcu_muxer
 -l option
 -g, --guestid : Guest ID. Prints Hypervisor log if no value is passed
 -c, --cluster : Cluster Name. One of: "RCE", "BPMP", "SCE", "SPE", "TZ", "CCPLEX"

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 946

NVIDIA DRIVE Utilities

The dumps the BPMP logs on the stdout extracted from /path/to/logging/file:
$<top>/drive-foundation/tools/muxer/tcu_muxer/tcu_muxer_raw_log_dump.py -l /path/to/
logging/file -c BPMP

Dump the CCPLEX: 5 logs on the stdout extracted from /path/to/logging/file:
$<top>/drive-foundation/tools/muxer/tcu_muxer/tcu_muxer_raw_log_dump.py -l /path/to/
logging/file -g 5

Use the raw log le to see the timeline of events across terminals and to represent the
state of the system in a single le to allow the recipient to extract the logs they are
interested in.

The -s and -l option can be used together.

11.4.3.5 Usage mode#4 (tmux with tcu_muxer)
This is a wrapper over the tcu_muxer tool that creates a tmux session with a separate
window for each terminal.
$<top>/drive-foundation/tools/muxer/tcu_muxer/tcu_muxer_tmux.sh -g 11 -b 10 -d /dev/
ttyACM0 -s /path/to/logging/dir/ -l /path/to/logging/file
Opening: /dev/pts/16 RCE
Opening: /dev/pts/17 BPMP
Opening: /dev/pts/18 SCE
Opening: /dev/pts/19 SPE
Opening: /dev/pts/20 TZ
Opening: /dev/pts/22 CCPLEX: 0
Opening: /dev/pts/23 CCPLEX: 1
Opening: /dev/pts/24 CCPLEX: 2
Opening: /dev/pts/25 CCPLEX: 3
Opening: /dev/pts/26 CCPLEX: 4
Opening: /dev/pts/27 CCPLEX: 5
Opening: /dev/pts/28 CCPLEX: 6
Opening: /dev/pts/29 CCPLEX: 7
Opening: /dev/pts/30 CCPLEX: 8
Opening: /dev/pts/31 CCPLEX: 9
Opening: /dev/pts/32 CCPLEX: 10
################################# 001 ##
/dev/pts/22 [Guest 0]
/dev/pts/23 [BPMP]
/dev/pts/24 [Resource Manager]
/dev/pts/25 [Monitor Partition]
/dev/pts/26 [System Manager]
/dev/pts/27 [Storage]
/dev/pts/28 [Security Engine]
/dev/pts/29 [Debug Server]
/dev/pts/30 [TrustZone Server]
/dev/pts/32 [Hypervisor]
$ tmux attach

Attaches to the tmux session. There are two windows: one for all the R5 clusters and the
other for all the CCPLEX terminals. Select the panes and windows using the mouse. To
select text, hold shift and select; otherwise, the selection is captured by tmux and is not
copied to the system clipboard.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 947

NVIDIA DRIVE Utilities

11.4.4 Finding the Number of VM Partitions
tcu_muxer takes the number of terminals to launch as an input parameter, -g. The required
number of terminals depends on the number of virtual machines/partitions present in a
given virtualized system conguration.

The tool pctdump can get this information by reading the conguration blob.

11.4.4.1 Usage
pctdump <pct configuration blob>

Here is an example (for P3710-01/P3663 T19x Hypervisor Linux Conguration):
$ <TOP>/tools/pctdump/pctdump <TOP>/virtualization/
hypervisor/t19x/configs/release/pct/linux-linux/pct.bin
Guest Names
[0] Guest 0
[1] BPMP
[2] Resource Manager
[3] Monitor Partition
[4] System Manager
[5] Storage
[6] Security Engine

To the total of 7 VMs, add 2 VMs for internal debug and TZ server and 1 VM for Hypervisor.
The nal count is 10, and the tcu_muxer command is:
$ tcu_muxer -g 10 -b 9 -d /dev/ttyACM0

11.5 tegrastats Utility
This SDK provides the tegrastats utility, which reports memory usage and processor
usage for Tegra-based devices.

You can nd the utility in your package at the following location.
<top>/drive-linux/filesystem/contents/bin/tegrastats

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 948

NVIDIA DRIVE Utilities

11.5.1 Reported Statistics
The following table shows the statistics that the tegrastats utility reports.

Statistic X Y Z

RAM X/Y (lfb NxZ)

Largest Free Block (lfb)
is a statistic about the
memory allocator. It refers
to the largest contiguous
block of physical memory
that can be allocated: at
most, 4 MB. It can become
smaller with memory
fragmentation.

The physical allocations
in virtual memory can be
bigger.

Amount of RAM
in use in MB.

Total amount of
RAM available for
applications.

Z is the size of
the largest free
block, N the
number of free
blocks of this
size.

CPU [X%,Y%, ,]@Z

or

CPU [X%@Z, Y%@Z,...]

X and Y are rough
approximations based on
time spent in the system
idle process as reported by
the Linux kernel in /proc/
stat.

Load statistics
for each of
the CPU cores
relative to the
current running
frequency Z, or
'o' in case a
core is currently
powered down.

Load statistics
for each of the
CPU cores relative
to the current
running frequency
Z, or 'o' in case
a core is currently
powered down.

CPU frequency
in megahertz.
Goes up or down
dynamically
depending
on the CPU
workload.

GR3D_FREQ X%@[Y,Y,...]
GR3D2_FREQ @Y

GR3D is the iGPU engine.
GR3D_FREQ is for GPC0,
GR3D2_FREQ is for GPC1

Percent of the
GR3D that is
being used,
relative to the
current running
frequency.
Aggregated
between GPC0
and GPC1.

GR3D frequency
in megahertz for
each available GPC
(that is, GPC0,
GPC1, and so on.)

N/A

X1@Y1C X2@Y2C
X3@Y3C...

X1, X2, X3 denote the list
of the available sensors

The sensor
name

The sensor's
temperature in
Celsius

N/A

EMC_FREQ @Y

EMC is the external
memory controller.

N/A EMC frequency in
megahertz

N/A

NVENC @Y
NVENC1 @Y

NVENC is NVIDIA video
encoder.

NVENC1 is the second
instance of NVENC.
NVENC1 may be reported if
it is present and enabled.

Load stats is
added. If both
frequency and
load are enabled,
the output looks
like NVENC X
%@Y. If only
frequency
is enabled:
NVENC_FREQ
@Y. If only load:
NVENC_LOAD X
%.

NVENC frequency
in megahertz

N/A

NVDEC @Y
NVDEC1 @Y

NVDEC is NVIDIA video
encoder.

NVDEC1 is the second
instance of NVDEC.
NVDEC1 may be reported if
it is present and enabled.

Load stats is
added. If both
frequency and
load are enabled,
the output looks
like NVDEC X
%@Y. If only
frequency
is enabled:
NVDEC_FREQ
@Y. If only load:
NVDEC_LOAD X
%.

NVDEC frequency
in megahertz

N/A

VIC @Y

VIC is the video image
compositor.

Load stats is
added. If both
frequency and
load are enabled,
the output looks
like VIC X%@Y. If
only frequency
is enabled:
VIC_FREQ @Y.
If only load:
VIC_LOAD X%.

VIC frequency in
megahertz

N/A

NVDLA0 @Y
NVDLA1 @Y

NVDLA is NVIDIA deep
learning accelerator.
NVDLA1 is the second
instance of NVDEC.
NVDLA1 may be reported if
it is present and enabled.

Load stats is
added. If both
frequency and
load are enabled,
the output looks
like NVDLA0
X%@Y. If only
frequency
is enabled:
NVDLA0_FREQ
@Y. If only load:
NVDLA0_LOAD
X%.

NVDLA frequency
in megahertz

N/A

PVA0_VPU0_LOAD X%
PVA0_VPU1_LOAD X%

PVA is the programmable
vision accelerator and VPU
is the vector processing
unit.PVA0_VPU1 is the
second instance of the
VPU for PVA0.

Load statistics N/A N/A

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 949

NVIDIA DRIVE Utilities

11.5.2 Running tegrastats
When you run tegrastats on Linux devices, it prints statistics to stdout.

11.5.2.1 Example Log Print
 RAM 640/31318MB (lfb 7604x4MB) SWAP 0/15659MB (cached 0MB) CPU
 [0%@2296,0%@2295,0%@2297,0%@2300,0%@2232,0%@2287,0%@2297,0%@2298,0%@2287,0%@2298,0%@2299,0%@2291]
EMC_FREQ 0%@1600 GR3D_FREQ 0%@0 GR3D2_FREQ 0%@0 NVJPG1 1100 VIC_FREQ 1164 APE 233
 CV0@-256C CPU@41.531C Tdiode@29.25C SOC2@37.093C SOC0@38.625C CV1@-256C GPU@-256C
 tj@41.531C SOC1@38.406C CV2@-256C VDD_GPU 0mW/0mW VDD_CPU 1589mW/1589mW VDD_SOC
 5134mW/5134mW VDD_CV 0mW/0mW VDDQ_VDD2_1V8AO 682mW/682mW VIN_SYS_5V0 4421mW/4421mW

11.5.2.2 To run tegrastats
Note: Run the utility as root to display all enabled stats.

‣ To run tegrastats in the background, execute the following command:
tegrastats --interval <int> --logfile <out_file> &

Where:

‣ <int> is the interval between log prints in milliseconds.

‣ <out_le> is the pathname of the output le to which tegrastats writes the log
prints.

‣ To run tegrastats in the foreground, omit the trailing ‘&'. You may also omit the --
logfile option to allow log output to go to stdout:

tegrastats --interval <int>

11.5.2.3 To stop tegrastats
‣ If tegrastats is running in the background, execute the following commands:

ps
kill -9 <pid>

Where <pid> is the process ID of tegrastats as reported by the ps command.

Alternatively, you may run:
tegrastats --stop

‣ If tegrastats is running in the foreground, press CTRL+C in the window where it is
running.

11.5.3 Re-Deploying tegrastats
The tegrastats utility is preinstalled. If you have removed tegrastats from the build, you
can re-deploy it on the target at runtime.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 950

NVIDIA DRIVE Utilities

11.5.3.1 To re-deploy tegrastats
‣ Execute the following command from the host PC:

scp tegrastats nvidia@<TARGET_DEVICE_IP>:/home/nvidia/

11.5.4 tegrastats Options
tegrastats supports the following command line options.

Option Meaning

--help Prints this help screen.

--interval <millisec> Samples the information in <milliseconds>.

--logle <lename> Dumps the output of tegrastats to <lename>.

--load_cfg <lename> Loads the information from <lename>.

--readall Collects all stats, including performance intensive
stats.

--save_cfg <lename> Saves the information to <lename>.

--start Runs tegrastats as a daemon process in the
background.

--stop Stops any running instances of tegrastats.

--verbose Prints verbose message.

11.6 Benchmarking Library
This page captures the documentation about the NvPlayfair benchmarking helper library.

NvPlayfair benchmarking library provides helper methods to NVIDIA DRIVE
®
 OS

benchmarks to facilitate various benchmarking related operations such as timestamping,
data recording, rate-limiting, and report generation.

In NVIDIA DRIVE OS SDKs, the following components are provided for the benchmarking
library:

‣ nvplayfair.h: The header le contains denitions of the public interfaces and data-
structures of the benchmarking library. It can facilitate recompilation of benchmarks in
the SDK, which make use of the library. The header le is present in the "include" folder
in the SDK installation directory.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 951

NVIDIA DRIVE Utilities

‣ libnvplayfair.so: The library itself is distributed as a compiled shared object le. After
the relevant Debian package is installed and the le system is rebuilt, the library can be
found in the lib-target folder in the SDK installation directory and it is automatically
copied to the /usr/lib location in the target le system during ashing.

11.6.1 API Documentation
This section contains documentation about the data-structures, macros, and public
interfaces of NvPlayfair benchmarking library.

Data Structures

NvpStatus_t

This enum denes the possible return status of the NvPlayfair library APIs.

typedef enum {
 NVP_PASS,
 NVP_FAIL_ALLOC,
 NVP_FAIL_NOINIT,
 NVP_FAIL_FILEOP,
 NVP_FAIL_NULLPTR,
 NVP_FAIL_NO_SAMPLES,
 NVP_FAIL_VERSION_MISMATCH,
 NVP_FAIL_INVALID_TIME_UNIT,
 NVP_FAIL_INVALID_LOG_BACKEND,
 NVP_FAIL_SAMPLE_COUNT_MISMATCH
} NvpStatus_t;

NvpTimeUnits_t

This enum denes the time-units understood by relevant NvPlayfair library APIs.

typedef enum {
 SEC,
 MSEC,
 USEC,
 NSEC
} NvpTimeUnits_t;

NvpLogBackend_t

This enum denes the backend, which can be the receiver of output from relevant library
APIs.

typedef enum {
 CONSOLE,
 NVOS
} NvpLogBackend_t;

NvpPerfStats_t

This data-structure is used to record various statistics about the respective latency data.

typedef struct {
 double min;
 double max;

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 952

NVIDIA DRIVE Utilities

 double mean;
 double pct99;
 double stdev;
 uint32_t count;
} NvpPerfStats_t;

NvpRateLimitInfo_t

This data-structure denes a rate-limit object that can be used to make a benchmark
repeat its compute loop at a given frequency.

typedef struct {
 uint32_t periodUs;
 uint32_t periodNumber;
 uint64_t periodicExecStartTimeUs;
} NvpRateLimitInfo_t;

NvpPerfData_t

This is the main data-structure provided by the NvPlayfair library. It can be congured as
a benchmarking data object that can be used to store all the latency data gathered for a
particular metric by a benchmark.

typedef struct {
 uint64_t sampleNumber;
 uint64_t *timestamps;
 uint64_t *latencies;
 uint32_t maxSamples;
 bool initialized;
 char *filename;
} NvpPerfData_t;

NvpLibVersion_t

This data structure is used to capture the version information of the library.

typedef struct {
 uint64_t major;
 uint64_t minor;
} NvpLibVersion_t;

11.6.2 Macros
This section describes benchmarking library macros.

DISABLE_NVPLAYFAIR

A benchmark can dene this macro as part of the CFLAGs given to the compiler. This will
transform all the calls to NvPlayfair library APIs into innocuous macros and remove the
dependency of the benchmark on libnvplayfair.so during runtime.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 953

NVIDIA DRIVE Utilities

NVP_CHECKERR_EXIT

This is an error checking macro, which can be used as a wrapper around all NvPlayfair
library API calls. It provides straight-forward error handling by printing a message on
console / log le and exiting the program when an error is reported by an NvPlayfair API.

/* Example Usage */
NVP_CHECKERR_EXIT(NvpRecordSample(NULL, startTimeMark, endTimeMark);

/* Expected Output
 * myBenchmark.c, myFunction:13, NvPlayfair Error: NVP_FAIL_NULLPTR */

NVP_GET_SAMPLE_COUNT

This macro can be used to get the sample count in the internal ring-buer of the given
NvpPerfData_t* object.
/* Example Usage */
uint64_t curSampleCount = NVP_GET_SAMPLE_COUNT(perfDataObj);

for_each_sample

This is a convenience macro, which can be used to iterate over the timestamp and latency
values of all the samples recorded so far in the given NvpPerfData_t* object.

/* Example Usage */
uint32_t sampleNumber = 0;
uint64_t timestamp, latency;

for_each_sample(&perfData, timestamp, latency) {
 printf("Sample #: %d Timestamp: %ul Latency: %ul\n",
 sampleNumber++, timestamp, latency);
}

for_each_sample_latency

This is similar to "for_each_sample" macro but it provides only the latency value for each
sample in the given object.

/* Example Usage */
uint32_t sampleNumber = 0;
uint64_t latency;

for_each_sample_latency(&perfData, latency) {
 printf("Sample #: %d Latency: %ul\n", sampleNumber++, latency);
}

11.6.3 Functions
This section describes benchmarking library functions.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 954

NVIDIA DRIVE Utilities

NvpGetTimeMark

This API returns an opaque timestamp in a safe and ecient manner under out-of-order
execution in the target platform. The given timestamp is to be understood by NvPlayfair
library only.

/* Inputs
 * None
 *
 * Output
 * uint64_t Opaque timestamp value
 */
static inline uint64_t
NvpGetTimeMark(void);

/* Example Usage */
uint64_t timeMark;

timeMark = NvpGetTimeMark();

NvpConvertTimeMarkToNsec

This API converts the opaque time-mark value to nsec timestamp. Note that, in ARM
architecture, the function assumes that 1-cycle = 32-nsec which is true for the Tegra
counters running at the frequency of 31.25-MHz.

/* Inputs
 * timeMark 64-bit variable containing the opaque time-mark value
 *
 * Output
 * uint64_t Flat timestamp value in nsec
 */
static inline uint64_t
NvpConvertTimeMarkToNsec(uint64_t timeMark);

/* Example Usage */
uint64_t timestamp_ns;

timestamp_ns = NvpConvertTimeMarkToNsec(NvpGetTimeMark());

NvpConstructPerfData

This is the primary function for populating a given NvpPerfData_t* object. It allocates
necessary memory for internal buers based on the given number of samples and stores
the given information for internal book-keeping.

/* Inputs
 * perfData An NvpPerfData_t* object
 * numOfSamples An integer specifying the total number of samples
 * that can be stored in the NvpPerfData_t* object
 * filename A character string specifying the name of a file
 * which can be used to save the performance data
 *
 * Output (NvpStatus_t)
 * NVP_PASS The API call completed successfully
 * NVP_FAIL_NO_SAMPLES Call failed because the numOfSamples was zero
 * NVP_FAIL_NULLPTR Call failed because one of the input pointers was NULL
 * NVP_FAIL_ALLOC Call failed because the library could not allocate memory

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 955

NVIDIA DRIVE Utilities

 */
NvpStatus_t
NvpConstructPerfData(NvpPerfData_t *perfData,
 uint32_t numOfSamples,
 char const *filename);

/* Example Usage */
NvpPerfData_t perfData;
uint32_t numOfSamples = 1000U;
char const *filename = "myLatencyData.csv";

NVP_CHECKERR_EXIT(NvpConstructPerfData(&perfData, numOfSamples, filename);

NvpDestroyPerfData

This is a complementary function to NvpConstructPerfData; it can be used to free up all
resources associated with the given NvpPerfData_t* object. It should be called once the
user is done with the object.

/* Inputs
 * perfData An NvpPerfData_t* object
 *
 * Output (NvpStatus_t)
 * NVP_PASS The API call completed successfully
 * NVP_FAIL_NULLPTR Call failed because the input pointer was NULL
 */
NvpStatus_t
NvpDestroyPerfData(NvpPerfData_t *perfData);

/* Example Usage */
NVP_CHECKERR_EXIT(NvpDestroyPerfData(&perfData));

NvpRecordSample

This is a complementary function to NvpConstructPerfData; it can be used to free up all
resources associated with the given NvpPerfData_t* object. It should be called once the
user is done with the object.

/* Inputs
 * perfData An NvpPerfData_t* object
 * sampleStartTimeMark 64-bit time-mark value (as returned by
 NvpGetTimeMark() API);
 * specifying the start time of the latency sample
 * sampleEndTimeMark 64-bit time-mark value (as returned by
 NvpGetTimeMark() API);
 * specifying the end time of the latency sample
 *
 * Output (NvpStatus_t)
 * NVP_PASS The API call completed successfully
 * NVP_FAIL_NULLPTR Call failed because one of the input pointers was
 NULL
 * NVP_FAIL_LOGGING_STOPPED Call failed because data logging has been stopped in
 the library
 * NVP_FAIL_NO_INIT Call failed because the given perfData object had not
 been initialized
 */
NvpStatus_t
NvpRecordSample(NvpPerfData_t *perfData,
 uint64_t sampleStartTimeMark,
 uint64_t sampleEndTimeMark);

/* Example Usage */

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 956

NVIDIA DRIVE Utilities

uint64_t startTimeMark, endTimeMark;

startTimeMark = NvpGetTimeMark();
/* <Instrumented-Code> */
endTimeMark = NvpGetTimeMark();

/* Assuming that perfData object has been properly initialized */
NVP_CHECKERR_EXIT(NvpRecordSample(&perfData, startTimeMark, endTimeMark));

NvpDumpData

This API can be used to record the data gathered (up-till the moment when this call
is made) in NvpPerfData_t* object into a le in the le-system. The name of the
le is taken from the object itself; as provided at the time of object initialization via
NvpConstructPerfData API.

/* Inputs
 * perfData An NvpPerfData_t* object
 *
 * Output (NvpStatus_t)
 * NVP_PASS The API call completed successfully
 * NVP_FAIL_NULLPTR Call failed because the input pointer was NULL
 * NVP_FAIL_NO_INIT Call failed because the given perfData object had not
 been initialized
 */
NvpStatus_t
NvpDumpData(NvpPerfData_t *perfData);

/* Example Usage */
NVP_CHECKERR_EXIT(NvpDumpData(&perfData));

NvpCalcStats

This API can be used to record the data gathered (up-till the moment when this call
is made) in NvpPerfData_t* object into a le in the le-system. The name of the
le is taken from the object itself; as provided at the time of object initialization via
NvpConstructPerfData API.

/* Inputs
 * perfData An NvpPerfData_t* object
 * stats An NvpPerfStats_t object in which the stats calculated
 for
 * perfData will be recorded and reported
 * unit An NvpTimeUnit_t variable indicating the time-unit in
 which
 * the stats should be reported
 *
 * Output (NvpStatus_t)
 * NVP_PASS The API call completed successfully
 * NVP_FAIL_NULLPTR Call failed because the input pointer was NULL
 * NVP_FAIL_NO_SAMPLES Call failed because the given perfData object did not
 contain
 * any latency samples
 * NVP_FAIL_INVALID_UNIT Call failed because the specified time-unit is not
 understood
 * by the library
 */
NvpStatus_t
NvpCalcStats(NvpPerfData_t *perfData,
 NvpPerfStats_t *stats,
 NvpTimeUnits_t unit);

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 957

NVIDIA DRIVE Utilities

/* Example Usage */
NvpPerfStats_t stats;
NvpTimeUnits_t unit = USEC;

NVP_CHECKERR_EXIT(NvpCalcStats(&perfData, &stats, unit));

NvpPrintStats

This API can be used to print a report on the console / system logger about the statistics
calculated for the given perf. data object. It can be very handy to get quick insight into the
data w/o resorting to detailed oine analysis.

/* Inputs
 * perfData An NvpPerfData_t* object
 * stats An NvpPerfStats_t object containing the stats already
 calculated
 * for the given perf. data object. If this argument is
 NULL, the API
 * will first calculate stats for the perf. data by invoking
 * NvpCalcStats() internally
 * unit An NvpTimeUnit_t variable indicating the time-unit in
 which
 * the stats should be reported
 * msg A character string which should be printed alongside the
 perf. report
 * csv A boolean flag. If true, it forces the API to print the
 report in CSV
 * (comma separated values) format
 *
 * Output (NvpStatus_t)
 * NVP_PASS The API call completed successfully
 * NVP_FAIL_NULLPTR Call failed because the input pointer was NULL
 * NVP_FAIL_NO_SAMPLES Call failed because the given perfData object did not
 contain
 * any latency samples
 * NVP_FAIL_INVALID_UNIT Call failed because the specified time-unit is not
 understood
 * by the library
 */
NvpStatus_t
NvpPrintStats(NvpPerfData_t *perfData,
 NvpPerfStats_t *stats,
 NvpTimeUnits_t unit,
 char const *msg,
 bool csv);

/* Example Usage */
NvpTimeUnits_t unit = USEC;

NVP_CHECKERR_EXIT(NvpPrintStats(&perfData, NULL, unit, "Execution Latencies",
 false));

NvpPrintStatsExt

This is a superset of the NvpPrintStats API and provides additional arguments to specify
the receiver of statical report, as well as an option to save the report to a le in target.
/* Inputs
 * perfData An NvpPerfData_t* object
 * stats An NvpPerfStats_t object containing the stats already
 calculated

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 958

NVIDIA DRIVE Utilities

 * for the given perf. data object. If this argument is
 NULL, the API
 * will first calculate stats for the perf. data by
 invoking
 * NvpCalcStats() internally
 * unit An NvpTimeUnit_t variable indicating the time-unit in
 which
 * the stats should be reported
 * msg A character string which should be printed alongside the
 perf. report
 * csv A boolean flag. If true, it forces the API to print the
 report in CSV
 * (comma separated values) format
 * logBackend An enum of type NvpLogBackend_t; specifying the receiver
 of report
 * reportFilename A character string; specifying the name of the file in
 which the report
 * should be saved. Can be NULL; to skip saving the report
 to file
 *
 * Output (NvpStatus_t)
 * NVP_PASS The API call completed successfully
 * NVP_FAIL_NULLPTR Call failed because the input pointer was NULL
 * NVP_FAIL_NO_SAMPLES Call failed because the given perfData object did not
 contain
 * any latency samples
 * NVP_FAIL_INVALID_UNIT Call failed because the specified time-unit is not
 understood
 * by the library
 * NVP_FAIL_INVALID_LOG_BACKEND
 * The specified backend to receive the report is not
 recognized
 * by the library
 */
NvpStatus_t
NvpPrintStats(NvpPerfData_t *perfData,
 NvpPerfStats_t *stats,
 NvpTimeUnits_t unit,
 char const *msg,
 bool csv,
 NvpLogBackend_t logBackend,
 char const *reportFilename);

/* Example Usage */
NvpTimeUnits_t unit = USEC;
NvpLogBackend_t backend = CONSOLE;

NVP_CHECKERR_EXIT(NvpPrintStatsExt(&perfData, NULL, unit, "Execution Latencies",
 false, backend, "perfSummary.txt"));

NvpAggregatePerfData

This API can be used to accumulate latencies stored in multiple dierent NvpPerfData_t
objects, provided as input to the API in an array and into a single NvpPerfData_t object
that is populated by the API as output. The timestamp of each sample in the aggregated
data structure is taken from the timestamp of the respective sample in the rst data
structure in the input perf-data array (that is, inputPerfDataArray[0] in the arguments
below). The input perf. data structures must contain the same number of samples.
/* Inputs
 * netPerfData An NvpPerfData_t* object; appropriately initialized. The
 API will
 * populate this data-structure with accumulated latencies
 for each

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 959

NVIDIA DRIVE Utilities

 * sample in the input data-structures
 * inputPerfDataArray An array of NvpPerfData_t* pointers; containing
 references to the
 * input perf data-structures which need to be aggregated
 * numOfPerfDataObjs Integer specifying the num. of elements in the
 inputPerfDataArray
 *
 * Output (NvpStatus_t)
 * NVP_PASS The API call completed successfully
 * NVP_FAIL_NULLPTR Call failed because one of the input pointers was NULL
 * NVP_FAIL_NOINIT Call failed because the output "netPerfData" structure is
 not initialized
 * NVP_FAIL_SAMPLE_COUNT_MISMATCH
 * Call failed because the input perf. data objects do not
 contain equal
 * number of samples
 */
NvpStatus_t
NvpAggregatePerfData(NvpPerfData_t *netPerfData,
 NvpPerfStats_t **inputPerfDataArray,
 uint32_t numOfPerfDataObjs);

/* Example Usage */
#define NUM_OF_PERF_DATA_OBJS (2U)

NvpPerfData_t netPerfData, perfData1, perfData2;
NvpPerfData_t* inputPerfDataArray[NUM_OF_PERF_DATA_OBJS];

NVP_CHECKERR_EXIT(NvpConstructPerfData(&netPerfData, ...));

/* Code to initialize and gather latencies into perfData1, perfData2 */
...

inputPerfDataArray[0] = &perfData1;
inputPerfDataArray[1] = &perfData2;

NVP_CHECKERR_EXIT(NvpAggregatePerfData(&netPerfData, inputPerfDataArray,
 NUM_OF_PERF_DATA_OBJS));

NvpRateLimitInit

This API can be used to initialize an NvpRateLimitInfo_t* object with the information
required to enforce a desired periodicity to the target benchmark.

/* Inputs
 * rtInfo An NvpRateLimitInfo_t* object
 * fps 32-bi variable specifying the rate-limit for the
 benchmark in
 * frames-per-sec. A value of 0 is acceptable for this
 argument;
 * which is taken to mean that benchmark should not be rate-
limited
 *
 * Output (NvpStatus_t)
 * NVP_PASS The API call completed successfully
 * NVP_FAIL_NULLPTR Call failed because the input pointer was NULL
 */
NvpStatus_t
NvpRateLimitInit(NvpRateLimitInfo_t *rtInfo,
 uint32_t fps);

/* Example Usage */
uint32_t fps = 30;
NvpRateLimitInfo_t rtInfo;

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 960

NVIDIA DRIVE Utilities

NVP_CHECKERR_EXIT(NvpRateLimitInit(&rtInfo, fps));

NvpMarkPeriodicExecStart

This is a complementary API that must be invoked just before the benchmark is about
to enter periodic execution phase. When this API is invoked, the library will internally
calculate a timestamp in usec and store it as the start time of the rst period of the calling
benchmark inside the given rtInfo object. This start time value is then used to calculate the
boundaries for all the subsequent periods of the benchmark.

/* Inputs
 * rtInfo An NvpRateLimitInfo_t* object
 *
 * Output (NvpStatus_t)
 * NVP_PASS The API call completed successfully
 * NVP_FAIL_NULLPTR Call failed because the input pointer was NULL
 */
NvpStatus_t
NvpMarkPeriodicExecStart(NvpRateLimitInfo_t *rtInfo);

/* Example Usage */
NVP_CHECKERR_EXIT(NvpMarkPeriodicExecStart(&rtInfo));

NvpRateLimitWait

This API can be used to wait till the start of next period during the steady-state execution
of the benchmark. Internally, when this API is called, it makes the library capture a
timestamp in usec and use it to calculate the time remaining till the beginning of the next
period of the benchmark. If the remaining time is non-negative, then a sleep is invoked for
the respective duration.

/* Inputs
 * rtInfo An NvpRateLimitInfo_t* object
 *
 * Output (NvpStatus_t)
 * NVP_PASS The API call completed successfully
 * NVP_FAIL_NULLPTR Call failed because the input pointer was NULL
 */
NvpStatus_t
NvpRateLimitWait(NvpRateLimitInfo_t *rtInfo);

/* Example Usage */
NVP_CHECKERR_EXIT(NvpRateLimitWait(&rtInfo));

NvpCheckLibVersion

This API can be used to ensure that the library version used in the compiled benchmark
code is the same as the version of the shared object le of the library runtime present on
target.
/* Inputs
 * None
 *
 * Output (NvpStatus_t)
 * NVP_PASS Version match was successful
 * NVP_FAIL_VERSION_MISMATCH Library version does not match between
 benchmark
 * code and library runtime
 */

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 961

NVIDIA DRIVE Utilities

NvpStatus_t
NvpCheckLibVersion(void);

/* Example Usage */
NVP_CHECKERR_EXIT(NvpCheckLibVersion());

11.6.4 Usage Examples
The following show benchmarking library usage examples.

Enabling Data-Collection and Reporting

#include ”nvplayfair.h”

typedef struct {
 uint32_t fps;
 uint32_t numOfSamples;
 ...
} testArgs_t;

int main(int argc, char **argv)
{
 NvpPerfData_t latencies;
 uint64_t startTimeMark, endTimeMark;
 testArgs_t *testArgs = parse_cli_args();

 /* Setup */
 NVP_CHECKERR_EXIT(NvpConstructPerfData(&latencies, testArgs->numOfSamples,
 "myLatencies.csv"));
 ...

 for (uint32_t i = 0U; i < testArgs->numOfSamples; ++i) {
 startTimeMark = NvpGetTimeMark();

 /* Perform required functions */
 ...

 endTimeMark = NvpGetTimeMark();
 NVP_CHECKERR_EXIT(NvpRecordSample(&latencies, startTimeMark, endTimeMark));
 }

 /* Print report */
 NVP_CHECKERR_EXIT(NvpPrintStats(&latencies, NULL, USEC, ”My Test Latencies”));
 NVP_CHECKERR_EXIT(NvpDumpData(&latencies));

 /* Cleanup */
 NVP_CHECKERR_EXIT(NvpDestroyPerfData(&latencies));

 return 0;
}

Adding Rate-Limit to a Benchmark

#include ”nvplayfair.h”

typedef struct {
 uint32_t fps;
 uint32_t numOfSamples;
 ...
} testArgs_t;

int main(int argc, char **argv)

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 962

NVIDIA DRIVE Utilities

{
 NvpRateLimitInfo_t rateLimitInfo;
 testArgs_t *testArgs = parse_cli_args();

 /* Setup */
 NVP_CHECKERR_EXIT(NvpRateLimitInit(&rateLimitInfo, testArgs->fps));
 ...

 NVP_CHECKERR_EXIT(NvpMarkPeriodicExecStart(&rateLimitInfo));
 for (uint32_t i = 0U; i < testArgs->numOfSamples; ++i) {
 /* Perform required functions */
 ...

 NVP_CHECKERR_EXIT(NvpRateLimitWait(&rateLimitInfo));
 }

 return 0;
}

11.6.5 Measuring CPU Utilization in Linux

This topic describes two methods, the ftrace and top tools, for measuring CPU utilization
of workloads that run in NVIDIA DRIVE

®
 OS Linux.

Guidelines

These are the guidelines:

‣ Workload should be executed for a minimum of 60 seconds when you collect utilization
data.

‣ It is important to collect idle system utilization for the duration of experiment and use
it as a baseline for comparison.

‣ Total idle utilization should be subtracted from the workload utilization for precise
results.

‣ For runtime CPU utilization measurements, begin the trace collection/measurement
tool after the initialization is complete and stop the tracing before the application has
exited.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 963

NVIDIA DRIVE Utilities

Tool Comparison

This table summarizes the benets and drawbacks of each method based on the tool used.

Tool Benets Drawbacks

ftrace

(Recommended)

‣ It provides ne-grained
information of per-thread
CPU utilization.

‣ It does not provide a
breakdown of the system
CPU utilization.

‣ It requires multiple steps
and post-processing before
a report is generated.

‣ It cannot be used if kernel
is built without debugfs
(possible in production/
release versions).

top ‣ It is a simple method that
requires no additional
scripts or post-processing.

‣ It gives quick insight into a
workload's CPU utilization.

‣ With the right options, it
can also provide reasonable
thread-level data.

‣ Single decimal point
precision for %CPU column
can lead to under-counting
of utilization.

‣ Ensure that the correct set
of options are used.

Note: You can also consider the mpstat and tegrastats tools; however, both tools provide
processor-level reports, which are not useful for ne-grained, thread-level utilization.

11.6.5.1 Using the ftrace Method
The following procedure summarizes the steps for using the ftrace method to measure
CPU utilization:

1. Reset the ftrace buers and set up the debugfs for scheduler tracing.
2. Enable trace collection.
3. Run the workload.

Note: See the Guidelines section for considerations regarding running the workload.

4. Stop tracing and save the trace data.
5. Collect another report for an idle system for the duration of experiment but without

workload, for example, sleep 60.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 964

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/7/html/tuning_guide/using_the_ftrace_utility_for_tracing_latencies
https://man7.org/linux/man-pages/man1/top.1.html

NVIDIA DRIVE Utilities

All of the preceding steps are automated in the following ftrace script. Use this entire
script for measuring CPU utilization.
#!/bin/bash

INIT_TIME=10
EXIT_TIME=10
TEST_TIME=60
APP_RUN_TIME=$((INIT_TIME + TEST_TIME + EXIT_TIME))

>>>>>>>>>>>>>>> FIXME <<<<<<<<<<<<<<<<
SPECIFY THE FILENAME FOR STORING TRACE DATA

IDLE_TRACE_FILE="<MY-IDLE-TRACE>.txt"
WORKLOAD_TRACE_FILE="<MY-WORKLOAD-TRACE>.txt"

>>>>>>>>>>>>>>> FIXME <<<<<<<<<<<<<<<<
POPULATE THE FOLLOWING FUNCTION AS PER YOUR WORKLOAD

runWorkload () {
 # Sepcify the command-line to execute the workload.
 # Make sure that the workload executes for at-least
 # ${APP_RUN_TIME} seconds.

 echo "[FG-SHELL] Running workload..."
 ./<MY COMMAND-LINE FOR RUNNING WORKLOAD>

 echo "[FG-SHELL] Workload complete!"
}

###
DO NOT CHANGE ANYTHING IN THE SCRIPT BELOW
###
shopt -s expand_aliases

tracefs="/sys/kernel/debug/tracing"
schedTraceEvents="${tracefs}/events/sched"

alias displayTraceBuffer='cat ${tracefs}/trace'
alias flushTraceBuffer='echo > ${tracefs}/trace'
alias turnTracingOn='echo 1 > ${tracefs}/tracing_on'
alias turnTracingOff='echo 0 > ${tracefs}/tracing_on'
alias ownTracefsDir='sudo chown -R nvidia:nvidia ${tracefs}'
alias makeTraceClockMonotonic='echo mono > ${tracefs}/trace_clock'
alias increasePerCoreTraceBufferSize='echo 10000 > ${tracefs}/buffer_size_kb'
alias enableSchedTraceEvents='echo 1 > ${schedTraceEvents}/sched_switch/enable;
 echo 1 > ${schedTraceEvents}/sched_wakeup/enable;
 echo 1 > ${schedTraceEvents}/sched_wakeup_new/enable'

configureFtrace () {
 echo "[FG-SHELL] Configuring ftrace..."

 ownTracefsDir
 turnTracingOff
 makeTraceClockMonotonic
 increasePerCoreTraceBufferSize
 enableSchedTraceEvents
}

collectIdleSystemTrace () {
 echo "[FG-SHELL] Collecting idle system trace for ${TEST_TIME} sec..."
 flushTraceBuffer
 turnTracingOn

 sleep ${TEST_TIME}
 turnTracingOff

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 965

NVIDIA DRIVE Utilities

 echo "[FG-SHELL] Saving idle system trace..."
 displayTraceBuffer &> ${IDLE_TRACE_FILE}
 flushTraceBuffer

 echo "[FG-SHELL] Idle system trace can be seen here: ${IDLE_TRACE_FILE}"
}

configureFtrace
collectIdleSystemTrace

Invoke background sub-shell to collect trace with workload
(
 echo "[BG-SHELL] Sleeping for init time: ${INIT_TIME} sec..."
 sleep ${INIT_TIME}

 echo "[BG-SHELL] Starting trace-collection..."
 turnTracingOn

 sleep ${TEST_TIME}
 turnTracingOff

 echo "[BG-SHELL] Tracing complete. Recording data..."
 displayTraceBuffer &> ${WORKLOAD_TRACE_FILE}

 echo "[BG-SHELL] Workload trace data can be seen here: ${WORKLOAD_TRACE_FILE}"
) &

Execute workload in the foreground shell
runWorkload

Running the above script generates the following output on console:

Note: The steps shown in the output appear in the exact same order as the script.

‣ Analyze generated traces (idle system with workload) to create precise utilization
reports by using the following command:
./cpuUtilMain.py -o linux -t <file-containing-workload-ftrace-data> [-i <file-
containing-idle-system-ftrace-data>]

Note: You can nd cpuUtilMain.py in DRIVE Linux SDK in the <sdk-install-dir>/
drive-linux/tools/nvplayfair/cpu_util/ directory.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 966

NVIDIA DRIVE Utilities

The post-processing script will generate CPU utilization summary on console and save
the detailed per-thread utilization report to a le.

11.6.5.2 Using the top Method
The following procedure summarizes the steps for using the top method:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 967

NVIDIA DRIVE Utilities

1. Run the top tool with the specied options to measure the CPU utilization.

For example,

#!/bin/bash

-b (batch mode): useful for sending top output to a file. Allows top to execute
 for the given iteration count and then exit
-d <duration>: run for <duration> seconds
-n 2: capture two snapshots (in the given duration)
-H: collect thread level stats.
-i: hide idle processes
-w 200: Set line width to 200; to get non-truncated thread names

top -b -i -d <duration> -n 2 -H -w 200 &> top_output.txt &

2. Run the workload.

Note: See the Guidelines section for considerations regarding running the workload.

3. Collect another report for an idle system using the same top command.
4. View the les containing the output of the top command to see the CPU utilization for

the idle system and with workload.

a). To determine the overall CPU utilization from the top output, use the second
occurrence of the line that starts with %Cpu(s) as follows:

b). The following three values are the important numbers for measuring CPU utilization:

‣ %Cpu(s): 0.4 us, 0.1 sy, 0.0 ni, 99.6 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
us – %User time, sy – %Sys time, id – %Idle time

‣ Total CPU utilization to be derived from %idle time by subtracting it from 100.
This is the percentage of the total system.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 968

NVIDIA DRIVE Utilities

‣ Get the CPU utilization in terms of percentage of cores by multiplying the
preceding value with the number of cores in the system. For example,
CPU util: (100 - 99.6) * 11 = 4.4% (assuming 11 cores in the system)

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 969

Chapter 12. Manifest

After installation of foundation, these directories are created:

‣ NVIDIA DRIVE™ Foundation:
<top>/drive-foundation

‣ The toolchains:
<top>/toolchains

NVIDIA DRIVE Foundation Directory

The drive-foundation directory components are as follows.

Directory Description

rmwares/ Holds the rmware.

hypervisor/ Holds the hypervisor congurations.

platform-cong/ Holds les that support platform conguration.

tools/ Holds the DRIVE OTA, EMC and host tools.

utils/ Hold the utility scripts.

virtualization/ Holds the build-congs, hypervisor, pct, services,
tools, virt and vm-server directories that support
virtualization.

Toolchains Directory

Consult the NVIDIA Supported Cross Toolchains chapter under System Programming in the
NVIDIA DRIVE OS 6.0 Linux PDK Development Guide.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 970

Manifest

12.1 Linux SDK
After installation, these directories are created:

‣ The NVIDIA DRIVE® directory, ./drive-linux

‣ The CUDA directory, ./ drive-cuda

‣ The toolchains directory, ./toolchains

‣ The foundation directory, ./drive-foundation

‣ The hardware-specic directory, ./hardware (PDK only)

This topic describes the contents of the NVIDIA DRIVE™ directory and the CUDA
directory. The toolchains directory and the foundation directory are part of NVIDIA
DRIVE™ Foundation 6.0SDK, and are described in the NVIDIA DRIVE™ Foundation <SDK >
Development Guide.

12.1.1 Manifest
After installation of foundation, these directories are created:

‣ NVIDIA DRIVE™ Foundation:
<top>/drive-foundation

‣ The toolchains:
<top>/toolchains

NVIDIA DRIVE Foundation Directory

The drive-foundation directory components are as follows.

Directory Description

rmwares/ Holds the rmware.

hypervisor/ Holds the hypervisor congurations.

platform-cong/ Holds les that support platform conguration.

tools/ Holds the DRIVE OTA, EMC and host tools.

utils/ Hold the utility scripts.

virtualization/ Holds the build-congs, hypervisor, pct, services,
tools, virt and vm-server directories that support
virtualization.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 971

Manifest

Toolchains Directory

Consult the NVIDIA Supported Cross Toolchains chapter under System Programming in the
NVIDIA DRIVE OS 6.0 Linux PDK Development Guide.

12.1.2 CUDA Directory
The following table lists the components of the drive-cuda directory.

Folder Description

target/ Contains the target CUDA Debian installer package for
installing on the target.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 972

Chapter 13. Device Tree

The device tree is used for storing platform-specic conguration for system resources
used by DRIVE OS modules.

13.1 Display Device Tree
The NvDisplay driver uses the following device tree nodes and properties. Properties
customizable are marked accordingly for each property used. Nodes used in NvDisplay
drivers for QNX are as follows.

NvDisplay

nvdisplay node, contains conguration parameters for initializing the NvDisplay driver.

nvdisplay: display@13800000 {
compatible = "nvidia,tegra234-display";
power-domains = <&bpmp TEGRA234_POWER_DOMAIN_DISP>; nvidia,num-dpaux-instance = <1>;
reg-names = "nvdisplay", "dpaux0", "hdacodec", "mipical"; reg = <0x0 0x13800000 0x0
 0xEFFFF /* nvdisplay */
0x0 0x155C0000 0x0 0xFFFF /* dpaux0 */ 0x0 0x0242c000 0x0 0x1000 /* hdacodec */ 0x0
 0x03990000 0x0 0x10000>; /* mipical */
interrupt-names = "nvdisplay", "dpaux0", "hdacodec"; interrupts = <0 416 4
0 419 4
0 61 4>;
nvidia,bpmp = <&bpmp>;
clocks = <&bpmp_clks TEGRA234_CLK_HUB>,
<&bpmp_clks TEGRA234_CLK_DISP>,
<&bpmp_clks TEGRA234_CLK_NVDISPLAY_P0>,
<&bpmp_clks TEGRA234_CLK_NVDISPLAY_P1>,
<&bpmp_clks TEGRA234_CLK_DPAUX>,
<&bpmp_clks TEGRA234_CLK_FUSE>,
<&bpmp_clks TEGRA234_CLK_DSIPLL_VCO>,
<&bpmp_clks TEGRA234_CLK_DSIPLL_CLKOUTPN>,
<&bpmp_clks TEGRA234_CLK_DSIPLL_CLKOUTA>,
<&bpmp_clks TEGRA234_CLK_SPPLL0_VCO>,
<&bpmp_clks TEGRA234_CLK_SPPLL0_CLKOUTPN>,
<&bpmp_clks TEGRA234_CLK_SPPLL0_CLKOUTA>,
<&bpmp_clks TEGRA234_CLK_SPPLL0_CLKOUTB>,
<&bpmp_clks TEGRA234_CLK_SPPLL0_DIV10>,
<&bpmp_clks TEGRA234_CLK_SPPLL0_DIV25>,
<&bpmp_clks TEGRA234_CLK_SPPLL0_DIV27PN>,
<&bpmp_clks TEGRA234_CLK_SPPLL1_VCO>,
<&bpmp_clks TEGRA234_CLK_SPPLL1_CLKOUTPN>,
<&bpmp_clks TEGRA234_CLK_SPPLL1_DIV27PN>,
<&bpmp_clks TEGRA234_CLK_VPLL0_REF>,

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 973

Device Tree

<&bpmp_clks TEGRA234_CLK_VPLL0>,
<&bpmp_clks TEGRA234_CLK_VPLL1>,
<&bpmp_clks TEGRA234_CLK_NVDISPLAY_P0_REF>,
<&bpmp_clks TEGRA234_CLK_RG0>,
<&bpmp_clks TEGRA234_CLK_RG1>,
<&bpmp_clks TEGRA234_CLK_DISPPLL>,
<&bpmp_clks TEGRA234_CLK_DISPHUBPLL>,
<&bpmp_clks TEGRA234_CLK_DSI_LP>,
<&bpmp_clks TEGRA234_CLK_DSI_CORE>,
<&bpmp_clks TEGRA234_CLK_DSI_PIXEL>,
<&bpmp_clks TEGRA234_CLK_PRE_SOR0>,
<&bpmp_clks TEGRA234_CLK_PRE_SOR1>,
<&bpmp_clks TEGRA234_CLK_DP_LINK_REF>,
<&bpmp_clks TEGRA234_CLK_SOR_LINKA_INPUT>,
<&bpmp_clks TEGRA234_CLK_SOR_LINKA_AFIFO>,
<&bpmp_clks TEGRA234_CLK_SOR_LINKA_AFIFO_M>,
<&bpmp_clks TEGRA234_CLK_RG0_M>,
<&bpmp_clks TEGRA234_CLK_RG1_M>,
<&bpmp_clks TEGRA234_CLK_SOR0_M>,
<&bpmp_clks TEGRA234_CLK_SOR1_M>,
<&bpmp_clks TEGRA234_CLK_PLLHUB>,
<&bpmp_clks TEGRA234_CLK_SOR0>,
<&bpmp_clks TEGRA234_CLK_SOR1>,
<&bpmp_clks TEGRA234_CLK_SOR_PAD_INPUT>,
<&bpmp_clks TEGRA234_CLK_PRE_SF0>,
<&bpmp_clks TEGRA234_CLK_SF0>,
<&bpmp_clks TEGRA234_CLK_SF1>,
<&bpmp_clks TEGRA234_CLK_DSI_PAD_INPUT>,
<&bpmp_clks TEGRA234_CLK_PRE_SOR0_REF>,
<&bpmp_clks TEGRA234_CLK_PRE_SOR1_REF>,
<&bpmp_clks TEGRA234_CLK_SOR0_PLL_REF>,
<&bpmp_clks TEGRA234_CLK_SOR1_PLL_REF>,
<&bpmp_clks TEGRA234_CLK_SOR0_REF>,
<&bpmp_clks TEGRA234_CLK_SOR1_REF>,
<&bpmp_clks TEGRA234_CLK_OSC>,
<&bpmp_clks TEGRA234_CLK_DSC>,
<&bpmp_clks TEGRA234_CLK_MAUD>,
<&bpmp_clks TEGRA234_CLK_AZA_2XBIT>,
<&bpmp_clks TEGRA234_CLK_AZA_BIT>,
<&bpmp_clks TEGRA234_CLK_MIPI_CAL>,
<&bpmp_clks TEGRA234_CLK_UART_FST_MIPI_CAL>,
<&bpmp_clks TEGRA234_CLK_SOR0_DIV>; clock-names = "nvdisplayhub_clk",
"nvdisplay_disp_clk", "nvdisplay_p0_clk", "nvdisplay_p1_clk", "dpaux0_clk",
 "fuse_clk", "dsipll_vco_clk", "dsipll_clkoutpn_clk", "dsipll_clkouta_clk",
 "sppll0_vco_clk", "sppll0_clkoutpn_clk", "sppll0_clkouta_clk", "sppll0_clkoutb_clk",
 "sppll0_div10_clk", "sppll0_div25_clk", "sppll0_div27_clk",
"sppll1_vco_clk", "sppll1_clkoutpn_clk", "sppll1_div27_clk", "vpll0_ref_clk",
 "vpll0_clk", "vpll1_clk",
"nvdisplay_p0_ref_clk", "rg0_clk",
"rg1_clk", "disppll_clk", "disphubpll_clk", "dsi_lp_clk", "dsi_core_clk",
 "dsi_pixel_clk", "pre_sor0_clk", "pre_sor1_clk", "dp_link_ref_clk",
 "sor_linka_input_clk", "sor_linka_afifo_clk",
"sor_linka_afifo_m_clk", "rg0_m_clk", "rg1_m_clk", "sor0_m_clk", "sor1_m_clk",
 "pllhub_clk",
"sor0_clk", "sor1_clk", "sor_pad_input_clk", "pre_sf0_clk", "sf0_clk",
"sf1_clk", "dsi_pad_input_clk", "pre_sor0_ref_clk", "pre_sor1_ref_clk",
 "sor0_ref_pll_clk", "sor1_ref_pll_clk", "sor0_ref_clk", "sor1_ref_clk", "osc_clk",
"dsc_clk", "maud_clk", "aza_2xbit_clk", "aza_bit_clk", "mipi_cal_clk",
"uart_fst_mipi_cal_clk", "sor0_div_clk";
resets = <&bpmp_resets TEGRA234_RESET_NVDISPLAY>,
<&bpmp_resets TEGRA234_RESET_DPAUX>,
<&bpmp_resets TEGRA234_RESET_DSI_CORE>,
<&bpmp_resets TEGRA234_RESET_MIPI_CAL>;
reset-names = "nvdisplay_reset",
"dpaux0_reset", "dsi_core_reset", "mipi_cal_reset";
status = "disabled";
nvidia,disp-sw-soc-chip-id = <0x2350>;

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 974

Device Tree

#if TEGRA_IOMMU_DT_VERSION >= DT_VERSION_2
interconnects = <&mc TEGRA234_MEMORY_CLIENT_NVDISPLAYR>,
<&mc TEGRA234_MEMORY_CLIENT_NVDISPLAYR1>;
interconnect-names = "dma-mem", "read-1";
#endif
iommus = <&smmu_iso TEGRA_SID_ISO_NVDISPLAY>; non-coherent;
nvdisplay-niso {
compatible = "nvidia,tegra234-display-niso";
iommus = <&smmu_niso0 TEGRA_SID_NISO0_NVDISPLAY>; dma-coherent;
};
dsi {
compatible = "nvidia,tegra234-dsi"; nvidia,active-panel = "NULL"; status =
 "disabled";
};
};

compatible:

Description: - `compatible` contains the unique string to identify the external NvDisplay
DT node.

Customizable: No

Optional: No

Value: " nvidia,tegra234-display"

power-domains:

Description: - `power-domains` identies the power domain display belongs to.

Customizable: No

Optional: No

Value: <&bpmp TEGRA234_POWER_DOMAIN_DISP>

nvidia,num-dpaux-instance:

Description: - num-dpaux-instance species the number of DPAUX pads on the underlying
platform.

Customizable: No

Optional: No

Value: <1>

reg-names:

Description: - reg-names mentions all of the MMIO device apertures that the display driver
needs access to.

Customizable: No

Optional: No

Value: Must contain an entry for all the register names

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 975

Device Tree

‣ nvdisplay

‣ dpaux0

‣ hdacodec (Not used by QNX driver)

‣ mipical (Not used by QNX driver)

reg:

Description: - Physical base address and length of the controller's registers

Customizable: No

Optional: No

Value: Tuple in the form of address and length/size that describes the address range. Must
contain an entry for each register entry mentioned in the “reg” eld:

‣ 0x0 0x13800000 0x0 0xEFFFF

‣ 0x0 0x155C0000 0x0 0xFFFF

‣ 0x0 0x0242c000 0x0 0x1000 (corresponds to hdacodec, Not used by QNX driver)

‣ 0x0 0x03990000 0x0 0x10000 (corresponds to mipical, Not used by QNX driver)

interrupt-names:

Description: - Mentions the type of interrupts supported by NvDisplay node

Customizable: No

Optional: No

Value: Must contain the following entries:

‣ nvdisplay

‣ dpaux0

‣ hdacodec (Not used by QNX driver)

interrupts:

Description: `interrupts` holds the IRQ number and IRQ type connected to NvDisplay.

Customizable: No

Optional: No

Value: Must contain an entry for each entry in interrupt-names.

0 416 4

0 419 4

0 61 4

nvidia,bpmp:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 976

Device Tree

Description: BPMP device, needed for NvDisplay

Customizable: No

Optional: No

Value: bpmp

clocks:

Description: `clocks` holds the type of clock IDs supported by NvDisplay.

Customizable: No

Optional: No

Value: <&bpmp_clks TEGRA234_CLK_HUB>,

<&bpmp_clks TEGRA234_CLK_DISP>,

<&bpmp_clks TEGRA234_CLK_NVDISPLAY_P0>,

<&bpmp_clks TEGRA234_CLK_NVDISPLAY_P1>,

<&bpmp_clks TEGRA234_CLK_DPAUX>,

<&bpmp_clks TEGRA234_CLK_FUSE>,

<&bpmp_clks TEGRA234_CLK_DSIPLL_VCO>,

<&bpmp_clks TEGRA234_CLK_DSIPLL_CLKOUTPN>,

<&bpmp_clks TEGRA234_CLK_DSIPLL_CLKOUTA>,

<&bpmp_clks TEGRA234_CLK_SPPLL0_VCO>,

<&bpmp_clks TEGRA234_CLK_SPPLL0_CLKOUTPN>,

<&bpmp_clks TEGRA234_CLK_SPPLL0_CLKOUTA>,

<&bpmp_clks TEGRA234_CLK_SPPLL0_CLKOUTB>,

<&bpmp_clks TEGRA234_CLK_SPPLL0_DIV10>,

<&bpmp_clks TEGRA234_CLK_SPPLL0_DIV25>,

<&bpmp_clks TEGRA234_CLK_SPPLL0_DIV27PN>,

<&bpmp_clks TEGRA234_CLK_SPPLL1_VCO>,

<&bpmp_clks TEGRA234_CLK_SPPLL1_CLKOUTPN>,

<&bpmp_clks TEGRA234_CLK_SPPLL1_DIV27PN>,

<&bpmp_clks TEGRA234_CLK_VPLL0_REF>,

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 977

Device Tree

<&bpmp_clks TEGRA234_CLK_VPLL0>,

<&bpmp_clks TEGRA234_CLK_VPLL1>,

<&bpmp_clks TEGRA234_CLK_NVDISPLAY_P0_REF>,

<&bpmp_clks TEGRA234_CLK_RG0>,

<&bpmp_clks TEGRA234_CLK_RG1>,

<&bpmp_clks TEGRA234_CLK_DISPPLL>,

<&bpmp_clks TEGRA234_CLK_DISPHUBPLL>,

<&bpmp_clks TEGRA234_CLK_DSI_LP>,

<&bpmp_clks TEGRA234_CLK_DSI_CORE>,

<&bpmp_clks TEGRA234_CLK_DSI_PIXEL>,

<&bpmp_clks TEGRA234_CLK_PRE_SOR0>,

<&bpmp_clks TEGRA234_CLK_PRE_SOR1>,

<&bpmp_clks TEGRA234_CLK_DP_LINK_REF>,

<&bpmp_clks TEGRA234_CLK_SOR_LINKA_INPUT>,

<&bpmp_clks TEGRA234_CLK_SOR_LINKA_AFIFO>,

<&bpmp_clks TEGRA234_CLK_SOR_LINKA_AFIFO_M>,

<&bpmp_clks TEGRA234_CLK_RG0_M>,

<&bpmp_clks TEGRA234_CLK_RG1_M>,

<&bpmp_clks TEGRA234_CLK_SOR0_M>,

<&bpmp_clks TEGRA234_CLK_SOR1_M>,

<&bpmp_clks TEGRA234_CLK_PLLHUB>,

<&bpmp_clks TEGRA234_CLK_SOR0>,

<&bpmp_clks TEGRA234_CLK_SOR1>,

<&bpmp_clks TEGRA234_CLK_SOR_PAD_INPUT>,

<&bpmp_clks TEGRA234_CLK_PRE_SF0>,

<&bpmp_clks TEGRA234_CLK_SF0>,

<&bpmp_clks TEGRA234_CLK_SF1>,

<&bpmp_clks TEGRA234_CLK_DSI_PAD_INPUT>,

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 978

Device Tree

<&bpmp_clks TEGRA234_CLK_PRE_SOR0_REF>,

<&bpmp_clks TEGRA234_CLK_PRE_SOR1_REF>,

<&bpmp_clks TEGRA234_CLK_SOR0_PLL_REF>,

<&bpmp_clks TEGRA234_CLK_SOR1_PLL_REF>,

<&bpmp_clks TEGRA234_CLK_SOR0_REF>,

<&bpmp_clks TEGRA234_CLK_SOR1_REF>,

<&bpmp_clks TEGRA234_CLK_OSC>,

<&bpmp_clks TEGRA234_CLK_DSC>,

<&bpmp_clks TEGRA234_CLK_MAUD>,

<&bpmp_clks TEGRA234_CLK_AZA_2XBIT>,

<&bpmp_clks TEGRA234_CLK_AZA_BIT>,

<&bpmp_clks TEGRA234_CLK_MIPI_CAL>,

<&bpmp_clks TEGRA234_CLK_UART_FST_MIPI_CAL>,

<&bpmp_clks TEGRA234_CLK_SOR0_DIV>;

clock-names:

Description: List of clock input name strings sorted in the same order as the clocks
property. Consumer drivers use clock-names to match clock input names with clocks
speciers

Customizable: No

Optional: No

Value: "nvdisplayhub_clk", "nvdisplay_disp_clk", "nvdisplay_p0_clk", "nvdisplay_p1_clk",
"dpaux0_clk", "fuse_clk", "dsipll_vco_clk", "dsipll_clkoutpn_clk", "dsipll_clkouta_clk",
"sppll0_vco_clk", "sppll0_clkoutpn_clk", "sppll0_clkouta_clk", "sppll0_clkoutb_clk",
"sppll0_div10_clk", "sppll0_div25_clk", "sppll0_div27_clk", "sppll1_vco_clk",
"sppll1_clkoutpn_clk", "sppll1_div27_clk", "vpll0_ref_clk", "vpll0_clk", "vpll1_clk",
"nvdisplay_p0_ref_clk", "rg0_clk", "rg1_clk", "disppll_clk", "disphubpll_clk", "dsi_lp_clk",
"dsi_core_clk", "dsi_pixel_clk", "pre_sor0_clk", "pre_sor1_clk", "dp_link_ref_clk",
"sor_linka_input_clk", "sor_linka_afo_clk", "sor_linka_afo_m_clk", "rg0_m_clk",
"rg1_m_clk", "sor0_m_clk", "sor1_m_clk", "pllhub_clk", "sor0_clk", "sor1_clk",
"sor_pad_input_clk", "pre_sf0_clk", "sf0_clk", "sf1_clk", "dsi_pad_input_clk",
"pre_sor0_ref_clk", "pre_sor1_ref_clk", "sor0_ref_pll_clk", "sor1_ref_pll_clk", "sor0_ref_clk",
"sor1_ref_clk", "osc_clk", "dsc_clk", "maud_clk", "aza_2xbit_clk", "aza_bit_clk", "mipi_cal_clk",
"uart_fst_mipi_cal_clk", "sor0_div_clk";

resets:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 979

Device Tree

Description: List of phandle and reset specier pairs, one pair for each reset signal that
aects the device, or that the device manages.

Customizable: No

Optional: No

Value:

‣ TEGRA234_RESET_NVDISPLAY

‣ TEGRA234_RESET_DPAUX

‣ TEGRA234_RESET_DSI_CORE (Not used by QNX driver)

‣ TEGRA234_RESET_MIPI_CAL (Not used by QNX driver)

reset-names:

Description: The name of the resets mentioned in the “resets” eld

Customizable: No

Optional: No

Value: Must contain an entry for each value in the “resets” eld:

‣ nvdisplay_reset

‣ dpaux0_reset

‣ dsi_core_reset (Not used by QNX driver)

‣ mipi_cal_reset (Not used by QNX driver)

status:

Description: Holds the status of NvDisplay

Customizable: No

Optional: No

Value: “okay” or “disabled”

nvidia,disp-sw-soc-chip-id:

Description: Mentions the SOC SW Chip ID

Customizable: No

Optional: No

Value: 0x2350

interconnects:

Description: Species the bandwidth of the clients used by NvDisplay. This is only if
TEGRA_IOMMU_DT_VERSION is greater or equal to DT_VERSION_2. Not used on AV+L or AV
+Q.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 980

Device Tree

Customizable: No

Optional: No

Value:

‣ TEGRA234_MEMORY_CLIENT_NVDISPLAYR

‣ TEGRA234_MEMORY_CLIENT_NVDISPLAYR1

interconnect-names:

Description: Mentions the names of the interconnects used by NvDisplay. This is only if
TEGRA_IOMMU_DT_VERSION is greater or equal to DT_VERSION_2.

Customizable: No

Optional: No

Value: Must contain an entry for each value in “interconnects” eld

‣ dma-mem

‣ read-1

iommus:

Description: Mentions the name of the IOMMU used by NvDisplay for ISO trac.

Customizable: No

Optional: No

Value: TEGRA_SID_ISO_NVDISPLAY

non-coherent:

Description: Present because NvDisplay ISO accesses to DRAM are non-coherent.

Customizable: No

Optional: No

Value: N/A

nvdisplay-niso node

Contains details about the IOMMU instance used by NvDisplay for NISO memory accesses.
nvdisplay-niso {
compatible = "nvidia,tegra234-display-niso";
iommus = <&smmu_niso0 TEGRA_SID_NISO0_NVDISPLAY>; dma-coherent;
};

compatible:

Description: - `compatible` contains the unique string to identify the external NvDisplay-
NISO DT node

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 981

Device Tree

Customizable: No

Optional: No

Value: " nvidia,tegra234-display-niso"

iommus:

Description: Mentions the name of the IOMMU used by the NvDisplay-NISO node.

Customizable: No

Optional: No

Value:

‣ TEGRA_SID_NISO0_NVDISPLAY

dma-coherent:

Description: Present because NvDisplay NISO memory accesses are DMA-coherent.

Customizable: No

Optional: No

Value: N/A

dsi node

Contains details about DSI, used by NvDisplay node. Is not used in automotive QNX.
dsi {
compatible = "nvidia,tegra234-dsi"; nvidia,active-panel = "NULL"; status =
 "disabled";
};

compatible:

Description: - `compatible` contains the unique string to identify the external NvDisplay-
DSI DT node.

Customizable: No

Optional: No

Value: " nvidia,tegra234-dsi"

nvidia,active-panel:

Description: - Contains the active panels under DSI

Customizable: No

Optional: No

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 982

Device Tree

Value: " NULL"

status:

Description: Holds the status of NvDisplay DSI node.

Customizable: No

Optional: No

Value: “okay” or “disabled”

Frozen Frame Detection

In order to enable frozen frame detection, these are the properties required. It uses the
regional CRC approach.
regional-crc {
head0 {
/* num regions */ num-regions = <8>;

/* Array specifying "num-regions" region details.
* Each region has 4 entries in array:
* x-coordinate, y-coordinate, width and height
*/
regions = <100 100 200 200
400 300 200 200
700 100 100 300
900 200 400 300
1400 100 400 300
200 600 400 200
700 600 200 300
1200 600 400 300>;

/*
* Display driver will use this value to declare
* Frozen frame if CRC value for any region is repeated
* these many times.
*/
ff-detection-threshold = <4>;
};
};

regional-crc:

Used to specify if regional CRC functionality can be enabled. If this entry is removed then
FF detection functionality is disabled. This node is optional and only required if we need to
enable Frozen Frame Detection.

head0:

Species which head the regional CRC is enabled on, ex:head0, head1. Orin has only two
valid node names - head0 and head1. Either node, or both can be present based on which
head/stream the Frozen Frame detection is to be enabled for.

num-regions:

Description: Species how many regions in given view-port will be used for regional crc
comparison.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 983

Device Tree

Customizable: Yes

Optional: No

Value: 1-9

regions:

Description: Used to mention dierent areas (upto 9) within a viewport on display
image. Each region is described with 4 values mentioning the top left and bottom right
coordinates.

Customizable: Yes

Optional: No

Value: All values are separated by space and start with values corresponding to the rst
region upto max allowed regions as mentioned in “num-regions'' property. The position and
size of each region can be specified by the user.

For example:

‣ <100100 200 200

400300 200 200

700100 100 300

900200 400 300

1400100 400 300

200600 400 200

700600 200 300

1200600 400 300>

-detection-threshold:

Description: Used to specify after how many frames the FF detection is considered to be
true. If the CRC for any single region remains the same for this many frames, the display
driver will treat this as an error since it indicates that at least one region of the frame is
stuck.

Customizable: Yes

Optional: No

Value: Integer specifying the number of frames. For example: <4>

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 984

Device Tree

Drive Setmode

When driver setmode is enabled, display setup + modeset will happen during the resmgr
init phase instead of deferring this to when the rst display client comes up. So, enabling
driver setmode can improve "power-on to rst pixel visible on screen" latency. On QNX
safety, driver setmode is enabled by default. On QNX Standard, driver setmode can be
enabled using Device Tree. Driver setmode can be enabled only for the conguration which
uses DP Serializer, on other congurations enabling it will fail to load the display driver.
display@13800000 { nvidia,driver-setmode;
};

nvidia,driver-setmode:

Description: Used to enable driver setmode.

Customizable: No

Optional: Yes

Value: N/A

Head to Window Assignment

Used to congure head to window assignment in the Device Tree. If an assignment is not
specied in the DT, the driver assigns windows (2N) and (2N + 1) to HEAD N. In DT, specify
the assignment using 64 bit mask, which is interpreted as:

Head-Bitmask Window-Number

BITMASK(0-7) 0

BITMASK(8-15) 1

BITMASK(16-23) 2

BITMASK(24-31) 3

BITMASK(32-39) 4

BITMASK(40-47) 5

BITMASK(48-55) 6

BITMASK(56-63) 7

The display driver fails to load if an invalid assignment is specied in the DT. The specied
assignment must adhere to the conditions below:

1. The specied window number must be supported by hardware.
2. The specied head number must be supported by hardware.
3. The same window must not be assigned simultaneously for multiple heads.
4. At least one window must be assigned to at least one head (that is, the specied

window-head mask should not be 0).

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 985

Device Tree

The display driver culls the head with no windows assigned, and all the heads above it. For
example, if hardware supports three heads and the user uses the assignment mask to
assign valid windows to head-0 and head-2 but no windows to head-1, then head-1 and
head-2 is culled.
display@13800000 {
nvidia,window-head-mask = <0x00000000 0x02010101>;
};

nvidia,window-head-mask:

Description: Used to specify the 64-bit window head assignment mask.

Customizable: Yes

Optional: Yes

Value: If no value is specied, a default head<->window assignment is used. If not, any value
which ts the criteria mentioned above will work.

Static IMP

Starting from 6.0.5.0, QNX customers should enable static IMP. For enabling static IMP, we
need to program certain IMP settings in BCT and Device Tree les. Generated using a host
side tool called "laptsa-imp", we are able to generate this DT fragment.
static-imp-data {
/* Window and cursor pool config */
window-pool-config = <0x227 0x227 0x227 0x227>; cursor-pool-config = <0x1f 0x1f>;

/* Window and cursor drain meter config */
window-drain-meter-config = <0x20 0x20 0x20 0x20>; cursor-drain-meter-config = <0x3
 0x3>;

/* Window and cursor fetch meter config */ window-fetch-meter-config = <0xf 0xf 0xf
 0xf>; cursor-fetch-meter-config = <0x2 0x2>;

/* Delay before a START_FETCH command is sent to IsoHub */ start-fetch-delay-us =
 <0x1a8 0x1a8>;

/* Elv start value */ elv-start = <0x4 0x4>;

/* Clock Frequencies */ hub-clock-khz = <82300>;
disp-clock-khz = <311862>;
};
};

window-pool-cong

Description: Species the window pool cong.

Customizable: Yes

Optional: No

Value: Ex: <0x227 0x227 0x227 0x227>

cursor-pool-cong

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 986

Device Tree

Description: Species the cursor pool cong.

Customizable: Yes

Optional: No

Value: Ex: <0x1f 0x1f>

window-drain-meter-cong

Description: Species the window drain meter cong.

Customizable: Yes

Optional: No

Value: For example: <0x20 0x20 0x20 0x20>

cursor-drain-meter-cong

Description: Species the cursor drain meter cong.

Customizable: Yes

Optional: No

Value: For example: <0x3 0x3>

window-fetch-meter-cong

Description: Species the window fetch meter cong.

Customizable: Yes

Optional: No

Value: For example: <0xf 0xf 0xf 0xf>

cursor-fetch-meter-cong

Description: Species the cursor fetch meter cong.

Customizable: Yes

Optional: No

Value: For example: <0x2 0x2>

start-fetch-delay-us:

Description: Species the delay before a START_FETCH command is sent to IsoHub.

Customizable: Yes

Optional: No

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 987

Device Tree

Value: For example: <0x1a8 0x1a8>

elv-start:

Description: Species the Elv start value.

Customizable: Yes

Optional: No

Value: For example: <0x4 0x4>

hub-clock-khz:

Description: Species the IsoHub clock frequency in KHz.

Customizable: Yes

Optional: No

Value: For example: <82300>

disp-clock-khz:

Description: Species the display clock frequency in KHz.

Customizable: Yes

Optional: No

Value: For example: <311862>

Serializer

Conguring the Serializer Driver:

To use the NVIDIA reference Maxim serializer driver, there are various ways to congure the
driver by Device Tree. An example Device Tree fragment is shown below that congures the
Maxim serializer chip in MST mode:
maxim_ser: max_gmsl_dp_ser@40 { compatible = "maxim,max_gmsl_dp_ser"; reg = <0x40>;
status = "okay";
max_gmsl_dp_ser-pwrdn = <&tegra_main_gpio TEGRA234_MAIN_GPIO(G, 3) GPIO_ACTIVE_HIGH>;
ser-errb = <&tegra_main_gpio TEGRA234_MAIN_GPIO(G, 7) 0>; dprx-link-rate = <0x1e>;
dprx-lane-count = <0x4>; enable-mst;
mst-payload-ids = <0x1 0x3 0x2 0x4>; gmsl-stream-ids = <0x0 0x1 0x2 0x3>; gmsl-link-
select = <0x0 0x0 0x1 0x1>; enable-dp-fec;
enable-dsc = <1 0>;
enable-gmsl-fec = <1 0>;
};

compatible:

Description: `compatible` contains the unique string to identify the Maxim Serializer DT
node.

Customizable: No

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 988

Device Tree

Optional: No

Value: "maxim,max_gmsl_dp_ser"

reg:

Description: - I2C address of the Maxim display serializer.

Customizable: No

Optional: No

Value: <0x40>

max_gmsl_dp_ser-pwrdn:

Description: - GPIO pin number of the PWRDN pin. This pin is used to power up the Maxim
display serializer chip.

Customizable: No

Optional: No

Value: TEGRA234_MAIN_GPIO(G, 3) GPIO_ACTIVE_HIGH

gmsl-link-select:

Description: - This property is an array of four unsigned 8-bit values that determines the
GMSL output link to enable for each video pipe X, Y, Z, and U.

Customizable: Yes

Optional: No

Value:The possible values for each pipe are:

‣ 0x0 (Link A)

‣ 0x1 (Link B)

‣ 0x2 (Link A + B)

For example: <0x0 0x0 0x1 0x1>

dprx-link-rate:

Description: Congures the DP link rate of the serializer chip.

Customizable: Yes

Optional: Yes

Value: The default value is 0x1E (HBR3). The possible values are:

‣ 0xA (HBR)

‣ 0x14 (HBR2)

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 989

Device Tree

‣ 0x1E (HBR3)

dprx-lane-count:

Description: Congures the DP lane count of the serializer chip.

Customizable: Yes

Optional: Yes

Value:The default value is 0x4. The possible values are:

‣ 0x1

‣ 0x2

‣ 0x4

ser-errb:

Description: - Species the GPIO pin number of the ERRB pin. This pin is used for error and
fault reporting by the serializer chip.

Customizable: No

Optional: Yes

Value: TEGRA234_MAIN_GPIO(G, 7) 0

enable-mst:

Description: - Used to enable MST modes.

Customizable: No

Optional: Yes

Value: N/A

mst-payload-ids:

Description: Used to represent MST payload IDs of pipe X, Y, Z, U. This property is
mandatory if enable-mst property is mentioned in dt.

Customizable: Yes

Optional: Yes

Value: It is an array of four unsigned 8-bit values.

For example: <0x1 0x3 0x2 0x4>

gmsl-stream-ids:

Description: Used to represent GMSL stream IDs of pipe X, Y, Z, U. This property is
mandatory if enable-mst property is mentioned in dt.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 990

Device Tree

Customizable: Yes

Optional: Yes

Value: It is an array of four unsigned 8-bit values.

For example: <0x0 0x1 0x2 0x3>

enable-dp-fec:

Description: Used to enable FEC on DP link if serializer supports it.

Customizable: No

Optional: Yes

Value: N/A

enable-dsc:

Description: Used to enable DSC.

Customizable: Yes

Optional: Yes

Value: It is an array of two 32-bit values, where each value indicates whether DSC
is enabled or not. The rst entry corresponds to video pipe X, and the second entry
corresponds to video pipe Y. DSC is only supported on pipe X currently.

For example: <1 0>

enable-gmsl-fec:

Description: - Used to enable FEC on the GMSL link.

Customizable: Yes

Optional: Yes

Value: It is an array of two 32-bit values, where each value indicates whether FEC is enabled
on the GMSL link. The rst entry corresponds to GMSL Link A, and the second entry
corresponds to GMSL Link B.

For example: <1 0>

Conguring video timings:

For both SST and MST mode, the mode timings that are used for each stream must be
congured in Device Tree. Only one mode timing can be specied at a time for each
video stream. The timings that are exposed in the EDIDs of the serializer and the panels
connected to the downstream deserializer are completely ignored.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 991

Device Tree

An example Device Tree fragment is shown below. In this example, a standard 1920x1080
at 60 Hz timing is specied for the rst video stream, and a 1280x720 at 60 Hz timing is
specied for the second video stream:
display-timings {
display-connector-0 { dcb-index = <0>;

stream-0 {
timings-phandle = <&mode0>;
};

stream-1 {
timings-phandle = <&mode1>;
};
};
};
mode0: 1920-1080-60Hz {
clock-frequency-khz = <148500>;
hactive = <1920>;
vactive = <1080>;
hfront-porch = <88>;
hback-porch = <148>;
hsync-len = <44>;
vfront-porch = <4>;
vback-porch = <36>;
vsync-len = <5>;
rrx1k = <60000>;
pps-data = [
11 00 00 89 30 80 04 38
07 80 04 38 03 c0 03 c0
02 00 03 58 00 20 73 3e
00 0d 00 0f 00 1d 00 0e
18 00 10 f0 03 0c 20 00
06 0b 0b 33 0e 1c 2a 38
46 54 62 69 70 77 79 7b
7d 7e 01 02 01 00 09 40
09 be 19 fc 19 fa 19 f8
1a 38 1a 78 22 b6 2a b6
2a f6 2a f4 43 34 63 74
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00];
};

mode1: 1280-720-60Hz {
clock-frequency-khz = <74250>;
hactive = <1280>;
vactive = <720>;
hfront-porch = <110>;
hback-porch = <220>;
hsync-len = <40>;
vfront-porch = <5>;
vback-porch = <20>;
vsync-len = <5>;
rrx1k = <60000>;
};

display-timings:

Used to describe which timings are used for each stream.

display-connector-0:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 992

Device Tree

The node species the timing information for the rst display connector. If there are
multiple display connectors present on the board that require xed timings, then a new
"display-connector" node must be created for each connector.

dcb-index:

Description: Species the logical index X of the DCB -> Display Devices -> Display Device X
entry in the display DCB blob that this connector entry applies to.

Customizable: Yes

Optional: No

Value: Has to be a valid logical index. If there is only one display connector on the board,
then "dcb-index" defaults to 0.

stream-0:

The nodes specify the phandle of the mode timing node that applies to the given video
stream. Each "display-connector" can only have up to two (2) "stream" nodes. Note that it
is ne to specify two (2) "stream" nodes even if the display serializer operates in SST mode
because only the rst "stream" node is consumed by the display driver. The extra node is
ignored.

timings-phandle:

Description: Species the phandle of the mode timing node.

Customizable: Yes

Optional: No

Value: N/A

mode0:

Each "mode" node contains the actual mode timing parameters that will be used for a
given video stream.

clock-frequency-khz:

Description: Species the pixel clock frequency in KHz.

Customizable: Yes

Optional: No

Value: For example: <148500>

hactive:

Description: Horizontal active pixels.

Customizable: Yes

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 993

Device Tree

Optional: No

Value: For example: <1920>

vactive:

Description: Vertical active pixels.

Customizable: Yes

Optional: No

Value: For example: <1080>

hfront-porch:

Description: Horizontal front porch.

Customizable: Yes

Optional: No

Value: For example: <88>

hback-porch:

Description: Horizontal back porch.

Customizable: Yes

Optional: No

Value: For example: <148>

hsync-len:

Description: Horizontal sync width.

Customizable: Yes

Optional: No

Value: For example: <44>

vfront-porch:

Description: Vertical front porch.

Customizable: Yes

Optional: No

Value: For example: <4>

hback-porch:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 994

Device Tree

Description: Horizontal back porch.

Customizable: Yes

Optional: No

Value: Ex: <36>

vsync-len:

Description: Vertical sync width.

Customizable: Yes

Optional: No

Value: Ex: <5>

rrx1k:

Description: Refresh rates in units of 0.001Hz.

Customizable: Yes

Optional: No

Value: For example: <60000>

pps-data:

Description: All 128B of the DSC PPS.

Customizable: Yes

Optional: Yes

Value: This property should be specied if DSC will be enabled for the given timing. For
example:
[
11 00 00 89 30 80 04 38
07 80 04 38 03 c0 03 c0
02 00 03 58 00 20 73 3e
00 0d 00 0f 00 1d 00 0e
18 00 10 f0 03 0c 20 00
06 0b 0b 33 0e 1c 2a 38
46 54 62 69 70 77 79 7b
7d 7e 01 02 01 00 09 40
09 be 19 fc 19 fa 19 f8
1a 38 1a 78 22 b6 2a b6
2a f6 2a f4 43 34 63 74
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00]

DCB Tool:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 995

Device Tree

DCB tool is packaged in the following path:

$(SDK_TOOLS_DIR)/dcb_tool/dcb_tool

If you want to modify the DCB blob in DT, refer to the DCB documentation at:

$(SDK_TOOLS_DIR)/dcb_tool/readme.txt

13.2 NvGPU Device Tree
The NvGPU driver uses the following Device tree nodes and properties. Properties
customizable are marked accordingly for each property used. Nodes used in NvGPU drivers
for Linux and QNX are as follows.

Ga10b – ga10b node, contains conguration parameters needed for initializing the NvGPU
driver.

tegra_ga10b: ga10b {
 compatible = "nvidia,ga10b";
 #cooling-cells = <2>;
 reg = <0x0 0x17000000 0x0 0x1000000
 0x0 0x18000000 0x0 0x1000000
 0x0 0x03b41000 0x0 0x00001000>;
 interrupts = <0 68 0x04
 0 70 0x04
 0 71 0x04
 0 67 0x04>;
 dma-noncontig;
 interrupt-names = "stall0", "stall1", "stall2", "nonstall";
 nvidia,host1x = <&host1x>;
 access-vpr-phys;
 power-domains = <&bpmp TEGRA234_POWER_DOMAIN_GPU>;
 clocks = <&bpmp_clks TEGRA234_CLK_GPUSYS>,
 <&bpmp_clks TEGRA234_CLK_GPC0CLK>,
 <&bpmp_clks TEGRA234_CLK_GPC1CLK>;
 clock-names = "sysclk", "gpc0clk", "gpc1clk";
 resets = <&bpmp_resets TEGRA234_RESET_GPU>;
 dma-coherent;
 nvidia,bpmp = <&bpmp>;
 support-gpu-tools = <1>;
 status = "disabled";
};

Compatible :Applicable for both Linux and QNX.

Description: - `compatible` contains the unique string to identify the external NvGPU DT
node.

Customizable: No

Optional: No

Value: " nvidia,ga10b "

reg :Applicable for both Linux and QNX.

Description: Physical base address and length of the controller's registers.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 996

Device Tree

Customizable: No

Optional: No

Value: Must contain two entries:

‣ rst entry for bar0

‣ second entry for bar1

‣ third entry for FUSE region.

An optional third entry is used only in case of simulation.

interrupts: Applicable for both Linux and QNX.

Description: `interrupts` holds the IRQ number and IRQ type connect to ga10b.

Customizable: No

Optional: No

Value: Must contain an entry for each entry in interrupt-names.

‣ 0 68 0x04

‣ 0 70 0x04

‣ 0 71 0x04

‣ 0 67 0x04

interrupt-names: – Applicable for both Linux and QNX.

Description: `interrupt-names` holds the type of interrupts supported by ga10b.

Customizable: No

Optional: No

Value: Must include the following entries:

‣ stall0

‣ stall1

‣ stall2

‣ nonstall

nvidia,host1x- Applicable only for Linux.

Description: host1x device, needed for syncpoint support.

Customizable: No

Optional: Yes

Value: host1x

access-vpr-phys – Applicable for both Linux and QNX.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 997

Device Tree

Description: GPU device can't access VPR via SMMU. It can only access VPR in physical.
Bypass smmu if access-vpr-phys is specied in device's DT node. If device does not have
DT entry or if it does not have access-vpr-phys property, nvmap can continue to map the
sgt in iova space and hence can avoid fragmentation issues for devices which can access
vpr through smmu

Customizable: No

Optional: Yes

Value: access-vpr-phys

power-domains- Applicable only for Linux.

Description: Generic Power Domains (genpd). Available in k4.14 onwards. bpmp manages
power gating for gpu if this entry is present in the DT.

Customizable: No

Optional: No

Value: <&bpmp TEGRA234_POWER_DOMAIN_GPU>

Clocks: Applicable for both Linux and QNX.

Description: `clocks` holds the type of clocks ids supported by ga10b.

Customizable: No

Optional: No

Value: <&bpmp_clks TEGRA234_CLK_GPUSYS>,

<&bpmp_clks TEGRA234_CLK_GPC0CLK>,

<&bpmp_clks TEGRA234_CLK_GPC1CLK

clock-names: Applicable for both Linux and QNX.

Description: List of clock input name strings sorted in the same order as the clocks
property. Consumer’s drivers will use clock-names to match clock input names with clocks
speciers

Customizable: No

Optional: Yes

Value: "sysclk", "gpc0clk", "gpc1clk

resets: Applicable for both Linux and QNX.

Description: List of phandle and reset specier pairs, one pair for each reset signal that
aects the device, or that the device manages.

Customizable: No

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 998

Device Tree

Optional: No

Value: bpmp_resets TEGRA234_RESET_GPU

dma-coherent: Applicable for both Linux and QNX.

Description: Present if DMA operations are coherent.

Customizable: No

Optional: Yes

Value: N/A

dma-noncontig: Specic to Linux and probably can be removed now as seems not being
used now.

Description: Present if DMA operations are noncontiguous.

Customizable: No

Optional: Yes

Value: N/A

support-gpu-tools: Applicable only on QNX standard and Linux builds.

Description: Knob to control dbg/prof support.

Customizable: Yes

Optional: Yes

Value: Value 1 depicts that dbg/prof support is enabled. Absence or other value means
support is disabled which skips support for below nodes:

1. ctxsw 2. dbg 3. prof 4. prof-dev 5. prof-ctx

Status: Applicable for both Linux and QNX.

Description: `status` holds the NVGPU status.

Customizable: No

Optional: No

Value: “okay" or "disabled"

13.3 PCIe Controller Device Tree
This section describes PCIe Resmgr interface specication.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 999

Device Tree

PCIe_Resmgr_Device_Tree

compatible:

Description: Compatibility string name io-nv_pcie_manager.

Value: "nvidia,tegra234-pcie" for root port mode OR "nvidia,tegra234-pcie-ep" for end point
mode.

Customizable: No

Optional: No

status:

Description: Enabled status of PCIe controller.

Value: "okay" or "disabled"

Customizable: No

Optional: No

num-lanes:

Description: Limits PCIe controller's link width to this value. This value should be same as
controller's lane width in XBAR register.

Value: Valid values are 1/2/4/8

Customizable: Yes (As per XBAR setting for a platform.)

Optional: No

clocks:

Description: Contains the clock IDs for PCIe controller.

Value: Example for C0 Controller:

clocks = <&bpmp_clks TEGRA234_CLK_PEX0_CORE_0>,

<&bpmp_clks TEGRA234_CLK_PEX0_CORE_0_M>;

Customizable: No

Optional: No

resets:

Description: Contains the reset IDs for PCIe controller.

Value: Example for C0 Controller:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 1000

Device Tree

resets = <&bpmp_resets TEGRA194_RESET_PEX0_CORE_0_APB>,

<&bpmp_resets TEGRA194_RESET_PEX0_CORE_0>;

Customizable: No

Optional: No

reg:

Description: A list of physical base address and length pairs for each set of below registers

‣ appl: Controller's application logic registers

‣ cong: PCIe cong space

‣ atu_dma: iATU and DMA registers. This is where the iATU (internal Address Translation
Unit) and DMA registers of the PCIe core are made available for SW access.

Above 3 are common for Both End Point and Root Port mode. Below 2 are applicable for
Root port mode only:

‣ addr_space_32: 32-bit aperture address range

‣ addr_space_64: 64-bit aperture address range Below is applicable for End point
mode only:

‣ addr_space: End point aperture address space.

Value: Example for C0 Controller:

reg = <0x00 0x14100000 0x0 0x00020000
0x00 0x31F80000 0x0 0x00040000
0x00 0x31FC0000 0x0 0x00040000
0x00 0x30000000 0x0 0x01F80000
0x20 0x80000000 0x0 0x40000000>;

Customizable: No

Optional: No

nvidia,cap-pl16g-cap-o:

Description:16.0 GT/s Capabilities Register. For a description of this standard PCIe register
see the PCI Express Base Specication 4.0.

Value: Example for C0 Controller: nvidia,cap-pl16g-cap-o = <0x188>;

Customizable: No

Optional: No

nvidia,cfg-link-cap-l1sub:

Description: DBI register oset for ASPM L1 substate capabilities.

Value: Example for C0 Controller: nvidia,cfg-link-cap-l1sub = <0x1c4>;

Customizable: No

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 1001

Device Tree

Optional: No

nvidia,enable-srns:

Description: This boolean property needs to be present if the platform has SRNS (Separate
Reference clocks with No Spread-spectrum clocking) conguration implemented.

Customizable: Yes (As per platform conguration explained above).

Optional: Yes

phys:

Description: contain a phandle to P2U controller. This depends on platform conguration of
phy lane assignment for each controller.

Value: Example for pcie@14100000 PCIe controller on P3710 platform phys =
<&p2u_hsio_3>;

Customizable: Yes (As per platform assignment of the uphy lanes).

Optional: No

dma-coherent:

Description: boolean ag which indicates whether PCIe is DMA coherent or not.

Customizable: No

Optional: No

iommus:

Description: A list of phandle and IOMMU specier pairs that describe the IOMMU master
interfaces of the device. One entry in the list describes one master interface of the device.

Value: Example for C1 Controller - <&smmu_niso1 TEGRA_SID_NISO1_PCIE1>;

Customizable: No

Optional: No

memory-phandles:

Description: This property is used to nd phandle of the node where typed memory name
and memory mapping is dened. This is used by EP client drivers to initialize descriptors
and buers in this memory range. Also, this is used by SMMU driver to create SMMU
mappings.

Value: Example for C1 Controller

< &{/smmu-static-mapping/pcie1_smmu_static_mapping} >;
pcie1_smmu_static_mapping { mem-type = "TYPED_MEM"; mem-name = "pcie1Memory"; mem =
 <0x1 0x20000000 0x0 0x2000 0000>; };

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 1002

Device Tree

Customizable: Yes, only applicable when End Point Driver needs Static SMMU mapping
 Optional: Yes, only applicable when End Point Driver needs Static SMMU mapping.

Customizable: Yes, only applicable when End Point Driver needs Static SMMU mapping
Optional: Yes, only applicable when End Point Driver needs Static SMMU mapping.

Example:

pcie@14100000 {
compatible = "nvidia,tegra234-pcie"; reg = <0x00 0x14100000 0x0 0x00020000
0x00 0x31F80000 0x0 0x00040000
0x00 0x31FC0000 0x0 0x00040000
0x00 0x30000000 0x0 0x01F80000
0x20 0x80000000 0x0 0x40000000>;
status = "disabled"; num-lanes = <1>;
clocks = <&bpmp_clks TEGRA194_CLK_PEX0_CORE_1>,
<&bpmp_clks TEGRA194_CLK_PEX0_CORE_1_M>; resets = <&bpmp_resets
 TEGRA194_RESET_PEX0_CORE_1_APB>,
<&bpmp_resets TEGRA194_RESET_PEX0_CORE_1>; nvidia,cfg-link-cap-l1sub = <0x194>;
nvidia,cap-pl16g-cap-off = <0x178>; phys = <&p2u_hsio_3>;
...
};

P2U Controller Register

reg:

Description: Should be the physical address space and length of respective each P2U
instance.

Value: Example for hsio_p2u p2u@03e10000 controller reg = <0x0 0x03e10000 0x0
0x00010000>;

Customizable: No

Optional: No

nvidia,skip-sz-protect-en:

Description: This is a boolean property and needs to be present if the platform is using
SRNS clocking conguration and the number of retimers present between root port and
endpoint are two.

It is applicable only for the two retimers case and not for the single retimer case.

Customizable: Yes (As per platform conguration mentioned in description).

Optional: No

Example:

p2u_hsio_0: phy@3e10000 {
reg = <0x03e10000 0x10000>;
nvidia,kip-sz-protect-en;
};

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 1003

Device Tree

13.4 Camera Device Tree
The Device Tree stores platform-specic congurations for system resources used
by Camera, which provides and regulates access to Camera FW resources, I2C, GPIO,
powercontrol and synchronization signal generation functionalities among clients.

The properties are consumed by the Camera SW SIPL Camera Device Access Control
(CDAC) resource manager on QNX, and its analogue on Linux, the Camera Linux KMD,
composed ofthe cdi-mgr and cdi-tsc modules.

On DRIVE OS Linux, the platform conguration for Camera IP (such as RCE, NVCSI, VI,
ISP) is part of the Host1x Device Tree node and documented in the NvMedia Device Tree
Documentation.There is no equivalent Device Tree conguration on DRIVE OS QNX.

Resource Block Conguration

The `sipl_devblk_X` nodes contain the conguration for each resource block, which are
software representations of deserializer groups in hardware.The `X` should denote the
ID for the dedicated I2C bus of each deserializer block. GPIO pins for ordinary input and
output, and interrupts are also congured in this node.

sipl_devblk_0 {
status = "okay";
compatible = "nvidia,cdi-mgr"; tegra {
i2c-bus = <0>;
csi-port = <0>;

interrupt-parent = <&tegra_main_gpio>;
interrupts = <TEGRA194_MAIN_GPIO(P, 5) 2>; /* GMSLA_STATUS_OC :
falling edge sensitive */

gpios {
gpio@0 {
index = <0>;
nvgpio-line = <&nvgpio_errb_lock_err_a>; intr-edge-falling;
};
gpio@1 {
index = <1>;
nvgpio-line = <&nvgpio_cam_err_a>; intr-edge-rising;
};
};

};

i2c_addr_pools {
i2c-addrs-phys = <0x0 7>,
<0x10 1>,
<0x18 1>;
i2c-addrs-virt = <0x43 12>,
<0x57 8>,
<0x65 12>;
};

deserializer {
addr = <0x29>; /* 7 bit slave address */ reg_len = <16>; /* 16 bit register length */
 dat_len = <8>; /* 8 bit data length */
des_i2c_port = <0>; /* I2C port number of the deserializer */
/* des_tx_port = <0>;*/ /* CSI Tx port number. Define des_tx_port only if the
 dedicated output Tx port is required */

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 1004

Device Tree

dphy_rate_x2 = <2500000>; /* Data rate in DPHY x2. Unit size is
kbps */
dphy_rate_x4 = <2500000>; /* Data rate in DPHY x4. Unit size is
kbps */
cphy_rate_x2 = <2000000>; /* Data rate in CPHY x2. Unit size is
ksps */
cphy_rate_x4 = <2000000>; /* Data rate in CPHY x4. Unit size is
ksps */
gid = <3870>; /* Owning GID (Deserializer) */
links = <0 1 2 3>; /* Number and indices of valid links */ links_gid = <3870>; /*
 Owning GID (Deserializer's links) */
};

pwr_ctrl {
power_port = <0>;
};
};

13.4.1 Common Properties
compatible:

Description:`compatible` contains the unique string to identify the cdi-mgr node.

Customizable: No

Optional:No

Value: "nvidia,cdi-mgr"

tegra node

i2c-bus:

Description: The system I2C bus number that the deserializer is physically connected to.

Customizable: Yes

Optional: No

Value: Typically one of {1, 3, 2, 7}

csi-port

Description: The NVCSI port that the deserializer to physically connected to.

Customizable: Yes

Optional: No

Value: NVCSI ports A-H, mapped by [0,7]

deserializer node

addr:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 1005

Device Tree

Description: The 7-bit I2C device address.

Customizable: Yes

Optional: No

Value: 0x29

reg_len

Description: The register length, should be set to 16 bits.

Customizable: Yes

Optional: No

Value: 16

dat_len:

Description: The data length, should be set to 8 bits.

Customizable: Yes

Optional: No

Value: 8

des_i2c_port:

Description: The I2C port on the deserializer that the deserializer is physically connected
to. (Non-safety only.)

Customizable: Yes

Optional: Yes

Value: 0 or 1

des_tx_port

Description: The output CSI port on the deserializer. (Non-safety only.)

Customizable: Yes

Optional:Yes

Value: 0

default-reset-all

Description:Flag to set the Reset All register on the MAX96712 deserializer at Initialization.
(Non-safety only.)

Customizable: Yes

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 1006

Device Tree

Optional: Yes

Value: N/A

Data rates:

Properties with the name `{dphy,cphy}_rate_{x2,x4}`.

Description: The data rate for a D-Phy or C-Phy link in x2 or x4 lane conguration in kb/s.
(Non-safety only.)

Customizable: Yes

Optional: Yes

Value: Valid integer data rate in kb/s in [0,UINT32_MAX]

pwr_ctrl node

deserializer-pwr-gpio:

Description:The deserializer power is controlled by GPIO

Customizable: No

Optional:No

Value: N/A

cam-pwr-max20087

Description: The external MAX20087 IC is used to control camera module link power,
accessed over I2C.

Customizable: No

Optional: No

Value: N/A

tca9539 node

i2c-bus:

Description: The system I2C bus number that the TCA9539 IO expander is physically
connected to.

Customizable: Yes

Optional: No

Value: Typically one of {1, 3, 2, 7}

addr:

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 1007

Device Tree

Description: The 7-bit I2C device address.

Customizable: Yes

Optional: No

Value: 0x74

reg_len:

Description: The register length, should be set to 8 bits.

Customizable: No

Optional: No

Value: 8

dat_len:

Description:The data length, should be set to 8 bits.

Customizable: No

Optional:No

Value: 8

max20087 node

i2c-bus:

Description: The system I2C bus number that the MAX20087 POC is physically connected
to.

Customizable: Yes

Optional: No

Value: Typically one of {1, 3, 2, 7}

addr:

Description:The 7-bit I2C device address.

Customizable: Yes

Optional: No

Value: 0x28

reg_len:

Description:The register length, should be set to 8 bits.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 1008

Device Tree

Customizable: No

Optional:No

Value: 8

dat_len:

Description: The data length, should be set to 8 bits.

Customizable: No

Optional: No

Value: 8

links:

Description:Vector of camera module to power link control mappings.

Customizable: Yes

Optional:No

Value:<0, 1, 2, 3>

13.4.2 Linux Properties
Property Description Customizable Optional Value

pwdn-gpios Should contain
the list for
GPIOs to control
power in order of
aggregator and
camera instances,
tuples contain the
GPIO interrupt
number and
triggering mode
ag.

Yes Yes N/A

pwr-items Map power items
to the GPIO item
specied in the
pwdn-gpios list,
starting from 0.
For example, pwr-
item 0 is for the
deserializer, while
pwr-item 1, 2, 3, 4
are for links 0, 1,
2, 3.

Yes Yes N/A

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 1009

Device Tree

Property Description Customizable Optional Value

default-power-on If this ag is
present, while
probing the
device, pwdn-
gpios are powered
on.

Yes Yes N/A

runtime-pwrctrl-
o

If this property
is present, power
control GPIOs
retain the same
status and are
never changed.

Yes Yes N/A

interrupt-parent Should contain
interrupt parent
for GPIO interrupt
(phandle).

Yes Yes <&tegra_main_gpio>

interrupts Should contain
the GPIO interrupt
number and
triggering mode
ag.

Yes Yes <TEGRA194_MAIN_GPIO(P,
5) 2>

pwr_ctrl node

Property Description Customizable Optional Value

power_port The GPIO
expander port
that controls
deserializer power.
Required if the
tca9539 node is
present.

No No 0

13.4.3 TSC Signal Generation
The `tsc_sig_gen@X` node contains the conguration for discrete signals generated by
Tegra for the purpose of temporal synchronization with external camera hardware. The `X`
should denote the base address for the controller.

tsc_sig_gen@c6a0000 {
compatible = "nvidia,tegra234-cdi-tsc"; ranges = <0x0 0x0 0xc6a0000 0x10000>; reg =
 <0x0 0xc6a0000 0x0 0x18>; #address-cells = <1>;
#size-cells = <1>; status = "okay";

generator@380 {
reg = <0x380 0x80>; freq_hz = <30>;
duty_cycle = <25>;
offset_ms = <0>; status = "okay";
};
};

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 1010

Device Tree

Common Properties

Property Description Customizable Optional Value

compatible compatible
contains the
unique string to
identify the cdi-
mgr node.

No No nvidia,tegra234-
cdi-tsc

generator@Y nodes

The`generator@Y` nodes contain the conguration for individual generated signals. The
`Y` should denote the base address for this line.

Property Description Customizable Optional Value

freq_hz Frequency of the
signal, in hertz.

Yes No Hertz as an
unsigned integer
in the range
[0,UINT32_MAX]

duty_cycle Percentage duty
cycle of the signal.

Yes No Unsigned in the
range [0, 100]

oset_ms Oset to shift
the signal, in
milliseconds.

Yes No Milliseconds as an
unsigned integer
in the range [0,
UINT32_MAX]

13.5 NvHost Device Tree
NvHost element has a resource manager deployed in Guest VM and relies on the Device
Tree to fetch the platform conguration.

This document lists down the Device Tree nodes and properties used by the NvHost
element. Properties customizable are marked accordingly for each property used.

13.5.1 Host1x Device Node
Device Tree Node that contains conguration parameters needed for initializing and
providing the functionalities of the NvHost element in the Guest VM.
host1x: host1x@13e00000 {
compatible = "nvidia,tegra234-host1x", "simple-bus"; reg = <0x0 0x13e40000 0x0
 0x00010000>,
<0x0 0x13e10000 0x0 0x00010000>,
<0x0 0x13ef0000 0x0 0x00040000>,
<0x0 0x60000000 0x0 0x04000000>,
<0x0 0x13e00000 0x0 0x00010000>;
reg-names = "guest", "hypervisor", "actmon", "sem-syncpt-shim", "common";
interrupts = <0 448 0x04>,
<0 449 0x04>,
<0 450 0x04>,

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 1011

Device Tree

<0 451 0x04>,
<0 452 0x04>,
<0 453 0x04>,
<0 454 0x04>,
<0 455 0x04>,
<0 263 0x04>;
nvidia,vmid = <1>;

nvidia,host1x-ctx-streamid = <&smmu_niso0 TEGRA_SID_NISO0_HOST1X_CTX0
&smmu_niso1 TEGRA_SID_NISO1_HOST1X_CTX0>;

nvidia,ch-base = <0>;
nvidia,nb-channels = <47>;

nvidia,nb-hw-pts = <1024>;
nvidia,pts-base = <0>;
nvidia,nb-pts = <576>;

nvidia,gpu-syncpt-pool = <0 128>;
nvidia,vi-syncpt-pool = <288 144>;
vmserver-owns-engines = <1>; ivc-queue0 = <&tegra_hv 42>;

iommus = <&smmu_niso1 TEGRA_SID_NISO1_HC>; status = "okay";

host1x_ctx0: niso0_ctx0 {
compatible = "nvidia,tegra186-iommu-context";
iommus = <&smmu_niso0 TEGRA_SID_NISO0_HOST1X_CTX0>; status = "okay";
};

host1x_ctx0n1: niso1_ctx0 {
compatible = "nvidia,tegra186-iommu-context";
iommus = <&smmu_niso1 TEGRA_SID_NISO1_HOST1X_CTX0>; status = "okay";
};

vic@15340000 {
compatible = "nvidia,tegra234-vic";
iommus = <&smmu_niso1 TEGRA_SID_NISO1_VIC>; status = "okay";
};

nvjpg@15380000 {
compatible = "nvidia,tegra234-nvjpg";
iommus = <&smmu_niso1 TEGRA_SID_NISO1_NVJPG>; status = "okay";
};

nvjpg1@15540000 {
compatible = "nvidia,tegra234-nvjpg";
iommus = <&smmu_niso0 TEGRA_SID_NISO0_NVJPG1>; status = "okay";
};

tsec@15500000 {
compatible = "nvidia,tegra234-tsec";
iommus = <&smmu_niso1 TEGRA_SID_NISO1_TSEC>; status = "okay";
};

nvdec@15480000 {
compatible = "nvidia,tegra234-nvdec";
iommus = <&smmu_niso1 TEGRA_SID_NISO1_NVDEC>; status = "okay";
};
nvenc@154c0000 {
compatible = "nvidia,tegra234-nvenc";
iommus = <&smmu_niso0 TEGRA_SID_NISO0_NVENC>; status = "okay";
};

ofa@15a50000 {
compatible = "nvidia,tegra234-ofa";
iommus = <&smmu_niso0 TEGRA_SID_NISO0_OFA>; status = "okay";
};

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 1012

Device Tree

};

Properties

Following are properties used across dierent platform congurations.

Compatibility String "compatible"

Description
Strings specifying the compatibility of the
Host1x Device Node

Customizable No

Type String

Unit NA

Optional No

Resolution NA

MaxValue NA

MinValue NA

Recommended “nvidia,tegra234-host1x-hv”

Virtual Machine Host1x ID "NVIDIA,vmid"

Description
ID corresponding to the Host1x guest page
allocated to the Guest VM.

Customizable No

Type Unsigned integer

Unit NA

Optional No

Resolution 1

MaxValue 8

MinValue 1

Recommended Based on the platform conguration

Register Names "reg-names"

Description

List of Host1x MMIO register page names,
which can be accessed by NvHost from the
Guest VM.

Customizable No

Type List<String>

Unit NA

Optional No

Resolution NA

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 1013

Device Tree

Description

List of Host1x MMIO register page names,
which can be accessed by NvHost from the
Guest VM.

MaxValue NA

MinValue NA

Recommended

<AV+Q conguration>:

"guest", "sem-syncpt-shim";

<AV+L conguration>:

"guest", "hypervisor", "actmon", "sem-syncpt-
shim", "common";

Register Apertures "reg"

Description

List of Host1x MMIO register page
apertures allowed to be accessed by
NvHost from the Guest VM. Type of page
for each aperture is identied by the “reg-
names” entry of the same index.

Customizable No

Type List<Aperture start, Aperture Size>

Unit NA

Optional No

Resolution NA

MaxValue NA

MinValue NA

Recommended Valuescfetched from the Host1x HW IAS

Interrupts "interrupts"

Description
List of Host1x syncpoint interrupt lines
assigned to the Guest VM.

Customizable No

Type List<IRQ number>

Unit NA

Optional No

Resolution NA

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 1014

Device Tree

Description
List of Host1x syncpoint interrupt lines
assigned to the Guest VM.

MaxValue NA

MinValue NA

Recommended

Values fetched from the Host1x HW IAS based
on platform conguration.

Host1x Shared StreamID "nvidia,host1x-ctx-streamid"

Description

FallbackstreamId to access the data
buers in case context pools are not
dened by the platform conguration.

Customizable No

Type <SMMUinstance, StreamId>

Unit NA

Optional No

Resolution NA

MaxValue NA

MinValue NA

Recommended Based on the platform conguration

Host1x Channel Pool Base "nvidia,ch-base"

Description

Base of the Host1x channel pool which can
be accessed from the Guest VM via the
NvHost.

Customizable Yes

Type Unsigned integer

Unit NA

Optional No

Resolution NA

MaxValue 62

MinValue 0

Recommended Basedon the platform conguration

Host1x Channel Pool Count "nvidia,nb-channels"

Description

Sizeof the Host1x channel pool which can
be accessed from the Guest VM via the
NvHost.

Customizable Yes

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 1015

Device Tree

Description

Sizeof the Host1x channel pool which can
be accessed from the Guest VM via the
NvHost.

Type Unsignedinteger

Unit NA

Optional No

Resolution NA

MaxValue 63

MinValue 0

Recommended Basedon the platform conguration

Host1x Syncpoint Total Count "nvidia,nb-hw-pts"

Description
Totalnumber of Host1x HW syncpoints
available in the SoC.

Customizable No

Type Unsignedinteger

Unit NA

Optional No

Resolution NA

MaxValue NA

MinValue NA

Recommended 1024

Host1x Syncpoint Pool Base "nvidia,pts-base"

Description
Baseof the Host1x syncpoints pool, which
can be incremented from the Guest VM.

Customizable Yes

Type Unsignedinteger

Unit NA

Optional No

Resolution NA

MaxValue 1023

MinValue 0

Recommended Basedon platform conguration

Host1x Syncpoint Pool Count "nvidia,nb-pts"

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 1016

Device Tree

Description
Sizeof the Host1x syncpoints pool, which
can be incremented from the Guest VM.

Customizable Yes

Type Unsignedinteger

Unit NA

Optional No

Resolution NA

MaxValue 1024

MinValue 0

Recommended Basedon platform conguration

Host1x Syncpoint Pool for GPU "nviida,gpu-syncpt-pool"

Description

Host1x syncpoint pool, which is write
accessible from the GPU and allocated
exclusively for GPU use cases. The pool is
outside of the generic pool.

Note:Only applicable for the AV+Q Safety
conguration

Customizable Yes

Type <Poolbase, Pool size>

Unit NA

Optional No

Resolution NA

MaxValue NA

MinValue NA

Recommended Based on platform conguration

Host1x Syncpoint Pool for VI "nviida,vi-syncpt-pool"

Description

Host1x syncpoints pool ,which is exclusively
allocated for VI use cases. The pool is within
the generic pool.

Note:Only applicable to AV+Q Safety
conguration

Customizable Yes

Type <Poolbase, Pool size>

Unit NA

Optional No

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 1017

Device Tree

Description

Host1x syncpoints pool ,which is exclusively
allocated for VI use cases. The pool is within
the generic pool.

Note:Only applicable to AV+Q Safety
conguration

Resolution NA

MaxValue NA

MinValue NA

Recommended Based on platform conguration

Engine Ownership Flag "vmserver-owns-engines"

Description

Flag specifying whether the engine ownership
belongs to NvHost Server.

Note:Only applicable to AV+L conguration

Customizable No

Type Unsigned Integer

Unit NA

Optional No

Resolution NA

MaxValue 1

MinValue 0

Recommended 1

IVC Queue Identier "ivc-queue0"

Description
Unique identier of the IVC Queue created
to communicate with the NvHost Server.

Customizable No

Type UnsignedInteger

Unit NA

Optional No

Resolution NA

MaxValue NA

MinValue NA

Recommended Based on the platform conguration

Host1x StreamId Info "iommus"

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 1018

Device Tree

Description

Set of stream Id info, which is assigned for
Host1x to perform DMA. StreamId used
from the Guest VM is derived based on the
VMID.

Customizable No

Type List<SMMU instance, Stream Id>

Unit NA

Optional No

Resolution NA

MaxValue NA

MinValue NA

Recommended Based on platform conguration

Host1x Device Status Flag "status"

Description
Flag specifying whether the Host1x device
is enabled.

Customizable Yes

Type String

Unit NA

Optional No

Resolution NA

MaxValue “disabled”

MinValue “okay”

Recommended “okay”

Host1x Context Node Entry "host1x_ctx"

Description

Device Tree Node specifying the properties
of the Host1x contexts, which are
allocated to the VM.

Customizable Yes

Type Host1xContext Node

Unit NA

Optional No

Resolution NA

MaxValue NA

MinValue NA

Recommended Based on platform conguration

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 1019

Device Tree

VIC Engine Node "vic"

Description

Device Tree Node specifying the properties
of the VIC engine needed for NvHost
Driver.

Customizable Yes

Type Host1xEngine Node

Unit NA

Optional No

Resolution NA

MaxValue NA

MinValue NA

Recommended compatible = "nvidia,tegra234-vic";

iommus= <&smmu_niso1
TEGRA_SID_NISO1_VIC>; status = <Based on
platform conguration>;

NVJPG Engine Node "nvjpg"

Description

Device Tree Node specifying the properties
of the rst instance of NVJPG engine
needed for NvHost Driver.

Customizable Yes

Type Host1xEngine Node

Unit NA

Optional No

Resolution NA

MaxValue NA

MinValue NA

Recommended compatible = "nvidia,tegra234-nvjpg";

iommus= <&smmu_niso1
TEGRA_SID_NISO1_NVJPG>; status = <Based on
platform conguration>;

NVJPG1 Engine Node "nvjpg1"

Description

Device Tree Node specifying the properties
of the second instance of NVJPG engine
needed for NvHost Driver.

Customizable Yes

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 1020

Device Tree

Description

Device Tree Node specifying the properties
of the second instance of NVJPG engine
needed for NvHost Driver.

Type Host1xEngine Node

Unit NA

Optional No

Resolution NA

MaxValue NA

MinValue NA

Recommended compatible = "nvidia,tegra234-nvjpg";

iommus= <&smmu_niso0
TEGRA_SID_NISO0_NVJPG1>; status = <Based on
platform conguration>;

NVDEC Engine Node "nvdec"

Description

Device Tree Node specifying the properties
of the NVDEC engine needed for NvHost
Driver.

Customizable Yes

Type Host1xEngine Node

Unit NA

Optional No

Resolution NA

MaxValue NA

MinValue NA

Recommended compatible = "nvidia,tegra234-nvdec";

iommus= <&smmu_niso1
TEGRA_SID_NISO1_NVDEC>; status = <Based on
platform conguration>;

NVENC Engine Node "nvenc"

Description

Device Tree Node specifying the properties
of the NVENC engine needed for NvHost
Driver.

Customizable Yes

Type Host1xEngine Node

Unit NA

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 1021

Device Tree

Description

Device Tree Node specifying the properties
of the NVENC engine needed for NvHost
Driver.

Optional No

Resolution NA

MaxValue NA

MinValue NA

Recommended compatible = "nvidia,tegra234-nvenc";

iommus= <&smmu_niso0
TEGRA_SID_NISO0_NVENC>; status = <Based on
platform conguration>;

OFA Engine Node "ofa"

Description

DeviceTree Node specifying the properties
of the OFA engine needed for NvHost
Driver.

Customizable Yes

Type Host1xEngine Node

Unit NA

Optional No

Resolution NA

MaxValue NA

MinValue NA

Recommended compatible = "nvidia,tegra234-ofa";

iommus= <&smmu_niso0
TEGRA_SID_NISO0_OFA>; status = <Based on
platform conguration>;

TSEC Engine Node "tsec"

Description

Device Tree Node specifying the properties of
the TSEC engine needed for NvHost Driver.

Note:Only applicable for AV+L conguration

Customizable Yes

Type Host1xEngine Node

Unit NA

Optional No

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 1022

Device Tree

Description

Device Tree Node specifying the properties of
the TSEC engine needed for NvHost Driver.

Note:Only applicable for AV+L conguration

Resolution NA

MaxValue NA

MinValue NA

Recommended compatible = "nvidia,tegra234-tsec";

iommus= <&smmu_niso1
TEGRA_SID_NISO1_TSEC>; status = <Based on
platform conguration>;

13.5.2 Host1x Context Node
Device Tree Node node contains properties to congure Host1x contexts in a Guest VM.
host1x_ctx {
compatible = "nvidia,tegra186-iommu-context";
iommus = <&smmu_niso0 TEGRA_SID_NISO0_HOST1X_CTX0>; status = "okay";
};

Properties

This section lists the properties that are used across dierent platform congurations.

Compatibility String "compatible"

Description
String specifying the compatibility of the
Host1x Context Entry

Customizable No

Type String

Unit NA

Optional No

Resolution NA

MaxValue NA

MinValue NA

Recommended “nvidia,tegra186-iommu-context”

Context StreamId "iommus"

Description
StreamId associated with the Host1x
context.

Customizable No

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 1023

Device Tree

Description
StreamId associated with the Host1x
context.

Type <SMMUinstance, Stream Id>

Unit NA

Optional No

Resolution NA

MaxValue NA

MinValue NA

Recommended Based on platform conguration

Host1x Context Status Flag "status"

Description
Flag specifying whether a specic Host1x
context is enabled.

Customizable Yes

Type String

Unit NA

Optional No

Resolution NA

MaxValue “disabled”

MinValue “okay”

Recommended “okay”

13.5.3 Host1x Engine Node
Device Tree Node node, which contains properties to congure a Host1x client engine
allocated to the Guest VM.
<engine-name> {
compatible = "nvidia,tegra234-tsec";
iommus = <&smmu_niso1 TEGRA_SID_NISO1_TSEC>; status = "okay";
};

Properties

This section lists the properties used across dierent platform congurations.

Compatibility String "compatible"

Description
String specifying the compatibility of the
Host1x Engine Entry

Customizable No

Type String

Unit N/A

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 1024

Device Tree

Description
String specifying the compatibility of the
Host1x Engine Entry

Optional No

Resolution N/A

MaxValue N/A

MinValue N/A

Recommended “nvidia,tegra234-<engine_name>”

Engine StreamId "iommus"

Description
StreamId associated with the Host1x
engine per HW specication.

Customizable No

Type <SMMUinstance, Stream Id>

Unit N/A

Optional No

Resolution N/A

MaxValue N/A

MinValue N/A

Recommended Based on the platform conguration

Host1x Engine Status Flag "status"

Description
Flag specifying whether a specic Host1x
engine is enabled.

Customizable Yes

Type String

Unit N/A

Optional No

Resolution N/A

MaxValue “disabled”

MinValue “okay”

Recommended “okay”

13.5.4 NvHost FSW Attributes Node
Device Tree Node node contains properties to congure the NvHost Fast Syncpoint Wait
functionality.
nvhost_fsw_attributes {
compatible = "nvidia,nvhost_fsw_attributes"; nvhost_type_id = <1>;
status = "okay";

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 1025

Device Tree

};

Properties

This section lists the properties that are used across dierent platform congurations.

Compatibility String "compatible"

Description
String specifying the compatibility of the
NvHost FSW Attributes Entry

Customizable No

Type String

Unit NA

Optional No

Resolution NA

MaxValue NA

MinValue NA

Recommended “nvidia,nvhost_fsw_attributes”

NvHost FSW Type ID "nvhost_type_id"

Description

QNX process type Id statically assigned to the
NvHost resource manager.

Note:Applicable only to AV+Q conguration

Customizable No

Type Unsigned integer

Unit NA

Optional No

Resolution NA

MaxValue NA

MinValue NA

Recommended 1

NvHost FSW Attributes Status Flag "status"

Description
Flag specifying whether the NvHost FSW
Attributes node is enabled.

Customizable Yes

Type String

Unit NA

Optional No

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 1026

Device Tree

Description
Flag specifying whether the NvHost FSW
Attributes node is enabled.

Resolution NA

MaxValue “disabled”

MinValue “okay”

Recommended “okay”

13.6 DLA Device Tree
The nvdla0 and nvdla1 nodes contain the conguration parameters needed for initializing
the DLA driver. The following documentation shall apply for both the Linux and the QNX
platforms.

Sample Device Tree

This section provides the sample entries for the nvdla0 and nvdla1 nodes.

nvdla0: nvdla0@15880000 {
 compatible = "nvidia,tegra234-nvdla";
 power-domains = <&bpmp TEGRA234_POWER_DOMAIN_DLAA>;
 reg = <0x0 0x15880000 0x0 0x00040000>;
 interrupts = <0 236 0x04>;

 resets = <&bpmp_resets TEGRA234_RESET_DLA0>;
 clocks = <&bpmp_clks TEGRA234_CLK_DLA0_CORE>,
 <&bpmp_clks TEGRA234_CLK_DLA0_FALCON>;
 clock-names = "nvdla0", "nvdla0_flcn";

 iommus = <&smmu_niso1 TEGRA_SID_NISO1_NVDLA0>;
 dma-coherent;
 status = "okay";
};

nvdla1: nvdla1@158c0000 {
 compatible = "nvidia,tegra234-nvdla";
 power-domains = <&bpmp TEGRA234_POWER_DOMAIN_DLAB>;
 reg = <0x0 0x158c0000 0x0 0x00040000>;
 interrupts = <0 237 0x04>;

 resets = <&bpmp_resets TEGRA234_RESET_DLA1>;
 clocks = <&bpmp_clks TEGRA234_CLK_DLA1_CORE>,
 <&bpmp_clks TEGRA234_CLK_DLA1_FALCON>;
 clock-names = "nvdla1", "nvdla1_flcn";

 iommus = <&smmu_niso0 TEGRA_SID_NISO0_NVDLA1>;
 dma-coherent;
 status = "okay";
};

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 1027

Device Tree

DLA Device Tree Properties

Property Description Customizable Optional Value

compatible A unique string to
identify the DLA
DT node

No No nvidia,tegra234-
nvdla

power-domains A phandle and PM
domain specier
as dened by
bindings of the
power controller
specied by
phandle

No No TEGRA234_POWER_DOMAIN_DLA[A|
B]

reg Physical base
address and
length of the
controller’s
registers

No No Must contain
two entries: one
for the physical
address and other
for the length.

interrupts Describes the IRQ
number and IRQ
type

No No Must contain an
entry for each
interrupt.

resets List of phandle
and reset specier
pairs, one pair for
each reset signal
that aects the
device, or that the
device manages

No No TEGRA234_RESET_DLA[0|
1]

clocks the type of clocks
ids that are
supported

No No TEGRA234_CLK_DLA[0|
1]_CORE and
TEGRA234_CLK_DLA[0|
1]_FALCON

clock-names List of clock input
name strings
sorted in the
same order as the
clocks property.
Consumer?s
drivers will use
clock-names to
match clock input
names with clocks
speciers

No Yes nvdla[0|1] and
nvdla[0|1]_cn

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 1028

Device Tree

Property Description Customizable Optional Value

iommus A list of phandle
and IOMMU
specier pairs
that describe the
IOMMU master
interfaces of
the device. One
entry in the list
describes one
master interface
of the device

No No TEGRA_SID_NISO1_NVDLA0,
TEGRA_SID_NISO0_NVDLA1

dma-coherent Present if DMA
operations are
coherent

No No N/A

status status of NVDLA
nodes

No Yes okay or disabled

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 1029

Chapter 15. NVIDIA DRIVE OS 6.0 Third-
Party Software Licenses

Introduction

NVIDIA DRIVE™ OS 6.0 software contains Third-Party components that are provided for
internal, non-commercial use only. Developers are exclusively responsible for obtaining any
and all authorizations and licenses required for development and for distribution and/or
incorporation of the applicable Third-Party components.

Note:

The following information may be revised prior to production.

Follow the instructions below to locate the Open Source Software (OSS) Source utilized by
DRIVE OS.

File name:

nv-driveos-linux-oss-src-6.0.X.0-<GCID>_6.0.X.0-<GCID>_amd64.deb

nv-driveos-foundation-oss-src-6.0.X.0-<GCID>_6.0.X.0-<GCID>_amd64.deb

Location:

‣ For Docker Containers:

/drive/drive-linux_src <SDK/PDK>

/drive/drive-foundation_src <PDK>

Note: In NVIDIA Docker installations, NV_WORKSPACE=/drive by default.

‣ For SDK Manager:

<install_path>/DRIVE_OS_6.0.x_SDK_Linux_DRIVE_AGX_ORIN_DEVKITS/DRIVEOS/
drive-linux_src

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 1030

NVIDIA DRIVE OS 6.0 Third-Party Software Licenses

<install_path>/DRIVE_OS_6.0.x_SDK_Linux_DRIVE_AGX_ORIN_DEVKITS/DRIVEOS/
drive-foundation_src

Where install_path is the path chosen in Step 2 for "Target HW image folder".

‣ For Debian Packages:

$NV_WORKSPACE/drive-linux_src <SDK/PDK>

$NV_WORKSPACE/drive-foundation_src <PDK>

NVIDIA Third-Party Free Open Source Software (FOSS) Licenses

This section lists the Free Open Source Software used in the development of the platform.

NVIDIA DRIVE OS 6.0 Free Open Source Software (FOSS) Licenses report for Linux
Standard release

DRIVE OS Free Open Source Software (FOSS) Supplemental License Catalog

NVIDIA Third-Party Proprietary Software Licenses

This section lists the Third-Party components used in the development of the platform.

Note: The following Third-Party Companies require further licensing for development and/
or production.

Company Component Type

Vector Informatik GmbH AutoSAR Classic Firmware

Inneon Technologies AutoSAR MCAL MCAL / Driver

ARM Compiler Compiler Tools

Note: The following Third-Party Company requires no further licensing.

Company Component Type

Marvell Technology Group Automotive Ethernet Switch
88Q5050

Driver

Marvel Technology Group License Text
Marvell International Ltd.
/*
* LICENSE:
* (C)Copyright 2010-2011 Marvell.
*
* All Rights Reserved
*

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 1031

../../../NVIDIA_DRIVE_OS_6.0_Linux_ThirdParty_OpenSourceSoftware_Licenses.xlsx
../../../NVIDIA_DRIVE_OS_6.0_Linux_ThirdParty_OpenSourceSoftware_Licenses.xlsx
../../../DRIVE_OS_Free_Open_Source_Supplemental_License_Catalog.pdf
https://www.vector.com/
https://www.infineon.com/
http://www.arm.com
https://www.marvell.com/

NVIDIA DRIVE OS 6.0 Third-Party Software Licenses

* THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MARVELL
* The copyright notice above does not evidence any
* actual or intended publication of such source code.
*
* This Module contains Proprietary Information of Marvell
* and should be treated as Confidential.
*
* The information in this file is provided for the exclusive use of
* the licensees of Marvell. Such users have the right to use, modify,
* and incorporate this code into products for purposes authorized by
* the license agreement provided they include this notice and the
* associated copyright notice with any such product.
*
* The information in this file is provided "AS IS" without warranty.
*
* Contents: functions as called from Linux kernel (entry points)
*
* Path : OAK-Linux::OAK Switch Board - Linux Driver::Class Model::oak
* Author: afischer
* Date :2020-05-06 - 11:03
* */

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 1032

Chapter 16. Legal Information

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
”MATERIALS”) ARE BEING PROVIDED ”AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESS,
IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND ALL
EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING
ANY IMPLIED WARRANTY OR CONDITION OF TITLE, MERCHANTABILITY, SATISFACTORY
QUALITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT, ARE HEREBY
EXCLUDED TO THE MAXIMUM EXTENT PERMITTED BY LAW.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation
assumes no responsibility for the consequences of use of such information or for any
infringement of patents or other rights of third parties that may result from its use. No
license is granted by implication or otherwise under any patent or patent rights of NVIDIA
Corporation. Specications mentioned in this publication are subject to change without
notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support
devices or systems without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, CUDA, Jetson, NVIDIA DRIVE, Tegra, and TensorRT are trademarks
or registered trademarks of NVIDIA Corporation in the United States and other countries.
Other company and product names may be trademarks of the respective companies with
which they are associated.

HDMI, the HDMI logo, and High-Denition Multimedia Interface are trademarks or
registered trademarks of HDMI Licensing LLC.

ARM, AMBA, and ARM Powered are registered trademarks of ARM Limited. Cortex, MPCore
and Mali are trademarks of ARM Limited. ”ARM” is used to represent ARM Holdings plc; its
operating company ARM Limited; and the regional subsidiaries ARM Inc.; ARM KK; ARM
Korea Limited.; ARM Taiwan Limited; ARM France SAS; ARM Consulting (Shanghai) Co. Ltd.;
ARM Germany GmbH; ARM Embedded Technologies Pvt. Ltd.; ARM Norway, AS and ARM
Sweden AB.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 1033

Legal Information

BLACKBERRY, EMBLEM Design, QNX, AVIAGE, MOMENTICS, NEUTRINO and QNX CAR are
the trademarks or registered trademarks of BlackBerry Limited, used under license, and
the exclusive rights to such trademarks are expressly reserved.

Copyright

© 2023 by NVIDIA Corporation and Aliates. All rights reserved.

NVIDIA DRIVE OS Linux SDK Developer Guide PR-10720-6.0 _v6.0.7 | 1034

	Overview
	1.1 Platform Software Stacks
	1.1.1 Foundation Services Stack
	1.1.2 NvMedia Architecture
	1.1.2.1 NvMedia Stack
	1.1.2.2 NvMedia Components
	1.1.2.3 NvMedia APIs and Thread Safety

	Installation
	2.1 Install DRIVE OS Linux Docker Containers from NGC
	2.1.1 Set Up Docker and NVIDIA GPU Cloud Access
	2.1.1.1 NVIDIA GPU Cloud Access
	2.1.1.2 Sign in to NVIDIA GPU Cloud

	2.1.2 Set Up DRIVE OS Linux with NVIDIA GPU Cloud (NGC)
	2.1.2.1 Images Available in This Release
	2.1.2.2 Pull Docker Images from NGC
	2.1.2.2.1 Instructions for Running DRIVE OS Docker

	2.1.2.3 Flash DRIVE OS Linux
	2.1.2.3.1 Flash Using the DRIVE OS Docker Container
	2.1.2.3.1.1 Instructions for Flashing

	2.2 Set Up DRIVE OS with Debian Packages
	2.2.1 Prerequisites
	2.2.2 Downloading from NVONLINE

	2.3 Install DRIVE OS Linux Debian Packages
	2.3.1 Uninstall Steps for Local Repo Debian Packages
	2.3.2 Installation Steps for Local Repo Debian Packages
	2.3.2.1 Installation Steps for the Extra Packages

	2.3.3 Flash DRIVE OS Linux
	2.3.3.1 Instructions for BIND PCT
	2.3.3.2 Instructions for Flashing

	2.4 Install DRIVE OS Linux Docker Containers from NGC
	2.4.1 Set Up Docker and NVIDIA GPU Cloud Access
	2.4.1.1 NVIDIA GPU Cloud Access
	2.4.1.2 Sign in to NVIDIA GPU Cloud

	2.4.2 Set Up DRIVE OS Linux with NVIDIA GPU Cloud (NGC)
	2.4.2.1 Images Available in This Release
	2.4.2.2 Pull Docker Images from NGC
	2.4.2.2.1 Instructions for Running DRIVE OS Docker

	2.4.2.3 Flash DRIVE OS Linux
	2.4.2.3.1 Flash Using the DRIVE OS Docker Container
	2.4.2.3.1.1 Instructions for Flashing

	2.5 Download and Run SDK Manager
	2.5.1 Download via NVIDIA DRIVE Developer Program
	2.5.2 Install the SDK Manager Package
	2.5.3 Log In to SDK Manager

	2.6 Finalize DRIVE AGX Orin System Setup
	2.7 Getting Started with DRIVE OS 6.x Linux Development
	2.7.1 Target SSH Access from the Linux Host

	2.8 Build and Run Sample Applications for DRIVE OS 6.x Linux
	2.8.1 Graphics Applications
	2.8.2 CUDA
	2.8.2.1 How to Build the CUDA Samples for the Linux Target
	2.8.2.2 How to Run the CUDA Samples

	2.8.3 TensorRT
	2.8.3.1 How to Build the TensorRT Samples
	2.8.3.2 How to Run the TensorRT Samples on the Target

	2.9 DRIVE Platform Supported Boards

	Setup and Configuration
	3.1 NVIDIA DRIVE AGX Board Setup
	3.2 Placing the Board In/Out of Recovery Mode
	3.3 Getting Started with DRIVE OS Linux 6.0 Development
	3.3.1 Target SSH Access from the Linux Host

	3.4 Host/Target Setup and Configuration
	3.4.1 DRIVE OS Linux Configuration on the Target
	3.4.2 DRIVE OS Linux User Management
	3.4.2.1 Steps to Change the Username and Password
	3.4.2.2 Adding a Non-Admin User
	3.4.2.2.1 Example

	3.4.2.3 Adding an Admin User
	3.4.2.4 Common Groups Used in DRIVE OS Linux Filesystems
	3.4.2.4.1 Removing a User
	3.4.2.4.2 Setting Password as an Admin User
	3.4.2.4.3 Updating a Password as a Non-Admin User
	3.4.2.4.4 Disabling a User Account

	3.4.2.5 Disabling the Secure Login Feature

	3.4.3 DRIVE OS Linux SSH Server
	3.4.3.1 Install/Update SSH Server
	3.4.3.2 Setting Up SSH Server Service
	3.4.3.3 SSH Server Configuration File
	3.4.3.4 Switching Options in the SSHD Configuration File
	3.4.3.5 SSH Key-Based Authentication from Clients to Server
	3.4.3.5.1 Create a new key-pair at the client side
	3.4.3.5.2 Set up the server side to register key
	3.4.3.5.3 Use the new key at the client side to connect to the server

	3.4.4 Enabling VNC Remote Access
	3.4.5 Setting Up Networking on the Host and Target
	3.4.5.1 Configuring the Network Interface
	3.4.5.1.1 Connecting the Target to the Host Using the Network Interface
	3.4.5.1.1.1 To use onboard HMTD connector to connect the board and host on the private LAN

	3.4.5.1.2 Configuring the Private LAN to the Target Network
	3.4.5.1.2.1 To configure the private LAN to the target

	3.4.5.2 Configuring the DHCP and NFS Server on the Host
	3.4.5.2.1 To set the DHCP server
	3.4.5.2.2 To set the NFS server
	3.4.5.2.3 To enable Internet access from the target

	3.4.5.3 Configuring Static IP to the Device

	3.5 Camera Setup and Configuration
	3.5.1 Camera Interfaces
	3.5.2 Mapping Connectors
	3.5.3 Connecting the Cameras
	3.5.4 Setting up Cameras on the P3898 Platform

	3.6 Supported Sensors
	3.7 MCU Setup and Usage
	3.7.1 Software Setup on the Linux Host
	3.7.2 Using the MCU Console
	3.7.3 SoC to Microcontroller Communications

	3.8 Networking
	3.8.1 Network Configuration
	3.8.2 Static IP Assignment
	3.8.3 P3710 Networking
	3.8.4 P3663 Networking
	3.8.5 3898 Networking
	3.8.6 VLAN Configuration
	3.8.7 Time Synchronization
	3.8.7.1 Orin Time Sync

	3.8.8 TSN API
	3.8.9 FRP (Flexible Receive Parser) Validation
	3.8.10 Marvell Switch Firmware Management
	3.8.11 PCIe Ethernet
	3.8.12 Marvel 88Q4364 PHY Firmware Update
	3.8.13 MACsec Overview
	3.8.14 Layer-2 Bridge in Orin
	3.8.15 TSN API
	3.8.15.1 IOCTL Interfaces
	3.8.15.2 Sample Application

	Flashing
	4.1 Flashing Basics
	4.1.1 Flashing AURIX from NVIDIA Orin
	4.1.2 Bind Steps for NVIDIA Orin System on a Chip (SOC)
	4.1.3 Flash Steps for NVIDIA Orin System on Chip (SoC)
	4.1.4 Flashing with Docker
	4.1.5 Flashing AURIX
	4.1.5.1 Flashing AURIX from Windows Host with Infineon Memtool
	4.1.5.2 Flashing AFW from Orin Using Force Update

	4.2 Flashing Customization
	4.2.1 Flashing Customization
	4.2.2 Bind Steps for NVIDIA Orin System on a Chip (SOC)
	4.2.3 Bootburn Usage
	4.2.3.1 Bootburn Usage
	4.2.3.1.1 Example Board Configuration File

	4.2.3.2 Kernel Parameter Combinations
	4.2.3.2.1 Passing Additional Kernel Parameters

	4.2.3.3 RAM Spoofing for NDAS Use Case
	4.2.3.4 Example of Successful Flash
	4.2.3.5 Example of Unsuccessful Flash
	4.2.3.6 Decoding Errors

	4.2.4 Updating Customer Data into BCT
	4.2.4.1 Command Line Option
	4.2.4.1.1 Usage

	4.2.4.2 Customer Data Schema File Format
	4.2.4.3 Definitions
	4.2.4.4 Format of the Data Value File
	4.2.4.4.1 Description
	4.2.4.4.2 Example customer data file
	4.2.4.4.3 Example schema file

	4.2.5 Generating Flashing Binaries Offline
	4.2.5.1 Processed Binaries Directory Structure
	4.2.5.2 Generating Binaries for Flashing Asymmetric Boot Chains
	4.2.5.2.1 Prerequisites
	4.2.5.2.2 Create Fskp Firmware
	4.2.5.2.3 Bind
	4.2.5.2.4 How to Create and Merge Asymmetric Boot Images

	4.2.5.3 Output

	4.2.6 Flashing Preprocessed Binaries
	4.2.6.1 Usage
	4.2.6.2 Directory Structure of Preprocessed Binaries
	4.2.6.2.1 To flash the prebuilt binaries

	4.2.6.3 Flashing the Prebuilt Binaries
	4.2.6.4 Flashing SKUInfo
	4.2.6.4.1 To flash SKUInfo and the prebuilt binaries

	4.2.6.5 Flashing Asymmetric Boot Chain Images
	4.2.6.6 Flashing SKUInfo and Other Customer Data
	4.2.6.7 Flashing Flow

	Embedded Software Components
	5.1 Graphics Programming
	5.1.1 OpenGL ES Programming Tips
	5.1.1.1 Programming Efficiently
	5.1.1.1.1 State
	5.1.1.1.2 Geometry
	5.1.1.1.3 Shader Programs
	5.1.1.1.4 Textures
	5.1.1.1.5 Miscellaneous
	5.1.1.1.6 Optimizing OpenGL ES Applications

	5.1.1.2 Avoiding Memory Fragmentation
	5.1.1.2.1 Video Memory Overview
	5.1.1.2.2 Allocating and Freeing Video Memory
	5.1.1.2.2.1 Allocating buffers
	5.1.1.2.2.2 Freeing buffers
	5.1.1.2.2.3 Updating a Subregion of a Buffer
	5.1.1.2.2.4 Using a Buffer Subregion

	5.1.1.2.3 Best Practices for Video Memory Management
	5.1.1.2.3.1 1. Allocate large buffers early
	5.1.1.2.3.2 2. Combine many small allocations into a smaller number of larger allocations
	5.1.1.2.3.3 3. Reduce the variation in size of allocated buffers ideally to a single size
	5.1.1.2.3.4 4. Reuse, rather than free and reallocate, buffers whenever possible
	5.1.1.2.3.5 5. Minimize dynamic allocation
	5.1.1.2.3.6 6. Try to group dynamic allocations

	5.1.1.3 Graphics Driver CPU Usage

	5.1.2 EGLStream
	5.1.2.1 EGLStream Producer
	5.1.2.2 EGLStream Consumer
	5.1.2.3 EGLStream Operation Modes
	5.1.2.3.1 Mailbox Mode
	5.1.2.3.2 FIFO Mode

	5.1.2.4 EGLStream Pipeline
	5.1.2.4.1 Building a Simple EGLStream Pipeline
	5.1.2.4.2 Destroying the EGLStream Pipeline
	5.1.2.4.3 EGLStream State

	5.1.2.5 Building a Cross-Process EGLStream Pipeline
	5.1.2.5.1 Cross-process EGLStream example
	5.1.2.5.1.1 Consumer-side steps:
	5.1.2.5.1.2 Producer-side steps:
	5.1.2.5.1.3 Run the cross-process example

	5.1.2.6 Building a Cross-Partition EGLStream Pipeline
	5.1.2.6.1 Cross-partition EGLStream example
	5.1.2.6.1.1 Consumer-side steps:
	5.1.2.6.1.2 Producer-side steps:
	5.1.2.6.1.3 Run the cross-partition sample

	5.1.3 Binary Shader Program Management
	5.1.3.1 Application Management of Binary Programs
	5.1.3.1.1 Automatic Shader Cache
	5.1.3.1.2 To use a read-only cache

	5.1.3.2 Comparison and Combination

	5.1.4 GLSLC Shader Program Compiler
	5.1.4.1 Compiled Shader Program Characteristics
	5.1.4.2 Libraries Loaded On-Demand

	5.1.5 Tegra GPU Scheduling Improvements
	5.1.5.1 Setting the Timeslice
	5.1.5.2 Setting the Preemption Type
	5.1.5.3 Runlist Interleave Frequency
	5.1.5.4 Setting Parameters
	5.1.5.5 Setting Parameters on Behalf of Other Applications
	5.1.5.6 Building GPU Scheduling Sample Applications
	5.1.5.7 Running the GPU Scheduling Sample Application

	5.1.6 Disabling GPU Debugger and Profiler for Security
	5.1.7 Building and Running Samples
	5.1.7.1 Building the OpenGL ES 2.0 Samples
	5.1.7.1.1 To Build the Samples

	5.1.7.2 Using NV_WINSYS when Building Graphics Samples
	5.1.7.2.1 To switch to a different window system

	5.1.7.3 Copying the OpenGL ES 2.0 Samples to the Target FS
	5.1.7.4 Running the OpenGL ES 2.0 Samples
	5.1.7.4.1 Resolution Selection
	5.1.7.4.2 Layer Selection
	5.1.7.4.3 Antialiasing Specification
	5.1.7.4.4 Program Binary Selection
	5.1.7.4.5 Display Selection

	5.1.7.5 Running the Vulkan Samples
	5.1.7.6 Vulkan SC Samples
	5.1.7.6.1 Building the Vulkan SC Samples
	5.1.7.6.2 Running the Vulkan SC Samples

	5.2 EGL Interoperability and EGLStream
	5.3 Window Systems
	5.3.1 Wayland Window System
	5.3.1.1 EGLOutput/EGLDevice Specifications
	5.3.1.2 Runtime Configuration
	5.3.1.3 libdrm Support
	5.3.1.4 DRM backend
	5.3.1.4.1 Supported renderers
	5.3.1.4.2 Supported Output methods

	5.3.1.5 Weston Common Options
	5.3.1.6 Weston Backend Options
	5.3.1.6.1 drm-backend.so options

	5.3.1.7 Weston Configuration File Location
	5.3.1.8 Weston Display Configuration
	5.3.1.9 Prerequisites to Starting Weston
	5.3.1.9.1 Setting the $XDG_RUNTIME_DIR Directory
	5.3.1.9.2 To set the $XDG_RUNTIME_DIR directory manually
	5.3.1.9.3 To set the $XDG_RUNTIME_DIR directory using your shell profile

	5.3.1.10 Starting Weston
	5.3.1.10.1 To start Weston with root privileges
	5.3.1.10.2 To start Weston on desktop-shell
	5.3.1.10.3 To start Weston with ivi-shell and hmi-controller
	5.3.1.10.4 To start Weston with ivi-shell and ivi-controller
	5.3.1.10.5 To start Weston with ivi-shell, ivi-controller and ivi-input-controller.so
	5.3.1.10.6 To start Weston without root privileges

	5.3.1.11 Running Weston Samples
	5.3.1.11.1 To start Weston-simple-egl with ivi-shell and hmi-controller
	5.3.1.11.2 To start Weston-simple-egl with ivi-shell and ivi-controller

	5.3.1.12 Compositing Mode in Weston
	5.3.1.12.1 Display Hardware Compositing in Weston

	5.3.1.13 weston-debug
	5.3.1.14 Weston dma-buf Support
	5.3.1.14.1 Buffer Allocation
	5.3.1.14.2 Buffer Read/Write from CPU
	5.3.1.14.3 Wayland Protocol to Post dma-buf Buffers to Weston
	5.3.1.14.4 GL Renderer in Weston

	5.3.1.15 Gnome-Wayland Desktop Shell Support

	5.3.2 EGLDevice
	5.3.2.1 EGLdevice Driver Loading Instructions
	5.3.2.2 Extensions
	5.3.2.3 Runtime Configuration
	5.3.2.3.1 Conditions Requiring a Stream Surface

	5.3.2.4 Implementation
	5.3.2.5 Rendering to EGLDevice
	5.3.2.6 Creating a Stream Surface
	5.3.2.6.1 To render to an EGLDevice through stream
	5.3.2.6.2 To use an EGLStream in cross-process mode

	5.3.2.7 Cross-Process and Cross-Partition EGLStream Applications
	5.3.2.7.1 To use the applications

	5.3.2.8 Connecting a Surface to a Screen
	5.3.2.9 Setting Up the Display with OpenWFD and EGL Device
	5.3.2.10 Board-to-Display Connectors

	5.3.3 X11 Window System
	5.3.3.1 Manually Starting X Server
	5.3.3.1.1 To start the X server
	5.3.3.1.2 To kill the X server

	5.3.3.2 Runtime Configuration
	5.3.3.3 Using xrandr for Runtime Configuration
	5.3.3.4 Querying Supported Monitors and Screen Resolutions
	5.3.3.4.1 To query attached displays and detect available modes

	5.3.3.5 Obtaining Additional Help
	5.3.3.5.1 To get further help and view all available options

	5.3.3.6 Modifying the Static Configuration (Optional)
	5.3.3.7 Using nvidia-xconfig to Configure xorg.conf
	5.3.3.7.1 Getting Help on nvidia-xconfig
	5.3.3.7.1.1 To get basic help for nvidia-xconfig
	5.3.3.7.1.2 To get options for modifying xorg.conf

	5.3.3.7.2 nvidia-xconfig Usage Examples
	5.3.3.7.3 Specifying a Custom EDID for the Monitor
	5.3.3.7.3.1 To specify a custom EDID for the monitor

	5.3.3.7.4 Setting Color Bit-Depth
	5.3.3.7.4.1 To start X11 with a particular color bit-depth

	5.3.3.7.5 Specifying Modes
	5.3.3.7.5.1 To add a mode to the mode list

	5.3.3.7.6 Enabling Debug Mode
	5.3.3.7.6.1 To enable debugging
	5.3.3.7.6.2 To disable debugging

	5.3.3.7.7 Multi-Display X Server Layout
	5.3.3.7.7.1 Enabling the One X Screen Layout
	5.3.3.7.7.2 To enable one X Screen (default for span)
	5.3.3.7.7.3 To enable screen mirroring
	5.3.3.7.7.4 To enable screen spanning

	5.3.3.8 Modifying xorg.conf
	5.3.3.8.1 Enabling Screen Saver Features
	5.3.3.8.1.1 To re-enable any of these screen saver related features

	5.3.3.8.2 Enabling EDID Polling and Native Resolution
	5.3.3.8.3 Enabling Blending and Video Overlays
	5.3.3.8.3.1 To set these overlay attributes
	5.3.3.8.3.2 To query the current values
	5.3.3.8.3.3 To modify these properties

	5.4 MCU Software Modules
	5.4.1 High-Level Architecture
	5.4.2 Platform (Board) Power State Management
	5.4.3 NVIDIA Orin Power Management
	5.4.4 NVIDIA Orin Voltage Monitoring via VRS12 (VMON)
	5.4.5 NVIDIA Orin Temperature Monitoring
	5.4.6 NVIDIA Orin Boot Chain Configuration Support
	5.4.7 NVIDIA Orin IST Manager
	5.4.8 Failover Handler on MCU
	5.4.9 Fan Control and Monitoring
	5.4.10 Common Interface
	5.4.11 MCU Communication Coordinator Daemon
	5.4.12 MCU Communication Coordinator for IST Client

	5.5 NvDisplay
	5.5.1 Components
	5.5.2 OpenWFD
	5.5.2.1 Supported OpenWFD APIs
	5.5.2.2 Supported OpenWFD Extensions
	5.5.2.3 OpenWFD Usage Guidelines

	5.5.3 Display Serializer
	5.5.4 Head to Window Assignment
	5.5.5 Restrictions
	5.5.6 Display State Manager
	5.5.7 Enabling HDMI

	5.6 NvStreams
	5.6.1 Comparison with EGL
	5.6.2 NvStreams Libraries
	5.6.3 Buffer Allocation
	5.6.3.1 Buffer Allocation
	5.6.3.2 Memory Buffer Basics
	5.6.3.2.1 NvSciBuf Module
	5.6.3.2.1.1 NvSciBufModule

	5.6.3.2.2 Attribute Lists

	5.6.3.3 Multi Datatype Attribute Lists
	5.6.3.3.1 Limitations

	5.6.3.4 Reconciliation
	5.6.3.4.1 NvSciBufAttrLists
	5.6.3.4.2 NvSciBuf Reconciliation
	5.6.3.4.3 Multi Datatype Attribute Lists Reconciliation

	5.6.3.5 Buffer Management
	5.6.3.5.1 Objects
	5.6.3.5.1.1 NvSciBuf Object

	5.6.3.6 VidMem Buffers
	5.6.3.6.1 Vidmem Allocation

	5.6.3.7 Inter-Application
	5.6.3.7.1 NvSciIpc Init
	5.6.3.7.2 NvSciBufObj Permissions
	5.6.3.7.3 Notations
	5.6.3.7.4 Computation of Object Export Permissions
	5.6.3.7.5 Computation of Imported NvSciBufObj Permissions
	5.6.3.7.6 Export/Import NvSciBuf AttrLists
	5.6.3.7.7 Export/Import NvSciBufObj
	5.6.3.7.8 Secure Sharing of NvSciBufObj

	5.6.3.8 NvSciBuf API
	5.6.3.9 UMD Access
	5.6.3.9.1 cuDLA
	5.6.3.9.1.1 Importing a NvSciBufObj into cuDLA

	5.6.3.9.2 2D/DLA/LDC/SIPL/Multimedia
	5.6.3.9.2.1 2D/LDC/SIPL/Multimedia and NvSciBuf Interaction

	5.6.3.9.3 CUDA
	5.6.3.9.3.1 NvSciBufObj as a CUDA Pointer / Array
	5.6.3.9.3.2 NvSciBuf-CUDA Interop

	5.6.3.10 Late Attach

	5.6.4 Streaming
	5.6.4.1 A Simple Stream
	5.6.4.1.1 Setup
	5.6.4.1.1.1 Simple Stream Setup

	5.6.4.1.2 Streaming
	5.6.4.1.2.1 NvStreams Rawstream Sample Application
	Building the Rawstream Sample Application
	Running the Rawstream Sample Application

	5.6.4.2 More Complex Streams
	5.6.4.2.1 Multiple Buffers
	5.6.4.2.2 FIFO Mode
	5.6.4.2.3 Mailbox Mode
	5.6.4.2.4 Multiple Acquired Frames
	5.6.4.2.5 Multiple Consumers
	5.6.4.2.6 Limit Acquired Frames
	5.6.4.2.7 Cross-Application
	5.6.4.2.8 Chip to Chip (C2C)
	5.6.4.2.9 Forced Sychronization of Payloads
	5.6.4.2.10 Late-Attach Consumers
	5.6.4.2.11 Re-Attach Consumers

	5.6.4.3 Data Packets
	5.6.4.3.1 Element Type
	5.6.4.3.2 Element Mode

	5.6.4.4 Building Block Model
	5.6.4.4.1 Endpoints
	5.6.4.4.2 Producer
	5.6.4.4.3 Consumer
	5.6.4.4.4 Multicast
	5.6.4.4.5 IPC
	5.6.4.4.5.1 Memory Sharing IPC
	5.6.4.4.5.2 Memory Boundary IPC

	5.6.4.4.6 Pool
	5.6.4.4.6.1 Static Pool
	5.6.4.4.6.2 Dynamic Pool

	5.6.4.4.7 Queue
	5.6.4.4.8 Limiter
	5.6.4.4.9 ReturnSync
	5.6.4.4.10 PresentSync
	5.6.4.4.11 Example

	5.6.4.5 Stream Creation
	5.6.4.5.1 NvSciBuf and NvSciSync Initialization
	5.6.4.5.2 NvSciIpc Initialization
	5.6.4.5.3 NvSciEventService Initialization
	5.6.4.5.4 Block Creation
	5.6.4.5.4.1 Pool
	5.6.4.5.4.2 Producer
	5.6.4.5.4.3 Multicast
	5.6.4.5.4.4 Queues
	5.6.4.5.4.5 Consumer
	5.6.4.5.4.6 IPC
	5.6.4.5.4.7 Limiter
	5.6.4.5.4.8 PresentSync
	5.6.4.5.4.9 ReturnSync

	5.6.4.5.5 Configure Block to Use NvSciEventService
	5.6.4.5.6 User-defined Endpoint Information
	5.6.4.5.7 Block Connection
	5.6.4.5.8 Comparison with EGL
	5.6.4.5.9 Simple Example
	5.6.4.5.9.1 Sample Producer Creation
	5.6.4.5.9.2 Sample Consumer Creation

	5.6.4.6 Event Handling
	5.6.4.6.1 Event Query
	5.6.4.6.2 Event Notification
	5.6.4.6.3 Connection and Disconnection Events
	5.6.4.6.4 Error Events

	5.6.4.7 Resource Creation
	5.6.4.7.1 Buffer Resources
	5.6.4.7.1.1 Buffer Requirements
	Specifying Requirements
	Receiving Requirements
	Reconciling Requirements

	5.6.4.7.1.2 Buffer Exchange
	Specifying Buffers
	Receiving Buffers
	Completing Buffer Setup

	5.6.4.7.1.3 Comparison with EGL

	5.6.4.7.2 Synchronization Resources
	5.6.4.7.2.1 Synchronization Requirements
	Specifying Requirements
	Receiving Requirements

	5.6.4.7.2.2 Synchronization Objects
	Sending Objects
	Receiving Objects

	5.6.4.7.2.3 Comparison with EGL

	5.6.4.8 Frame Production
	5.6.4.8.1 Obtaining Packets
	5.6.4.8.2 Writing Packets
	5.6.4.8.3 Presenting Packets
	5.6.4.8.4 Comparison with EGL

	5.6.4.9 Frame Consumption
	5.6.4.9.1 Acquiring Packets
	5.6.4.9.2 Reading Packets
	5.6.4.9.3 Releasing Packets
	5.6.4.9.4 Comparison with EGL

	5.6.4.10 Special Note Regarding Cache Coherence
	5.6.4.11 Disconnect Dead Consumer
	5.6.4.12 Late-attach/Re-attach Consumer
	5.6.4.13 Teardown
	5.6.4.13.1 Packet Destruction
	5.6.4.13.2 Block Destruction

	5.6.4.14 NvSciStream Sample Application
	5.6.4.15 NvSciStream Performance Test Application

	5.6.5 Synchronization
	5.6.5.1 Terminology
	5.6.5.2 Synchronization Basics
	5.6.5.3 NvSciSync Module
	5.6.5.3.1 NvSciSyncModule

	5.6.5.4 Inter-Application
	5.6.5.4.1 NvSciIpc init

	5.6.5.5 NvSciSync Attributes
	5.6.5.5.1 NvSciSync Attributes List
	5.6.5.5.1.1 NvSciSyncAttrList
	5.6.5.5.1.2 Reconciliation

	5.6.5.5.2 Inter-Application
	5.6.5.5.2.1 Export/Import NvSciSyncattrList

	5.6.5.6 Sync Management
	5.6.5.6.1 NvSciSync Objects
	5.6.5.6.1.1 NvSciSyncObj

	5.6.5.6.2 Inter-Application
	5.6.5.6.2.1 Export/Import NvSciSyncObj

	5.6.5.6.3 Cpu Wait Contexts
	5.6.5.6.3.1 NvSciSyncCpuWaitContext

	5.6.5.6.4 NvSciSyncFence Operations
	5.6.5.6.4.1 NvSciSyncFence Cpu operations

	5.6.5.6.5 Inter-Application
	5.6.5.6.5.1 Export/Import NvSciSyncFence

	5.6.5.7 Timestamps
	5.6.5.7.1 Waiter requires timestamp
	5.6.5.7.2 Waiter gets timestamp

	5.6.5.8 Task Status in Fences
	5.6.5.9 UMD Access
	5.6.5.9.1 NvMedia
	5.6.5.9.1.1 Definitions

	5.6.5.9.2 NvMedia2D-NvSciSync
	5.6.5.9.2.1 NvMedia2D NvSciSync API Usage

	5.6.5.9.3 cuDLA
	5.6.5.9.3.1 Importing a NvSciSync Object into cuDLA
	5.6.5.9.3.2 SampleUsage

	5.6.5.9.4 CUDA
	5.6.5.9.4.1 CUDA APIs
	Query NvSciSyncObj attributes (for waiting or signaling) from CUDA
	NvSciSync object registration/unregistration with CUDA
	Wait for an NvSciSyncFence.
	Get an NvSciSyncFence.
	CUDA-NvSciSync API Usage

	5.6.5.10 Late Attach
	5.6.5.11 Sample Application
	5.6.5.11.1 CPU Signaler Usage
	5.6.5.11.2 CPU Waiter Usage

	5.6.5.12 NvSciSync Profiling

	5.6.6 Inter-Process Communication
	5.6.6.1 NvSciIpc Configuration Data
	5.6.6.1.1 Example NvSciIpc config file format

	5.6.6.2 Adding a New Channel
	5.6.6.2.1 Adding a New INTER_THREAD and INTER_PROCESS Channel
	5.6.6.2.2 Adding a New INTER_VM Channel

	5.6.6.3 Update System Resources
	5.6.6.4 NvSciIpc API Usage
	5.6.6.4.1 Prepare an NvSciIpc Endpoint for read/write
	5.6.6.4.2 Writing to the NvSciIpc Endpoint
	5.6.6.4.3 Reading from the NvSciIpc Endpoint
	5.6.6.4.4 Cleaning-up an NvSciIpc Endpoint
	5.6.6.4.5 De-Initialize NvSciIpc Library

	5.6.6.5 NvSciEventService API Usage
	5.6.6.5.1 Waiting for a Single Event for Read/Write
	5.6.6.5.2 Waiting for Multiple Events for Read/Write
	5.6.6.5.3 Creating a Local Event
	5.6.6.5.4 Sending a Signal with a Local Event
	5.6.6.5.5 Waiting for a Local Event
	5.6.6.5.6 Cleaning Up Event Notifier and Local Event
	5.6.6.5.7 De-Initializing NvSciEventService Library

	5.6.7 Chip to Chip Communication

	5.7 NvMedia
	5.7.1 Connecting Cameras
	5.7.2 Mapping GMSL Cameras to the SoC
	5.7.3 Camera Power Control
	5.7.4 Understanding NvMedia
	5.7.4.1 Sequence of Tasks
	5.7.4.1.1 Setup
	5.7.4.1.2 Runtime
	5.7.4.1.3 Destroy

	5.7.4.2 Supported Tensor Formats
	5.7.4.3 Image Processing and Management
	5.7.4.3.1 Image 2D
	5.7.4.3.2 Image Encode Processing (IEP)
	5.7.4.3.3 Image JPEG Encode (IJPE)
	5.7.4.3.4 Image JPEG Decode (IJPD)
	5.7.4.3.5 Image LDC
	5.7.4.3.6 Optical Flow Accelerator (OFA)
	5.7.4.3.7 SIPL

	5.7.4.4 NvMedia Tensor
	5.7.4.4.1 Types of Tensors
	5.7.4.4.1.1 Tensor Format Attributes
	NVM_TENSOR_ATTR_DATA_TYPE Attribute
	NVM_TENSOR_ATTR_DIMENSION_ORDER Attribute
	NVM_TENSOR_ATTR_BITS_PER_ELEMENT Attribute

	5.7.4.4.1.2 Tensor Allocation Attributes
	NVM_TENSOR_ATTR_ALLOC_TYPE Attribute
	NVM_TENSOR_ATTR_4D_N
	NVM_TENSOR_ATTR_4D_C
	NVM_TENSOR_ATTR_4D_H and NVM_TENSOR_ATTR_4D_W Attributes
	NVM_TENSOR_ATTR_4D_X
	NVM_TENSOR_ATTR_CPU_ACCESS Attribute

	5.7.4.4.2 Tensor API Functions
	5.7.4.4.2.1 NvMedia Tensor Creation and Destroy Functions
	NvMediaTensorCreateFromNvSciBuf()
	Example: NvMedia Tensor Allocation with NvSciBuf
	Example: Reconcile between NvMediaTensor and Image Attributes (Optional)
	NvMediaTensorDestroy()

	5.7.4.5 NvSciSync
	5.7.4.5.1 For Additional Information
	5.7.4.5.2 Definitions
	5.7.4.5.3 NvSciSync Functions for Specific Imaging Components
	5.7.4.5.4 Code Examples

	5.7.5 Understanding the Sensor Input Processing Library (SIPL) Framework
	5.7.5.1 Camera SIPL Notifications
	5.7.5.2 SIPL Guidance on Output Image Formats
	5.7.5.3 SIPL Architecture
	5.7.5.4 SIPL Use Cases
	5.7.5.4.1 Camera SIPL Receive-Only Mode
	5.7.5.4.2 Registering a User Defined Auto Control Plugin
	5.7.5.4.2.1 Class Public Functions
	Process Function
	Process Function Input Parameters
	Process Function Output Parameters
	GetNoiseProfile Function

	5.7.5.4.2.2 GetNoiseProfile Function Input Parameters
	5.7.5.4.2.3 GetNoiseProfile Function Output Parameters
	5.7.5.4.2.4 Plugin Input Data Range Requirements
	5.7.5.4.2.5 Plugin Output Data Range Requirements
	5.7.5.4.2.6 ISP Processing and 24-bit Sensor Output

	5.7.5.5 Camera Authentication
	5.7.5.5.1 Platform Camera Configuration
	5.7.5.5.2 Application Support for Camera Authentication
	5.7.5.5.2.1 Activating Authentication for a Camera Module
	5.7.5.5.2.2 Module Initialization
	5.7.5.5.2.3 I2C Transactions Authentication
	5.7.5.5.2.4 Image Authentication Status

	5.7.5.6 Using the SIPL Framework
	5.7.5.6.1 Step 1: Querying Platform Configuration
	5.7.5.6.2 Step 2: Initialize SIPL
	5.7.5.6.3 Step 3: Start SIPL

	5.7.5.7 Components
	5.7.5.7.1 SIPL Query
	5.7.5.7.1.1 SIPL Query Drivers

	5.7.5.7.2 SIPL Device Block
	5.7.5.7.2.1 SIPL Device Block Core
	5.7.5.7.2.2 SIPL Device Block Device Driver Interface (DDI)
	5.7.5.7.2.3 SIPL Device Block Camera Device Drivers
	5.7.5.7.2.4 SIPL Device Block Camera Device Interface (CDI)

	5.7.5.7.3 SIPL Core

	5.7.5.8 Retrieving NITO Metadata from a NITO File
	5.7.5.8.1 NvSIPLNitoMetadata Struct and Related Constants
	5.7.5.8.2 GetNitoMetadataFromMemory Function
	5.7.5.8.3 GetNitoMetadataFromMemory Function Input Parameters
	5.7.5.8.4 GetNitoMetadataFromMemory Function Output Parameters
	5.7.5.8.5 API Usage

	5.7.6 NvMedia Sample Applications
	5.7.6.1 Building and Running the NvMedia Samples
	5.7.6.1.1 Building the NvMedia Samples
	5.7.6.1.1.1 To build a sample application

	5.7.6.1.2 Running the NvMedia Samples
	5.7.6.1.2.1 To run a sample application

	5.7.6.2 SIPL Sample Applications
	5.7.6.2.1 Tips for Using Sample Applications
	5.7.6.2.2 SIPL Camera (nvsipl_camera)
	5.7.6.2.2.1 Architecture
	5.7.6.2.2.2 Running the application
	To run the sample on the target
	To run the sample on the target as non-root

	5.7.6.2.2.3 Display Layout
	5.7.6.2.2.4 Secondary Capture
	Limitations

	5.7.6.2.2.5 Command Line Switches
	5.7.6.2.2.6 Interactive Menu Options
	5.7.6.2.2.7 Optional Features
	Heterogenous Frame Synchronization
	Automatic Link Recovery
	NvSci
	Profiling
	Fetch NITO Metadata

	5.7.6.2.2.8 Examples
	Platform configuration: V1SIM728S2RU4120HB20 modules in two-lane CPHY mode
	Example 2: Use link 0 of group A and link 2 of group D
	Example 3: Use links 0 of group A and 2 of group D with secondary capture
	Example: File input mode

	5.7.6.2.2.9 Camera Commands
	Maxim Integrated GMSL SERDES
	AR0820 Using 1 Lane CPHY
	AR0820 Using 2 Lane CPHY
	AR0820 Using 4 Lane CPHY
	IMX728 Using 2 Lane CPHY
	IMX728 Using 4 Lane CPHY
	IMX623 Using 2 Lane CPHY
	IMX623 Using 4 Lane CPHY
	OV2311 Using 2 Lane DPHY/CPHY
	OV2311 Using 4 Lane DPHY/CPHY
	OX5B Using 4 Lane CPHY

	TI FPD-LINK SERDES
	IMX728 FPD-Link Using 4 Lane CPHY
	DS90UB971 SER TPG Using 4 Lane CPHY
	DS90UB971 SER TPG Using 4 Lane DPHY

	5.7.6.2.3 SIPL Reprocess (nvsipl_reprocess)
	5.7.6.2.3.1 Running the Application
	5.7.6.2.3.2 Command Line Switches
	5.7.6.2.3.3 Saving Metadata to a File
	Example: Saving Metadata from a V623S2-195V1-SVS Module in Two-lane CPHY Mode

	5.7.6.2.4 SIPL Sample (nvsipl_sample)
	5.7.6.2.4.1 Architecture
	5.7.6.2.4.2 Running the Application
	To run the sample on the target:

	5.7.6.2.4.3 Command Line Switches
	5.7.6.2.4.4 Interactive Menu Options
	5.7.6.2.4.5 Camera Commands and Platform Configs
	List of commands

	5.7.6.2.4.6 Camera Input Module (CIM) SKU Identification

	5.7.6.3 NvMedia IDE - Decode Processing (nvm_ide_sci)
	5.7.6.3.1 Command Line Switches
	5.7.6.3.2 Examples

	5.7.6.4 NvMedia IJPD - JPEG Decode (nvm_ijpd_sci)
	5.7.6.4.1 Example Commands
	5.7.6.4.2 Command Line Switches

	5.7.6.5 Image JPEG Encode (nvm_ijpe_sci)
	5.7.6.5.1 Example Commands
	5.7.6.5.2 Command Line Switches

	5.7.6.6 NvMedia IEP – Encode Processing (nvm_iep_sci)
	5.7.6.6.1 Architecture and Data Flow
	5.7.6.6.2 Running the Sample Application
	5.7.6.6.3 Command Line Switches
	5.7.6.6.4 Examples for Performing Common Tasks
	5.7.6.6.5 Configuration File Syntax
	5.7.6.6.6 Configuration File Parameters

	5.7.6.7 Image LDC (nvmimg_ldc)
	5.7.6.7.1 Running the Sample Application
	5.7.6.7.2 Configuration File Parameters
	5.7.6.7.2.1 General Configuration Parameters
	5.7.6.7.2.2 Geometric Transformation Parameters
	5.7.6.7.2.3 Warp Map Parameters
	5.7.6.7.2.4 TNR Parameters

	5.7.6.7.3 Command Line Options
	5.7.6.7.4 Example

	5.7.6.8 Image 2D (nvmimg_2d)
	5.7.6.9 NvMedia IOFA (nvm_iofa_stereo_sci and nvm_iofa_flow_sci)
	5.7.6.10 Optisense (stereosense and flowsense)
	5.7.6.10.1 Running the Sample Application
	5.7.6.10.2 Example: flowsense and Post Median Filtering
	5.7.6.10.3 Example: stereosense and Median Filtering

	5.7.6.11 Deep Learning Accelerator Programming Interface (nvm_dlaSample)
	5.7.6.11.1 Architecture
	5.7.6.11.2 Running the Sample Application
	5.7.6.11.2.1 Prerequisites
	5.7.6.11.2.2 To run the sample

	5.7.6.11.3 Command Line Switches
	5.7.6.11.4 NvMedia Sample Applications
	5.7.6.11.4.1 Runtime mode
	5.7.6.11.4.2 Scisync mode
	5.7.6.11.4.3 Multithread mode
	5.7.6.11.4.4 Ping mode

	5.7.7 Debugging CSI Capture Errors
	5.7.7.1 Error Logs
	5.7.7.2 RCE Traces

	5.8 Programmable Vision Accelerator (PVA)
	5.9 Logging
	5.10 Docker Services

	System Software Components and Interfaces
	6.1 Calculating GPIO Index in Linux
	6.2 Persistence Across Bootburn Flashing Using Persistent Partition
	6.2.1 Persistent Data Across Flashing
	6.2.2 Why You Require Persistent Data Across Flashing
	6.2.3 Workflow with Persistent Partition
	6.2.4 Methods to Reset Persistent Partition
	6.2.5 Data Migration for Persistent Partitions

	6.3 Version Checker
	6.4 Linux File Systems
	6.4.1 DRIVE OS Linux File Systems
	6.4.2 Filesystem Manifest
	6.4.2.1 Prompts During Installation of Filesystem
	6.4.2.2 Prompts During Installation of Filesystem from Debian

	6.4.3 Unused Upstream Components in DRIVE OS Linux
	6.4.4 Logging In
	6.4.5 DRIVE OS Linux Username and Password
	6.4.6 Installing Non-Default File Systems
	6.4.7 Network Configuration in NVIDIA Filesystems
	6.4.7.1 Configuring Interfaces

	6.4.8 Rebuilding the File System from ubuntu-base and Local Mirror
	6.4.9 File System Source Code
	6.4.10 VNC
	6.4.11 Read-Only File System Considerations

	6.5 DRIVE OS Linux Filesystems Customization Quick Start Page
	6.5.1 Getting Started
	6.5.2 Rebuilding the Linux SDK File System Without Modifications Using the Build-FS Tool
	6.5.3 Adding a Single Debian Package and a Single File to the Linux File System

	6.6 CopyTarget
	6.6.1 Installing CopyTarget
	6.6.2 Using CopyTarget
	6.6.2.1 Command Line Syntax

	6.6.3 Command Argument Options
	6.6.4 CopyTarget Manifest
	6.6.4.1 Header
	6.6.4.2 Filelist

	6.6.5 CopyTarget File Operations
	6.6.6 Identifier Dictionary
	6.6.6.1 Default Identifier Dictionary
	6.6.6.2 Host Identifier Dictionary

	6.6.7 Importing Manifests
	6.6.7.1 Overriding Parent Attributes
	6.6.7.2 Mapping Overlays using Destination Field
	6.6.7.3 Sequence of Manifest Overlaying
	6.6.7.3.1 Resultant Table

	6.6.8 Exports
	6.6.8.1 Syntax
	6.6.8.2 Dereferencing a Variable
	6.6.8.3 Overriding Parent Assigned Values

	6.6.9 Examples: Creating CopyTarget Manifest
	6.6.9.1 Copying a File
	6.6.9.2 Copying a File to Specific FIleSystem Type
	6.6.9.3 Creating a Directory
	6.6.9.4 Updating a File's Metadata
	6.6.9.5 Removing a File
	6.6.9.6 Creating a Symlink
	6.6.9.7 Comprehensive Example: copytarget-manifest.yaml

	6.6.10 Errors
	6.6.11 DRIVE OS SDK Copytarget Manifests

	6.7 NVIDIA Build-FS
	6.7.1 Key Features
	6.7.2 Prerequisites
	6.7.2.1 Package Dependencies

	6.7.3 Installing NVIDIA Build-FS
	6.7.4 Editing NVIDIA Build-FS CONFIG
	6.7.5 Executing NVIDIA Build-FS With the Updated CONFIG
	6.7.6 Flashing the Customized Target File System
	6.7.7 NVIDIA Build-FS Architecture
	6.7.8 Command Line Arguments
	6.7.8.1 Tool Information Command Line Arguments
	6.7.8.2 Required Command Line Arguments
	6.7.8.3 Optional Command Line Arguments

	6.7.9 Environment Configuration
	6.7.9.1 Special Environment Variables
	6.7.9.2 Environment Variables Available in Pre and Post Install Scripts

	6.7.10 CONFIG Semantics
	6.7.10.1 Legend
	6.7.10.2 Required CONFIG Fields
	6.7.10.3 Optional CONFIG Fields

	6.7.11 Errors
	6.7.12 Examples
	6.7.12.1 To add users, groups, and memberships to the filesystem
	6.7.12.2 To update existing user, group and set passwd in the filesystem
	6.7.12.3 To set password to given value securely using hashed-password to the filesystem
	6.7.12.4 To install Debian packages from Ubuntu mirrors
	6.7.12.5 To copy files to the target filesystem
	6.7.12.6 To run preinstall and postinstall scripts

	6.8 CAN Driver
	6.8.1 Enabling CAN Driver in Linux Kernel
	6.8.1.1 To enable SPE based mttcan_ivc driver
	6.8.1.2 MTTCAN as a Module
	6.8.1.2.1 To install modules

	6.8.1.3 MTTCAN as a Kernel Built-in Driver

	6.8.2 Setting Up CAN Loopback
	6.8.2.1 Test Specific Setup

	6.8.3 Setting up SocketCAN Interface
	6.8.3.1 Setting Up the CAN0 Interface
	6.8.3.1.1 To set can0 interface bitrate
	6.8.3.1.2 To get the supported commands
	6.8.3.1.3 To bring up the can0 interface

	6.8.3.2 Enabling the Flexible Data Rate Mode on MTTCAN
	6.8.3.2.1 To enable FD mode
	6.8.3.2.2 To check detail statics of the link
	6.8.3.2.3 Miscellaneous Information About OSS SocketCAN Tools

	6.8.4 How to Test CAN
	6.8.4.1 Test Classic (Non-FD) CAN
	6.8.4.2 Test FD CAN

	6.8.5 CAN Timestamping
	6.8.6 Setting up MTTCAN Controller Hardware filters
	6.8.6.1 CAN0 sys interfaces
	6.8.6.2 CAN1 sys interfaces

	6.8.7 Programming Global Filter Configuration
	6.8.7.1 To configure the Global Filter
	6.8.7.2 To get sys interface syntax
	6.8.7.3 To read GFC configuration

	6.8.8 Programming Standard Message ID CAN Filters
	6.8.8.1 To read standard filter configuration

	6.8.9 Programming Extended Message ID Filters
	6.8.9.1 To read extended filter configuration

	6.9 Kernel Modules and Limitations
	6.10 Crypto Interface
	6.11 I2C Settings
	6.12 PCIe Retimer
	6.13 Suspend to RAM / SC7

	Understanding Security
	7.1 Secure Boot and Hardware Fuses
	7.1.1 Root of Trust and Chain of Trust
	7.1.2 Secure Boot
	7.1.3 Diagnostic Boot Mode
	7.1.4 Fuse Burning Responsibilities
	7.1.4.1 Fusing a Board with a PKC Public Key Hash
	7.1.4.2 Generating a PKC Key Pair using OpenSSL
	7.1.4.3 Fusing the Board with the Secure Keys
	7.1.4.4 BR BCT Signing and Hash Compression

	7.1.5 Public-Key Cryptography
	7.1.5.1 Secure Boot Details with PKC Protection

	7.2 PKCS#11 Interface
	7.2.1 PKCS#11 – Supported Mechanism – Function Table
	7.2.2 PKCS#11 – Supported APIs
	7.2.3 PKCS#11 – Supported Objects
	7.2.4 PKCS#11 – Persistent Object Secure Storage Support
	7.2.5 PKCS#11 – Supported Attributes
	7.2.6 PKCS#11 – Sample Application
	7.2.7 PKCS#11 – Implementation Details

	7.3 Security Engine
	7.4 Persistent Key Object Support
	7.4.1 Secure SPI-NOR Provisioning
	7.4.2 Disable Provisioning for NOR Less Configurations

	7.5 Generating PKCS#11 Key Objects
	7.5.1 Provisioning PKCS#11 Key Objects

	7.6 Enabling JTAG Support on Secure Targets
	7.7 Linux-Based Disk Encryption
	7.7.1 dmsetup
	7.7.2 User Data Encryption
	7.7.2.1 To change the size of the user data disk

	7.7.3 Steps to Enable Data Encryption
	7.7.4 Data Encryption Impact on Boot Times
	7.7.4.1 Encryption Algorithm

	7.7.5 Volume Encryption Key Management
	7.7.5.1 Encryption of VEK
	7.7.5.1.1 Decryption of VEK and Use by dm-crypt

	7.7.5.2 Building Sample PKCS#11 App for VEK Generation, Encryption, and Decryption
	7.7.5.3 EFS Sample App Command Line Usage

	System Programming
	8.1 Compiling the Kernel (Kernel 5.10)
	8.2 Compiling the Kernel (Kernel 5.15)
	8.3 NVIDIA Supported Cross Toolchains
	8.3.1 Steps to Rebuild the Toolchain

	8.4 DRIVE OS Linux Yocto Components
	8.4.1 Building the Yocto Project Components for NVIDIA DRIVE Orin
	8.4.1.1 Host Prerequisites
	8.4.1.2 Setting Up Linux Foundation and Compute Bits Using Debian Packages
	8.4.1.3 Yocto DRIVE OS Linux Boot KPI
	8.4.1.4 To build NVIDIA Yocto Project based components
	8.4.1.5 To build CUDA with tegra-drive-os-av-image
	8.4.1.6 To build CuDNN with tegra-drive-os-av-image
	8.4.1.7 To build TensorRT with tegra-drive-os-av-image
	8.4.1.8 To build NVIDIA Driveworks with tegra-drive-os-av-image

	8.4.2 Flashing Yocto Image and Running the Samples on Target
	8.4.2.1 To flash Yocto built Images via bootburn
	8.4.2.2 Running Yocto built Apps on Target
	8.4.2.3 Setting the PATH for NVIDIA User

	8.4.3 DM-Verity and Read-Only File System Support

	8.5 Kernel Configuration

	Bootloader Programming
	9.1 Understanding the Boot Flow Process
	9.1.1 Boot ROM
	9.1.2 Microboot 1 and PSC-BL1
	9.1.3 Microboot 2
	9.1.4 Authentication and Validation of Binaries
	9.1.5 Grouping of Boot Images
	9.1.6 Grouping a Secure Boot Chain

	9.2 Using the Bootloader Recovery Mechanism
	9.2.1 Recovery Mechanism Boot Chains
	9.2.1.1 Boot Chain Process

	9.2.2 Boot Recovery Mechanism Flow
	9.2.2.1 Scratch Register
	9.2.2.2 BootROM BCT
	9.2.2.3 Soft Fuse
	9.2.2.4 Selecting the Active Boot Chain by BootROM
	9.2.2.5 Selecting the Boot Chain by the Loader
	9.2.2.6 Triggering the Recovery Mechanism Inside a Guest OS Container
	9.2.2.6.1 Scratch Registers
	9.2.2.6.2 Privileged Guest OS
	9.2.2.6.3 Unprivileged Guest OS
	9.2.2.6.4 Marking a Guest OS as Privileged Guest OS
	9.2.2.6.5 Assumptions

	9.2.2.7 Triggering the Recovery Mechanism by BootROM
	9.2.2.8 Triggering Recovery Mechanism by Loader
	9.2.2.9 Partition Layout

	9.3 Ratcheting
	9.3.1 Software and Hardware Ratchet Versions
	9.3.1.1 Software Ratchet Version
	9.3.1.2 Hardware Ratchet Version

	9.3.2 Ratchet Constraints
	9.3.3 Opt-in Fuse
	9.3.4 External Factors for Fuse Burning
	9.3.5 Software Components Protected by Ratcheting
	9.3.6 Ratchet Levels for NVIDIA Owned Software Components
	9.3.6.1 NVIDIA Ratchet Level
	9.3.6.2 OEM Ratchet Level
	9.3.6.3 Ratchet Level for OEM Owned Software Components
	9.3.6.4 OEM Firmware Ratchet Level

	9.3.7 Ratcheting for Falcon Firmware
	9.3.7.1 Scratch Registers
	9.3.7.2 Fuses for Falcon Firmware

	9.3.8 Ratchet Fuse Programming for OEM Owned Software Components
	9.3.8.1 Scratch Registers
	9.3.8.2 Fuses for OEM Field Ratcheting

	9.4 Ratchet Checks
	9.4.1 Ratchet Check for NVIDIA Owned Software Components
	9.4.1.1 Ratchet Check for MB1
	9.4.1.2 Ratchet Check for SC7 Firmware
	9.4.1.3 Ratchet Check for MTS Firmware
	9.4.1.4 Ratchet Check for Falcon Firmware
	9.4.1.5 Ratchet Check for OEM Owned Software Components

	9.5 Rachet Fuse Programming
	9.5.1 Ratcheting for MB1/SC7 and MTS Firmware
	9.5.1.1 Scratch Registers
	9.5.1.2 Fuses for MB1/SC7
	9.5.1.3 Fuses for MTS

	9.5.2 Ratcheting for Falcon Firmware

	9.6 Passing Ratchet Status to Guest OSes
	9.7 Lock Fuse Burning
	9.8 Passing Customer Data to Guest OSes
	9.9 Configuring MB1 Boot Configuration Table
	9.9.1 Understanding the MB1 Boot Configuration Table
	9.9.2 Configuring the Pinmux and GPIO
	9.9.2.1 Usage
	9.9.2.1.1 Device-side Implementation

	9.9.3 Configuring the Prod Setting
	9.9.3.1 Usage
	9.9.3.1.1 Device-side Implementation

	9.9.4 Configuring Pad Voltage Setting
	9.9.4.1 Usage
	9.9.4.1.1 Device-side implementation

	9.9.5 Configuring the PMIC Setting
	9.9.5.1 Usage
	9.9.5.1.1 Rail-Specific Parameters
	9.9.5.1.2 I2C type-specific Parameters

	9.9.5.2 Generic Format

	9.9.6 AO Block Parameters
	9.9.6.1 I2C type-specific parameters

	9.9.7 Configuring the Security Configuration Registers
	9.9.7.1 Usage

	9.9.8 Miscellaneous Configurations
	9.9.8.1 Debug
	9.9.8.2 AOTAG
	9.9.8.3 AST setting
	9.9.8.4 I2C setting
	9.9.8.5 SW Carveout
	9.9.8.6 CPU Param
	9.9.8.7 Dev-param

	9.10 Restricting Power Controls

	Mass Storage Partition Configuration
	10.1 Partition Overview
	10.1.1 Native Partitions
	10.1.2 Guest OS Partitions

	10.2 Customizing the Configuration File
	10.2.1 Customizing Partitions
	10.2.2 Configuration File Entries
	10.2.3 Setting Attributes
	10.2.3.1 Meta Attributes Table
	10.2.3.2 Device Attributes Table
	10.2.3.3 Partition Attributes Table

	10.2.4 Aligning os_args Values and the Mass Storage Layout
	10.2.5 Configuring GPT Devices

	10.3 Flashing Partitions with a File System and Kernel Image
	10.4 Managing Mass Storage Partitions in Virtualization
	10.4.1 Partition Loader
	10.4.2 Storage Layout
	10.4.2.1 To change the global layout
	10.4.2.2 Examples

	NVIDIA DRIVE Utilities
	11.1 Device Tree Structure
	11.1.1 Device Tree Format
	11.1.2 Device Tree Files in the BSP Framework
	11.1.3 Example: Platform Common DTSI
	11.1.4 Example: SoC DTSI
	11.1.5 Viewing Pinmux Settings in the DTS
	11.1.6 Kernel DTS Compilation and Flashing
	11.1.6.1 To flash a custom DTB file

	11.1.7 Configuring Device Tree Support
	11.1.8 Device Tree Data Format
	11.1.9 SW-EDID
	11.1.10 Device Tree Binding Document

	11.2 Device Tree Cleaner (delnode)
	11.2.1 Calling delnode
	11.2.2 Example
	11.2.2.1 Before
	11.2.2.2 After

	11.3 Terminal Emulation
	11.3.1 Determining the USB Port and Serial ID
	11.3.2 About PuTTY
	11.3.2.1 Installing PuTTY
	11.3.2.2 PuTTY: Connect to Serial Port
	11.3.2.3 PuTTY: Save and Load sessions

	11.3.3 About Minicom
	11.3.3.1 Configuring Minicom
	11.3.3.1.1 Port Settings

	11.3.3.2 Running Minicom
	11.3.3.2.1 Prerequisites
	11.3.3.2.2 To run Minicom
	11.3.3.2.3 To configure Minicom

	11.3.3.3 Toggling the Line Wrap Setting on Minicom
	11.3.3.3.1 To toggle line wrap on/off

	11.3.3.4 Toggling the Line Feed Setting on Minicom
	11.3.3.4.1 To toggle line feed on/off

	11.4 Tegra Combined UART and the tcu_muxer Utility
	11.4.1 tcu_muxer Tool
	11.4.1.1 Usage
	11.4.1.2 Output

	11.4.2 tcu_muxer Usage in NVIDIA Native OS System
	11.4.3 tcu_muxer Usage in NVIDIA Virtualization System
	11.4.3.1 Usage
	11.4.3.2 Usage mode #1
	11.4.3.3 Usage mode #2 (terminal logging)
	11.4.3.4 Usage mode #3 (raw logging)
	11.4.3.5 Usage mode#4 (tmux with tcu_muxer)

	11.4.4 Finding the Number of VM Partitions
	11.4.4.1 Usage

	11.5 tegrastats Utility
	11.5.1 Reported Statistics
	11.5.2 Running tegrastats
	11.5.2.1 Example Log Print
	11.5.2.2 To run tegrastats
	11.5.2.3 To stop tegrastats

	11.5.3 Re-Deploying tegrastats
	11.5.3.1 To re-deploy tegrastats

	11.5.4 tegrastats Options

	11.6 Benchmarking Library
	11.6.1 API Documentation
	11.6.2 Macros
	11.6.3 Functions
	11.6.4 Usage Examples
	11.6.5 Measuring CPU Utilization in Linux
	11.6.5.1 Using the ftrace Method
	11.6.5.2 Using the top Method

	Manifest
	12.1 Linux SDK
	12.1.1 Manifest
	12.1.2 CUDA Directory

	Device Tree
	13.1 Display Device Tree
	13.2 NvGPU Device Tree
	13.3 PCIe Controller Device Tree
	13.4 Camera Device Tree
	13.4.1 Common Properties
	13.4.2 Linux Properties
	13.4.3 TSC Signal Generation

	13.5 NvHost Device Tree
	13.5.1 Host1x Device Node
	13.5.2 Host1x Context Node
	13.5.3 Host1x Engine Node
	13.5.4 NvHost FSW Attributes Node

	13.6 DLA Device Tree

	NVIDIA DRIVE OS 6.0 Third-Party Software Licenses
	Legal Information

