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Chapter 1. Introduction

NVIDIA® TensorRT" is an SDK that facilitates high-performance machine learning
inference. It is designed to work in a complementary fashion with training frameworks
such as TensorFlow, PyTorch, and MXNet. It focuses specifically on running an already-
trained network quickly and efficiently on NVIDIA hardware.

1.1. Structure of This Guide

Chapter 1 provides information about how TensorRT is packaged and supported, and how
it fits into the developer ecosystem.

Chapter 2 provides a broad overview of TensorRT capabilities.
Chapters three and four contain introductions to the C++ and Python APIs respectively.
Subsequent chapters provide more detail about advanced features.

The appendix contains a layer reference and answers to FAQs.

1.2. Samples

You can find the safety samples in the /usr/src/tensorrt/samples package directory.
For more information, refer to the NVIDIA TensorRT 8.6.13 Safety Developer Guide
Supplement for DRIVE OS.

1.3. Complementary GPU Features

Multi-Instance GPU, or MIG, is a feature of NVIDIA GPUs with NVIDIA Ampere Architecture
or later architectures that enable user-directed partitioning of a single GPU into multiple
smaller GPUs. The physical partitions provide dedicated compute and memory slices

with QoS and independent execution of parallel workloads on fractions of the GPU. For
TensorRT applications with low GPU utilization, MIG can produce higher throughput at
small or no impact on latency. The optimal partitioning scheme is application-specific.
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1.4. Complementary Software

The NVIDIA Triton™ Inference Server is a higher-level library providing optimized inference
across CPUs and GPUs. It provides capabilities for starting and managing multiple
models, and REST and gRPC endpoints for serving inference.

NVIDIA DALI® provides high-performance primitives for preprocessing image, audio, and
video data. TensorRT inference can be integrated as a custom operator in a DALI pipeline.
A working example of TensorRT inference integrated as a part of DALI can be found here.

TensorFlow-TensorRT (TF-TRT) is an integration of TensorRT directly into TensorFlow. It
selects subgraphs of TensorFlow graphs to be accelerated by TensorRT, while leaving the
rest of the graph to be executed natively by TensorFlow. The result is still a TensorFlow
graph that you can execute as usual. For TF-TRT examples, refer to Examples for TensorRT
in TensorFlow.

Torch-TensorRT (Torch-TRT) is a PyTorch-TensorRT compiler that converts PyTorch
modules into TensorRT engines. Internally, the PyTorch modules are first converted into
TorchScript/FX modules based on the Intermediate Representation (IR) selected. The
compiler selects subgraphs of the PyTorch graphs to be accelerated by TensorRT, while
leaving the rest of the graph to be executed natively by Torch. The result is still a PyTorch
module that you can execute as usual. For examples, refer to Examples for Torch-TRT.

The TensorFlow-Quantization Toolkit provides utilities for training and deploying
Tensorflow 2-based Keras models at reduced precision. This toolkit is used to quantize
different layers in the graph exclusively based on operator names, class, and pattern
matching. The quantized graph can then be converted into ONNX and then into TensorRT
engines. For examples, refer to the model zoo.

The PyTorch Quantization Toolkit provides facilities for training PyTorch models at
reduced precision, which can then be exported for optimization in TensorRT.

In addition, the PyTorch Automatic SParsity (ASP) tool provides facilities for training
models with structured sparsity, which can then be exported and allows TensorRT to use
the faster sparse tactics on NVIDIA Ampere Architecture GPUs.

TensorRT is integrated with NVIDIA's profiling tools, NVIDIA Nsight™ Systems and NVIDIA
Deep Learning Profiler (DLProf).

A restricted subset of TensorRT is certified for use in NVIDIA DRIVE® products. Some APIs
are marked for use only in NVIDIA DRIVE and are not supported for general use.

1.5.  ONNX

TensorRT'’s primary means of importing a trained model from a framework is through
the ONNX interchange format. TensorRT ships with an ONNX parser library to assist in
importing models. Where possible, the parser is backward compatible up to opset 7; the
ONNX Model Opset Version Converter can assist in resolving incompatibilities.
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The GitHub version may support later opsets than the version shipped with TensorRT
refer to the ONNX-TensorRT operator support matrix for the latest information on the
supported opset and operators. For TensorRT deployment, we recommend exporting to
the latest available ONNX opset.

The ONNX operator support list for TensorRT can be found here.

PyTorch natively supports ONNX export. For TensorFlow, the recommended method is
tf2onnx.

A good first step after exporting a model to ONNX is to run constant folding using
Polygraphy. This can often solve TensorRT conversion issues in the ONNX parser and
generally simplify the workflow. For details, refer to this example. In some cases, it may
be necessary to modify the ONNX model further, for example, to replace subgraphs with
plugins or reimplement unsupported operations in terms of other operations. To make
this process easier, you can use ONNX-GraphSurgeon.

1.6. Code Analysis Tools

For guidance using the valgrind and clang sanitizer tools with TensorRT, refer to the
Troubleshooting chapter.

1.7. APl Versioning

TensorRT version number (MAJOR.MINOR.PATCH) follows Semantic Versioning 2.0.0 for
its public APIs and library ABIs. Version numbers change as follows:

1. MAJOR version when making incompatible API or ABI changes

2. MINOR version when adding functionality in a backward compatible manner

3. PATCH version when making backward compatible bug fixes

Note that semantic versioning does not extend to serialized objects. To reuse plan files,
and timing caches, version numbers must match across major, minor, patch, and build
versions (with some exceptions for the safety runtime as detailed in the NVIDIA DRIVE OS

6.0 Developer Guide). Calibration caches can typically be reused within a major version but
compatibility is not guaranteed.

1.8. Deprecation Policy

Deprecation is used to inform developers that some APIs and tools are no longer
recommended for use. Beginning with version 8.0, TensorRT has the following
deprecation policy:

» Deprecation notices are communicated in the NVIDIA TensorRT Release Notes.
» When using the C++ API:

» APl functions are marked with the TRT DEPRECATED API Macro.
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Introduction

» Enums are marked with the TRT DEPRECATED ENUM Macro.
» All other locations are marked with the TRT DEPRECATED macro.

» Classes, functions, and objects will have a statement documenting when they were
deprecated.
» When using the Python API, deprecated methods and classes will issue deprecation
warnings at runtime, if they are used.

» TensorRT provides a 12-month migration period after the deprecation.
» APIs and tools continue to work during the migration period.

» After the migration period ends, APIs and tools are removed in a manner consistent
with semantic versioning.

For any APIs and tools specifically deprecated in TensorRT 7.x, the 12-month migration
period starts from the TensorRT 8.0 GA release date.

1.9. Hardware Support Lifetime

TensorRT 8.5.3 was the last release supporting NVIDIA Kepler (SM 3.x) and NVIDIA
Maxwell (SM 5.x) devices. These devices are no longer supported in TensorRT 8.6. NVIDIA
Pascal (SM 6.x) devices are deprecated in TensorRT 8.6.

1.10. Support

Support, resources, and information about TensorRT can be found online at https://
developer.nvidia.com/tensorrt. This includes blogs, samples, and more.

In addition, you can access the NVIDIA DevTalk TensorRT forum at https://
devtalk.nvidia.com/default/board/304/tensorrt/ for all things related to TensorRT. This
forum offers the possibility of finding answers, making connections, and getting involved
in discussions with customers, developers, and TensorRT engineers.

1.11. Reporting Bugs

NVIDIA appreciates all types of feedback. If you encounter any problems, follow the
instructions in the Reporting TensorRT Issues section to report the issues.
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Chapter 2. TensorRT's Capabilities

This chapter provides an overview of what you can do with TensorRT. It is intended to be
useful to all TensorRT users.

2.1. C++ and Python APIs

TensorRT’s API has language bindings for both C++ and Python, with nearly identical
capabilities. The Python API facilitates interoperability with Python data processing
toolkits and libraries like NumPy and SciPy. The C++ API can be more efficient, and may
better meet some compliance requirements, for example in automotive applications.

Note: The Python API is not available for all platforms.

For more information, refer to the NVIDIA TensorRT 8.6.13 API Reference for DRIVE OS.

2.2. The Programming Model

TensorRT operates in two phases. In the first phase, usually performed offline, you
provide TensorRT with a model definition, and TensorRT optimizes it for a target GPU. In
the second phase, you use the optimized model to run inference.

2.2.1. The Build Phase

The highest-level interface for the build phase of TensorRT is the Builder. The builder is
responsible for optimizing a model, and producing an Engine.

In order to build an engine, you must:
» Create a network definition.
» Specify a configuration for the builder.

» Call the builder to create the engine.
The NetworkDefinition interface is used to define the model. The most common path
to transfer a model to TensorRT is to export it from a framework in ONNX format, and

use TensorRT’'s ONNX parser to populate the network definition. However, you can also
construct the definition step by step using TensorRT's Layer and Tensor interfaces.
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Whichever way you choose, you must also define which tensors are the inputs and
outputs of the network. Tensors that are not marked as outputs are considered to be
transient values that can be optimized away by the builder. Input and output tensors
must be named, so that at runtime, TensorRT knows how to bind the input and output
buffers to the model.

The Builderconfiginterface is used to specify how TensorRT should optimize the
model. Among the configuration options available, you can control TensorRT’s ability to
reduce the precision of calculations, control the tradeoff between memory and runtime
execution speed, and constrain the choice of CUDA” kernels. Since the builder can take
minutes or more to run, you can also control how the builder searches for kernels, and
cached search results for use in subsequent runs.

After you have a network definition and a builder configuration, you can call the builder
to create the engine. The builder eliminates dead computations, folds constants, and
reorders and combines operations to run more efficiently on the GPU. It can optionally
reduce the precision of floating-point computations, either by simply running them in
16-bit floating point, or by quantizing floating point values so that calculations can be
performed using 8-bit integers. It also times multiple implementations of each layer
with varying data formats, then computes an optimal schedule to execute the model,
minimizing the combined cost of kernel executions and format transforms.

The builder creates the engine in a serialized form called a plan, which can be deserialized
immediately, or saved to disk for later use.

@ Note:

» By default, engines created by TensorRT are specific to both the TensorRT version
with which they were created and the GPU on which they were created. Refer to the
Version Compatibility and Hardware Compatibility sections for how to configure an
engine for forward compatibility.

» TensorRT’s network definition does not deep-copy parameter arrays (such as the
weights for a convolution). Therefore, you must not release the memory for those
arrays until the build phase is complete. When importing a network using the ONNX
parser, the parser owns the weights, so it must not be destroyed until the build phase
is complete.

» The builder times algorithms to determine the fastest. Running the builder in parallel
with other GPU work may perturb the timings, resulting in poor optimization.

2.2.2. The Runtime Phase

The highest-level interface for the execution phase of TensorRT is the Runtime.
When using the runtime, you will typically carry out the following steps:

» Deserialize a plan to create an engine.

» Create an execution context from the engine.

Then, repeatedly:

» Populate input buffers for inference.
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» Call enqueuev3 () on the execution context to run inference.

The Engine interface represents an optimized model. You can query an engine for
information about the input and output tensors of the network - the expected
dimensions, data type, data format, and so on.

The ExecutionContext interface, created from the engine is the main interface for
invoking inference. The execution context contains all of the state associated with a
particular invocation - thus you can have multiple contexts associated with a single
engine, and run them in parallel.

When invoking inference, you must set up the input and output buffers in the
appropriate locations. Depending on the nature of the data, this may be in either CPU or
GPU memory. If not obvious based on your model, you can query the engine to determine
in which memory space to provide the buffer.

After the buffers are set up, inference can be enqueued (enqueuev3). The required kernels
are enqueued on a CUDA stream, and control is returned to the application as soon as
possible. Some networks require multiple control transfers between CPU and GPU, so
control may not return immediately. To wait for completion of asynchronous execution,
synchronize on the stream using cudaStreamSynchronize.

2.3. Plugins

TensorRT has a p1ugin interface to allow applications to provide implementations
of operations that TensorRT does not support natively. Plugins that are created and
registered with TensorRT's PluginRegistry can be found by the ONNX parser while
translating the network.

TensorRT ships with a library of plugins, and source for many of these and some
additional plugins can be found here.

You can also write your own plugin library and serialize it with the engine.

Refer to the Extending TensorRT with Custom Layers chapter for more details.

2.4. Types and Precision

TensorRT supports FP32, FP16, INT8, INT32, UINT8, and BOOL data types.]
Refer to the TensorRT Operator documentation for layer I/O data type specification.

» FP32,FP16

» Unquantized higher precision types.
» INT8

! TensorRT 8.6 adds nvinferl: :DataType: : kFP8 to the public APl in preparation for the introduction of FP8 support in
future TensorRT releases. However, FP8 (8-bit floating point) is not supported by TensorRT currently and attempting to
use FP8 will result in an error or undefined behavior.
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Implicit quantization
Interpreted as quantized integer type. A tensor with INT8 type must have an
associated scale factor (either through calibration or setbynamicRange API).
Explicit quantization
Interpreted as signed integer type. Conversion to/from INT8 type requires an
explicit Q/DQ layer.
UINT8

Data type only usable as a network I/O type.
Network level inputs in UINT8 must be converted from UINT8 to either FP32 or
FP16 using a castLayer before the data is used in other operations.

Network-level outputs in UINT8 must be produced by a castLayer that has been
explicitly inserted into the network (will only support conversions from FP32/FP16
to UINTB8).

UINT8 guantization is not supported.
The ConstantLayer does not support UINT8 as an output type.
BOOL

A boolean type used with supported layers.

When TensorRT chooses CUDA kernels to implement floating point operations in the
network, it defaults to FP32 implementations. There are two ways to configure different
levels of precision:

To control precision at the model level, BuilderFlag options can indicate to TensorRT
that it may select lower-precision implementations when searching for the fastest
(and because lower precision is generally faster, if allowed to, it typically will).

Therefore, you can easily instruct TensorRT to use FP 16 calculations for your entire
model. For regularized models whose input dynamic range is approximately one, this
typically produces significant speedups with negligible change in accuracy.

For finer-grained control, where a layer must run at higher precision because part
of the network is numerically sensitive or requires high dynamic range, arithmetic
precision can be specified for that layer.

Refer to the Reduced Precision section for more details.

TensorRT supports quantized floating point, where floating-point values are linearly
compressed and rounded to 8-bit integers. This significantly increases arithmetic
throughput while reducing storage requirements and memory bandwidth. When
guantizing a floating-point tensor, TensorRT must know its dynamic range - that is, what
range of values is important to represent - values outside this range are clamped when
gquantizing.
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Dynamic range information can be calculated by the builder (this is called calibration)
based on representative input data. Or you can perform quantization-aware training
in a framework and import the model to TensorRT with the necessary dynamic range
information.

Refer to the Working with INT8 chapter for more details.

2.6. Tensors and Data Formats

When defining a network, TensorRT assumes that tensors are represented by
multidimensional C-style arrays. Each layer has a specific interpretation of its inputs: for
example, a 2D convolution will assume that the last three dimensions of its input are

in CHW format - there is no option to use, for example a WHC format. Refer to NVIDIA
TensorRT Operator's Reference for how each layer interprets its inputs.

Note that tensors are limited to at most 2231-1 elements.

While optimizing the network, TensorRT performs transformations internally (including
to HWC, but also more complex formats) to use the fastest possible CUDA kernels. In
general, formats are chosen to optimize performance, and applications have no control
over the choices. However, the underlying data formats are exposed at I/O boundaries
(network input and output, and passing data to and from plugins) to allow applications to
minimize unnecessary format transformations.

Refer to the I/O Formats section for more details.

2.7. Dynamic Shapes

By default, TensorRT optimizes the model based on the input shapes (batch size, image
size, and so on) at which it was defined. However, the builder can be configured to allow
the input dimensions to be adjusted at runtime. In order to enable this, you specify one
or more instances of optimizationProfile in the builder configuration, containing for
each input a minimum and maximum shape, along with an optimization point within that
range.

TensorRT creates an optimized engine for each profile, choosing CUDA kernels that work
for all shapes within the [minimum, maximum] range and are fastest for the optimization
point - typically different kernels for each profile. You can then select among profiles at
runtime.

Refer to the Working with Dynamic Shapes chapter for more details.

2.8. DLA

TensorRT supports NVIDIA’s Deep Learning Accelerator (DLA), a dedicated inference
processor present on many NVIDIA SoCs that supports a subset of TensorRT’s layers.
TensorRT allows you to execute part of the network on the DLA and the rest on GPU;
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for layers that can be executed on either device, you can select the target device in the
builder configuration on a per-layer basis.

Refer to the Working with DLA chapter for more details.

2.9. Updating Weights

When building an engine, you can specify that it may later have its weights updated.
This can be useful if you are frequently updating the weights of the model without
changing the structure, such as in reinforcement learning or when retraining a model
while retaining the same structure. Weight updates are performed using the rRefitter
interface.

Refer to the Refitting an Engine section for more details.

2.10. trtexec Tool

Included in the samples directory is a command-line wrapper tool called trtexec. trtexec
is a tool to use TensorRT without having to develop your own application. The trtexec
tool has three main purposes:

» benchmarking networks on random or user-provided input data.
» generating serialized engines from models.

» generating a serialized timing cache from the builder.

Refer to the trtexec section for more details.

2.11. Polygraphy

Polygraphy is a toolkit designed to assist in running and debugging deep learning models
in TensorRT and other frameworks. It includes a Python APl and a command-line interface
(CLI) built using this API.

Among other things, with Polygraphy you can:

» Run inference among multiple backends, like TensorRT and ONNX-Runtime, and
compare results (for example API,CLI).

» Convert models to various formats, for example, TensorRT engines with post-training
quantization (for example API,CLI).

» View information about various types of models (for example CLI)
» Modify ONNX models on the command line:

» Extract subgraphs (for example CLI).

» Simplify and sanitize (for example CLI).

» Isolate faulty tactics in TensorRT (for example CLI).
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For more details, refer to the Polygraphy repository.
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Chapter 3. The C++ API

This chapter illustrates basic usage of the C++ API, assuming you are starting with an
ONNX model. sampleOnnxMNIST illustrates this use case in more detail.

The C++ APl can be accessed through the header NvInfer.h, and isin the nvinferl
namespace. For example, a simple application might begin with:
#include “NvInfer.h”

using namespace nvinferl;

Interface classes in the TensorRT C++ API begin with the prefix 1, for example 1Logger,
IBuilder, and so on.

A CUDA context is automatically created the first time TensorRT makes a call to CUDA, if
none exists before that point. It is generally preferable to create and configure the CUDA
context yourself before the first call to TensorRT.

In order to illustrate object lifetimes, code in this chapter does not use smart pointers;
however, their use is recommended with TensorRT interfaces.

3.1. The Build Phase

To create a builder, you first must instantiate the ILogger interface. This example
captures all warning messages but ignores informational messages:

class Logger : public ILogger
{

void log(Severity severity, const char* msg) noexcept override

{
// suppress info-level messages
if (severity <= Severity: :kWARNING)
std::cout << msg << std::endl;

}
} logger;

You can then create an instance of the builder:
IBuilder* builder = createInferBuilder (logger) ;

3.1.1. Creating a Network Definition

After the builder has been created, the first step in optimizing a model is to create a
network definition:

uint32_t flag = 1U << static_cast<uint32 t>
(NetworkDefinitionCreationFlag: : kEXPLICIT BATCH) ;
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INetworkDefinition* network = builder->createNetworkV2 (flag) ;

The kExpLICIT BATCH flag is required in order to import models using the ONNX parser.
Refer to the Explicit Versus Implicit Batch section for more information.

Now, the network definition must be populated from the ONNX representation. The
ONNX parser APl is in the file NvOnnxParser.h, and the parser is in the nvonnxparser C++
namespace.

#include “NvOnnxParser.h”

using namespace nvonnxparser;

You can create an ONNX parser to populate the network as follows:

IParser* parser = createParser (*network, logger) ;

Then, read the model file and process any errors.

parser->parseFromFile (modelFile,
static_cast<int32_t>(ILogger: :Severity: :kWARNING)) ;
for (int32_t i = 0; i < parser.getNbErrors(); ++i)

{
std: :cout << parser->getError (i)->desc() << std::endl;

}

An important aspect of a TensorRT network definition is that it contains pointers to
model weights, which are copied into the optimized engine by the builder. Since the
network was created using the parser, the parser owns the memory occupied by the
weights, and so the parser object should not be deleted until after the builder has run.

The next step is to create a build configuration specifying how TensorRT should optimize
the model.

IBuilderConfig* config = builder->createBuilderConfig() ;

This interface has many properties that you can set in order to control how TensorRT
optimizes the network. One important property is the maximum workspace size. Layer
implementations often require a temporary workspace, and this parameter limits the
maximum size that any layer in the network can use. If insufficient workspace is provided,
it is possible that TensorRT will not be able to find an implementation for a layer. By
default the workspace is set to the total global memory size of the given device; restrict it

when necessary, for example, when multiple engines are to be built on a single device.
config->setMemoryPoolLimit (MemoryPoolType: :kWORKSPACE, 1U << 20);

Once the configuration has been specified, the engine can be built.

IHostMemory* serializedModel = builder->buildSerializedNetwork (*network, *config) ;

Since the serialized engine contains the necessary copies of the weights, the parser,
network definition, builder configuration and builder are no longer necessary and may be
safely deleted:

delete parser;
delete network;
delete config;
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delete builder;

The engine can then be saved to disk, and the buffer into which it was serialized can be
deleted.

delete serializedModel

S Note: Serialized engines are not portable across platforms. Engines are specific to the
exact GPU model that they were built on (in addition to the platform).

Since building engines is intended as an offline process, it can take significant time. Refer
to the Optimizing Builder Performance section for how to make the builder run faster.

3.2. Deserializing a Plan

Assuming you have previously serialized an optimized model and want to perform
inference, you must create an instance of the Runtime interface. Like the builder, the
runtime requires an instance of the logger:

IRuntime* runtime = createInferRuntime (logger) ;

After you have read the model into a buffer, you can deserialize it to obtain an engine:

ICudaEngine* engine =
runtime->deserializeCudaEngine (modelData, modelSize) ;

3.3. Performing Inference

The engine holds the optimized model, but to perform inference we must manage
additional state for intermediate activations. This is done using the ExecutionContext
interface:

IExecutionContext *context = engine->createExecutionContext() ;

An engine can have multiple execution contexts, allowing one set of weights to be used
for multiple overlapping inference tasks. (A current exception to this is when using
dynamic shapes, when each optimization profile can only have one execution context,
unless the preview feature, kPROFILE SHARING 0806, is specified.)

To perform inference, you must pass TensorRT buffers for input and output, which
TensorRT requires you to specify with calls to setTensorAddress, which takes the name
of the tensor and the address of the buffer. You can query the engine using the names
you provided for input and output tensors to find the right positions in the array:
context->setTensorAddress (INPUT_NAME, inputBuffer);

context->setTensorAddress (OUTPUT_NAME, outputBuffer);

You can then call TensorRT’'s method enqueuev3 to start inference using a CUDA stream:

context->enqueueV3 (stream) ;

A network will be executed asynchronously or not depending on the structure and
features of the network. A non-exhaustive list of features that can cause synchronous
behavior are data dependent shapes, DLA usage, loops, and plugins that are synchronous,
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for example. It is common to enqueue data transfers with cudaMemcpyasync () before and
after the kernels to move data from the GPU if it is not already there.

To determine when the kernels (and possibly cudaMemcpyaAsync () ) are complete, use
standard CUDA synchronization mechanisms such as events or waiting on the stream.
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This chapter illustrates basic usage of the Python API, assuming you are starting with an
ONNX model. The onnx_resnet50.py sample illustrates this use case in more detail.

The Python API can be accessed through the tensorrt module:
import tensorrt as trt

4.1. The Build Phase

To create a builder, you must first create a logger. The Python bindings include a simple
logger implementation that logs all messages preceding a certain severity to stdout.

logger = trt.Logger (trt.Logger.WARNING)

Alternatively, it is possible to define your own implementation of the logger by deriving
from the ILogger class:

class MyLogger (trt.ILogger) :
def  init_ (self):
trt.ILogger._ init (self)

def log(self, severity, msg):
pass # Your custom logging implementation here

logger = MyLogger ()

You can then create a builder:
builder = trt.Builder (logger)

Since building engines is intended as an offline process, it can take significant time. Refer
to the Optimizing Builder Performance section for how to make the builder run faster.

4.1.1. Creating a Network Definition in Python

After the builder has been created, the first step in optimizing a model is to create a
network definition:

network = builder.create_network(l << int(trt.NetworkDefinitionCreationFlag.EXPLICIT BATCH))

The expLICcIT BATCH flag is required in order to import models using the ONNX parser.
Refer to the Explicit Versus Implicit Batch section for more information.
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4.1.2. Importing a Model Using the ONNX Parser

Now, the network definition must be populated from the ONNX representation. You can
create an ONNX parser to populate the network as follows:

parser = trt.OnnxParser (network, logger)

Then, read the model file and process any errors:

success = parser.parse_from file(model path)
for idx in range(parser.num_errors) :
print (parser.get_error (idx))

if not success:
pass # Error handling code here

4.1.3. Building an Engine

The next step is to create a build configuration specifying how TensorRT should optimize
the model:

config = builder.create builder config()

This interface has many properties that you can set in order to control how TensorRT
optimizes the network. One important property is the maximum workspace size. Layer
implementations often require a temporary workspace, and this parameter limits the
maximum size that any layer in the network can use. If insufficient workspace is provided,
it is possible that TensorRT will not be able to find an implementation for a layer. By
default, the workspace is set to the total global memory size of the given device; restrict

it when necessary, for example, when multiple engines are to be built on a single device.
config.set_memory pool limit (trt.MemoryPoolType.WORKSPACE, 1 << 20) # 1 MiB

After the configuration has been specified, the engine can be built and serialized with:

serialized engine = builder.build serialized network (network, config)

It may be useful to save the engine to a file for future use. You can do that like so:

with open(“sample.engine”, “wb”) as f:
f.write(serialized _engine)

S Note: Serialized engines are not portable across platforms. Engines are specific to the
exact GPU model that they were built on (in addition to the platform).

4.2. Deserializing a Plan

To perform inference, deserialize the engine using the rRuntime interface. Like the builder,
the runtime requires an instance of the logger.

runtime = trt.Runtime (logger)

You can then deserialize the engine from a memory buffer:

engine = runtime.deserialize cuda_engine (serialized engine)

If you want, first load the engine from a file:

with open(“sample.engine”, “rb”) as f:
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serialized engine = f.read()

The engine holds the optimized model, but to perform inference requires additional state
for intermediate activations. This is done using the 1ExecutionContext interface:

context = engine.create execution_context()

An engine can have multiple execution contexts, allowing one set of weights to be used
for multiple overlapping inference tasks. (A current exception to this is when using
dynamic shapes, when each optimization profile can only have one execution context,
unless the preview feature, PROFILE SHARING 0806, is specified.)

To perform inference, you must specify buffers for inputs and outputs:

context.set tensor_address(name, ptr)

Several Python packages allow you to allocate memory on the GPU, including, but not
limited to, the official CUDA Python bindings, PyTorch, cuPy, and Numba.

After populating the input buffer, you can call TensorRT’'s execute async v3 method
to start inference using a CUDA stream. A network will be executed asynchronously or
not depending on the structure and features of the network. A non-exhaustive list of
features that can cause synchronous behavior are data dependent shapes, DLA usage,
loops, and plugins that are synchronous, for example.

First, create the CUDA stream. If you already have a CUDA stream, you can use a

pointer to the existing stream. For example, for PyTorch CUDA streams, that is,
torch.cuda.Stream(), you can access the pointer using the cuda stream property; for
Polygraphy CUDA streams, use the ptr attribute; or you can create a stream using CUDA
Python binding directly by calling cudaStreamCreate ().

Next, start inference:

context.execute_async_v3 (buffers, stream ptr)

It is common to enqueue asynchronous transfers (cudaMemcpyasync () ) before and after
the kernels to move data from the GPU if it is not already there.

To determine when inference (and asynchronous transfers) are complete, use the
standard CUDA synchronization mechanisms such as events or waiting on the
stream. For example, with PyTorch CUDA streams or Polygraphy CUDA streams, issue
stream.synchronize (). With streams created with CUDA Python binding, issue

cudaStreamSynchronize (stream).
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Chapter 5. How TensorRT Works

This chapter provides more detail on how TensorRT works.

5.1. Object Lifetimes

TensorRT’s APl is class-based, with some classes acting as factories for other classes.
For objects owned by the user, the lifetime of a factory object must span the lifetime of
objects it creates. For example, the NetworkDefinition and BuilderConfig classes are
created from the Builder class, and objects of those classes should be destroyed before
the builder factory object.

An important exception to this rule is creating an engine from a builder. After you have
created an engine, you may destroy the builder, network, parser, and build config and
continue using the engine.

5.2. Error Handling and Logging

When creating TensorRT top-level interfaces (builder, runtime or refitter), you must
provide an implementation of the Logger interface. The logger is used for diagnostics and
informational messages; its verbosity level is configurable. Since the logger may be used
to pass back information at any point in the lifetime of TensorRT, its lifetime must span
any use of that interface in your application. The implementation must also be thread-
safe, since TensorRT may use worker threads internally.

An API call to an object will use the logger associated with the corresponding top-level
interface. For example, in a call to ExecutionContext: :enqueuev3 (), the execution
context was created from an engine, which was created from a runtime, so TensorRT will
use the logger associated with that runtime.

The primary method of error handling is the ErrorrRecorder interface. You can implement
this interface, and attach it to an API object to receive errors associated with that object.
The recorder for an object will also be passed to any others it creates - for example, if you
attach an error recorder to an engine, and create an execution context from that engine,
it will use the same recorder. If you then attach a new error recorder to the execution
context, it will receive only errors coming from that context. If an error is generated but
no error recorder is found, it will be emitted through the associated logger.
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Note that CUDA errors are generally asynchronous - so when performing multiple
inferences or other streams of CUDA work asynchronously in a single CUDA context, an
asynchronous GPU error may be observed in a different execution context than the one
that generated it.

TensorRT uses considerable amounts of device memory, (that is, memory directly
accessible by the GPU, as opposed to the host memory attached to the CPU). Since
device memory is often a constrained resource, it is important to understand how
TensorRT uses it.

During build, TensorRT allocates device memory for timing layer implementations. Some
implementations can consume a large amount of temporary memory, especially with
large tensors. You can control the maximum amount of temporary memory through

the memory pool limits of the builder config. The workspace size defaults to the full
size of device global memory but can be restricted when necessary. If the builder finds
applicable kernels that could not be run because of insufficient workspace, it will emit a
logging message indicating this.

Even with relatively little workspace however, timing requires creating buffers for input,
output, and weights. TensorRT is robust against the operating system (OS) returning out-
of-memory for such allocations. On some platforms the OS may successfully provide
memory, which then the out-of-memory killer process observes that the system is low on
memory, and kills TensorRT. If this happens free up as much system memory as possible
before retrying.

During the build phase, there will typically be at least two copies of the weights in host
memory: those from the original network, and those included as part of the engine as it is
built. In addition, when TensorRT combines weights (for example convolution with batch
normalization) additional temporary weight tensors will be created.

At runtime, TensorRT uses relatively little host memory, but can use considerable
amounts of device memory.

An engine, on deserialization, allocates device memory to store the model weights. Since
the serialized engine is almost all weights, its size is a good approximation to the amount
of device memory the weights require.

An ExecutionContext uses two kinds of device memory:

Persistent memory required by some layer implementations - for example, some
convolution implementations use edge masks, and this state cannot be shared
between contexts as weights are, because its size depends on the layer input
shape, which may vary across contexts. This memory is allocated on creation of the
execution context, and lasts for its lifetime.

NVIDIA TensorRT 8.6.13 Developer Guide SWE-SWDOCTRT-005-DEVG | 20



How TensorRT Works

Scratch memory, used to hold intermediate results while processing the network.
This memory is used for intermediate activation tensors. It is also used for temporary
storage required by layer implementations, the bound for which is controlled by
IBuilderConfig::setMemoryPoolLimit ().

You may optionally create an execution context without scratch memory using
ICudaEngine: :createExecutionContextWithoutDeviceMemory () and provide that
memory yourself for the duration of network execution. This allows you to share it
between multiple contexts that are not running concurrently, or for other uses while
inference is not running. The amount of scratch memory required is returned by
ICudaEngine: :getDeviceMemorySize ().

Information about the amount of persistent memory and scratch memory used by the
execution context is emitted by the builder when building the network, at severity kINFO.
Examining the log, the messages look similar to the following:

[08/12/2021-17:39:11] [I] [TRT] Total Host Persistent Memory: 106528

[08/12/2021-17:39:11] [I] [TRT] Total Device Persistent Memory: 29785600
[08/12/2021-17:39:11] [I] [TRT] Total Scratch Memory: 9970688

By default, TensorRT allocates device memory directly fromm CUDA. However, you can
attach an implementation of TensorRT's IGpuallocator interface to the builder or
runtime and manage device memory yourself. This is useful if your application wants to
control all GPU memory and suballocate to TensorRT instead of having TensorRT allocate
directly from CUDA.

TensorRT’s dependencies (NVIDIA cuDNN and NVIDIA cuBLAS) can occupy large amounts
of device memory. TensorRT allows you to control whether these libraries are used for
inference by using the TacticSources attribute in the builder configuration. Note that
some plugin implementations require these libraries, so that when they are excluded, the
network may not be compiled successfully.

In addition, PreviewFeature: : kDISABLE EXTERNAL TACTIC SOURCES FOR _CORE 0805

is used to control the usage of cuDNN, cuBLAS, and cuBLASLt in the TensorRT core
library. When this flag is set, the TensorRT core library will not use these tactics even

if they are specified by TBuilderConfig: :setTacticSources (). This flag will not

affect the cudnnContext and cublasContext handles passed to the plugins using
IPluginV2Ext: :attachToContext () if the appropriate tactic sources are set. This flag is
set by default.

The CUDA infrastructure and TensorRT’s device code also consume device memory.
The amount of memory varies by platform, device, and TensorRT version. You can use
cudaGetMemInfo to determine the total amount of device memory in use.

TensorRT measures the amount of memory in use before and after critical operations in
builder and runtime. These memory usage statistics are printed to TensorRT's information

logger. For example:
[MemUsageChange] Init CUDA: CPU +535, GPU +0, now: CPU 547, GPU 1293 (MiB)
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It indicates the memory use change by CUDA initialization. cPu +535, GPU +0 is the
increased amount of memory after running CUDA initialization. The content after now: is
the CPU/GPU memory usage snapshot after CUDA initialization.

S Note: In a multi-tenant situation, the reported memory use by cudaGetMemInfo and
TensorRT is prone to race conditions where a new allocation/free done by a different
process or a different thread. Since CUDA is not in control of memory on unified-memory
devices, the results returned by cudaGetMemInfo may not be accurate on these platforms.

5.3.3. CUDA Lazy Loading

CUDA lazy loading is a CUDA feature that can significantly reduce the peak GPU and host
memory usage of TensorRT and speed up TensorRT initialization with negligible (< 1%)
performance impact. The saving of memory usage and initialization time depends on

the model, software stack, GPU platform, etc. It is enabled by setting the environment
variable cCuDA_ MODULE LOADING=LAzY. Refer to the NVIDIA CUDA documentation for more
information.

5.3.4. L2 Persistent Cache Management

NVIDIA Ampere and later architectures support L2 cache persistence, a feature which
allows prioritization of L2 cache lines for retention when a line is chosen for eviction.
TensorRT can use this to retain activations in cache, reducing DRAM traffic, and power
consumption.

Cache allocation is per-execution context, enabled using the context’s
setPersistentCachelLimit method. The total persistent cache among all

contexts (and other components using this feature) should not exceed

cudaDeviceProp: :persistingL2CacheMaxSize. Refer to the NVIDIA CUDA Best Practices
Guide for more information.

5.4. Threading

In general, TensorRT objects are not thread safe; accesses to an object from different
threads must be serialized by the client.

The expected runtime concurrency model is that different threads will operate on
different execution contexts. The context contains the state of the network (activation
values, and so on) during execution, so using a context concurrently in different threads
results in undefined behavior.

To support this model, the following operations are thread safe:
» Nonmodifying operations on a runtime or engine.

» Deserializing an engine from a TensorRT runtime.

» Creating an execution context from an engine.

» Registering and deregistering plugins.
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There are no thread-safety issues with using multiple builders in different threads;
however, the builder uses timing to determine the fastest kernel for the parameters
provided, and using multiple builders with the same GPU will perturb the timing and
TensorRT’s ability to construct optimal engines. There are no such issues using multiple
threads to build with different GPUs.

5.5. Determinism

The TensorRT builder uses timing to find the fastest kernel to implement a given
operator. Timing kernels is subject to noise - other work running on the GPU, fluctuations
in GPU clock speed, and so on. Timing noise means that on successive runs of the builder,
the same implementation may not be selected.

In general, different implementations will use a different order of floating point
operations, resulting in small differences in the output. The impact of these differences
on the final result is usually very small. However, when TensorRT is configured to optimize
by tuning over multiple precisions, the difference between an FP16 and an FP32 kernel
can be more significant, particularly if the network has not been well regularized or is
otherwise sensitive to numerical drift.

Other configuration options that can result in a different kernel selection are different
input sizes (for example, batch size) or a different optimization point for an input profile
(refer to the Working with Dynamic Shapes section).

The algorithmSelector interface allows you to force the builder to pick a particular
implementation for a given layer. You can use this to ensure that the same kernels are
picked by the builder from run to run. For more information, refer to the Algorithm
Selection and Reproducible Builds section.

After an engine has been built, except for IFillLayer, it is deterministic: providing the
same input in the same runtime environment will produce the same output.

5.5.1. IFillLayer Determinism

When 1FillLayer is added to a network using either the RANDOM UNIFORM OF

RANDOM NORMAL operations, the determinism guarantee above is no longer valid. On each
invocation, these operations generate tensors based on the RNG state, and then update
the RNG state. This state is stored on a per-execution context basis.

5.6. Runtime Options

TensorRT provides multiple runtime libraries to meet a variety of use cases. C++
applications that run TensorRT engines should link against one of the following:

» The default runtime is the main library (1ibnvinfer.so/.d11).

» The lean runtime library (1ibnvinfer lean.so/.d11)is much smaller than the default
library, and contains only the code necessary to run a version-compatible engine. It
has some restrictions; primarily, it cannot refit or serialize engines.
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The dispatch runtime (1ibnvinfer dispatch.so/.d11)is a small shim library that can
load a lean runtime, and redirect calls to it. The dispatch runtime is capable of loading
older versions of the lean runtime, and together with appropriate configuration of the
builder, can be used to provide compatibility between a newer version of TensorRT and
an older plan file. Using the dispatch runtime is almost the same as manually loading
the lean runtime, but it checks that APIs are implemented by the lean runtime loaded,
and performs some parameter mapping to support APl changes where possible.

The lean runtime contains fewer operator implementations than the default runtime.
Since TensorRT chooses operator implementations at build time, you need to specify that
the engine should be built for the lean runtime by enabling version compatibility. It may
be slightly slower than an engine built for the default runtime.

The lean runtime contains all the functionality of the dispatch runtime, and the default
runtime contains all the functionality of the lean runtime.

TensorRT provides Python packages corresponding to each of the above libraries:
tensorrt

A Python package. It is the Python interface for the default runtime.
tensorrt_lean

A Python package. It is the Python interface for the lean runtime.
tensorrt_dispatch

A Python package. It is the Python interface for the dispatch runtime.

Python applications that run TensorRT engines should import one of the above packages
to load the appropriate library for their use case.

By default, serialized engines are only guaranteed to work correctly when used with the
same OS, CPU architectures, GPU models, and TensorRT versions used to serialize the
engines. Refer to the Version Compatibility and Hardware Compatibility sections for how
to relax the constraints on TensorRT versions and GPU models.
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By default, TensorRT engines are compatible only with the version of TensorRT with which
they are built. With appropriate build-time configuration, engines can be built that are
compatible with other TensorRT minor versions within a major version. TensorRT engines
built with TensorRT 8 will also be compatible with TensorRT 9 runtimes, but not vice versa.

Version compatibility is supported from version 8.6; that is, the plan must be built with a
version at least 8.6 or higher, and the runtime must be 8.6 or higher.

When using version compatibility, the API supported at runtime for an engine is the
intersection of the API supported in the version with which it was built, and the API of the
version used to run it. TensorRT removes APIs only on major version boundaries so this is
not a concern within a major version. However, users wishing to use TensorRT 8 engines
with TensorRT 9 must migrate away from deprecated APIs.

The recommended approach to creating a version-compatible engine is to build as
follows:
C++

builderConfig.setFlag(BuilderFlag: :kVERSION COMPATIBLE) ;
IHostMemory* plan = builder->buildSerializedNetwork (network, config) ;

Python

builder config.set flag(tensorrt.BuilderFlag.VERSION COMPATIBLE)

plan = builder.build serialized network (network, config)
This flag is not supported with implicit batch mode. The network must be created with
NetworkDefinitionCreationFlag: :kEXPLICIT BATCH.

This causes a copy of the lean runtime to be added to the plan. When you subsequently
deserialize the plan, TensorRT recognizes that it contains a copy of the runtime. It loads
the runtime, and uses it to deserialize and execute the rest of the plan. Because this
results in code being loaded and run from the plan in the context of the owning process,
you should only deserialize trusted plans this way. To indicate to TensorRT that you trust
the plan, call:
C++

runtime->setEngineHostCodeAllowed (true) ;
Python

runtime.engine host_code allowed = True
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The flag for trusted plans is also required if you are packaging plugins in the plan (refer to
Plugin Shared Libraries).

The previous approach (Version Compatibility) packages a copy of the runtime with every
plan, which can be prohibitive if your application uses a large number of models. An
alternative approach is to manage the runtime loading yourself. For this approach, build
version compatible plans as explained in the previous section, but also set an additional
flag to exclude the lean runtime.

C++

builderConfig.setFlag (BuilderFlag: :kVERSION COMPATIBLE) ;
builderConfig.setFlag(BuilderFlag: :kEXCLUDE LEAN RUNTIME) ;
IHostMemory* plan = builder->buildSerializedNetwork (network, config) ;

Python

builder config.set flag(tensorrt.BuilderFlag.VERSION COMPATIBLE)
builder config.set flag(tensorrt.BuilderFlag.EXCLUDE LEAN RUNTIME)
plan = builder.build serialized network (network, config)

To run this plan, you must have access to the lean runtime for the version with which it
was built. Suppose you have built the plan with TensorRT 8.6 and your application is linked
against TensorRT 9, you can load the plan as follows.

C++

IRuntime* v9Runtime = createInferRuntime (logger) ;
IRuntime* v8ShimRuntime = v9Runtime->loadRuntime (v8RuntimePath) ;
engine = v8ShimRuntime->deserializeCudaEngine (v8plan) ;

Python

v9_runtime = tensorrt.Runtime (logger)

v8_shim runtime = v9_ runtime.load runtime(v8 runtime path)

engine = v8_ shim runtime.deserialize cuda_ engine(v8_plan)
The runtime will translate TensorRT 9 API calls for the TensorRT 8.6 runtime, checking to
ensure that the call is supported and performing any necessary parameter remapping.

On most OSs, TensorRT can load the shared runtime library directly from memory.
However, on Linux kernels prior to 3.17, a temporary directory is required. Use the
IRuntime: :setTempfileControlFlags and IRuntime: : setTemporaryDirectory APIs to
control TensorRT's use of these mechanisms.

When building a version-compatible engine from a TensorRT network definition
generated using TensorRT's ONNX parser, you must specify that the parser must use the
native InstanceNormalization implementation instead of the plugin one.

To do this, use the IParser::setFlag() APL
C++

auto *parser = nvonnxparser::createParser (network, logger) ;
parser->setFlag (nvonnxparser: :OnnxParserFlag: :kKNATIVE INSTANCENORM) ;
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Python

parser = trt.OnnxParser (network, logger)
parser.set flag(trt.OnnxParserFlag.NATIVE INSTANCENORM)

In addition, the parser may require the use of plugins in order to fully implement all
ONNX operators used in the network. In particular, if the network is used to build a

version-compatible engine, some plugins may need to be included with the engine (either
serialized with the engine, or provided externally and loaded explicitly).

To query the list of plugin libraries needed to implement a particular parsed network, use
the IParser::getUsedvVCPluginLibraries API:
C++
auto *parser = nvonnxparser: :createParser (network, logger) ;
parser->setFlag (nvonnxparser: :OnnxParserFlag: : kNATIVE INSTANCENORM) ;
parser->parseFromFile (filename, static cast<int>(ILogger: :Severity::kINFO)) ;
int64_t nbPluginLibs;
char const* const* pluginlLibs = parser->getUsedVCPluginLibraries (nbPluginLibs) ;
Python

parser = trt.OnnxParser (network, logger)
parser.set_flag(trt.OnnxParserFlag.NATIVE INSTANCENORM)

status = parser.parse from file(filename)
plugin_libs = parser.get used vc plugin libraries()

Refer to Plugin Shared Libraries, for how to use the resulting library list to serialize the
plugins or package them externally.

By default, TensorRT engines are only compatible with the type of device where they were
built. With build-time configuration, engines can be built that are compatible with other
types of devices. Currently, hardware compatibility is supported only for Ampere and later
device architectures and is not supported on NVIDIA DRIVE OS or JetPack.

For example, to build an engine compatible with all Ampere and newer architectures,
configure the 1BuilderConfig as follows:
config->setHardwareCompatibilityLevel (nvinferl: :HardwareCompatibilityLevel: :kAMPERE PLUS) ;

When building in hardware compatibility mode, TensorRT excludes tactics that are

not hardware compatible, such as those that use architecture-specific instructions

or require more shared memory than is available on some devices. Thus, a hardware-
compatible engine may have lower throughput and/or higher latency than its non-
hardware-compatible counterpart. The degree of this performance impact depends on
the network architecture and input sizes.

TensorRT records in a plan the major, minor, patch and build versions of the library used
to create the plan. If these do not match the version of the runtime used to deserialize
the plan, it will fail to deserialize. When using version compatibility, the check will be
performed by the lean runtime deserializing the plan data. By default, that lean runtime is
included in the plan, and the match is guaranteed to succeed.
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TensorRT also records the compute capability (major and minor versions) in the plan,
and checks it against the GPU on which the plan is being loaded. If they do not match,
the plan will fail to deserialize. This ensures that kernels selected during the build phase
are present and can run. When using hardware compatibility, the check is relaxed; with
HardwareCompatibilityLevel::kAMPERE PLUS, the check will ensure that the compute
capability is greater than or equal to 8.0 rather than checking for an exact match.

TensorRT additionally checks the following properties and will issue a warning if they do
not match, except when using hardware compatibility:

Global memory bus width

L2 cache size

Maximum shared memory per block and per multiprocessor
Texture alignment requirement

Number of multiprocessors

Whether the GPU device is integrated or discrete

If GPU clock speeds differ between engine serialization and runtime systems, the chosen
tactics from the serialization system may not be optimal for the runtime system and may
incur some performance degradation.

If the device memory available during deserialization is smaller than the amount during
serialization, deserialization may fail due to memory allocation failures.

If optimizing a single TensorRT engine for use on multiple devices in the same
architecture, the recommended approach is to run the builder on the smallest device.
Alternatively, you can build the engine on the larger device with limited compute
resources (refer to the Limiting Compute Resources section). This is because when
building small models on large devices, TensorRT may choose kernels that are less
efficient but scale better across the available resources. In addition, the APIs that
TensorRT uses to select and configure kernels from cuDNN and cuBLAS do not support
cross-device compatibility, so disable the use of these tactic sources in the builder
configuration.

The safety runtime is able to deserialize engines generated in an environment where the
major, minor, patch, and build version of TensorRT does not match exactly in some cases.
Refer to the NVIDIA DRIVE OS 6.0 Developer Guide for more information.

TensorRT can refit an engine with new weights without having to rebuild it, however, the
option to do so must be specified when building:

config->setFlag(BuilderFlag: :kREFIT)
builder->buildSerializedNetwork (network, config);
Later, you can create a Refitter object:

ICudaEngine* engine
IRefitter* refitter

createInferRefitter (*engine,glogger)
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Then update the weights. For example, to update the kernel weights for a convolution
layer named "MylLayer":
Weights newWeights = ...;
refitter->setWeights ("MyLayer" ,WeightsRole: :kKERNEL,

newWeights) ;
The new weights should have the same count as the original weights used to build the
engine. setWeights returns false if something went wrong, such as a wrong layer name or
role or a change in the weights count.

Because of the way the engine is optimized, if you change some weights, you might have
to supply some other weights too. The interface can tell you what additional weights must
be supplied.

You can use INetworkDefinition::setWeightsName () to name weights at build time
- the ONNX parser uses this API to associate the weights with the names used in the

ONNX model. Then, later you can use setNamedWeights to update the weights:

Weights newWeights = ...;
refitter->setNamedWeights ("MyWeights", newWeights) ;

setNamedWeights and setWeights can be used at the same time, that is, you can update
weights with names using setNamedWeights and update those unnamed weights using
setWeights.

This typically requires two calls to TRefitter: :getMissing, first to get the number of
weights objects that must be supplied, and second to get their layers and roles.

const int32 t n = refitter->getMissing (0, nullptr, nullptr);

std: :vector<const char*> layerNames (n) ;

std: :vector<WeightsRole> weightsRoles (n) ;

refitter->getMissing(n, layerNames.data(),
weightsRoles.data()) ;

Alternatively, to get the names of all missing weights, run:

const int32_t n = refitter->getMissingWeights (0, nullptr);
std: :vector<const char*> weightsNames (n) ;
refitter->getMissingWeights (n, weightsNames.data())

You can supply the missing weights, in any order:

for (int32_t i = 0; i < n; ++i)
refitter->setWeights (layerNames[i], weightsRoles[i],
Weights{...});

The set of missing weights returned is complete, in the sense that supplying only the
missing weights does not generate a need for any more weights.

Once all the weights have been provided, you can update the engine:

bool success = refitter->refitCudaEngine() ;
assert (success) ;

If refit returns false, check the log for a diagnostic, perhaps about weights that are still
missing.

You can then delete the refitter:

delete refitter;
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The updated engine behaves as if it had been built from a network updated with the new
weights.

To view all refittable weights in an engine, use refitter->getAll(...) Or refitter-
>getAllWeights (...); similarly to how getMissing and getMissingWeights were used
previously.

6.5. Algorithm Selection and
Reproducible Builds

The default behavior of TensorRT’s optimizer is to choose the algorithms that globally
minimize the execution time of the engine. It does this by timing each implementation,
and sometimes, and when implementations have similar timings, it is possible that
system noise will determine which will be chosen on any particular run of the builder.
Different implementations will typically use different order of accumulation of floating
point values, and two implementations may use different algorithms or even run at
different precisions. Thus, different invocations of the builder will typically not result in
engines that return bit-identical results.

Sometimes it is important to have a deterministic build, or to recreate the algorithm
choices of an earlier build. By providing an implementation of the TaAlgorithmSelector
interface and attaching it to a builder configuration with setAlgorithmSelector, you can
guide algorithm selection manually.

The method IalgorithmSelector: :selectAlgorithms receives an AlgorithmContext
containing information about the algorithm requirements for a layer, and a set of
Algorithm choices meeting those requirements. It returns the set of algorithms which
TensorRT should consider for the layer.

The builder selects from these algorithms the one that minimizes the global runtime for
the network. If no choice is returned and BuilderFlag: : kREJECT EMPTY ALGORITHMS

is unset, TensorRT interprets this to mean that any algorithm may be used for this

layer. To override this behavior and generate an error if an empty list is returned, set the
BuilderFlag::kREJECT EMPTY ALGORITHMSS flag.

After TensorRT has finished optimizing the network for a given profile, it calls
reportAlgorithms, which can be used to record the final choice made for each layer.

To build a TensorRT engine deterministically, return a single choice from
selectAlgorithms. To replay choices from an earlier build, use reportAlgorithms to
record the choices in that build, and return them in selectAlgorithms.

sampleAlgorithmSelector demonstrates how to use the algorithm selector to achieve
determinism and reproducibility in the builder.

Note:
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» The notion of a "layer" in algorithm selection is different from 1Layer in
INetworkDefinition. The "layer" in the former can be equivalent to a collection of
multiple network layers due to fusion optimizations.

» Picking the fastest algorithm in selectaAlgorithms may not produce the best
performance for the overall network, as it may increase reformatting overhead.

» The timing of an TAlgorithmis 0 in selectAlgorithms if TensorRT found that layer to
be a no-op.

» reportAlgorithms does not provide the timing and workspace information for an
IAlgorithm that are provided to selectAlgorithms.

6.6. Creating a Network Definition from
Scratch

Instead of using a parser, you can also define the network directly to TensorRT using the
Network Definition API. This scenario assumes that the per-layer weights are ready in
host memory to pass to TensorRT during the network creation.

The following examples create a simple network with Input, Convolution, Pooling,
MatrixMultiply, Shuffle, Activation, and SoftMax layers.

For more information regarding layers, refer to the NVIDIA TensorRT Operator’s
Reference.

6.6.1. C++

In this example, the weights are loaded into a weightMap data structure used in the
following code.

First create the builder and network objects. Note that in the following example, the
logger is initialized using the 1ogger.cpp file common to all C++ samples. The C++ sample
helper classes and functions can be found in the common . h header file.

auto builder =
SampleUniquePtr<nvinferl: :IBuilder>(nvinferl: :createInferBuilder (sample: :gLogger.getTRTLogger())) ;
const auto explicitBatchFlag = 1U <<
static_cast<uint32_t>(nvinferl: :NetworkDefinitionCreationFlag: :kEXPLICIT BATCH) ;
auto network = SampleUniquePtr<nvinferl: :INetworkDefinition>(builder-
>createNetworkV2 (explicitBatchFlag)) ;

Refer to the Explicit Versus Implicit Batch section for more information about the
kEXPLICIT BATCH flag.

Add the Input layer to the network by specifying the name, datatype, and full dimensions
of the input tensor. A network can have multiple inputs, although in this sample there is
only one:

auto data = network->addInput (INPUT BLOB NAME, datatype, Dims4{1, 1, INPUT_H, INPUT W})

Add the Convolution layer with hidden layer input nodes, strides, and weights for filter
and bias.

auto convl = network->addConvolution (
*data->getOutput(0) , 20, DimsHW{5, 5}, weightMap["convlfilter"], weightMap["convlbias"]) ;
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convl->setStride (DimsHW{1l, 1});

Note: Weights passed to TensorRT layers are in host memory.

Add the Pooling layer; note that the output from the previous layer is passed as input.

auto pooll = network->addPooling (*convl->getOutput(0), PoolingType::kMAX, DimsHW{2, 2});

pooll->setStride (DimsHW{2, 2});

Add a Shuffle layer to reshape the input in preparation for a matrix multiplication:

int32_t const batch = input->getDimensions().d[0];

int32_t const mmInputs = input.getDimensions().d[1] * input.getDimensions().d[2] *
input.getDimensions () .d[3];

auto inputReshape = network->addShuffle (*input) ;

inputReshape->setReshapeDimensions (Dims{2, {batch, mmInputs}});

Now, add a MatrixMultiply layer. Here, the model exporter provided transposed weights,

so the kTRANSPOSE option is specified for those.

IConstantLayer* filterConst = network->addConstant (Dims{2, {nbOutputs, mmInputs}},
mWeightMap["iplfilter"]) ;

auto mm = network->addMatrixMultiply (*inputReshape->getOutput (0), MatrixOperation: :kNONE,
*filterConst->getOutput (0) , MatrixOperation: :kTRANSPOSE) ;

Add the bias, which will broadcast across the batch dimension.

auto biasConst = network->addConstant(Dims{2, {1, nbOutputs}}, mWeightMap["iplbias"])
auto biasAdd = network->addElementWise (*mm->getOutput(0) , *biasConst->getOutput(0),
ElementWiseOperation: :kSUM) ;

Add the RelLU Activation layer:

auto relul = network->addActivation (*ipl->getOutput(0), ActivationType: :kRELU) ;

Add the SoftMax layer to calculate the final probabilities:
auto prob = network->addSoftMax (*relul->getOutput(0)) ;

Add a name for the output of the SoftMax layer so that the tensor can be bound to a
memory buffer at inference time:
prob->getOutput (0) ->setName (OUTPUT BLOB_NAME) ;

Mark it as the output of the entire network:
network->markOutput (*prob->getOutput (0)) ;

The network representing the MNIST model has now been fully constructed. Refer to
sections Building an Engine and Deserializing a Plan for how to build an engine and run
inference with this network.

Code corresponding to this section can be found in network_api_pytorch_mnist.

This example uses a helper class to hold some of metadata about the model:

class ModelData (object) :
INPUT_NAME = "data"
INPUT_ SHAPE (1, 1, 28, 28)
OUTPUT_NAME "prob"
OUTPUT_SIZE = 10
DTYPE = trt.float32

In this example, the weights are imported from the PyTorch MNIST model.

weights = mnist _model.get weights()

Create the logger, builder, and network classes.
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TRT_LOGGER = trt.Logger (trt.Logger.ERROR)

builder = trt.Builder (TRT_ LOGGER)

EXPLICIT BATCH = 1 << (int) (trt.NetworkDefinitionCreationFlag.EXPLICIT BATCH)
network = builder.create network (EXPLICIT BATCH)

Refer to the Explicit Versus Implicit Batch section for more information about the
kEXPLICIT BATCH flag.

Next, create the input tensor for the network, specifying the name, datatype, and shape
of the tensor.

input tensor = network.add input(name=ModelData.INPUT NAME, dtype=ModelData.DTYPE,
shape=ModelData.INPUT SHAPE)

Add a convolution layer, specifying the inputs, number of output maps, kernel shape,
weights, bias, and stride:

convl w = weights['convl.weight'].numpy ()
convl b = weights['convl.bias'].numpy ()
convl = network.add convolution (input=input tensor, num output maps=20, kernel_ shape=(5,
5) , kernel=convl_w, bias=convl_b)
convl.stride = (1, 1)

Add a pooling layer, specifying the inputs (the output of the previous convolution layer),
pooling type, window size, and stride:
pooll = network.add pooling(input=convl.get output(0), type=trt.PoolingType.MAX,

window_size=(2, 2))
pooll.stride = (2, 2)

Add the next pair of convolution and pooling layers:

conv2_w weights|['conv2.weight'] .numpy ()

conv2 b weights['conv2.bias'] .numpy ()

conv2 = network.add convolution(pooll.get_ output(0), 50, (5, 5), conv2_w, conv2_b)
conv2.stride = (1, 1)

pool2 = network.add pooling(conv2.get output(0), trt.PoolingType.MAX, (2, 2))
pool2.stride = (2, 2)

Add a Shuffle layer to reshape the input in preparation for a matrix multiplication:

batch = input.shape[0]

mm_inputs = np.prod(input.shape[1l:])

input_reshape = net.add shuffle (input)

input reshape.reshape dims = trt.Dims2(batch, mm_inputs)

Now, add a MatrixMultiply layer. Here, the model exporter provided transposed weights,

so the kxTRANSPOSE option is specified for those.

filter const = net.add constant(trt.Dims2 (nbOutputs, k), weights["fcl.weight"].numpy())
mm = net.add matrix multiply(input_reshape.get output(0), trt.MatrixOperation.NONE,
filter const.get_output(0), trt.MatrixOperation.TRANSPOSE) ;

Add bias, which will broadcast across the batch dimension:

bias_const = net.add constant(trt.Dims2 (1, nbOutputs), weights["fcl.bias"].numpy())
bias_add = net.add elementwise (mm.get output(0), bias const.get output(0),
trt.ElementWiseOperation.SUM)

Add the RelU activation layer:

relul = network.add activation(input=fcl.get output(0), type=trt.ActivationType.RELU)

Add the final fully connected layer, and mark the output of this layer as the output of the
entire network:

fc2_w = weights['£fc2.weight'].numpy ()

fc2 b = weights['fc2.bias'] .numpy ()

fc2 = network.add fully connected(relul.get output(0), ModelData.OUTPUT SIZE, fc2 w,
fc2 b)
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fc2.get_output (0) .name = ModelData.OUTPUT_ NAME

network.mark output(tensor=fc2.get output(0))
The network representing the MNIST model has now been fully constructed. Refer to
sections Building an Engine and Performing Inference for how to build an engine and run
inference with this network.

6.7. Reduced Precision

6.7.1. Network-Level Control of Precision

By default, TensorRT works in 32-bit precision, but can also execute operations using 16-
bit floating point, and 8-bit quantized floating point. Using lower precision requires less
memory and enables faster computation.

Reduced precision support depends on your hardware (refer to Hardware and Precision).
You can query the builder to check the supported precision support on a platform:
C++
if (builder->platformHasFastFplé6()) { .. };
Python

if builder.platform has_£fplé6:

Setting flags in the builder configuration informs TensorRT that it may select lower-
precision implementations:
C++
config->setFlag(BuilderFlag: :kFP16) ;
Python
config.set flag(trt.BuilderFlag.FP16)

There are three precision flags: FP16, INT8, and TF32, and they may be enabled
independently. Note that TensorRT will still choose a higher-precision kernel if it results in
overall lower runtime, or if no low-precision implementation exists.

When TensorRT chooses a precision for a layer, it automatically converts weights as
necessary to run the layer.

While using FP16 and TF32 precisions is relatively straightforward, there is additional
complexity when working with INT8. Refer to the Working with INT8 chapter for more
details.

Note that even if the precision flags are enabled, the input/output bindings of the engine
defaults to FP32. Refer to the I/O Formats section about how to set the data types and
formats of the input/output bindings.

6.7.2. Layer-Level Control of Precision

The builder flags provide permissive, coarse-grained control. However, sometimes part of
a network requires higher dynamic range or is sensitive to numerical precision. You can
constrain the input and output types per layer:

C++

layer->setPrecision (DataType: :kFP16)
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Python

layer.precision = trt.fplé
This provides a preferred type (here, bataType: : kFP16) for the inputs and outputs.

You may further set preferred types for the layer’'s outputs:
C++
layer->setOutputType (out_tensor_index, DataType: :kFLOAT)

Python

layer.set output_ type (out_tensor_index, trt.£fp32)

The computation will use the same floating-point type as is preferred for the inputs.

Most TensorRT implementations have the same floating-point types for input and output;
however, Convolution, Deconvolution, and FullyConnected can support quantized INT8
input and unquantized FP 16 or FP32 output, as sometimes working with higher-precision
outputs from quantized inputs is necessary to preserve accuracy.

Setting the precision constraint hints to TensorRT that it should select a layer
implementation whose inputs and outputs match the preferred types, inserting reformat
operations if the outputs of the previous layer and the inputs to the next layer do

not match the requested types. Note that TensorRT will only be able to select an
implementation with these types if they are also enabled using the flags in the builder
configuration.

By default, TensorRT chooses such an implementation only if it results in a higher-
performance network. If another implementation is faster, TensorRT uses it and issues a
warning. You can override this behavior by preferring the type constraints in the builder
configuration.
C++

config->setFlag (BuilderFlag: : kPREFER PRECISION_ CONSTRAINTS)
Python

config.set flag(trt.BuilderFlag.PREFER PRECISION_ CONSTRAINTS)

If the constraints are preferred, TensorRT obeys them unless there is no implementation
with the preferred precision constraints, in which case it issues a warning and uses the
fastest available implementation.

To change the warning to an error, use OBEY instead of PREFER:
C++

config->setFlag (BuilderFlag: :kOBEY_ PRECISION CONSTRAINTS) ;
Python

config.set_ flag(trt.BuilderFlag.OBEY_ PRECISION_CONSTRAINTS) ;
sampleINT8API illustrates the use of reduced precision with these APIs.

Precision constraints are optional - you can query to determine whether a constraint has
been set using layer->precisionIsSet () in C++ or layer.precision is set in Python.
If a precision constraint is not set, then the result returned from layer->getPrecision ()
in C++, or reading the precision attribute in Python, is not meaningful. Output type
constraints are similarly optional.

If no constraints are set using ILayer::setPrecision Or ILayer: :setOutputType

API, then BuilderFlag: : kPREFER_PRECISION CONSTRAINTS OF

BuilderFlag::kOBEY PRECISION CONSTRAINTS are ignored. A layer is free to choose from
any precision or output types based on allowed builder precisions.

NVIDIA TensorRT 8.6.13 Developer Guide SWE-SWDOCTRT-005-DEVG | 35



Advanced Topics

Note that the ITensor: :setType () APl does not set the precision constraint of a tensor,
unless it is one of the input/output tensors of the network. Also, there is a distinction
between layer->setOutputType () and layer->getOutput (1) ->setType (). The former,
is an optional type that constrains the implementation that TensorRT will choose for a
layer. The latter, specifies the type of a network input/output and is ignored if the tensor
is not a network input/output. If they are different, TensorRT will insert a cast to ensure
that both specifications are respected. Thus if you are calling setoutputType () for a layer
that produces a network output, you should in general also configure the corresponding
network output to have the same type.

6.7.3. TF32

TensorRT allows the use of TF32 Tensor Cores by default. When computing inner
products, such as during convolution or matrix multiplication, TF32 execution does the
following:

» Rounds the FP32 multiplicands to FP 16 precision but keeps the FP32 dynamic range.
» Computes an exact product of the rounded multiplicands.

» Accumulates the products in an FP32 sum.

TF32 Tensor Cores can speed up networks using FP32, typically with no loss of accuracy.
It is more robust than FP 16 for models that require an HDR (high dynamic range) for
weights or activations.

There is no guarantee that TF32 Tensor Cores are actually used, and there is no way to
force the implementation to use them - TensorRT can fall back to FP32 at any time and
always falls back if the platform does not support TF32. However you can disable their
use by clearing the TF32 builder flag.
C++

config->clearFlag (BuilderFlag: :kTF32) ;
Python

config.clear flag(trt.BuilderFlag.TF32)

Setting the environment variable NvIDIA TF32 OVERRIDE=0 when building an engine
disables the use of TF32, despite setting BuilderFlag: :kTF32. This environment variable,
when set to 0, overrides any defaults or programmatic configuration of NVIDIA libraries,
so they never accelerate FP32 computations with TF32 Tensor Cores. This is meant to be
a debugging tool only, and no code outside NVIDIA libraries should change the behavior
based on this environment variable. Any other setting besides 0 is reserved for future use.

WARNING: Setting the environment variable NvIDIA TF32 OVERRIDE to a different value
when the engine is run can cause unpredictable precision/performance effects. It is best
left unset when an engine is run.

Note: Unless your application requires the higher dynamic range provided by TF32, FP16
will be a better solution since it almost always yields faster performance.

K
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TensorRT optimizes a network using many different data formats. In order to allow
efficient passing of data between TensorRT and a client application, these underlying
data formats are exposed at network I/O boundaries, that is, for Tensors marked as
network input or output, and when passing data to and from plugins. For other tensors,
TensorRT picks formats that result in the fastest overall execution, and may insert
reformats to improve performance.

You can assemble an optimal data pipeline by profiling the available 1/0O formats in
combination with the formats most efficient for the operations preceding and following
TensorRT.

To specify I/O formats, you specify one or more formats in the form of a bitmask.

The following example sets the input tensor format to TensorFormat: : kHWC8. Note that
this format only works for bataType: : kHALF, so the data type must be set accordingly.
C++

auto formats = 1U << TensorFormat: :kHWCS;
network->getInput (0) ->setAllowedFormats (formats) ;
network->getInput (0) ->setType (DataType: : kHALF) ;

Python

formats = 1 << int(tensorrt.TensorFormat.HWCS8)

network.get_input(0) .allowed formats = formats

network.get input(0) .dtype = tensorrt.DataType.HALF
Note that calling setAllowedFormats () Or setType () on a tensor that is not a network
input/output, has no effect and is ignored by TensorRT.

It is possible to make TensorRT avoid inserting reformatting at the network boundaries,
by setting the builder configuration flag bIrecT 10. This flag is generally counter-
productive for two reasons:

The resulting engine might be slower than if TensorRT had been allowed to insert
reformatting. Reformatting may sound like wasted work, but it can allow coupling of
the most efficient kernels.

The build will fail if TensorRT cannot build an engine without introducing such
reformatting. The failure may happen only for some target platforms, because of what
formats are supported by kernels for those platforms.

The flag exists for the sake of users who want full control over whether reformatting
happens at I/O boundaries, such as to build engines that run solely on DLA without falling
back to the GPU for reformatting.

samplelOFormats illustrates how to specify I/O formats using C++.

The following table shows the supported formats.
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Table 1. Supported I/O Formats

Format kINT32 kFLOAT kHALF kINT8
kLINEAR Only for GPU Supported Supported Supported
kCHW2 Not Applicable Not Applicable Only for GPU Not Applicable
kCHW4 Not Applicable Not Applicable Supported Supported
kHWC8 Not Applicable Not Applicable Only for GPU Not Applicable
kCHW16 Not Applicable Not Applicable Supported Not Applicable
kCHW32 Not Applicable Only for GPU Only for GPU Supported
kDHWC8 Not Applicable Not Applicable Only for GPU Not Applicable
kCDHW32 Not Applicable Not Applicable Only for GPU Only for GPU
kKHWC Not Applicable Only for GPU Not Applicable Not Applicable
kDLA LINEAR Not Applicable Not Applicable Only for DLA Only for DLA
kDLA HWC4 Not Applicable Not Applicable Only for DLA Only for DLA
kHWC16 Not Applicable Not Applicable Only for Not Applicable

NVIDIA Ampere

Architecture

GPUs and later
kDHWC Not Applicable Only for GPU Not Applicable Not Applicable

Note that for the vectorized formats, the channel dimension must be zero-padded
to the multiple of the vector size. For example, if an input binding has dimensions of

[16,3,224,224], kHALF data type, and kawcs format, then the actual-required size of the
binding buffer would be 16*8*224*224*sizeof (half) bytes, even though the engine-
>getBindingDimension () APl will return tensor dimensions as [16,3,224,224]. The
values in the padded part (that is, where c=3, 4, .., 7 in this example) must be filled with
Zeros.

Refer to Data Format Descriptions for how the data are actually laid out in memory for
these formats.

6.9. Explicit Versus Implicit Batch

TensorRT supports two modes for specifying a network: explicit batch and implicit batch.

In implicit batch mode, every tensor has an implicit batch dimension and all other
dimensions must have constant length. This mode was used by early versions of
TensorRT, and is now deprecated but continues to be supported for backwards
compatibility.

In explicit batch mode, all dimensions are explicit and can be dynamic, that is their length
can change at execution time. Many new features, such as dynamic shapes and loops, are
available only in this mode. It is also required by the ONNX parser.

For example, consider a network that processes N images of size HxW with 3 channels,
in NCHW format. At runtime, the input tensor has dimensions [N,3,H,W]. The two modes
differ in how the INetworkDefinition specifies the tensor's dimensions:
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In explicit batch mode, the network specifies [N,3,HW].

In implicit batch mode, the network specifies only [3,HW]. The batch dimension N is
implicit.
Operations that "talk across a batch" are impossible to express in implicit batch mode

because there is no way to specify the batch dimension in the network. Examples of
inexpressible operations in implicit batch mode:

reducing across the batch dimension
reshaping the batch dimension

transposing the batch dimension with another dimension

The exception is that a tensor can be broadcast across the entire batch, through
the ITensor: :setBroadcastAcrossBatch method for network inputs, and implicit
broadcasting for other tensors.

Explicit batch mode erases the limitations - the batch axis is axis 0. A more accurate term
for explicit batch would be "batch oblivious," because in this mode, TensorRT attaches no
special semantic meaning to the leading axis, except as required by specific operations.
Indeed in explicit batch mode there might not even be a batch dimension (such as a
network that handles only a single image) or there might be multiple batch dimensions of
unrelated lengths (such as comparison of all possible pairs drawn from two batches).

The choice of explicit versus implicit batch must be specified when creating the
INetworkDefinition, using a flag. Here is the C++ code for explicit batch mode:

IBuilder* builder = ...;
INetworkDefinition* network = builder->createNetworkV2 (1lU <<
static_cast<uint32_ t>(NetworkDefinitionCreationFlag: :kEXPLICIT BATCH)))

For implicit batch, use createNetwork or pass a O to createNetworkv2.

Here is the Python code for explicit batch mode:
builder = trt.Builder(...)
builder.create_network(l << int(trt.NetworkDefinitionCreationFlag.EXPLICIT BATCH))

For implicit batch, omit the argument or pass a O.

NVIDIA Ampere Architecture GPUs support Structured Sparsity. To make use of this
feature to achieve higher inference performance, the convolution kernel weights and the
fully connected weights must meet the following requirements:

For each output channel and for each spatial pixel in the kernel weights, every four input
channels must have at least two zeros. In other words, assuming that the kernel weights
have the shape [K, ¢, R, sl andcC % 4 == 0, then the requirement is verified using the
following algorithm:
hasSparseWeights = True
for k in range (0, K):
for r in range(0, R):
for s in range (0, S):
for c_packed in range(0, C // 4):
if numpy.count_nonzero (weights[k, c_packed*4: (c_packed+l)*4, r, s]) > 2 :
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hasSparseWeights = False

To enable the sparsity feature, set the ksparRsE WEIGHTS flag in the builder config and
make sure that kFP 16 or KINT8 modes are enabled. For example:
C++

config->setFlag (BuilderFlag: : kSPARSE WEIGHTS) ;
config->setFlag (BuilderFlag: :kFP16) ;
config->setFlag (BuilderFlag: :kINTS8) ;

Python

config.set flag(trt.BuilderFlag.SPARSE WEIGHTS)

config.set flag(trt.BuilderFlag.FP16)

config.set_ flag(trt.BuilderFlag.INT8)
At the end of the TensorRT logs when the TensorRT engine is built, TensorRT reports
which layers contain weights that meet the structured sparsity requirement, and in
which layers TensorRT selects tactics that make use of the structured sparsity. In some
cases, tactics with structured sparsity can be slower than normal tactics and TensorRT
will choose normal tactics in these cases. The following output shows an example of
TensorRT logs showing information about sparsity:
[03/23/2021-00:14:05] [I] [TRT] (Sparsity) Layers eligible for sparse math: convl, conv2,
[32722/2021—00:14:05] [I] [TRT] (Sparsity) TRT inference plan picked sparse implementation

for layers: conv2, conv3

Forcing kernel weights to have structured sparsity patterns can lead to accuracy loss.

To recover lost accuracy with further fine-tuning, refer to the Automatic SParsity tool in
PyTorch.

To measure inference performance with structured sparsity using trtexec, refer to the
trtexec section.

TensorRT supports empty tensors. A tensor is an empty tensor if it has one or more
dimensions with length zero. Zero-length dimensions usually get no special treatment. If a
rule works for a dimension of length L for an arbitrary positive value of L, it usually works
for L=0 too.

For example, when concatenating two tensors with dimensions [x,y,z] and [x,yw] along the
last axis, the result has dimensions [xy,z+w], regardless of whether X, y, z, or w is zero.

Implicit broadcast rules remain unchanged since only unit-length dimensions are special
for broadcast. For example, given two tensors with dimensions [1,y,z] and [x,1,z], their
sum computed by IElementWiseLayer has dimensions [xy,z], regardless of whether x, v,
or z is zero.

If an engine binding is an empty tensor, it still needs a non-null memory address, and
different tensors should have different addresses. This is consistent with the C++ rule
that every object has a unique address, for example, new float[0] returns a non-null
pointer. If using a memory allocator that might return a null pointer for zero bytes, ask for
at least one byte instead.

Refer to the NVIDIA TensorRT Operator's Reference for any per-layer special handling of
empty tensors.
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TensorRT allows specifying a CUDA event to be signaled once the input buffers are free
to be reused. This allows the application to immediately start refilling the input buffer
region for the next inference in parallel with finishing the current inference. For example:

C++
context->setInputConsumedEvent (&inputReady) ;
Python

context.set_input consumed event (inputReady)

TensorRT provides the IEngineInspector API to inspect the information inside a
TensorRT engine. Call the createEngineInspector () from a deserialized engine to create
an engine inspector, and then call getLayerInformation () Or getEngineInformation ()
inspector APIs to get the information of a specific layer in the engine or the entire engine,
respectively. You can print out the information of the first layer of the given engine, as
well as the overall information of the engine, as follows:

C++

auto inspector = std::unique ptr<IEnginelInspector>(engine->createEngineInspector());
inspector->setExecutionContext (context); // OPTIONAL

std: :cout << inspector->getLayerInformation (0, LayerInformationFormat::kJSON); // Print
the information of the first layer in the engine.

std: :cout << inspector->getEngineInformation (LayerInformationFormat::kJSON); // Print the
information of the entire engine.

Python

inspector = engine.create_engine_inspector() ;

inspector.execution _context = context; # OPTIONAL

print (inspector.get_layer information(0, LayerInformationFormat.JSON); # Print the
information of the first layer in the engine.

print (inspector.get _engine information(LayerInformationFormat.JSON); # Print the
information of the entire engine.

Note that the level of detail in the engine/layer information depends on the
ProfilingVerbosity builder config setting when the engine is built. By default,
ProfilingVerbosity is set to kLAYER NAMES ONLY, so only the layer names will be

printed. If ProfilingVerbosity is set to kNONE, then no information will be printed; if it is
set to kDETAILED, then detailed information will be printed.

Below are some examples of layer information printed by getLayerInformation () API
depending on the Profilingverbosity setting:
kLAYER NAMES ONLY
"node of gpu 0/res4 0 branch2a 1 + node of gpu 0/res4 0 _branch2a bn 1 + node_of gpu 0/
res4_0_branch2a bn_ 2"
kDETAILED
{
"Name" : "node_of_gpu_o/res4_0_branch2a_1 + node_of_gpu_O/res4_0_branch2a_bn_1 +
node of gpu 0/res4_0_branch2a bn 2",
"LayerType": "CaskConvolution",
"Inputs": [
{
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"Name": "gpu_0/res3_ 3 branch2c _bn 3",
"Dimensions": [16,512,28,28],
"Format/Datatype": "Thirty-two wide channel vectorized row major Int8 format."

H,

"Outputs": [

{
"Name" : "gpu_O/res4_0_branch2a_bn_2",
"Dimensions": [16,256,28,28],
"Format/Datatype": "Thirty-two wide channel vectorized row major Int8 format."

},

"ParameterType": "Convolution",

"Kernel": [1,1],

"PaddingMode": "KEXPLICIT ROUND DOWN",

"PrePadding": [0,0],

"PostPadding": [0,0],

"Stride": [1,1],

"Dilation": [1,1],

"OutMaps": 256,

"Groups": 1,

"Weights": {"Type": "Int8", "Count": 131072},

"Bias": {"Type": "Float", "Count": 256},

"AllowSparse": 0,

"Activation": "RELU",

"HasBias": 1,

"HasReLU": 1,

"TacticName":

"sm80_ xmma fprop implicit gemm interleaved i8i8 i8i32 £32 nchw_vect_c_32kcrs_vect_c_32 nchw_vect_c_32_ ti
"TacticValue": "OxllbdeOeld9f2£35d"
}

In addition, when the engine is built with dynamic shapes, the dynamic dimensions in
the engine information will be shown as -1 and the tensor format information will not
be shown because these fields depend on the actual shape at inference phase. To get
the engine information for a specific inference shape, create an IExecutionContext,
set all the input dimensions to the desired shapes, and then call inspector-
>setExecutionContext (context).After the context is set, the inspector will print the
engine information for the specific shape set in the context.

The trtexec tool provides the --profilingVerbosity, ——dumpLayerInfo, and --
exportLayerInfo flags that can be used to get the engine information of a given engine.
Refer to the trtexec section for more details.

Currently, only binding information and layer information, including the dimensions

of the intermediate tensors, precisions, formats, tactic indices, layer types, and layer
parameters, are included in the engine information. More information may be added into
the engine inspector output as new keys in the output JSON object in future TensorRT
versions. More specifications about the keys and the fields in the inspector output will
also be provided.

In addition, some subgraphs are handled by a next-generation graph optimizer that is not
yet integrated with the engine inspector. Therefore, the layer information within these
layers is not currently shown. This will be improved in a future TensorRT version.

The preview feature APl is an extension of T1BuilderConfig to allow the gradual
introduction of new features to TensorRT. Selected new features are exposed under
this API, allowing you to opt in or opt out. A preview feature remains in preview status
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for one or two TensorRT release cycles, and is then either integrated as a mainstream
feature, or dropped. When a preview feature is fully integrated into TensorRT, it is no
longer controllable through the preview API.

Preview features are defined using a 32-bit previewFeature enumeration. Feature
identifiers are a concatenation of the feature name and the TensorRT version.
<FEATURE NAME> XXYY

Where xx and YY are the TensorRT major and minor versions, respectively, of the
TensorRT release which first introduced the feature. The major and minor versions are
specified using two digits with leading-zero padding when necessary.

If the semantics of a preview feature change from one TensorRT release to another,
the older preview feature is deprecated and the revised feature is assigned a new
enumeration value and name.

Deprecated preview features are marked in accordance with the deprecation policy.

For more information about the C++ API, refer to nvinferl: :PreviewFeature,
IBuilderConfig::setPreviewFeature, and IBuilderConfig: :getPreviewFeature.

The Python API has similar semantics using the previewFeature enum and
set preview feature, and get preview feature functions.
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7.1. Introduction to Quantization

TensorRT supports the use of 8-bit integers to represent quantized floating point values.
The quantization scheme is symmetric uniform quantization - quantized values are
represented in signed INT8, and the transformation from quantized to unquantized values
is simply a multiplication. In the reverse direction, quantization uses the reciprocal scale,
followed by rounding and clamping.

The quantization scheme includes quantization of activations as well as weights.

The quantization scheme for activations depends on the chosen calibration algorithm to
find a scale s which best balances rounding error and precision error for specific data.

max{abs\X i absix
The quantization scheme for weights is as follows: s = lebd ]mé”)7 S where X,

and xmay are floating point minimum and maximum values for the weights tensor.

Given scale s, we can represent quantize/dequantize operation as follows:
Xq = quantize(x, s): = roundWithTiesToEven(cIi % - 128 1 27)) where:
» Xgis quantized value in range [-128,127].

» xis a floating point value of the activation.

» roundWithTiesToEvenis described here.

X = dequantize(xq, s) =Xqg"*s
For DLA on Orin, the quantization scheme is updated to use a different rounding

mode: xg = quantize(x, s) = roundWithTiesToNearestEven(cIip(é, - 128 127)) where
roundWithTiesAwayFromZero is described here.

To enable the use of any quantized operations, the INT8 flag must be set in the builder
configuration.

7.1.1. Quantization Workflows

There are two workflows for creating quantized networks:
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Post-training quantization (PTQ) derives scale factors after the network has been
trained. TensorRT provides a workflow for PTQ, called calibration, where it measures the
distribution of activations within each activation tensor as the network executes on
representative input data, then uses that distribution to estimate a scale value for the
tensor.

Quantization-aware training (QAT) computes scale factors during training. This allows the
training process to compensate for the effects of the quantization and dequantization
operations.

TensorRT’s Quantization Toolkit is a PyTorch library that helps produce QAT models that
can be optimized by TensorRT. You can also use the toolkit’s PTQ recipe to perform PTQ in
PyTorch and export to ONNX.

Quantized networks can be represented in two ways:

In implicitly quantized networks, each quantized tensor has an associated scale. When
reading and writing the tensor, the scale is used to implicitly quantize and dequantize
values.

When processing implicitly quantized networks, TensorRT treats the model as a floating-
point model when applying the graph optimizations, and uses INT8 opportunistically

to optimize layer execution time. If a layer runs faster in INT8, then it executes in INT8.
Otherwise, FP32 or FP16 is used. In this mode, TensorRT is optimizing for performance
only, and you have little control over where INT8 is used - even if you explicitly set the
precision of a layer at the API level, TensorRT may fuse that layer with another during
graph optimization, and lose the information that it must execute in INT8. TensorRT’s PTQ
capability generates an implicitly quantized network.

In explicitly quantized networks, the scaling operations to transform between the
guantized and unquantized values are represented explicitly by IQuantizeLayer and
IDequantizeLayer nodes in the graph - these will henceforth be referred to as Q/DQ
nodes. By contrast with implicit quantization, the explicit form specifies exactly where
conversion to and from INT8 is performed, and the optimizer will perform only precision
conversions that are dictated by the semantics of the model, even if:

adding extra conversions could increase layer precision (for example, choosing an
FP16 kernel implementation over an INT8 implementation)

adding extra conversions results in an engine that executes faster (for example,
choosing an INT8 kernel implementation to execute a layer specified as having float
precision or vice versa)

ONNX uses an explicitly quantized representation - when a model in PyTorch or
TensorFlow is exported to ONNX, each fake-quantization operation in the framework’s
graph is exported as Q followed by DQ. Since TensorRT preserves the semantics of these
layers, you can expect task accuracy very close to that seen in the framework. While
optimizations preserve the placement of quantization and dequantization, they may
change the order of floating-point operations in the model, so results will not be bitwise
identical.
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Note that by contrast with TensorRT's PTQ, performing either QAT or PTQ in a framework
and then exporting to ONNX will result in an explicitly quantized model.

Table 2. Implicit Vs Explicit Quantization
Implicit Quantization Explicit Quantization
User control over precision Little control: INT8 is used in all | Full control over quantization/
kernels for which it accelerates | dequantization boundaries.
performance.

Optimization criterion Optimize for performance. Optimize for performance
while maintaining arithmetic
precision (accuracy).

API Model with Q/DQ layers.

» Model + Scales (dynamic
range API)

» Model + Calibration data

Quantization scales Weights: Weights and activations:
» Set by TensorRT (internal) > Specified using Q/DQ
ONNX operators
» Range [-127, 127]
» Range [-128, 127]
Activations:
» Set by calibration or
specified by the user

» Range [-128, 127]

For more background on quantization, refer to the Integer Quantization for Deep Learning
Inference: Principles and Empirical Evaluation paper.

7.1.3. Per-Tensor and Per-Channel Quantization

There are two common quantization scale granularities:

» Per-tensor quantization: in which a single scale value (scalar) is used to scale the entire
tensor.

» Per-channel quantization: in which a scale tensor is broadcast along the given axis - for
convolutional neural networks, this is typically the channel axis.

With explicit quantization, weights can be quantized using per-tensor quantization or they
can be quantized using per-channel quantization. In either case, the scale precision is
FP32. Activation can only be quantized using per-tensor quantization.

When using per-channel quantization, the axis of quantization must be the output-
channel axis. For example, when the weights of 2D convolution are described using KCRS
notation, K is the output-channel axis, and the weights quantization can be described as:

For each k in K:singe
For each c in C:
For each r in R:
For each s in S:

NVIDIA TensorRT 8.6.13 Developer Guide SWE-SWDOCTRT-005-DEVG | 46


https://arxiv.org/abs/2004.09602
https://arxiv.org/abs/2004.09602

Working with INT8

output[k,c,r,s] := clamp(round(input[k,c,r,s] / scalelk]))

One exception is deconvolution (also known as transposed convolution), which must be
quantized on the input-channel axis.

The scale is a vector of coefficients and must have the same size as the quantization
axis. The quantization scale must consist of all positive float coefficients. The rounding
method is rounding-to-nearest ties-to-even and clamping is in the range [-128, 127].

Dequantization is performed similarly except for the pointwise operation that is defined
as:
output[k,c,r,s] := inputl[k,c,r,s] * scalelk]

TensorRT supports only per-tensor quantization for activation tensors, but supports per-
channel weight quantization for convolution, deconvolution, fully connected layers, and
MatMul where the second input is constant and both input matrices are 2D.

/.2. Setting Dynamic Range

TensorRT provides APIs to set dynamic range (the range that must be represented by the
quantized tensor) directly, to support implicit quantization where these values have been
calculated outside TensorRT.

The API allows setting the dynamic range for a tensor using minimum and maximum
values. Since TensorRT currently supports only symmetric range, the scale is calculated
using max (abs (min_float), abs(max float)).Note that when abs (min float) !=
abs (max_float), TensorRT uses a larger dynamic-range than configured, which may
increase the rounding error.

Dynamic range is needed for all floating-point inputs and outputs of an operation that will
execute in INT8.

You can set the dynamic range for a tensor as follows:

C++

tensor->setDynamicRange (min_float, max_float) ;
Python

tensor.dynamic_range = (min_float, max float)

sampleINT8API illustrates the use of these APIs in C++.

/.3. Post-Training Quantization Using
Calibration

In post-training quantization, TensorRT computes a scale value for each tensor in the
network. This process, called calibration, requires you to supply representative input data
on which TensorRT runs the network to collect statistics for each activation tensor.

The amount of input data required is application-dependent, but experiments indicate
that about 500 images are sufficient for calibrating ImageNet classification networks.
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Given the statistics for an activation tensor, deciding on the best scale value is not an
exact science - it requires balancing two sources of error in the quantized representation:
discretization error (which increases as the range represented by each quantized value
becomes larger) and truncation error (where values are clamped to the limits of the
representable range.) Thus, TensorRT provides multiple different calibrators that calculate
the scale in different ways. Older calibrators also performed layer fusion for GPU to
optimize away unneeded Tensors before performing calibration. This can be problematic
when using DLA, where fusion patterns may be different, and can be overridden using the
kCALIBRATE BEFORE FUSION quantization flag.

Calibration batch size can also affect the truncation error for IInt8EntropyCalibrator?
and ITnt8EntropyCalibrator. For example, calibrating using multiple small batches of
calibration data may result in reduced histogram resolution and poor scale value. For
each calibration step, TensorRT updates the histogram distribution for each activation
tensor. If it encounters a value in the activation tensor, larger than the current histogram
max, the histogram range is increased by a power of two to accommodate the new
maximum value. This approach works well unless histogram reallocation occurs in the last
calibration step, resulting in a final histogram with half the bins empty. Such a histogram
can produce poor calibration scales. This also makes calibration susceptible to the order
of calibration batches, that is, a different order of calibration batches can result in the
histogram size being increased at different points, producing slightly different calibration
scales. To avoid this issue, calibrate with as large a single batch as possible, and ensure
that calibration batches are well randomized and have similar distribution.

IInt8EntropyCalibrator2
Entropy calibration chooses the tensor’s scale factor to optimize the quantized
tensor’s information-theoretic content, and usually suppresses outliers in the
distribution. This is the current and recommended entropy calibrator and is required
for DLA. Calibration happens before Layer fusion by default. Calibration batch size may
impact the final result. It is recommended for CNN-based networks.
IInt8MinMaxCalibrator
This calibrator uses the entire range of the activation distribution to determine
the scale factor. It seems to work better for NLP tasks. Calibration happens before
Layer fusion by default. This is recommended for networks such as NVIDIA BERT (an
optimized version of Google's official implementation).
IInt8EntropyCalibrator
This is the original entropy calibrator. It is less complicated to use than the
LegacyCalibrator and typically produces better results. Calibration batch size may
impact the final result. Calibration happens after Layer fusion by default.
IInt8LegacyCalibrator
This calibrator is for compatibility with TensorRT 2.0 EA. This calibrator requires user
parameterization and is provided as a fallback option if the other calibrators yield
poor results. Calibration happens after Layer fusion by default. You can customize
this calibrator to implement percentile max, for example, 99.99% percentile max is
observed to have best accuracy for NVIDIA BERT and NeMo ASR model QuartzNet.

When building an INT8 engine, the builder performs the following steps:

1. Build a 32-bit engine, run it on the calibration set, and record a histogram for each
tensor of the distribution of activation values.
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2. Build from the histograms a calibration table providing a scale value for each tensor.
3. Build the INT8 engine from the calibration table and the network definition.

Calibration can be slow; therefore the output of step 2 (the calibration table) can be
cached and reused. This is useful when building the same network multiple times on a
given platform and is supported by all calibrators.

Before running calibration, TensorRT queries the calibrator implementation to see if it has
access to a cached table. If so, it proceeds directly to step 3. Cached data is passed as a
pointer and length. A sample calibration table can be found here.

The calibration cache data is portable across different devices as long as the calibration
happens before layer fusion. Specifically, the calibration cache is portable when using
the IInt8EntropyCalibrator2 or IInt8MinMaxCalibrator calibrators, or when
QuantizationFlag::kCALIBRATE BEFORE FUSION is set. This can simplify the workflow,
for example by building the calibration table on a machine with a discrete GPU and

then reusing it on an embedded platform. Fusions are not guaranteed to be the same
across platforms or devices, so calibrating after layer fusion may not result in a portable
calibration cache. The calibration cache is in general not portable across TensorRT
releases.

As well as quantizing activations, TensorRT must also quantize weights. It uses symmetric
quantization with a quantization scale calculated using the maximum absolute values
found in the weight tensor. For convolution, deconvolution, and fully connected weights,
scales are per-channel.

Note: When the builder is configured to use INT8 I/O, TensorRT still expects calibration
data to be in FP32. You can create FP32 calibration data by casting INT8 I/O calibration
data to FP32 precision. Also ensure that FP32 cast calibration data is in the range
[-128.0F, 127.0F] and so can be converted to INT8 data without any precision loss.

INT8 calibration can be used along with the dynamic range APIs. Setting the dynamic
range manually overrides the dynamic range generated from INT8 calibration.

S Note: Calibration is deterministic - that is, if you provide TensorRT with the same input to
calibration in the same order on the same device, the scales generated will be the same
across different runs. The data in the calibration cache will be bitwise identical when
generated using the same device with the same batch size when provided with identical
calibration inputs. The exact data in the calibration cache is not guaranteed to be bitwise
identical when generated using different devices, different batch sizes, or using different
calibration inputs.

7.3.1. INT8 Calibration Using C++

To provide calibration data to TensorRT, implement the 1Int8Calibrator interface.

The builder invokes the calibrator as follows:

» First, it queries the interface for the batch size and calls getBatchsize () to
determine the size of the input batch to expect.
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Then, it repeatedly calls getBatch () to obtain batches of input. Batches must
be exactly the batch size by getBatchsize (). When there are no more batches,
getBatch () must return false.

After you have implemented the calibrator, you can configure the builder to use it:
config->setInt8Calibrator (calibrator.get()) ;

To cache the calibration table, implement the writeCalibrationCache () and
readCalibrationCache () methods.

The following steps illustrate how to create an INT8 calibrator object using the Python
API.

1. Import TensorRT:
import tensorrt as trt

2. Similar to test/validation datasets, use a set of input files as a calibration dataset.
Make sure that the calibration files are representative of the overall inference data
files. For TensorRT to use the calibration files, you must create a batchstream object.
A batchstream object is used to configure the calibrator.

NUM_IMAGES PER BATCH = 5
batchstream = ImageBatchStream(NUM IMAGES PER BATCH, calibration_files)

3. Create an Int8 calibrator object with input nodes names and batch stream:
Int8_calibrator = EntropyCalibrator (["input node name"], batchstream)
4. Set INT8 mode and INT8 calibrator:

config.set_ flag(trt.BuilderFlag.INT8)
config.int8_calibrator = Int8_calibrator

For networks with implicit quantization, TensorRT attempts to reduce quantization noise
in the output by forcing some layers near the network outputs to run in FP32, even if
INT8 implementations are available.

The heuristic attempts to ensure that INT8 quantization is smoothed out by summation
of multiple quantized values. Layers considered to be "smoothing layers" are convolution,
deconvolution, a fully connected layer, or matrix multiplication before reaching the
network output. For example, if a network consists of a series of (convolution + activation
+ shuffle) subgraphs and the network output has type FP32, the last convolution will
output FP32 precision, even if INT8 is allowed and faster.

The heuristic does not apply in the following scenarios:
The network output has type INT8.

An operation on the path (inclusively) from the last smoothing layer to the output is
constrained by ILayer: :setOutputType Or ILayer: :setPrecision to output INTS8.

There is no smoothing layer with a path to the output, or said that path has an
intervening plugin layer.

The network uses explicit quantization.
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7.4. Explicit Quantization

When TensorRT detects the presence of Q/DQ layers in a network, it builds an engine
using explicit-precision processing logic.

A Q/DQ network must be built with the INT8-precision builder flag enabled:
config->setFlag (BuilderFlag: :kINTS8) ;

In explicit-quantization, network changes of representation to and from INT8 are explicit,
therefore, INT8 must not be used as a type constraint.

7.4.1.  Quantized Weights

Weights of Q/DQ models must be specified using FP32 data type. The weights are
quantized by TensorRT using the scale of the 1QuantizeLayer that operates on the
weights. The quantized weights are stored in the Engine file. Prequantized weights can
also be used but must be specified using FP32 data-type. The scale of the Q node must
be set to 1.0F, but the DQ node must be the real scale value.

7.4.2. ONNX Support

When a model trained in PyTorch or TensorFlow using Quantization Aware Training (QAT)
is exported to ONNX, each fake-quantization operation in the framework’s graph is
exported as a pair of QuantizelLinearand DequantizeLinear ONNX operators.

When TensorRT imports ONNX models, the ONNX QuantizeLinear operator is imported
as an IQuantizeLayer instance, and the ONNX DequantizeLinear operator is imported
as an IDequantizeLayer instance. ONNX using opset 10 introduced support for
QuantizelLinear/Dequantizelinear, and a quantization-axis attribute was added in opset
13 (required for per-channel quantization). PyTorch 1.8 introduced support for exporting
PyTorch models to ONNX using opset 13.

WARNING: The ONNX GEMM operator is an example that can be quantized per channel.
PyTorch torch.nn.Linear layers are exported as an ONNX GEMM operator with (k,

c) weights layout and with the transB GEMM attribute enabled (this transposes the
weights before performing the GEMM operation). TensorFlow, on the other hand,
pretransposes the weights (c, k) before ONNX export:

> PyTorch: y =xW’
» TensorFlow: y =xW

PyTorch weights are therefore transposed by TensorRT. The weights are quantized by
TensorRT before they are transposed, so GEMM layers originating from ONNX QAT
models that were exported from PyTorch use dimension 0 for per-channel quantization
(axis k = 0); while models originating from TensorFlow use dimension 1 (axisk = 1).

TensorRT does not support prequantized ONNX models that use INT8 tensors or
quantized operators. Specifically, the following ONNX quantized operators are not
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supported and generates an import error if they are encountered when TensorRT imports
the ONNX model:

» QLinearConv/QLinearMatmul

» ConvInteger/Matmullnteger

7.4.3. TensorRT Processing of Q/DQ Networks

When TensorRT optimizes a network in Q/DQ-mode, the optimization process is limited

to optimizations that do not change the arithmetic correctness of the network. Bit-

level accuracy is rarely possible since the order of floating-point operations can produce
different results (for example, rewriting a * s +b* s as(a +b) * s is a valid optimization).
Allowing these differences is fundamental to backend optimization in general, and this
also applies to converting a graph with Q/DQ layers to use INT8 computation.

Q/DQ layers control the compute and data precision of a network. An TQuantizeLayer
instance converts an FP32 tensor to an INT8 tensor by employing quantization, and an
IDequantizeLayer instance converts an INT8 tensor to an FP32 tensor by means of
dequantization. TensorRT expects a Q/DQ layer pair on each of the inputs of quantizable-
layers. Quantizable-layers are deep-learning layers that can be converted to quantized
layers by fusing with TQuantizeLayer and IDequantizeLayer instances. When TensorRT
performs these fusions, it replaces the quantizable-layers with quantized layers that
actually operate on INT8 data using INT8 compute operations.

For the diagrams used in this chapter, green designates INT8 precision and blue
designates floating-point precision. Arrows represent network activation tensors and
squares represent network layers.

Figure 1. A quantizable averagePool layer (in blue) is fused with a
DQ layer and a Q layer. All three layers are replaced by a
guantized AveragePool layer (in green).

Avg .
Pool e
X, [ Avg Y,
: Pool !

During network optimization, TensorRT moves Q/DQ layers in a process called Q/DQ
propagation. The goal in propagation is to maximize the proportion of the graph that
can be processed at low precision. Thus, TensorRT propagates Q nodes backwards

(so that quantization happens as early as possible) and DQ nodes forward (so that
dequantization happens as late as possible). Q-layers can swap places with layers that
commute-with-Quantization and DQ-layers can swap places with layers that commute-
with-Dequantization.
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Alayer Op commutes with quantization if Q (Op (x)) == Op (Q (x))
Similarly, a layer Op commutes with dequantization if Op (DQ (x)) == DQ (Op (x))

The following diagram illustrates DQ forward-propagation and Q backward-propagation.
These are legal rewrites of the model because Max Pooling has an INT8 implementation
and because Max Pooling commutes with DQ and with Q.

Figure 2. An illustration depicting a DQ forward-propagation and Q
backward-propagation.
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[g] Note:

To understand Max Pooling commutation, let us look at the output of the maximum-
pooling operation applied to some arbitrary input. Max Pooling is applied to groups of
input coefficients and outputs the coefficient with the maximum value. For group i

composed of coefficients: {Xo- . xm}:

output, := max({xo, Xy o xm}) = max({max({max({xo, x) x}, - xm})

It is therefore enough to look at two arbitrary coefficients without loss of generality
(WLOG):

Xj = max({xj, xk}) for x; > = x

For quantization function Q(a, scale, Xmax Xmin) : = truncate{rounda/scale) Xmax Xminh With
scale> 0, note that (without providing proof, and using simplified notation):

O(xj, scale) >= Q(xk, scale) for x; > = xy

Therefore:

max({Q(Xj, scale), Q(Xk, scale)}) = Q(x,-, scale) for x; > = X,
However, by definition:

Q(max({xj, xk}), scale) = Q(xj, scale) for x; > = xy
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Function max commutes-with-quantization and so does Max Pooling.

Similarly for dequantization, function DQ (a, scale) := a * scale with scale> 0 we can
show that:

max({DQ(xj, scale). DQ(xk, scale)}) = DQ(xj, scale) = DQ(max({xj, xk}), scale) for x; > = xy

There is a distinction between how quantizable-layers and commuting-layers are
processed. Both types of layers can compute in INT8, but quantizable-layers also

fuse with DQ input layers and a Q output layer. For example, an AveragePooling layer
(quantizable) does not commute with either Q or DQ, so it is quantized using Q/DQ fusion
as illustrated in the first diagram. This is in contrast to how Max Pooling (commuting) is
quantized.

7.4.4. Q/DQ Layer-Placement Recommendations

The placement of Q/DQ layers in a network affects performance and accuracy. Aggressive
guantization can lead to degradation in model accuracy because of the error introduced
by quantization. But quantization also enables latency reductions. Listed here are some
recommendations for placing Q/DQ layers in your network.

Quantize all inputs of weighted-operations (Convolution, Transposed Convolution, and
GEMM). Quantization of the weights and activations reduces bandwidth requirements
and also enables INT8 computation to accelerate bandwidth-limited and compute-limited
layers.

SM 7.5 and earlier devices may not have INT8 implementations for all layers. In this case,
you will encounter a could not find any implementation error while building your
engine. To resolve this, remove the Q/DQ nodes which quantize the failing layers.

Figure 3. Two examples of how TensorRT fuses convolutional layers.
On the left, only the inputs are quantized. On the right, both

inputs and output are quantized.
o
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By default, do not quantize the outputs of weighted-operations. It is sometimes useful
to preserve the higher-precision dequantized output. For example, if the linear operation
is followed by an activation function (SiLU, in the following diagram) that requires higher
precision input to produce acceptable accuracy.

Figure 4. Example of a linear operation followed by an activation
function.

Sigm
X —> M oid Vi
Weights

Fusion operation
@ (on some platforms)

Do not simulate batch-normalization and ReLU fusions in the training framework
because TensorRT optimizations guarantee to preserve the arithmetic semantics of these
operations.
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Figure 5. Batch normalization is fused with convolution and ReLU
while keeping the same execution order as defined in the
pre-fusion network. There is no need to simulate BN-folding
in the training network.
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Quantize the residual input in skip-connections. TensorRT can fuse element-wise
addition following weighted layers, which are useful for models with skip connections like
ResNet and EfficientNet. The precision of the first input to the element-wise addition
layer determines the precision of the output of the fusion.

For example, in the following diagram, the precision of xf1 is floating point, so the output
of the fused convolution is limited to floating-point, and the trailing Q-layer cannot be
fused with the convolution.
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Figure 6. The precision of Xf] is floating point, so the output of the
fused convolution is limited to floating-point, and the
trailing Q-layer cannot be fused with the convolution.
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-

In contrast, when x¢* is quantized to INT8, as depicted in the following diagram, the
output of the fused convolution is also INT8, and the trailing Q-layer is fused with the

convolution.

Figure 7. When Xf] is quantized to INT8, the output of the fused
convolution is also INT8, and the trailing Q-layer is fused

with the convolution.
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For extra performance, try quantizing layers that do not commute with Q/DQ. Currently,
non-weighted layers that have INT8 inputs also require INT8 outputs, so quantize both
inputs and outputs.

Figure 8. An example of quantizing a quantizable operation. An
element-wise addition is fused with the input DQs and the
output Q.

J} Fusion operation

X¢

-

Performance can decrease if TensorRT cannot fuse the operations with the surrounding
Q/DQ layers, so be conservative when adding Q/DQ nodes and experiment with accuracy
and TensorRT performance in mind.

X

The following figure is an example of suboptimal fusions (the highlighted light green
background rectangles) that can result from extra Q/DQ operations. Contrast the
following figure with Figure 7, which shows a more performant configuration. The
convolution is fused separately from the element-wise addition because each of them is
surrounded by Q/DQ pairs. The fusion of the element-wise addition is shown in Figure 8.
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Figure 9. An example of suboptimal quantization fusions: contrast the
suboptimal fusion in A and the optimal fusion in B. The extra
pair of Q/DQ operations (highlighted with a glowing-green
border) forces the separation of the convolution from the
element-wise addition.

A: Suboptimal fusions B: Optimal fusions
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Use per-tensor quantization for activations; and per-channel quantization for weights.
This configuration has been demonstrated empirically to lead to the best quantization
accuracy.

eration

You can further optimize engine latency by enabling FP16. TensorRT attempts to use
FP16 instead of FP32 whenever possible (this is not currently supported for all layer
types).

7.4.5. Q/DQ Limitations

A few of the Q/DQ graph-rewrite optimizations that TensorRT performs compare the
values of quantization scales between two or more Q/DQ layers and only perform the
graph-rewrite if the compared quantization scales are equal. When a refittable TensorRT
engine is refitted, the scales of Q/DQ nodes can be assigned new values. During the
refitting operation of Q/DQ engines, TensorRT checks if Q/DQ layers that participated

in scale-dependent optimizations are assigned new values that break the rewrite
optimizations and throws an exception if true.
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Figure 10. An example showing scales of Q1 and Q2 are compared
for equality, and if equal, they are allowed to propagate
backward. If the engine is refitted with new values for Q1
and Q2 such that o1 = 02, then an exception aborts the
refitting process.
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7.4.6. Q/DQ Interaction with Plugins

Plugins extend the capabilities of TensorRT by allowing the replacement of a group of
layers with a custom and proprietary implementation. You can decide what functionality
to include in the plugin and what to leave for TensorRT to handle.

The same follows for a TensorRT network with Q/DQ layers: when a plugin consumes
qguantized INT8 inputs and generates quantized INT8 outputs, the input DQ and output Q
nodes must be included as part of the plugin and removed from the network.

Consider a simple case of a sequential graph consisting of a single INT8 plugin (aptly
named MyInt8Plugin) sandwiched between two convolution layers (ignoring weights
quantization):

Input > Q -> DQ > Conv > Q -> DQ i > MyInt8Plugin > Q o -> DQ > Conv > Output

The > arrows indicate activation tensors with FP32 precision and the -> arrows indicate
INT8 precision.

When TensorRT optimizes this graph, it fuses the layers to the following graph (square
brackets indicate TensorRT fusions):
Input > Q -> [DQ - Conv - Q] -> DQ i > MyInt8Plugin > Q o -> [DQ - Conv] > Output

In the graph above, the plugin consumes and generates FP32 inputs and outputs. Since
the plugin MyInt8plugin uses INT8 precision, the next step is to manually "fuse” pg i and
Q o with MyInt8Plugin, SO TensorRT will see a network like this:

Input > Q -> DQ > Conv > Q -> MyInt8Plugin -> DQ > Conv > Output

Which it will fuse to:
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Input > Q -> [DQ - Conv — Q] > MyInt8Plugin -> [DQ - Conv] > Output

When "manually fusing” Do i, you take the input quantization scale and give it to your
plugin, so it will know how to dequantize (if needed) the input. The same follows for using
the scale from ¢ o in order to quantize your plugin’s output.

7.4.7. QAT Networks Using TensorFlow

We provide an open-source TensorFlow-Quantization Toolkit to perform QAT in
TensorFlow 2 Keras models following NVIDIA's QAT recipe. This leads to optimal model
acceleration with TensorRT on NVIDIA GPUs and hardware accelerators. More details can
be found in the NVIDIA TensorFlow-Quantization Toolkit User Guide.

TensorFlow 1 does not support per-channel quantization (PCQ). PCQ is recommended for
weights in order to preserve the accuracy of the model.

7.4.8. QAT Networks Using PyTorch

PyTorch 1.8.0 and forward support ONNX Quantizelinear/Dequantizelinear support per
channel scales. You can use pytorch-quantization to do INT8 calibration, run quantization
aware fine-tuning, generate ONNX and finally use TensorRT to run inference on this
ONNX model. More detail can be found in NVIDIA PyTorch-Quantization Toolkit User
Guide.

7.5. INT8 Rounding Modes

Compute Kernel Weights Quantization (FP32 to INT8)
Quantization (FP32 Quantized Network Dynamic Range

Backend to INTS8) (QAT) API / Calibration
GPU round-to-nearest- round-to-nearest-— round-to-nearest-
with-ties-to-even with-ties-to-even with-ties-to-

positive-infinity

DLA round-to-nearest- Not Applicable round-to-nearest-
with-ties-to-even with-ties-to-even
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Chapter 8. Working with Dynamic
Shapes

Dynamic Shapes is the ability to defer specifying some or all tensor dimensions until
runtime. Dynamic shapes can be used through both the C++ and Python interfaces.

The following sections provide greater detail; however, here is an overview of the steps for
building an engine with dynamic shapes:

1. The network definition must not have an implicit batch dimension.
C++
Create the INetworkDefinition by calling

IBuilder: :createNetworkV2 (1U <<

static cast<int>(NetworkDefinitionCreationFlag::kEXPLICIT BATCH))
Python

Create the tensorrt.INetworkDefinition by calling
create network(l <<
int (tensorrt.NetworkDefinitionCreationFlag.EXPLICIT BATCH))
These calls request that the network not have an implicit batch dimension.

2. Specify each runtime dimension of an input tensor by using -1 as a placeholder for
the dimension.

3. Specify one or more optimization profiles at build time that specify the permitted
range of dimensions for inputs with runtime dimensions, and the dimensions for

which the auto-tuner will optimize. For more information, refer to Optimization
Profiles.

4. To use the engine:
a). Create an execution context from the engine, the same as without dynamic
shapes.

b). Specify one of the optimization profiles from step 3 that covers the input
dimensions.

c). Specify the input dimensions for the execution context. After setting input
dimensions, you can get the output dimensions that TensorRT computes for the
given input dimensions.

d). Enqueue work.

To change the runtime dimensions, repeat steps 4b and 4c, which do not have to be
repeated until the input dimensions change.
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When the preview features (PreviewFeature: : kFASTER DYNAMIC SHAPES 0805) is
enabled, it can potentially, for dynamically shaped networks:

» reduce the engine build time,
» reduce runtime, and

» decrease device memory usage and engine size.

Models most likely to benefit from enabling kFASTER DYNAMIC SHAPES 0805 are
transformer-based models and models containing dynamic control flows.

8.1. Specifying Runtime Dimensions

When building a network, use -1 to denote a runtime dimension for an input tensor.
For example, to create a 3D input tensor named foo where the last two dimensions are
specified at runtime, and the first dimension is fixed at build time, issue the following.

C++
networkDefinition.addInput("foo", DataType: :kFLOAT, Dims3(3, -1, -1))
Python

network definition.add input("foo", trt.float32, (3, -1, -1))

At run time, you must set the input dimensions after choosing an optimization profile
(refer to Optimization Profiles). Let the input have dimensions [3,150,250]. After setting
an optimization profile for the previous example, you would call:
C++

context.setInputShape"foo", Dims{3, {3, 150, 250}})
Python

context.set_input shape("foo", (3, 150, 250))

At runtime, asking the engine for binding dimensions returns the same dimensions used
to build the network, meaning, you get a -1 for each runtime dimension. For example:
C++

engine.getTensorShape ("foo") returns a bims with dimensions {3, -1, -1}..
Python

engine.get tensor shape ("foo") returns (3, -1, -1).

To get the actual dimensions, which are specific to each execution context, query the
execution context:
C++

context.getTensorShape ("foo") returns a bims with dimensions {3, 150, 250}.
Python

context.get tensor shape (0) returns (3, 150, 250).

S Note: The return value of setInputShape for an input only indicates consistency with
respect to the optimization profile set for that input. After all input binding dimensions
are specified, you can check whether the entire network is consistent with respect to the
dynamic input shapes by querying the dimensions of the output bindings of the network.
Here is an example that retrieves the dimensions of an output named bar:

nvinferl: :Dims outDims = context->getTensorShape ("bar") ;

if (outDims.nbDims == -1) {
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glLogError << "Invalid network output, this might be caused by inconsistent input
shapes." << std::endl;
// abort inference

}

If a dimension k is data-dependent, for example, it depends on the output of
INonZeroLayer, outDims.d [ k] will be -1. For more information, refer to Dynamically
Shaped Output for how to deal with such outputs.

8.2. Named Dimensions

Both constant and runtime dimensions can be named. Naming dimensions provides two
benefits:

» For runtime dimensions, error messages use the dimension's name. For example, if an
input tensor foo has dimensions [n, 10,m], it is more helpful to get an error message
about minstead of (#2 (SHAPE foo)).

» Dimensions with the same name are implicitly equal, which can help the optimizer
generate a more efficient engine, and diagnoses mismatched dimensions at runtime.
For example, if two inputs have dimensions [n, 10, m] and [n, 13], the optimizer
knows the lead dimensions are always equal, and accidentally use of the engine with
mismatched values for n will be reported as an error.

You can use the same name for both constant and runtime dimensions as long as they
are always equal at runtime.

The following syntax examples sets the name of the third dimension of tensor to m.
C++
tensor.setDimensionName (2, "m")

Python

tensor.set_dimension_ name (2, "m")

There are corresponding methods to get a dimensions name:
C++

tensor.getDimensionName (2) // returns the name of the third dimension of tensor, or
nullptr if it does not have a name.

Python
tensor.get_dimension name(2) # returns the name of the third dimension of tensor, or None
if it does not have a name.
When the input network is imported from an ONNX file, the ONNX parser automatically
sets the dimension names using the names in the ONNX file. Therefore, if two dynamic
dimensions are expected to be equal at runtime, specify the same name for these
dimensions when exporting the ONNX file.
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Sometimes, two dynamic dimensions are not equal but are guaranteed to be equal at
runtime. Letting TensorRT know they are equal can help it build a more efficient engine.
There are two ways to convey the equality constraint to TensorRT:

Give the dimensions the same name, as described in Named Dimensions.

Use IassertionLayer to express the constraint. This technique is more general since
it can convey trickier equalities.

For example, if the first dimension of tensor A is guaranteed to be one more than the first
dimension of tensor B, then the constraint can be established by:
C++

// Assumes A and B are ITensor* and n is a INetworkDefinitioné&.

auto shapeA = n.addShape (*A) ->getOutput (0) ;

auto firstDimOfA = n.addSlice (*shapeA, Dims{1l, {0}}, Dims{1l, {1}}, Dims{1l, {1}})-

>getOutput (0) ;

auto shapeB = n.addShape (*B) ->getOutput (0) ;

auto firstDimOfB = n.addSlice(*shapeB, Dims{1l, {0}}, Dims{1l, {1}}, Dims{1l, {1}})-

>getOutput (0) ;

static int32_t const oneStorage{l};

auto one = n.addConstant(Dims{l, {1}}, Weights{DataType::kINT32, &oneStorage, 1})-

>getOutput (0) ;

auto firstDimOfBPlusl = n.addElementWise (*firstDimOfB, *one, ElementWiseOperation: :kSUM) -

>getOutput (0) ;

auto areEqual = n.addElementWise (*firstDimOfA, *firstDimOfBPlusl,
ElementWiseOperation: :kEQUAL) ->getOutput (0) ;

n.addAssertion (*areEqual, "oops") ;

Python

# Assumes ‘a’ and 'b’ are ITensors and 'n’ is an INetworkDefinition

shape_a = n.add_shape (a) .get_output (0)

first dim of_a = n.add_slice(shape_a, (0, ), (1, ), (1, )).get output(0)

shape b = n.add_shape (b) .get_output (0)

first dim of b = n.add_slice(shape b, (0, ), (1, ), (1, )).get_output(0)

one = n.add constant((1, ), np.ones((l1, ), dtype=np.int32)) .get output(0)

first dim of b plus 1 = n.add elementwise(first dim of b, one,
trt.ElementWiseOperation.SUM) .get_output (0)

are _equal = n.add elementwise(first dim of a, first dim of b plus 1,
trt.ElementWiseOperation.EQUAL) .get_output (0)

n.add assertion(are_equal, “oops”)

If the dimensions violate the assertion at runtime, TensorRT will throw an error.

An optimization profile describes a range of dimensions for each network input and the
dimensions that the auto-tuner will use for optimization. When using runtime dimensions,
you must create at least one optimization profile at build time. Two profiles can specify
disjoint or overlapping ranges.

For example, one profile might specify a minimum size of [3,100,200], a maximum
size of [3,200,300], and optimization dimensions of [3,150,250] while another profile
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might specify min, max and optimization dimensions of [3,200,1001], [3,300,400], and
[3,250,250].

Note: Based on the dimensions specified by the min, max, and opt parameters, the memory
usage for different profiles can change dramatically. There are some operations that have
tactics that only work for MmIN=0PT=MAX, SO When these values differ, the tactic is disabled.

To create an optimization profile, first construct an 10ptimizationProfile. Then set
the min, optimization, and max dimensions, and add it to the network configuration.
The shapes defined by the optimization profile must define valid input shapes for the
network. Here are the calls for the first profile mentioned previously for an input foo:
C++

IOptimizationProfile* profile = builder.createOptimizationProfile() ;

profile->setDimensions ("foo", OptProfileSelector::kMIN, Dims3(3,100,200) ;
profile->setDimensions ("foo", OptProfileSelector::kOPT, Dims3(3,150,250) ;
profile->setDimensions ("foo", OptProfileSelector::kMAX, Dims3(3,200,300) ;

config->addOptimizationProfile (profile)
Python

profile = builder.create optimization profile() ;

profile.set_shape("foo", (3, 100, 200), (3, 150, 250), (3, 200, 300))

config.add optimization profile(profile)
At runtime, you must set an optimization profile before setting input dimensions. Profiles
are numbered in the order that they were added, starting at 0. Note that each execution
context must use a separate optimization profile.

To choose the first optimization profile in the example, use:
C++

call context.setOptimizationProfileAsync (0, stream)

where stream is the CUDA stream that is used for the subsequent enqueue (),
enqueueV2 (), Or enqueueV3 () invocation in this context.

Python

set context.set optimization profile async (0, stream)

If the associated CUDA engine has dynamic inputs, the optimization profile must be set
at least once with a unique profile index that is not used by other execution contexts that
are not destroyed. For the first execution context that is created for an engine, profile O is
chosen implicitly.

setOptimizationProfileAsync () can be called to switch between profiles. It must be
called after any enqueue (), enqueueVv2 (), Or enqueueVv3 () operations finish in the current
context. When multiple execution contexts run concurrently, it is allowed to switch to a
profile that was formerly used but already released by another execution context with
different dynamic input dimensions.

setOptimizationProfileAsync () function replaces the now deprecated version of

the APl setOptimizationProfile (). UsiNng setOptimizationProfile () to switch
between optimization profiles can cause GPU memory copy operations in the subsequent
enqueue () Or enqueueV2 () operations. To avoid these calls during enqueue, use
setOptimizationProfileAsync () APl instead.
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If an output of a network has a dynamic shape, there are several strategies available to
allocate the output memory.

If the dimensions of the output are computable from the dimensions of inputs, use
IExecutionContext: :getTensorShape () to get the dimensions of the output, after
providing dimensions of the input tensors and Shape Tensor 1/O (Advanced). Use the
IExecutionContext::inferShapes () method to check if you forgot to supply the
necessary information.

Otherwise, or if you do not know if the dimensions of the output are computable in
advance or calling enqueuev3, associate an ToutputAllocator with the output. More
specifically:

1. Derive your own allocator class from 1outputAllocator.

2. Override the reallocateOutput and notifyShape methods. TensorRT calls the first
when it needs to allocate the output memory, and the second when it knows the
output dimensions. For example, the memory for the output of INonZeroLayer is
allocated before the layer runs.

Here is an example derived class:

class MyOutputAllocator : nvinferl::IOutputAllocator
{
public:
void* reallocateOutput (
char const* tensorName, void* currentMemory,
uinté4_t size, uint64_t alignment) override

// Allocate the output. Remember it for later use.
outputPtr = ... depends on strategy, as discussed later...
return outputPtr;

}

void notifyShape (char const* tensorName, Dims const& dims)

{

// Remember output dimensions for later use.
outputDims = dims;

}

// Saved dimensions of the output
Dims outputDims({};

// nullptr if memory could not be allocated
void* outputPtr{nullptr};
}i

Here's an example of how it might be used:
std: :unordered map<std::string, MyOutputAllocator> allocatorMap;

for (const char* name : names of outputs)

{

Dims extent = context->getTensorShape (name) ;
void* ptr;
if (engine->getTensorLocation(name) == TensorLocation: :kDEVICE)

{

if (extent.d contains a -1)

{
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auto allocator = std::make_unique<MyOutputAllocator>();
context->setOutputAllocator (name, allocator.get())
allocatorMap.emplace (name, std::move(allocator)) ;
}
else
{
ptr = allocate device memory per extent and format
}
}
else
{
ptr = allocate cpu memory per extent and format

}

context->setTensorAddress (name, ptr);

Several strategies can be used for implementing reallocateOutput:

A

Defer allocation until the size is known. Do not call IExecution: :setTensorAddress, Or
call it with a nullptr for the tensor address.

Preallocate enough memory, based on what TExecutionTensor: :getMaxOutputSize
reports as an upper bound. That guarantees that the engine will not fail for lack of
sufficient output memory, but the upper bound may be so high as to be useless.

Preallocate enough memory based on experience, use
IExecution: :setTensorAddress to tell TensorRT about it. Make reallocateOutput
return nullptr if the tensor does not fit, which will cause the engine to fail gracefully.

Preallocate memory as in ¢, but have reallocateoutput return a pointer to a bigger
buffer if there is a fit problem. This increases the output buffer as needed.

Defer allocation until the size is known, like a. Then, attempt to recycle that allocation
in subsequent calls until a bigger buffer is requested, and then increase it like in D.

Here's an example derived class that implements E:
class FancyOutputAllocator : nvinferl::IOutputAllocator

{

public:

void reallocateOutput (
char const* tensorName, void* currentMemory,
uinté64_t size, uint64_t alignment) override

if (size > outputSize)
{
// Need to reallocate
cudaFree (outputPtr) ;
outputPtr = nullptr;
outputSize = 0;
if (cudaMalloc (&outputPtr, size) == cudaSuccess)
{
outputSize = size;
}
}
// If the cudaMalloc fails, outputPtr=nullptr, and engine
// gracefully fails.
return outputPtr;

}

void notifyShape (char const* tensorName, Dims consté& dims)

{
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// Remember output dimensions for later use.
outputDims = dims;

}

// Saved dimensions of the output tensor
Dims outputDims{};

// nullptr if memory could not be allocated
void* outputPtr{nullptr};

// Size of allocation pointed to by output
uint64_t outputSize{0};

~FancyOutputAllocator () override

{
cudaFree (outputPtr) ;

}
}i

8.5.1. Looking up Binding Indices for Multiple
Optimization Profiles

You can skip this section if using enqueuev3 instead of the deprecated enqueuev?,
because the name-based methods such as IExecutionContext: :setTensorAddress
expect no profile suffix.

In an engine built from multiple profiles, there are separate binding indices for each
profile. The names of 1/O tensors for the kth profile have [profile K] appended to
them, with xk written in decimal. For example, if the INetworkbefinition had the name
"foo", and bindingIndex refers to that tensor in the optimization profile with index 3,
engine.getBindingName (bindingIndex) returns "foo [profile 3]".

Likewise, if using ICudaEngine: :getBindingIndex (name) to get the index for a

profile kK beyond the first profile (k=0), append " [profile K]" tothe name used

in the INetworkDefinition. For example, if the tensor was called "foo" in the
INetworkDefinition, then engine.getBindingIndex ("foo [profile 3]1") returns the
binding index of Tensor "foo™ in optimization profile 3.

Always omit the suffix for k=0.

8.5.2. Bindings For Multiple Optimization Profiles

This section explains the deprecated interface enqueuev2 and its binding indices. The
newer interface enqueuev3 does away with binding indices.

Consider a network with four inputs, one output, with three optimization profiles in
the t1Builderconfig. The engine has 15 bindings, five for each optimization profile,
conceptually organized as a table:
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Figure 11. Optimization Profile

network input/output

r

0| 1 2 | 3| 4
profile index 5 | 6 | 7 | 8
v 110011 (12 (13 | 14

Each row is a profile. Numbers in the table denote binding indices. The first profile has
binding indices 0..4, the second has 5..9, and the third has 10..14.

The interfaces have an "auto-correct” for the case that the binding belongs to the first
profile, but another profile was specified. In that case, TensorRT warns about the mistake
and then chooses the correct binding index from the same column.

For the sake of backward semi-compatibility, the interfaces have an "auto-correct” in the
scenario where the binding belongs to the first profile, but another profile was specified.
In this case, TensorRT warns about the mistake and then chooses the correct binding
index from the same column.

8.6. Layer Extensions For Dynamic
Shapes

Some layers have optional inputs that allow specifying dynamic shape information;
IShapeLayer can be used for accessing the shape of a tensor at runtime. Furthermore,
some layers allow calculating new shapes. The next section goes into semantic details
and restrictions. Here is a summary of what you might find useful in conjunction with
dynamic shapes.

IshapeLayer outputs a 1D tensor containing the dimensions of the input tensor. For
example, if the input tensor has dimensions [2, 3, 5, 71, the output tensor is a four-
element 1D tensor containing {2, 3,5, 7}. If the input tensor is a scalar, it has dimensions
[1, and the output tensor is a zero-element 1D tensor containing {}.

IResizeLayer accepts an optional second input containing the desired dimensions of the
output.

IshufflelLayer accepts an optional second input containing the reshape dimensions
before the second transpose is applied. For example, the following network reshapes a
tensor v to have the same dimensions as x:

C++

auto* reshape = networkDefinition.addShuffle (Y) ;
reshape.setInput(l, networkDefintion.addShape (X)->getOutput(0)) ;

Python

reshape = network definition.add shuffle (y)
reshape.set_input(l, network definition.add shape (X) .get_output(0))
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ISliceLayer accepts an optional second, third, and fourth input containing the start,
size, and stride.

IConcatenationLayer, IElementWiselayer, IGatherlLayer, IIdentitylLayer, and
IReducelayer

can be used to do calculations on shapes and create new shape tensors.

8.7. Restrictions For Dynamic Shapes

The following layer restrictions arise because the layer’'s weights have a fixed size:

» IConvolutionLayer and IDeconvolutionLayer require that the channel dimension be
a build time constant.

» IFullyConnectedLayer requires that the last three dimensions be build-time
constants.

» Ints8 requires that the channel dimension be a build time constant.

» Layers accepting additional shape inputs (IResizeLayer, IShufflelLayer,
ISliceLayer) require that the additional shape inputs be compatible with the
dimensions of the minimum and maximum optimization profiles as well as with the
dimensions of the runtime data input; otherwise, it can lead to either a build-time or
runtime error.

Values that must be build-time constants do not have to be constants at the API level.
TensorRT’s shape analyzer does element by element constant propagation through layers
that do shape calculations. It is sufficient that the constant propagation discovers that a
value is a build time constant.

For more information regarding layers, refer to the NVIDIA TensorRT Operator’s
Reference.

8.8. Execution Tensors Versus Shape
Tensors

TensorRT 8.5 largely erases the distinctions between execution tensors and shape
tensors. However, if designing a network or analyzing performance, it may help to
understand the internals and where internal synchronization is incurred.

Engines using dynamic shapes employ a ping-pong execution strategy.

1. Compute the shapes of tensors on the CPU until a shape requiring GPU results is
reached.

2. Stream work to the GPU until out of work or an unknown shape is reached If the
latter, synchronize and go back to step 1.

An execution tensor is a traditional TensorRT tensor. A shape tensor is a tensor that is
related to shape calculations. It must have type Int32, Float, Or Bool, its shape must
be determinable at build time, and it must have no more than 64 elements. Refer to
Shape Tensor I/O (Advanced) for additional restrictions for shape tensors at network 1/O
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boundaries. For example, there is an I1shapeLayer whose output is a 1D tensor containing
the dimensions of the input tensor. The output is a shape tensor. IshuffleLayer accepts
an optional second input that can specify reshaping dimensions. The second input must
be a shape tensor.

Some layers are “polymorphic” with respect to the kinds of tensors that they handle. For
example, IElementWiseLayer can sum two INT32 execution tensors or sum two INT32
shape tensors. The type of tensor depends on its ultimate use. If the sum is used to
reshape another tensor, then it is a “shape tensor.”

When TensorRT needs a shape tensor, but the tensor has been classified as an execution
tensor, the runtime has to copy the tensor from the GPU to the CPU, which incurs
synchronization overhead.

The formal inference rules used by TensorRT for classifying tensors are based on a type-
inference algebra. Let £ denote an execution tensor and s denote a shape tensor.

IActivationLayer has the signature:

IActivationLayer: E - E

since it takes an execution tensor as an input and an execution tensor as an output.
IElementWiseLayer is polymorphic in this respect, with two signatures:
IElementWiselayer: S x S - S, E x E - E

For brevity, let us adopt the convention that t is a variable denoting either class of
tensor, and all t in a signature refers to the same class of tensor. Then, the two previous
signatures can be written as a single polymorphic signature:

IElementWiseLayer: t x t - t

The two-input I1shuffleLayer has a shape tensor as the second input and is polymorphic
with respect to the first input:
IShufflelayer (two inputs): t x S - t

IConstantLayer has no inputs, but can produce a tensor of either kind, so its signature
Is:
IConstantLayer: - t

The signature for IshapeLayer allows all four possible combinations E-E, E-s, s-E, and
S-S, s0 it can be written with two independent variables:
IShapelayer: t; — t

Here is the complete set of rules, which also serves as a reference for which layers can be
used to manipulate shape tensors:

IAssertionlLayer: S —
IConcatenationlLayer: t x t x ...- t
IIfConditionalInputLayer: t — t
IIfConditionalOutputLayer: t - t
IConstantlLayer: - t
IActivationlLayer: t — t
IElementWiselayer: t x t - t
IFilllLayer: S - t
IFilllayer: S x E
IGatherLayer: t x
IIdentitylLayer: t
IReducelayer: t —
IResizelayer (one input): E - E
IResizelayer (two inputs): E x S - E

- E
t

Lo ox
(S e
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ISelectlayer: t x t x t - t
IShapelayer: t; — t

IShufflelLayer (one input): t — t
IShufflelayer (two inputs): t x S - t
ISlicelayer (one input): t - t
ISlicelayer (two inputs): t x -
ISlicelLayer (three inputs): t S S - t
ISlicelayer (four inputs): t x S x S x S - t
IUnarylayer: t - t

all other layers: E x ... - E x ...

S t
x x

Because an output can be the input of more than one subsequent layer, the inferred
"types" are not exclusive. For example, an IConstantLayer might feed into one use that
requires an execution tensor and another use that requires a shape tensor. The output of
IConstantLayer is classified as both and can be used in both phase 1 and phase 2 of the
two-phase execution.

The requirement that the size of a shape tensor be known at build time limits how
ISliceLayer can be used to manipulate a shape tensor. Specifically, if the third
parameter, which specifies the size of the result, and is not a build-time constant, the
length of the resulting tensor is unknown at build time, breaking the restriction that
shape tensors have constant shapes. The slice will still work, but will incur synchronization
overhead at runtime because the tensor is considered an execution tensor that has to be
copied back to the CPU to do further shape calculations.

The rank of any tensor has to be known at build time. For example, if the output of
ISliceLayer isa 1D tensor of unknown length that is used as the reshape dimensions
for IshufflelLayer, the output of the shuffle would have unknown rank at build time, and
hence such a composition is prohibited.

TensorRT'’s inferences can be inspected using methods ITensor: :isShapeTensor (),
which returns true for a shape tensor, and ITensor: :isExecutionTensor (), which
returns true for an execution tensor. Build the entire network first before calling these
methods because their answer can change depending on what uses of the tensor have
been added.

For example, if a partially built network sums two tensors, T1 and T2, to create tensor T3,
and none are yet needed as shape tensors, isShapeTensor () returns false for all three
tensors. Setting the second input of IshuffleLayer to T3 would cause all three tensors
to become shape tensors because 1shuffleLayer requires that its second optional input
be a shape tensor, and if the output of IElementWiseLayer is a shape tensor, its inputs
are too.

8.9. Shape Tensor I/O (Advanced)

Sometimes the need arises to use a shape tensor as a network I/O tensor. For example,
consider a network consisting solely of an 1shuffleLayer. TensorRT infers that the
second input is a shape tensor. ITensor: :isShapeTensor returns true for it. Because it is
an input shape tensor, TensorRT requires two things for it:

» At build time: the optimization profile values of the shape tensor.

» At run time: the values of the shape tensor.
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The shape of an input shape tensor is always known at build time. It is the values that
must be described since they can be used to specify the dimensions of execution
tensors.

The optimization profile values can be set using

IOptimizationProfile: :setShapevValues. Analogous to how min, max, and optimization
dimensions must be supplied for execution tensors with runtime dimensions, min, makx,
and optimization values must be provided for shape tensors at build time.

The corresponding runtime method is TExecutionContext: : setTensorAddress, which
tells TensorRT where to look for the shape tensor values.

Because the inference of “execution tensor” vs “shape tensor” is based on ultimate use,
TensorRT cannot infer whether a network output is a shape tensor. You must tell it using
the method INetworkDefinition: :markOutputForShapes.

Besides letting you output shape information for debugging, this feature is useful
for composing engines. For example, consider building three engines, one each for
sub-networks A, B, C, where a connection from A to B or B to C might involve a shape
tensor. Build the networks in reverse order: C, B, and A. After constructing network C,
you can use ITensor: :isShapeTensor to determine if an input is a shape tensor, and
use INetworkDefinition: :markOutputForShapes to mark the corresponding output
tensor in network B. Then check which inputs of B are shape tensors and mark the
corresponding output tensor in network A.

Shape tensors at network boundaries must have type Int32. They cannot have type
Float or Bool. A workaround for Bool is to use 1nt32 for the I/O tensor, with zeros and
ones, and convert to/from Bool using IIdentityLayer.

At runtime, whether a tensor is an I/O shape tensor can be determined via method
ICudaEngine: :isShapeInferenceIO().

8.10. INTS8 Calibration with Dynamic
Shapes

To run INT8 calibration for a network with dynamic shapes, a calibration optimization
profile must be set. Calibration is performed using kKOPT values of the profile. Calibration
input data size must match this profile.

To create a calibration optimization profile, first, construct an 10ptimizationProfile
the same way as it is done for a general optimization profile. Then set the profile to the
configuration:
C++

config->setCalibrationProfile (profile)

Python

config.set calibration profile(profile)

The calibration profile must be valid or be nullptr. kMIN and kMAX values
are overwritten by kopT. To check the current calibration profile, use
IBuilderConfig::getCalibrationProfile.
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This method returns a pointer to the current calibration profile or nullptr if the calibration
profile is unset. getBatchSize () calibrator method must return 1 when running
calibration for a network with dynamic shapes.

Note: If the calibration optimization profile is not set, the first network optimization profile
is used as a calibration optimization profile.
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Chapter 9. Extending TensorRT with
Custom Layers

NVIDIA TensorRT supports many types of layers and its functionality is continually
extended; however, there can be cases in which the layers supported do not cater to the
specific needs of a model. In such cases, TensorRT can be extended by implementing
custom layers, often referred to as plugins.

TensorRT contains plugins that can be loaded into your application. For a list of open-
source plugins, refer to GitHub: TensorRT plugins.

To use TensorRT plugins in your application, the libnvinfer plugin.so

(nvinfer plugin.dll on Windows) library must be loaded, and all plugins must be
registered by calling initLibNvInferPlugins in your application code. For more
information about these plugins, refer to the NvInferpPlugin.h file for reference.

If these plugins do not meet your needs, you can write and add your own.

9.1. Adding Custom Layers Using the C
++ API

You can implement a custom layer by deriving from one of TensorRT’s plugin base classes.

Derive your plugin class from one of the base classes for plugins. They have varying
expressive power with respect to supporting I/O with different types/formats or networks
with dynamic shapes. The following table summarizes the base classes, ordered from
least expressive to most expressive.

Note: If a plugin is intended for general use, provide an FP32 implementation in order to
allow it to properly operate with any network.
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Table 3. Base Classes, Ordered from Least Expressive to Most
Expressive
Introduced Supports
in TensorRT Mixed I/O Dynamic implicit/explicit
version? formats/types shapes? batch mode?
IPluginV2Ext 5.1 (deprecated Limited No Both implicit and
since TensorRT explicit batch
8.5) modes
IPluginv2I0Ext | 6.0.1 General No Both implicit and
explicit batch
modes
IPluginV2DynamicEaD. ] General Yes Explicit batch
mode only

In order to use a plugin in a network, you must first register it with TensorRT's
PluginRegistry. Rather than registering the plugin directly, you register an instance
of a factory class for the plugin, derived from PluginCreator. The plugin creator class
also provides other information about the plugin: its name, version, and plugin field
parameters.

There are two ways that you can register plugins with the registry:

TensorRT provides a macro REGISTER TENSORRT PLUGIN that statically registers
the plugin creator with the registry. Note that REGISTER TENSORRT PLUGIN always
registers the creator under the default namespace ("").

Dynamically register by creating your own entry-point similar to
initLibNvInferPlugins and calling registerCreator on the plugin registry. This is
preferred over static registration as it offers a potentially lower memory footprint and
allows plugins to be registered under a unique namespace. This ensures that there are
no name collisions during build time across different plugin libraries.

Calling IPluginCreator: :createPlugin () returns a plugin object of type IP1uginv2. You
can add a plugin to the TensorRT network using addPluginv2 (), which creates a network
layer with the given plugin.

For example, you can add a plugin layer to your network as follows:

// Look up the plugin in the registry

auto creator = getPluginRegistry () ->getPluginCreator (pluginName, pluginVersion) ;
const PluginFieldCollection* pluginFC = creator->getFieldNames () ;

// Populate the fields parameters for the plugin layer

// PluginFieldCollection *pluginData = parseAndFillFields (pluginFC, layerFields) ;
// Create the plugin object using the layerName and the plugin meta data
IPluginV2 *pluginObj = creator->createPlugin(layerName, pluginData) ;

// Add the plugin to the TensorRT network

auto layer = network.addPluginV2 (&inputs[0], int(inputs.size()), pluginObj) ;

. (build rest of the network and serialize engine)

// Destroy the plugin object

pluginObj->destroy ()

NVIDIA TensorRT 8.6.13 Developer Guide SWE-SWDOCTRT-005-DEVG | 77



Extending TensorRT with Custom Layers

. (free allocated pluginData)

Note: The createPlugin method described previously creates a new plugin object on the
heap and returns a pointer to it. Ensure you destroy the pluginobj, as shown previously, to
avoid a memory leak.

During serialization, the TensorRT engine internally stores the plugin type, plugin
version, and namespace (if it exists) for all 1P1uginv2 type plugins. During
deserialization, TensorRT looks up the plugin creator from the plugin registry and calls
IPluginCreator::deserializePlugin (). When the engine is deleted, the clone of

the plugin object, created during engine build, is destroyed by the engine by calling the
IPluginv2::destroy () method. It is your responsibility to ensure the plugin object you
created is freed after it is added to the network.

@ Note:

» Do not serialize all plugin parameters: only those required for the plugin to function
correctly at runtime. Build time parameters can be omitted.

» Serialize and deserialize plugin parameters in the same order. During deserialization,
verify that plugin parameters are either initialized to a default value or to the
deserialized value. Uninitialized parameters result in undefined behavior.

» If you are an automotive safety user, you must call getSafePluginRegistry () instead
of getPluginRegistry (). You must also use the REGISTER SAFE TENSORRT PLUGIN
macro instead of REGISTER TENSORRT PLUGIN.

9.1.1. Example: Adding a Custom Layer with
Dynamic Shape Support Using C++

To support dynamic shapes, your plugin must be derived from 1P1uginv2DynamicExt.

BarPlugin is a plugin with two inputs and two outputs where:

» The first output is a copy of the second input.
» The second output is the concatenation of both inputs, along the first dimension, and
all types/formats must be the same and be linear formats.

BarPlugin must be derived as follows:

class BarPlugin : public IPluginV2DynamicExt
{

...override virtual methods inherited from IPluginV2DynamicExt.
};
The four methods that are affected by dynamic shapes are:

getOutputDimensions
supportsFormatCombination

configurePlugin

vV v v VY

enqueue
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The override for getoutputDimensions returns symbolic expressions for the output
dimensions in terms of the input dimensions. You can build the expressions from the
expressions for the inputs, using the TExprBuilder passed into getOutputDimensions. IN
the example, no new expression has to be built for case 1 because the dimensions of the
second output are the same as the dimensions of the first input.

DimsExprs BarPlugin::getOutputDimensions (int outputIndex,
const DimsExprs* inputs, int nbInputs,
IExprBuilder& exprBuilder)

switch (outputIndex)
{

case 0:
{

// First dimension of output is sum of input

// first dimensions.

DimsExprs output (inputs[0]) ;

output.d[0] =

exprBuilder.operation (DimensionOperation: :kSUM,
inputs[0] .d[0], inputs[1].d[0]);

return output;
}
case 1:

return inputs[0];
default:

throw std::invalid argument(“invalid output”);

}

The override for supportsFormatCombination must indicate whether a format
combination is allowed. The interface indexes the inputs/outputs uniformly as
“‘connections,” starting at O for the first input, then the rest of the inputs in order,
followed by numbering the outputs. In the example, the inputs are connections O and 1,
and the outputs are connections 2 and 3.

TensorRT uses supportsFormatCombination to ask whether a given combination

of formats/types is okay for a connection, given formats/types for lesser indexed
connections. So the override can assume that lesser indexed connections have already
been vetted and focus on the connection with index pos.

bool BarPlugin::supportsFormatCombination(int pos, const PluginTensorDesc* inOut, int
nbInputs, int nbOutputs) override
{
assert (0 <= pos && pos < 4);
const auto* in = inOut;
const auto* out = inOut + nbInputs;
switch (pos)
{

case 0: return in[0].format == TensorFormat: :kLINEAR;
case 1l: return in[l].type == in[0].type &&
in[l].format == TensorFormat: :kLINEAR;
case 2: return out[0].type == in[0].type &&
out[0] . format == TensorFormat: :kLINEAR;
case 3: return out[l].type == in[0].type &&

out[1l] .format == TensorFormat: :kLINEAR;
}

throw std::invalid_argument(“invalid connection number”) ;
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The local variables in and out here allow inspecting inout by input or output number
instead of connection number.

S Important: The override inspects the format/type for a connection with an index less than
pos, but must never inspect the format/type for a connection with an index greater than
pos. The example uses case 3 to check connection 3 against connection O, and not use
case 0 to check connection 0 against connection 3.

TensorRT uses configurePlugin to set up a plugin at runtime. This plugin does not need
configurePlugin to do anything, so it is a no-op:

void BarPlugin: :configurePlugin (

const DynamicPluginTensorDesc* in, int nbInputs,

const DynamicPluginTensorDesc* out, int nbOutputs) override
{
}

If the plugin needs to know the minimum or maximum dimensions it might

encounter, it can inspect the field bynamicPluginTensorDesc: :min OrF
DynamicPluginTensorDesc: :max for any input or output. Format and build-time
dimension information can be found in DynamicPluginTensorDesc: :desc. Any runtime
dimensions appear as -1. The actual dimension is supplied to BarPlugin: :enqueue.

Finally, the override BarPlugin: :enqueue has to do the work. Since shapes are dynamic,
enqueue is handed a PluginTensorbDesc that describes the actual dimensions, type, and
format of each input and output.

9.1.2. Example: Adding a Custom Layer with INT8
I/O Support Using C++

PoolPlugin is a plugin to demonstrate how to extend INT8 I/O for the custom-pooling
layer. The derivation is as follows:

class PoolPlugin : public IPluginV2IOExt
{

...override virtual methods inherited from IPluginV2IOExt.

};

Most of the pure virtual methods are common to plugins. The main methods that affect
INT8 1/O are:

> supportsFormatCombination
» configurePlugin

> enqueue

The override for supportsFormatCombination must indicate which INT8 I/O combination
is allowed. The usage of this interface is similar to Example: Adding a Custom Layer with
Dynamic Shape Support Using C++. In this example, the supported I/O tensor format is
linear CHW with FP32, FP 16, or INT8 data type, but the I/O tensor must have the same
data type.

bool PoolPlugin: :supportsFormatCombination(int pos, const PluginTensorDesc* inOut, int
nbInputs, int nbOutputs) const override
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assert (nbInputs == 1 && nbOutputs == 1 && pos < nbInputs + nbOutputs) ;
bool condition = inOut[pos].format == TensorFormat::kLINEAR;
condition &= ((inOut[pos].type == DataType: :kFLOAT) ||
(inOut[pos] .type == DataType: :kHALF) ||
(inOut[pos] .type == DataType: :kINT8)) ;
condition &= inOut[pos].type == inOut[0].type;
return condition;

S| Important:

» If INT8 calibration must be used with a network with INT8 I/O plugins, the plugin must
support FP32 1/0 as TensorRT uses FP32 to calibrate the graph.

» If the FP32 I/O variant is not supported or INT8 calibration is not used, all required
INT8 I/O tensors scales must be set explicitly.

» Calibration cannot determine the dynamic range of a plugin internal tensor. Plugins
that operate on quantized data must calculate their own dynamic range for internal
tensors.

TensorRT invokes configurePlugin method to pass the information to the plugin
through pPluginTensorDesc, which are stored as member variables, serialized and
deserialized.

void PoolPlugin: :configurePlugin(const PluginTensorDesc* in, int nbInput, const
PluginTensorDesc* out, int nbOutput)
{

mPoolingParams.mC
mPoolingParams .mH
mPoolingParams .mW
mPoolingParams .mP mOutputDims.d[1];

mPoolingParams.mQ mOutputDims.d[2] ;

mInHostScale = in[0] .scale >= 0.0F ? in[0].scale : -1.0F;
mOutHostScale = out[0] .scale >= 0.0F ? out[0].scale : -1.0F;

mInputDims.d[0] ;
mInputDims.d[1];
mInputDims.d[2];

}
Where INT8 I/O scales per tensor can be obtained from PluginTensorDesc: :scale.

Finally, the override UffPoolPluginV2: :enqueue has to do the work. It includes a
collection of core algorithms to execute the custom layer at runtime by using the actual
batch size, inputs, outputs, cuDNN stream, and the information configured.

int PoolPlugin: :enqueue (int batchSize, const void* const* inputs, wvoid** outputs, void¥*
workspace, cudaStream t stream)

{

CHECK (cudnnPoolingForward (mCudnn, mPoolingDesc, &kONE, mSrcDescriptor, input, &kZERO,
mDstDescriptor, output));

return 0;
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9.2. Adding Custom Layers Using the
Python API

Although the C++ APl is the preferred language to implement custom layers, due to
accessing libraries like CUDA and cuDNN, you can also work with custom layers in Python
applications.

You can use the C++ API to create a custom layer, package the layer using pybind11 in
Python, then load the plugin into a Python application. For more information, refer to
Creating a Network Definition in Python.

The same custom layer implementation can be used for both C++ and Python.

9.2.1. Example: Adding a Custom Layer to a
TensorRT Network Using Python

Custom layers can be added to any TensorRT network in Python using plugin nodes.

The Python API has a function called add_plugin v2 that enables you to add a plugin
node to a network. The following example illustrates this. It creates a simple TensorRT
network and adds a leaky ReLU plugin node by looking up the TensorRT plugin registry.

import tensorrt as trt
import numpy as np

TRT_LOGGER = trt.Logger ()

trt.init libnvinfer plugins(TRT_LOGGER, '')
PLUGIN_CREATORS = trt.get plugin_registry() .plugin_creator_ list

def get trt plugin(plugin_name) :
plugin = None
for plugin creator in PLUGIN_CREATORS:
if plugin creator.name == plugin name:
lrelu_slope field = trt.PluginField("neg_slope", np.array([0.1],
dtype=np.float32), trt.PluginFieldType.FLOAT32)
field collection = trt.PluginFieldCollection([lrelu slope field])
plugin = plugin_ creator.create_ plugin(name=plugin_name,
field collection=field collection)
return plugin

def main() :
builder trt.Builder (TRT_LOGGER)
network builder.create_network ()
config = builder.create builder config()
config.max workspace_size = 2**20
input layer = network.add input(name="input_layer", dtype=trt.float32, shape=(1, 1))
lrelu = network.add plugin_v2(inputs=[input_layer], plugin=get_ trt plugin("LReLU TRT"))
lrelu.get output(0) .name = "outputs"
network.mark output(lrelu.get output(0))
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9.3. Using Custom Layers When
Importing a Model with a Parser

The ONNX parser automatically attempts to import unrecognized nodes as plugins. If

a plugin with the same op_type as the node is found in the plugin registry, the parser
forwards the attributes of the node to the plugin creator as plugin field parameters in
order to create the plugin. By default, the parser uses “1” as the plugin version and *” as
the plugin namespace. This behavior can be overridden by setting a plugin version and
plugin namespace string attribute in the corresponding ONNX node.

In some cases, you might want to modify an ONNX graph before importing it into
TensorRT. For example, to replace a set of ops with a plugin node. To accomplish this, you
can use the ONNX GraphSurgeon utility. For details on how to use ONNX-GraphSurgeon
to replace a subgraph, refer to this example.

For more examples, refer to the onnx_packnet sample.

9.4. Plugin API Description

All new plugins should derive classes from both 1pluginCreator and one of the plugin
base classes described in Adding Custom Layers Using the C++ API. In addition, new
plugins should also call the REGISTER TENSORRT PLUGIN (...) macro to register the
plugin with the TensorRT plugin registry or create an init function equivalent to
initLibNvInferPlugins ().

S Note: Automotive safety users must use the REGISTER SAFE TENSORRT PLUGIN(...)
macro instead of REGISTER TENSORRT PLUGIN(...).

9.4.1. Migrating Plugins from TensorRT 6.x or 7.x
to TensorRT 8.x.x

IPluginv2 and IPluginVv2Ext have been deprecated since TensorRT 8.5. Therefore, new
plugins should target the IPluginv2bynamicExt or IPluginV2I0Ext interfaces, and old
ones refactored to use these interfaces.

The new features in IPluginv2DynamicExt are as follows:

virtual DimsExprs getOutputDimensions (int outputlIndex, const DimsExprs* inputs, int nbInputs,
IExprBuilder& exprBuilder) = 0;

virtual bool supportsFormatCombination(int pos, const PluginTensorDesc* inOut, int nbInputs,
int nbOutputs) = 0;

virtual void configurePlugin(const DynamicPluginTensorDesc* in, int nbInputs, const
DynamicPluginTensorDesc* out, int nbOutputs) = 0;

virtual size t getWorkspaceSize (const PluginTensorDesc* inputs, int nbInputs, const
PluginTensorDesc* outputs, int nbOutputs) const = 0;
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virtual int enqueue (const PluginTensorDesc* inputDesc, const PluginTensorDesc* outputDesc,
const void* const* inputs, void* const* outputs, void* workspace, cudaStream t stream) = 0;

The new features in IP1luginv2IOExt are as follows:

virtual void configurePlugin (const PluginTensorDesc* in, int nbInput, const PluginTensorDesc*
out, int nbOutput) = 0;

virtual bool supportsFormatCombination(int pos, const PluginTensorDesc* inOut, int nbInputs,
int nbOutputs) const = 0;

Guidelines for migration to TP1uginv2DynamicExt Of TP1luginV2IOExt:
getOutputDimensions implements the expression for output tensor dimensions given
the inputs.

supportsFormatCombination checks if the plugin supports the format and datatype
for the specified I/0.

configurePlugin mimics the behavior of equivalent configurePlugin in
IPluginV2Ext but accepts tensor descriptors.

getWorkspaceSize and enqueue mimic the behavior of equivalent APIs in
IPluginV2Ext but accept tensor descriptors.

Refer to the API description in IPluginV2 API Description for more details about the API.

The following section describes the functions of the 1p1uginv2 class. To connect a plugin
layer to neighboring layers and set up input and output data structures, the builder
checks for the number of outputs and their dimensions by calling the following plugins
methods.

getNbOutputs
Used to specify the number of output tensors.
getOutputDimensions
Used to specify the dimensions of output as a function of the input dimensions.
supportsFormat
Used to check if a plugin supports a given data format.
getOutputDataType
Used to get the data type of the output at a given index. The returned data type must
have a format that is supported by the plugin.

Plugin layers can support the following data formats:

LINEAR single-precision (FP32), half-precision (FP16), integer (INT8), and integer
(INT32) tensors

cHW32 single-precision (FP32) and integer (INT8) tensors
CHW2, HWC8,HWC16, and pHWCS half-precision (FP16) tensors

cHw4 half-precision (FP16), and integer (INT8) tensors

The formats are counted by PluginFormatType.

Plugins that do not compute all data in place and need memory space in addition to
input and output tensors can specify the additional memory requirements with the
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getWorkspaceSize method, which is called by the builder to determine and preallocate
scratch space.

During both build and inference time, the plugin layer is configured and executed, possibly
multiple times. At build time, to discover optimal configurations, the layer is configured,
initialized, executed, and terminated. After the optimal format is selected for a plugin,
the plugin is once again configured, then it is initialized once and executed as many times
as needed for the lifetime of the inference application, and finally terminated when the
engine is destroyed. These steps are controlled by the builder and the engine using the
following plugin methods:
configurePlugin
Communicates the number of inputs and outputs, dimensions, and datatypes of all
inputs and outputs, broadcast information for all inputs and outputs, the chosen
plugin format, and maximum batch size. At this point, the plugin sets up its internal
state and selects the most appropriate algorithm and data structures for the given
configuration.

Note: Resource allocation is not allowed in this APl because it causes a resource leak.

initialize
The configuration is known at this time, and the inference engine is being created, so
the plugin can set up its internal data structures and prepare for execution.

enqueue
Encapsulates the actual algorithm and kernel calls of the plugin and provides the
runtime batch size, pointers to input, output, and scratch space, and the CUDA stream
to be used for kernel execution.

terminate
The engine context is destroyed, and all the resources held by the plugin must be
released.

clone
This is called every time a new builder, network, or engine is created that includes this
plugin layer. It must return a new plugin object with the correct parameters.

destroy
Used to destroy the plugin object and other memory allocated each time a new plugin
object is created. It is called whenever the builder or network or engine is destroyed.

set/getPluginNamespace
This method is used to set the library namespace that this plugin object belongs to
(default can be ""). All plugin objects from the same plugin library should have the same
namespace.

IPluginV2Ext supports plugins that can handle broadcast inputs and outputs. The
following methods must be implemented for this feature:
canBroadcastInputAcrossBatch
This method is called for each input whose tensor is semantically broadcast across
a batch. If canBroadcastInputAcrossBatch returns true (meaning the plugin can
support broadcast), TensorRT does not replicate the input tensor. There is a single copy
that the plugin should share across the batch. If it returns false, TensorRT replicates
the input tensor so that it appears like a nonbroadcasted tensor.
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isOutputBroadcastAcrossBatch
This is called for each output index. The plugin should return true the output at the
given index and is broadcast across the batch.

IPluginV2IOExt
This is called by the builder before initialize (). It provides an opportunity for
the layer to make algorithm choices on the basis of I/O PluginTensorbesc and the
maximum batch size.

S Note: Plugins based on 1p1uginv2 are shared at the engine level, not the execution
context level, and thus such plugins that may be used simultaneously by multiple threads
must manage their resources in a thread-safe manner. Plugins based on TP1uginv2Ext
and derivative interfaces are cloned when an ExecutionContext is created, so this is not
required.

9.4.3. 1IPluginCreator API Description

The following methods in the TpluginCreator class are used to find and create the
appropriate plugin from the plugin registry:

getPluginName
This returns the plugin name and should match the return value of
IPluginExt::getPluginType

getPluginVersion
Returns the plugin version. For all internal TensorRT plugins, this defaults to 1.

getFieldNames
To successfully create a plugin, it is necessary to know all the field parameters of the
plugin. This method returns the PluginFieldCollection struct with the PluginField
entries populated to reflect the field name and PluginFieldType (the data should
point to nullptr).

createPlugin
This method is used to create the plugin using the PluginFieldCollection argument.
The data field of the P1luginField entries should be populated to point to the actual
data for each plugin field entry.

S Note: The data passed to the createPlugin function should be allocated by the caller
and eventually freed by the caller when the program is destroyed. The ownership of the
plugin object returned by the createPlugin function is passed to the caller and must
be destroyed as well.

deserializePlugin
This method is called internally by the TensorRT engine based on the plugin name
and version. It should return the plugin object to be used for inference. The plugin
object created in this function is destroyed by the TensorRT engine when the engine is
destroyed.

set/getPluginNamespace
This method is used to set the namespace that this creator instance belongs to
(default can be ™).
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9.5. Best Practices for Custom Layers
Plugin

9.5.1. Coding Guidelines for Plugins

Memory Allocation

Memory allocated in the plugin must be freed to ensure no memory leak. If resources

are acquired in the initialize () function, they must be released in the terminate ()
function. All other memory allocations should be freed, preferably in the plugin class
destructor or in the destroy () method. Adding Custom Layers Using the C++ API
outlines this in detail and also provides some notes for best practices when using plugins.

Add Checks to Ensure Proper Configuration and Validate Inputs

A common source for unexpected plugin behavior is improper configuration (for example,
invalid plugin attributes) and invalid inputs. As such, it is good practice to add checks/
assertions during the initial plugin development for cases where the plugin is not
expected to work. The following are places where checks could be added:

» createPlugin: Plugin attributes checks

» configurePlugin: Input dimension checks

» enqueue: Input value checks

Return Null at Errors for Methods That Creates a New Plugin Object

createPlugin, clone, and deserializePlugin are expected to create and return new
plugin objects. In these methods, make sure a null object (nullptr in C++)is returned
in case of any error or failed check. This ensures that non-null plugin objects are not
returned when the plugin is incorrectly configured.

Avoid Device Memory Allocations in clone ()

Since clone is called multiple times in the builder, device memory allocations could
be significantly expensive. A good practice is to do persistent memory allocations
ininitialize, copy to device when the plugin is ready-to-use (for example, in
configurePlugin), and release in terminate.
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9.5.2. Using Plugins in Implicit/Explicit Batch
Networks

TensorRT allows for a network to be created in either implicit batch mode or explicit
batch mode (refer to Explicit Versus Implicit Batch). It is useful to remember the following
regarding plugin behavior in implicit/explicit batch mode networks:

» Plugins implementing TP1uginv2DynamicExt can only be added to a network
configured in explicit batch mode.

» Non-IPluginv2DynamicExt plugins can be added to a network configured in either
implicit or explicit batch mode.

S| Important: Even though non-1P1uginv2DynamicExt plugins are compatible with explicit
batch mode networks, their implementation must be independent of the type of network
(implicit/explicit batch mode) in which it is expected to be used. As such, when using such
plugins in explicit batch mode networks:

» The leading dimension of the first input (before being passed to the plugin) is inferred
to be the batch dimension.

» TensorRT pops this first dimension identified above before inputs are passed to the
plugin, and pushes it to the front of any outputs emitted by the plugin. This means
that the batch dimension must not be specified in getoutputDimensions.

9.5.3. Communicating Shape Tensors to Plugins

The TensorRT plugin API does not support direct input of shape tensors to plugin, nor
direct output. However, this limitation can be worked around with empty tensors. Use a
dummy input tensor with the dimensions of interest and a zero dimension, so that the
input occupies practically no space.

For example, suppose a plugin must know a 2-element 1D shape tensor

value [P,Q] to calculate the shape of its outputs, for example, to implement
IPluginV2DynamicExt: :getOutputDimensions. Instead of passing in the shape
tensor [PQ], design the plugin to have a dummy input that is an execution tensor with
dimensions [0,P,Q]. TensorRT will tell the plugin dimensions of the dummy input, from
which the plugin can extract [P,Q]. Because the tensor is empty, it will occupy a tiny
amount of space, just enough to give it a distinct address.

In the network, create the dummy input tensor by using a zero-stride slice, or by
reshaping an empty tensor. Here are the mechanics using a zero-stride slice:

// Shape tensor of interest. Assume it has the value [P,Q].
ITensor* pq = ...;

// Create an empty-tensor constant with dimensions [0,1,1].
// Since it's empty, the type doesn't matter, but let's assume float.

ITensor* c0l1ll = network.addConstant ({3, {0, 1, 1}}, {DataType::kFLOAT, nullptr, 0})-
>getOutput (0) ;

// Create shape tensor that has the value [0,P,Q]

static int32_t const intZero = 0;
ITensor* z = network.addConstant ({1, {1}}, {DataType::kINT32, &intZero, 1})->getOutput(0);
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ITensor* concatInputs[] = {z, pqg};
IConcatenationLayer* zpqg = network.addConcatenation (concatInputs, 2);
zpg->setAxis (0) ;

// Create zero-stride slice with output size [0,P,Q]

Dims z3{3, {0, O, 0}};

ISlicelLayer* slice = network.addSlice(*c011, z3, z3, z3);
slice->setInput (2, *zpg->getOutput(0));

Use slice->getOutput (0) as the dummy input to the plugin.

If using IshufflelLayer to create the empty tensor, be sure to turn off special
interpretation of zeros in the reshape dimensions, that is, be sure to call
setZerolsPlaceholder (false).

9.6. Plugin Shared Libraries

TensorRT contains built-in plugins that can be loaded statically into your application.

You can explicitly register custom plugins with TensorRT using the

REGISTER TENSORRT PLUGIN and registerCreator interfaces (refer to Adding Custom
Layers Using the C++ API). However, you may want TensorRT to manage registration of
a plugin library, and, in particular, serialize plugin libraries with the plan file so they are
automatically loaded when the engine is created. This can be especially useful when you
want to include the plugins in a version compatible engineg, so that you do not need to
manage them after building the engine. In order to take advantage of this, you can build
shared libraries with specific entry points recognized by TensorRT.

9.6.1. Generating Plugin Shared Libraries

To create a shared library for plugins, the library must have the following public symbols
defined:

extern "C" void setlLoggerFinder (ILoggerFinder& finder) ;

extern "C" IPluginCreator* const* getPluginCreators(int32_t& nbCreators) const;

Note extern "c" above is only used to prevent name mangling, and the methods
themselves should be implemented in C++. Consult your compiler's ABI documentation
for more details.

setLoggerFinder () should set a global pointer of ILoggerFinder in the library for logging
in the plugin code. getPluginCreators () returns a list of plugin creators your library
contains. An example of implementation of these entry points can be found in plugin/
common/vfcCommon.h/cpp.

To serialize your plugin libraries with your engine plan, provide the plugin libraries paths to
TensorRT using setPluginsToSerialize () iN BuilderConfig.

When building version compatible engines, you may also want to package plugins in
the plan. The packaged plugins will have the same lifetime as the engine and will be
automatically registered/deregistered when running the engine.
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After building your shared libraries, you can configure the builder to serialize the libraries
with the engine. Next time, when you load the engine into TensorRT, the serialized plugin
libraries will be loaded and registered automatically.

First, you will need to load the plugins for use with the builder prior to building the engine:
C++
for (size_t i = 0; i < nbPluginlLibs; ++i)
{
builder->getPluginRegistry () .loadLibrary (pluginLibs[i]) ;

}
Python
for plugin lib in plugin libs:
builder.get plugin_ registry() .load library(plugin_ 1lib)
Next, you will need to decide if the plugins should be included with the engine, or shipped
externally. You can serialize the plugins with the plan as follows:
C++

IBuilderConfig *config = builder->createBuilderConfig() ;

config->setPluginsToSerialize (pluginlLibs, nbPluginLibs) ;
Python

config = builder.create builder config()
config.plugins_to_serialize = plugin libs

Alternatively, you can keep the plugins external to the engine. You will need to ship these
libraries along with the engine when it is deployed, and load them explicitly in the runtime
prior to deserializing the engine:

C++

// In this example, getExternalPluginLibs() is a user-implemented method which retrieves
the list of libraries to use with the engine
std: :vector<std: :string> pluginlLibs = getExternalPluginLibs() ;
for (auto const &pluginLib : pluginLibs)
{
runtime->getPluginRegistry () .loadLibrary (pluginLib.c_str())

}
Python

# In this example, get_external plugin libs() is a user-implemented method which retrieves
the list of libraries to use with the engine
plugin_libs = get external plugin libs()
for plugin 1lib in plugin libs:
runtime.get plugin_registry() .load_library(plugin_lib)
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NVIDIA TensorRT supports loop-like constructs, which can be useful for recurrent
networks. TensorRT loops support scanning over input tensors, recurrent definitions of
tensors, and both "scan outputs" and "last value" outputs.

10.1. Defining a Loop

A'loop is defined by loop boundary layers.

» ITripLimitLayer specifies how many times that the loop iterates.
» IIteratorLayer enables aloop to iterate over atensor.

» IRecurrencelayer specifies a recurrent definition.

> ILoopOutputLayer specifies an output from the loop.

Each of the boundary layers inherits from class ILoopBoundaryLayer, which has a
method getLoop () for getting its associated ILoop. The ILoop object identifies the loop.
All loop boundary layers with the same ILoop belong to that loop.

Figure 12 depicts the structure of a loop and data flow at the boundary. Loop-invariant
tensors can be used inside the loop directly, such as shown for Foolayer.
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Figure 12. A TensorRT loop is set by loop boundary layers. Dataflow
can leave the loop only by ILoopOutputLayer. The only back
edges allowed are the second input to TRecurrencelLayer.
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A'loop can have multiple IIteratorLayer, IRecurrenceLayer, and ILoopOutputlLayer,
and at most two ITripLimitLayers as explained later. A loop with N0 ILoopOutputLayer
has no output and is optimized by TensorRT.

Layers For Flow-Control Constructs describes the TensorRT layers that may be used in
the loop interior.

Interior layers are free to use tensors defined inside or outside the loop. The interior can

contain other loops (refer to Nested Loops) and other conditional constructs (refer to
Conditionals Nesting).

To define a loop, first, create an ILoop object with the method

INetworkDefinition: :addLoop. Then add the boundary and interior layers. The rest
of this section describes the features of the boundary layers, using 1oop to denote the
ILoop* returned by INetworkDefinition: :addLoop.

ITripLimitLayer supports both counted loops and while-loops.

> loop->addTripLimit (t, TripLimit::kCOUNT) creates an ITripLimitLayer whose
input ¢ is a OD INT32 tensor that specifies the number of loop iterations.

> loop->addTripLimit (t, TripLimit::kWHILE) creates an ITripLimitLayer whose
input t is a OD Bool tensor that specifies whether an iteration should occur. Typically, ¢
is either the output of an IRecurrencelLayer or a calculation based on said output.

A'loop can have at most one of each kind of limit.
ITteratorLayer supports iterating forwards or backward over any axis.

» loop->addIterator (t) adds an IIteratorLayer that iterates over axis O of tensor t.
For example, if the input is the matrix:

NVIDIA TensorRT 8.6.13 Developer Guide SWE-SWDOCTRT-005-DEVG | 92


https://docs.nvidia.com/deeplearning/tensorrt/support-matrix/index.html#layers-flow-control-constructs

Working with Loops

235
4 6 8

the output is the 1D tensor {2, 3, 5} on the firstiterationand {4, 6, 8} forthe
second iteration. It is invalid to iterate beyond the tensor’s bounds.

loop->addIterator (t,axis) is similar, but the layer iterates over the given axis. For
example, if axis=1 and the input is a matrix, each iteration delivers a column of the
matrix.

loop->addIterator (t,axis,reverse) is similar, but the layer produces its output in
reverse order if reverse=true.

ILoopOutputLayer supports three forms of loop output:

loop->addLoopOutput (t, LoopOutput: : kLAST VALUE) outputs the last value of ¢,
where t must be the output of a TRecurrencelLayer.

loop->addLoopOutput (t, LoopOutput: : kCONCATENATE, axis) outputs the
concatenation of each iteration’s input to t. For example, if the inputis a 1D tensor,
with value {a, b, c} on the first iteration and {d, e, £} on the second iteration, and
axis=0, the output is the matrix:

abec

de £

If axis=1, the output is:

ad
b e
c f

loop->addLoopOutput (t, LoopOutput : : kREVERSE, axis) iSs similar, but reverses the
order.

Both the kCONCATENATE and kREVERSE forms of ILoopOutputLayer require a second
input, which is a OD INT32 shape tensor specifying the length of the new output
dimension. When the length is greater than the number of iterations, the extra
elements contain arbitrary values. The second input, for example u, should be set using
ILoopOutputlLayer: :setInput (1, u).

Finally, there is IRecurrenceLayer. Its first input specifies the initial output value, and

its second input specifies the next output value. The first input must come from outside
the loop; the second input usually comes from inside the loop. For example, the TensorRT
analog of this C++ fragment:

for (int32_t i = j; ...; i +=k) ...

could be created by these calls, where j and k are I1Tensor*.

ILoop* loop = n.addLoop() ;

IRecurrencelayer* iRec = loop->addRecurrence (j) ;

ITensor* i = iRec->getOutput (0) ;

ITensor* iNext = addElementWise (*i, *k,
ElementWiseOperation: :kADD) ->getOutput (0) ;

iRec->setInput(l, *iNext) ;

The second input to TRecurrencelLayer is the only case where TensorRT allows a back
edge. If such inputs are removed, the remaining network must be acyclic.
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10.2. Formal Semantics

TensorRT has applicative semantics, meaning there are no visible side effects other than
engine inputs and outputs. Because there are no side effects, intuitions about loops
from imperative languages do not always work. This section defines formal semantics for
TensorRT's loop constructs.

The formal semantics is based on lazy sequences of tensors. Each iteration of a loop
corresponds to an element in the sequence. The sequence for a tensor x inside the loop

isdenoted #x,, X1, X,, ...#. Elements of the sequence are evaluated lazily, meaning, as
needed.
The output from ITteratorLayer (X) is #X[0], X[1], X[2], ...# wherex[i] denotes

subscripting on the axis specified for the ITteratorLayer.

The output from IRecurrencelLayer (X,Y)is #X, Yo, Yi, Yo, ...#

The input and output from an ILoopOutputLayer depend on the kind of Loopoutput.
» kLAST VALUE: Inputis a single tensor x, and output is x,, for an n-trip loop.

» kCONCATENATE: The first input is a tensor x, and the second input is a scalar shape
tensor v. The result is the concatenation of Xy, X1, X», ... X,-1 with post padding,
if necessary, to the length specified by v. It is a runtime error if Y < n. Y is a build time
constant. Note the inverse relationship with TTteratorLayer. ITteratorLayer Mmaps
a tensor to a sequence of subtensors; ILoopOutputLayer with kCONCATENATE maps a
sequence of sub tensors to a tensor.

> kREVERSE: Similar to kCONCATENATE, but the output is in the reverse direction.

The value of n in the definitions for the output of ILoopoOutputLayer is determined by the
ITripLimitLayer for the loop:

» For counted loops, it is the iteration count, meaning the input to the
ITripLimitLayer.

» For while loops, it is the least n such that x, is false, where x is the sequence for the
ITripLimitLayer’'s input tensor.

The output from a non-loop layer is a sequence-wise application of the layer’s

function. For example, for a two-input non-loop layer F (x,Y) = #f (Xo,Yq), f(X1,Y1),
f(X,,Y2) ...4. If atensor comes from outside the loop, that is, a loop invariant, then the
sequence for it is created by replicating the tensor.

10.3. Nested Loops

TensorRT infers the nesting of the loops from the data flow. For instance, if loop B uses
values defined inside loop A, then B is considered to be nested inside of A.

TensorRT rejects networks where the loops are not cleanly nested, such as if loop A uses
values defined in the interior of loop B and vice versa.
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10.4. Limitations

A loop that refers to more than one dynamic dimension can take an unexpected amount
of memory.

In a loop, memory is allocated as if all dynamic dimensions take on the maximum value
of any of those dimensions. For example, if a loop refers to two tensors with dimensions
[4,x,y] and [6,y], memory allocation for those tensors is as if their dimensions were
[4,max (x,y) ,max (x,vy)] and [6,max (x,Vy)].

The input to a LoopOutputLayer with kLAST VALUE must be the output from an
IRecurrencelayer.

The loop API supports only FP32 and FP 16 precision.

10.5. Replacing IRNNv2Layer With Loops

IRNNv2Layer was deprecated in TensorRT 7.2.1 and will be removed in TensorRT 9.0.
Use the loop API to synthesize a recurrent sub network. For an example, refer to
sampleCharRNN, method sampleCharRNNLoop: :addLSTMCell. You can express general
recurrent networks instead of being limited to the prefabricated cells in TRNNLayer and
IRNNv2Layer using the loop API.

Refer to sampleCharRNN for more information.
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NVIDIA TensorRT supports conditional if-then-else flow control. TensorRT conditionals are
used to implement conditional execution of network subgraphs.

11.1. Defining a Conditional

An if-conditional is defined by conditional boundary layers:

» IConditionLayer represents the predicate and specifies whether the conditional
should execute the true-branch (then-branch) or the false-branch (else-branch).

» IIfConditionalInputLayer specifiesan inputto one of the two conditional
branches.

» IIfConditionaloutputLayer specifiesan output from a conditional.

Each of the boundary layers inherits from class IT1fConditionalBoundaryLayer, Which
has a method getConditional () for getting its associated 11fConditional. The
IIfConditional instance identifies the conditional. All conditional boundary layers with
the same 11fConditional belong to that conditional.

A conditional must have exactly one instance of IConditionLayer, Z€ro, or
more instances of IIfConditionalInputLayer, and at least one instance of
IIfConditionalOutputLayer.

IIfConditional implements an if-then-else flow-control construct that provides
conditional-execution of a network subgraph based on a dynamic boolean input.
It is defined by a boolean scalar predicate condition, and two branch subgraphs:
a trueSubgraph which is executed when condition evaluates to true, and a
falseSubgraph which is executed when condition evaluates to false:
If condition is true then:

output = trueSubgraph (trueInputs) ;
Else

output = falseSubgraph (falseInputs) ;
Emit output

Both the true-branch and the false-branch must be defined, similar to the ternary

operator in many programming languages.

To define an if-conditional, create an II1fCconditional instance with the method
INetworkDefinition::addIfConditional, then add the boundary and branch layers.
IIfConditional* simpleIf = network->addIfConditional() ;
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The T1fConditional::setCondition method takes a single argument: the condition
tensor. This OD boolean tensor (scalar) can be computed dynamically by earlier layers in
the network. It is used to decide which of the branches to execute. An IConditionLayer
has a single input (the condition) and no outputs since it is used internally by the
conditional implementation.

// Create a condition predicate that is also a network input.

auto cond = network->addInput("cond", DataType::kBOOL, Dims{0}) ;

IConditionLayer* condition = simpleIf->setCondition (*cond) ;

TensorRT does not support a subgraph abstraction for implementing

conditional branches and instead uses I1fConditionalInputLayer and
IIfConditionalOutputLayer to define the boundaries of conditionals.

An ITfConditionalInputLayerabstracts a single input to one or both

of the branch subgraphs of an T1fConditional. The output of a specific
IIfConditionalInputLayercan feed both branches.

// Create an if-conditional input.

// x is some arbitrary Network tensor.

IIfConditionalInputLayer* inputX = simpleIf->addInput (*x);

Inputs to the then-branch and the else-branch do not have to be of the same type
and shape. Each branch can independently include zero or more inputs.

IIfConditionalInputLayeris optional and is used to control which layers will be part
of the branches (refer to Conditional Execution). If all of a branch's outputs do not
depend on an ITfConditionalInputLayerinstance, that branch is empty. An empty
else-branch can be useful when there are no layers to evaluate when the condition is
false, and the network evaluation should proceed following the conditional (refer to
Conditional Examples).

An ITfConditionalOutputLayerabstracts a single output of the if-conditional. It has
two inputs: an output from the true-subgraph (input index 0) and an output from the
false-subgraph (input index 1). The output of an TI1fConditionalOutputLayer can
be thought of as a placeholder for the final output that will be determined during
runtime.

IIfConditionalOutputLayer serves a role similar to that of a # (Phi) function node in
traditional SSA control-flow graphs. Its semantics are: choose either the output of the
true-subgraph or the false-subgraph.
// trueSubgraph and falseSubgraph represent network subgraphs
IIfConditionalOutputlLayer* outputlLayer = simpleIf->addOutput (
*trueSubgraph->getOutput (0) ,
*falseSubgraph->getOutput (0)) ;
All outputs of an IIfConditional must be sourced at an
IIfConditionalOutputLayer instance.

An if-conditional without outputs has no effect on the rest of the network, therefore,
it is considered ill-formed. Each of the two branches (subgraphs) must also have at
least one output. The output of an if-conditional can be marked as the output of the
network, unless that if-conditional is nested inside another if-conditional or loop.

The diagram below provides a graphical representation of the abstract model of an if-
conditional. The green rectangle represents the interior of the conditional, which is
limited to the layer types listed in Layers For Flow-Control Constructs.
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Figure 13. An If-Conditional Construct Abstract Model

D |IfConditional construct

I:l Input/output placeholder

. If-conditional input/output

. Boundary input-layer
(IIfConditionallnputLayer)
Boundary output-layer
(lIfConditionalOQutputLayer)

. Boundary condition-layer

True Branch False Branch (IConditionLayer)

(subgraph) (subgraph) @ Lazily-executed branch

Outl Out 2 I Outl Out 2

11.2. Conditional Execution

Conditional execution of network layers is a network evaluation strategy in which branch-
layers (the layers belonging to a conditional subgraph) are executed only if the values of
the branch outputs are needed. In conditional-execution, either the true-branch or the
false-branch is executed and allowed to change the network state.

In contrast, in predicated-execution, both the true-branch and the false-branch are
executed and only one of these is allowed to change the network evaluation state,
depending on the value of the condition predicate (that is, only the outputs of one of the
subgraphs is fed into the following layers).

Conditional execution is sometimes called lazy evaluation, and predicated-execution is
sometimes referred to as eager evaluation.

Instances of IIfConditionalInputLayer can be used to specify which layers are invoked
eagerly and which are invoked lazily. This is done by tracing the network layers backwards,
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starting with each of the conditional outputs. Layers that are data-dependent on

the output of at least one I11fConditionalInputLayer are considered internal to the
conditional and are therefore evaluated lazily. In the extreme case that no instances of
IIfConditionalInputLayer are added to the conditional, all of the layers are executed
eagerly, similarly to 1selectLayer.

The three diagrams below depict how the choice of T1fConditionalInputLayer
placement controls execution scheduling.

Figure 14. Controlling Conditional-Execution using
IIfConditionallInputLayer Placement

In diagram A, the true-branch is composed of three layers (T1, T2, T3). These layers
execute lazily when the condition evaluates to true.

In diagram B, input-layer |1 is placed after layer T1, which moves T1 out of the true-
branch. Layer T1 executes eagerly before evaluating the if-construct.

In diagram C, input-layer |1 is removed altogether, which moves T3 outside the
conditional. T2's input is reconfigured to create a legal network, and T2 also moves out of
the true-branch. When the condition evaluates to true, the conditional does not compute
anything since the outputs have already been eagerly computed (but it does copy the
conditional relevant inputs to its outputs).

11.3. Nesting and Loops

Conditional branches may nest other conditionals and may also nest loops. Loops may
nest conditionals. As in loop nesting, TensorRT infers the nesting of the conditionals and
loops from the data flow. For example, if conditional B uses a value defined inside loop A,
then B is considered to be nested inside of A.
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There can be no cross-edges connecting layers in the true-branch to layers in the false-
branch, and vice versa. In other words, the outputs of one branch cannot depend on
layers in the other branch.

For example, refer to Conditional Examples for how nesting can be specified.

The number of output tensors in both true/false subgraph branches must be the same.
The type and shape of each output tensor from the branches must be the same.

Note that this is more constrained than the ONNX specification, which requires that the
true/false subgraphs have the same number of outputs and use the same outputs data-
types, but allows for different output shapes.

The following example shows how to implement a simple conditional that conditionally
performs an arithmetic operation on two tensors.

condition = true
If condition is true:
output = x + y
Else:
output = x - y

ITensor* addCondition (INetworkDefinition& n, bool predicate)
{

// The condition value is a constant int32 input that is cast to boolean because TensorRT
doesn't support boolean constant layers.

static const Dims scalarDims = Dims{0, {}};
static float constexpr zero{0};
static float constexpr one{l};

float* const val = predicate ? &one : &zero;

ITensor* cond =
n.addConstant (scalarDims, DataType::kINT32, val, 1})->getOutput(0);

auto* cast = n.addIdentity(cond) ;
cast->setOutputType (0, DataType: :kBOOL) ;
cast->getOutput (0) ->setType (DataType: : kBOOL) ;

return cast->getOutput(0) ;
}

IBuilder* builder = createlInferBuilder (gLogger) ;
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INetworkDefinition& n = *builder->createNetworkV2 (0U) ;
auto x = n.addInput("x", DataType::kFLOAT, Dims{1l, {5}});
auto y = n.addInput("y", DataType: :kFLOAT, Dims{1l, {5}});
ITensor* cond = addCondition(n, true);

auto* simpleIf = n.addIfConditional() ;
simpleIf->setCondition(*cond) ;

// Add input layers to demarcate entry into true/false branches.
x = simpleIf->addInput (*x)->getOutput (0) ;
y = simplelIf->addInput (*y)->getOutput(0) ;

auto* trueSubgraph = n.addElementWise (*x, *y, ElementWiseOperation: :kSUM)->getOutput(0) ;
auto* falseSubgraph = n.addElementWise (*x, *y, ElementWiseOperation: :kSUB)->getOutput(0) ;

auto* output = simpleIf->addOutput (*trueSubgraph, *falseSubgraph)->getOutput (0) ;
n.markOutput (*output) ;

The following example shows how to export scripted PyTorch code to ONNX. The code in
function sum_even performs an if-conditional nested in a loop.

import torch.onnx
import torch

import tensorrt as trt
import numpy as np

TRT_LOGGER = trt.Logger (trt.Logger.WARNING)
EXPLICIT BATCH = 1 << (int) (trt.NetworkDefinitionCreationFlag.EXPLICIT BATCH)

@torch.jit.script
def sum even (items):
s = torch.zeros(l, dtype=torch.float)
for c in items:
if c % 2 ==
s += ¢
return s

class ExampleModel (torch.nn.Module) :
def init_(self):
super () .__init__ ()

def forward(self, items):
return sum_even (items)

def build engine(model file):
builder = trt.Builder (TRT_ LOGGER)
network = builder.create network (EXPLICIT BATCH)
config = builder.create builder config()
parser = trt.OnnxParser (network, TRT_LOGGER)

with open(model file, 'rb') as model:
assert parser.parse (model.read())
return builder.build engine (network, config)

def export_to onnx():
items = torch.zeros (4, dtype=torch.float)
example = ExampleModel ()
torch.onnx.export (example, (items), "example.onnx", verbose=False, opset version=13,
enable onnx_checker=False, do_constant_folding=True)

export_to_onnx()
build engine ("example.onnx")
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NVIDIA DLA (Deep Learning Accelerator) is a fixed-function accelerator engine targeted
for deep learning operations. DLA is designed to do full hardware acceleration of
convolutional neural networks. DLA supports various layers such as convolution,
deconvolution, fully connected, activation, pooling, batch normalization, and so on. DLA
does not support Explicit Quantization. For more information about DLA support in
TensorRT layers, refer to DLA Supported Layers and Restrictions.

DLA is useful for offloading CNN processing from the iGPU, and is significantly more
power-efficient for these workloads. In addition, it can provide an independent execution
pipeline in cases where redundancy is important, for example in mission-critical or safety
applications.

For more information about DLA, refer to the DLA developer page and the DLA tutorial
Getting started with the Deep Learning Accelerator on NVIDIA Jetson Orin.

When building a model for DLA, the TensorRT builder parses the network and calls the
DLA compiler to compile the network into a DLA loadable. Refer to Using trtexec to see
how to build and run networks on DLA.
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Figure 15. Workflow for the Building and Runtime Phases of DLA
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12.1. Building and Launching the
Loadable

There are several different ways to build and launch a DLA loadable, either embedded in a
TensorRT engine or in standalone form.

For generating a standalone DLA loadable to be used outside TensorRT, refer to DLA
Standalone Mode.
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12.1.1. Using trtexec

To allow trtexec to use the DLA, you can use the —useDLACore flag. For example, to
run the ResNet-50 network on DLA core O in FP16 mode, with GPU Fallback Mode for
unsupported layers, issue:

./trtexec --onnx=data/resnet50/ResNet50.onnx --useDLACore=0 --fpl6 --allowGPUFallback

The trtexec tool has additional arguments to run networks on DLA. For more
information, refer to Command-Line Programs.

12.1.2. Using the TensorRT API

You can use the TensorRT API to build and run inference with DLA and to enable DLA at
layer level. The relevant APIs and samples are provided in the following sections.

12.1.2.1. Running on DLA during TensorRT Inference

The TensorRT builder can be configured to enable inference on DLA. DLA support

is currently limited to networks running in FP16 and INT8 mode. The DeviceType
enumeration is used to specify the device that the network or layer executes on. The
following API functions in the 1BuilderConfig class can be used to configure the
network to use DLA:

setDeviceType (ILayer* layer, DeviceType deviceType)
This function can be used to set the deviceType that the layer must execute on.
getDeviceType (const ILayer* layer)
This function can be used to return the deviceType that this layer executes on. If the
layer is executing on the GPU, this returns beviceType: : kGPU.
canRunOnDLA (const ILayer* layer)
This function can be used to check if a layer can run on DLA.
setDefaultDeviceType (DeviceType deviceType)
This function sets the default deviceType to be used by the builder. It ensures that all
the layers that can run on DLA runs on DLA unless setbeviceType is used to override
the deviceType for a layer.
getDefaultDeviceType ()
This function returns the default deviceType which was set by
setDefaultDeviceType
isDeviceTypeSet (const ILayer* layer)
This function checks whether the deviceType has been explicitly set for this layer.
resetDeviceType (ILayer* layer)
This function resets the deviceType for this layer. The value is reset to the deviceType
that is specified by setDefaultDeviceType Or DeviceType: : kGPU if none is specified.
allowGPUFallback (bool setFallBackMode)
This function notifies the builder to use GPU if a layer that was supposed to run on
DLA cannot run on DLA. For more information, refer to GPU Fallback Mode.
reset()
This function can be used to reset the I1Builderconfig state, which sets the
deviceType for all layers to be DeviceType: : kGPU. After reset, the builder can be
reused to build another network with a different DLA config.
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The following API functions in IBuilder class can be used to help configure the network
for using the DLA:
getMaxDLABatchSize ()

This function returns the maximum batch size DLA can support.

S Note: For any tensor, the total volume of index dimensions combined with the
requested batch size must not exceed the value returned by this function.

getNbDLACores ()
This function returns the number of DLA cores available to the user.

If the builder is not accessible, such as in the case where a plan file is being loaded online
in an inference application, then the DLA to be used can be specified differently by using
DLA extensions to the TrRuntime. The following API functions in the TRuntime class can be
used to configure the network to use DLA:
getNbDLACores ()

This function returns the number of DLA cores that are accessible to the user.
setDLACore (int dlaCore)

The DLA core to execute on. Where dlacCore is a value between 0 and

getNbDLACores () - 1. The default value is 0.
getDLACore ()

The DLA core that the runtime execution is assigned to. The default value is O.

12.1.2.2. Example: Run Samples with DLA

This section provides details on how to run a TensorRT sample with DLA enabled.
Create the builder:

auto builder = SampleUniquePtr<nvinferl: :IBuilder>(nvinferl: :createInferBuilder (gLogger)) ;
if ('builder) return false;

builder->setMaxBatchSize (batchSize) ;

config->setMaxWorkspaceSize (16_MB) ;

Then, enable GPUFallback mode;

config->setFlag (BuilderFlag: :kGPU_FALLBACK) ;
config->setFlag (BuilderFlag: :kFP16) ; or config->setFlag(BuilderFlag: :kINTS8) ;

Enable execution on DLA, where dlaCore specifies the DLA core to execute on:

config->setDefaultDeviceType (DeviceType: :kDLA) ;
config->setDLACore (dlaCore) ;

With these additional changes, sampleMNIST is ready to execute on DLA. To run samples
with DLA Core 1, append --useDLACore=0 to the sample command.

12.1.2.3. Example: Enable DLA Mode for a Layer during

Network Creation
In this example, let us create a simple network with Input, Convolution, and Output.

1. Create the builder, builder configuration, and the network:

IBuilder* builder = createInferBuilder (gLogger) ;
IBuilderConfig* config = builder.createBuilderConfig() ;
INetworkDefinition* network = builder->createNetworkV2 (0U) ;

2. Add the Input layer to the network, with the input dimensions.
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auto data = network->addInput (INPUT BLOB NAME, dt, Dims3{1, INPUT H, INPUT W})
3. Add the Convolution layer with hidden layer input nodes, strides, and weights for filter
and bias.

auto convl = network->addConvolution (*data->getOutput(0), 20, DimsHW{5, 5},
weightMap["convlfilter"], weightMap["convlbias"]) ;
convl->setStride (DimsHW{1l, 1});

4. Set the convolution layer to run on DLA:

if (canRunOnDLA (convl))
{

config->setFlag (BuilderFlag: :kFP16) ; or config->setFlag(BuilderFlag: :kINTS8) ;
builder->setDeviceType (convl, DeviceType: :kDLA) ;
}
5. Mark the output:
network->markOutput (*convl->getOutput (0)) ;
6. Set the DLA core to execute on:
config->setDLACore (0)

12.1.3. Using the cuDLA API

cuDLA is an extension of the CUDA programming model that integrates DLA runtime
software with CUDA. This integration makes it possible to launch DLA loadables using
CUDA programming constructs such as streams and graphs.

Managing shared buffers as well as synchronizing the tasks between GPU and DLA is
transparently handled by cuDLA. Refer to the NVIDIA cuDLA documentation on how the
cuDLA APIs can be used for these use cases while writing a cuDLA application.

Refer to the DLA Standalone Mode section for more information on how to use TensorRT
to build a standalone DLA loadable usable with cuDLA.

12.2. DLA Supported Layers and
Restrictions

This section lists the layers supported by DLA along with the constraints associated with
each layer.

12.2.1. General Restrictions

The following restrictions apply to all layers while running on DLA:

» The maximum supported batch size is 4096.

» The maximum supported size for non-batch dimensions is 8192.

» DLA does not support dynamic dimensions. Thus, for wildcard dimensions, the min,
max, and opt values of the profile must be equal.

» The runtime dimension(especially the batch size) must be the same as the dimension
used for building.
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TensorRT may split a network into multiple DLA loadables if any intermediate layers
cannot run on DLA and GPUFallback is enabled. Otherwise, TensorRT can emit an
error and fallback. For more information, refer to GPU Fallback Mode.

At most 16 DLA loadables can be loaded concurrently, per core, due to hardware and
software memory limitations.

Each DLA subgraph in the network may have at most 16 input and output tensors in
total.

Note: Batch size for DLA is the product of all index dimensions except the caw dimensions.

For example, if input dimensions are NPORS, the effective batch size is N*P.

12.2.2. Layer Support and Restrictions

The following list provides layer support and restrictions to the specified layers while
running on DLA:

Convolution and Fully Connected layers

vV v v Vv VY

v

Only two spatial dimension operations are supported.

Both FP16 and INT8 are supported.

Each dimension of the kernel size must be in the range 11, 32].

Padding must be in the range [0, 31].

Dimensions of padding must be less than the corresponding kernel dimension.
Dimensions of stride must be in the range [1, 8].

Number of output maps must be in the range [1, 8192].

Number of input channels [1, 8192].

Number of groups must be in the range [1, 8192] for operations using the formats
TensorFormat::kDLA LINEAR, TensorFormat::kCHW16, and TensorFormat : : kKCHW32.

Number of groups must be in the range [1, 4] for operations using the formats
TensorFormat: :kDLA HWCA4.

Dilated convolution must be in the range 11, 32].

Operations are not supported if the CBUF size requirement wtBanksForOneKernel +
minDataBanks exceeds the numConvBufBankAllotted limitation 16, where CBUF is the
internal convolution cache that stores input weights and activation before operating
on them, wtBanksForOneKernel is the minimum banks for one kernel to store the
minimum weight/kernel elements needed for convolution, and minbataBanks is the
minimum banks to store the minimum activation data needed for convolution. When a
convolution layer fails validation due to CBUF constraints, details are displayed in the
logging output.

Deconvolution layer

>

Only two spatial dimensions are supported.
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» Both FP16 and INT8 are supported.

» The kernel dimensions and strides must be in the range[1, 321, or must be 1x[64,
96, 1281 and [64, 96, 128]xl.

» TensorRT has disabled deconvolution square kernels and strides in the range [23 -
32] on DLA as they significantly slow down compilation.

Padding must be 0

Grouped deconvolution must be 1.

Dilated deconvolutions must be 1.

Number of input channels must be in the range [1, 8192].

vV vV v v VY

Number of output channels must be in the range [1, 8192].

Pooling layer

Only two spatial dimension operations are supported.
Both FP16 and INT8 are supported.

Operations supported: kMAX, kAVERAGE.

Dimensions of the window must be in the range [1, 8].
Dimensions of padding must be in the range [0, 7].
Dimensions of stride must be in the range [1, 16].

vV vV v v VvV v Vv

With INT8 mode, input and output tensor scales must be the same.

Activation layer

» Only two spatial dimension operations are supported.
» Both FP16 and INT8 are supported.

» Functions supported: RelU, Sigmoid, TanH, Clipped RelU, and Leaky RelU.

» Negative slope is not supported for rReLU.
> Clipped ReLU only supports values in the range [1, 127].
> TanH, Sigmoid INT8 support is supported by auto-upgrading to FP16.

Parametric RelLU layer

> Slope input must be a build time constant and have the same rank as the input
tensor.

ElementWise layer

> Only two spatial dimension operations are supported.
» Both FP16 and INT8 are supported.

> Operations supported: sum, Sub, Product, Max, Min, Div, Pow, Equal, Greater, and Less
(described separately).
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Broadcasting is supported when one of the operands has one of the following shape

configurations:

» NCHW (that is, shapes equal)

» NCI11 (thatis, Nand C equal, Hand W are 1)

» N111 (thatis, N equal, C, H,and W are 1)

Div operation

» The first input (dividend) can be either INT8 or FP16 or an FP32 constant. The
second input (divisor) must be INT8 or an FP32 constant.

» If one of the inputs is constant, all values of its weights must be the same.
Additionally, the other input must be an INT8 non-constant.

Pow operation

» Oneinput must be a FP32 constant filled with the same value, the other input
must be an INT8 non-constant.

Comparison operations (Equal, Greater, Less)

| 2

Only supports INT8 layer precision. Only supports INT8 inputs except when using
constants, which should be of FP32 type filled with the same value.

DLA requires that the comparison operation output be FP16 or INT8 type.

Thus, the comparison layer must be immediately followed by a Cast operation
(ITdentitylLayer/ICastLayer)to FP16 or INT8 and should have no direct consumers
other than this Cast operation.

For both the Elementiiise comparison layer and the subsequent
IIdentityLayer/ICastLayer mentioned above, explicitly set your device types to DLA
and their precisions to INT8. Otherwise, these layers will run on the GPU.

Even with GPU fallback allowed, you should expect failures in engine construction in
some cases, for example, when DLA loadable compilation fails. If this is the case, unset
the device types and/or precisions of both the Elementwise comparison layer and
IIdentityLayer/ICastLayer to have both offloaded to GPU.

Scale layer

vV v v VY

Only two spatial dimension operations are supported.

Both FP16 and INT8 are supported.

Mode supported: Uniform, Per-Channel, and ElementWise.
Only scale and shift operations are supported.

LRN (Local Response Normalization) layer

>

>

Allowed window sizes are 3, 5, 7, or 9.
Normalization region supported is ACROSS CHANNELS.
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LRN INT8 is supported by auto-upgrading to FP16.

Concatenation layer

vV v v v VY

v

DLA supports concatenation only along the channel axis.

Concat must have at least two inputs.

All the inputs must have the same spatial dimensions.

Both FP16 and INT8 are supported.

With INT8 mode, the dynamic range of all the inputs must be the same.

With INT8 mode, the dynamic range of output must be equal to each of the inputs.

Resize layer

The number of scales must be exactly 4.

The first two elements in scales must be exactly 1 (for unchanged batch and channel
dimensions).

The last two elements in scales, representing the scale values along height and width
dimensions, respectively, must be integer values in the range of [1, 32] in nearest-
neighbor mode and [1, 4] in bilinear mode.

Unary layer

Only the ABS operation is supported.

DLA supports aBs, SIN, C0S, and ATAN operation types.

For s1N, cos, and ATAN, input precision must be INT8.

All input non-batch dimensions must be in the range [1, 8192].

Slice layer

Both FP16 and INT8 are supported.

Supports batch sizes up to general DLA maximum.

All input non-batch dimensions must be in the range [1, 8192].
Only supports 4-D inputs and slicing at CHW dimensions.

Only supports static slicing, so slice parameters have to be provided statically either
using TensorRT 1slicelLayer setter APIs or as constant input tensors.

SoftMax layer

v

vV vV

Only supported on NVIDIA Orin", not Xavier .

All input non-batch dimensions must be in the range [1, 8192].
Axis must be one of the non-batch dimensions.

Supports FP16 and INT8 precision.
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» Internally, there are two modes, and the mode is selected based on the given input
tensor shape.
» The accurate mode is triggered when all non-batch, non-axis dimensions are 1.

» The optimized mode allows the non-batch, non-axis dimensions to be greater than
1 but restricts the axis dimension to 1024 and involves an approximation that may
cause a small error in the output. The magnitude of the error increases as the size
of the axis dimension approaches 1024.

Shuffle layer

»  Only supports 4-D input tensors.
» All input non-batch dimensions must be in the range [1, 8192].

» Note that DLA decomposes the layer into standalone transpose and reshape
operations. This means that the above restrictions apply individually to each of the
decomposed operations.

» Batch dimensions cannot be involved in either reshapes or transposes.

Reduce layer

»  Only supports 4-D input tensors.
» All input non-batch dimensions must be in the range [1, 8192].
» Both FP16 and INT8 are supported.

>  Only supports MAX operation type where any combination of the CHW axes is
reduced.

12.2.3. Inference on NVIDIA Orin

Due to the difference in hardware specifications between NVIDIA Orin and Xavier DLA, an
increase up to 2x in latency may be observed for FP16 convolution operations on NVIDIA
Orin.

On NVIDIA Orin, DLA stores weights for non-convolution operations (FP16 and INT8)
inside a loadable as FP19 values (which use 4 byte containers). The channel dimensions
are padded to multiples of either 16 (FP16) or 32 (INT8) for those FP19 values. Especially
in the case of large per-element scale, Add, or sub operations, this can inflate the size of
the DLA loadable, inflating the engine containing such a loadable. Graph optimization may
unintentionally trigger this behavior by changing the type of a layer, for example, when

an ElementWise multiplication layer with a constant layer as weights is fused into a scale
layer.

12.3. GPU Fallback Mode

The GpPUFallbackMode sets the builder to use GPU if a layer that was marked to run on
DLA could not run on DLA. A layer cannot run on DLA due to the following reasons:
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1. The 1ayer operation is not supported on DLA.
2. The parameters specified are out of the supported range for DLA.

3. The given batch size exceeds the maximum permissible DLA batch size. For more
information, refer to DLA Supported Layers and Restrictions.

4. A combination of layers in the network causes the internal state to exceed what the
DLA is capable of supporting.

5. There are no DLA engines available on the platform.

When GPU fallback is disabled, an error is emitted if a layer could not be run on DLA.

12.4. 1/O Formats on DLA

DLA supports formats that are unique to the device and have constraints on their layout
due to vector width byte requirements.

For DLA input tensors, kDLA LINEAR (FP16, INT8),kDLA HWC4 (FP16, INT8),

kCHW16 (FP16), and kCHW32 (INT8) are supported. For DLA output tensors, only

kDLA LINEAR(FP16, INT8),kCHW16 (FP16),and kCHW32 (INT8) are supported. For kCHW16
and kcHW32 formats, if ¢ is not an integer multiple, then it must be padded to the next 32-
byte boundary.

For kbLa LINEAR format, the stride along the w dimension must be padded up to

64 bytes. The memory format is equivalent to a ¢ array with dimensions [N] [C] [H]
[roundUp (W, 64/elementSize)] where elementSize is 2 for FP16 and 1 for 1nt8, with
the tensor coordinates (n, ¢, h, w) mapping to array subscript [n][c] [h] [w].

For kpLa_ Hwc4 format, the stride along the w dimension must be a multiple of 32 bytes on
Xavier and 64 bytes on NVIDIA Orin.

» Whenc == 1, TensorRT maps the format to the native grayscale image format.

» Whenc == 3o0rc == 4,it maps to the native color image format. If c == 3, the stride
for stepping along the w axis must be padded to 4 in elements.

In this case, the padded channel is located at the 4th-index. Ideally, the padding value
does not matter because the 4th channel in the weights is padded to zero by the DLA
compiler; however, it is safe for the application to allocate a zero-filled buffer of four
channels and populate three valid channels.

» Whencis {1, 3, 4},thenpaddedc'is {1, 4, 4} respectively, the memory layout
is equivalent to a ¢ array with dimensions [N] [H] [roundUp (W, 32/C'/elementSize) ]
[C'] where elementSize is 2 for FP16 and 1 for 1nt8. The tensor coordinates (n,

c, h, w) mapping to array subscript [n] [h] [w] [c], roundUp calculates the smallest
multiple of 64/elementsize greater than or equal to w.

When using kbLa Hwc4 as DLA input format, it has the following requirements:
» cmustbet,3,or4
» The first layer must be convolution.

» The convolution parameters must meet DLA requirements. Refer to DLA Supported
Layers and Restrictions for more information.
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When GPU fallback is enabled, TensorRT may insert reformatting layers to meet the DLA
requirements. Otherwise, the input and output formats must be compatible with DLA. In
all cases, the strides that TensorRT expects data to be formatted with can be obtained by
querying IExecutionContext::getStrides.

12.5. DLA Standalone Mode

If you need to run inference outside of TensorRT, you can use
EngineCapability::kDLA STANDALONE to generate a DLA loadable instead of a TensorRT
engine. This loadable can then be used with an API like Using the cuDLA API.

12.5.1. Building A DLA Loadable Using C++

1. Set the default device type and engine capability to DLA standalone mode.

builderConfig->setDefaultDeviceType (DeviceType: :kDLA) ;
builderConfig->setEngineCapability (EngineCapability: :kDLA STANDALONE) ;

2. Specify FP16, INT8, or both. For example:
builderConfig->setFlag(BuilderFlag: :kFP16) ;

3. DLA standalone mode disallows reformatting, therefore BuilderFlag: : kDIRECT IO
needs to be set.
builderConfig->setFlag(BuilderFlag: :kDIRECT_ IO) ;

4. You must set the allowed formats for I/O tensors to one or more of those supported
by DLA. See the documentation for the TensorFormat enum for details.

5. Finally, build as normal

12.5.1.1. Using trtexec To Generate A DLA Loadable

The trtexec tool can generate a DLA loadable instead of a TensorRT engine.

Specifying both --usebLACore and --safe parameters sets the builder capability to
EngineCapability::kDLA STANDALONE. Additionally, specifying --inputIOFormats and --
outputIOFormats restricts I/O data type and memory layout. The DLA loadable is saved
into a file by specifying --saveEngine parameter.

For example, to generate an FP16 DLA loadable for an ONNX model using trtexec, issue:

./trtexec --onnx=model.onnx --saveEngine=model loadable.bin --useDLACore=0 --fpl6 --
inputIOFormats=fpl6:chwl6é --outputIOFormats=fpl6:chwl6é --skipInference --safe

12.6. Customizing DLA Memory Pools

You can customize the size of the memory pools allocated to each DLA subnetwork
in a network using the 1BuilderConfig: :setMemoryPoolLimit C++ APl or the
IBuilderConfig.set memory pool limit Python APl There are three types of DLA
memory pools (refer to the MemoryPoolType enum for details):

Managed SRAM

» Behaves like a cache and larger values may improve performance.
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» If no managed SRAM is available, DLA can still run by falling back to local DRAM.

» On Orin, each DLA core has 1 MiB of dedicated SRAM. On Xavier, 4 MiB of SRAM is
shared across multiple cores including the 2 DLA cores.

Local DRAM

» Used to store intermediate tensors in the DLA subnetwork. Larger values may allow
larger subnetworks to be offloaded to DLA.

Global DRAM

» Used to store weights in the DLA subnetwork. Larger values may allow larger
subnetworks to be offloaded to DLA.

The amount of memory required for each subnetwork may be less than the pool size, in
which case the smaller amount will be allocated. The pool size serves only as an upper
bound.

Note that all DLA memory pools require sizes that are powers of 2, with a minimum of 4
KiB. Violating this requirement results in a DLA loadable compilation failure.

In multi-subnetwork situations, it is important to keep in mind that the pool sizes apply
per DLA subnetwork, not for the whole network, so it is necessary to be aware of the total
amount of resources being consumed. In particular, your network can consume at most
twice the managed SRAM as the pool size in aggregate.

For NVIDIA Orin, the default managed SRAM pool size is set to 0.5 MiB whereas Xavier has
1 MiB as the default. This is because Orin has a strict per-core limit, whereas Xavier has
some flexibility. This Orin default guarantees in all situations that the aggregate managed
SRAM consumption of your engine stays below the hardware limit, but if your engine

has only a single DLA subnetwork, this would mean your engine only consumes half the
hardware limit so you may see a perf boost by increasing the pool size to 1 MiB.

12.6.1. Determining DLA Memory Pool Usage

Upon successfully compiling loadables from the given network, the builder reports the
number of subnetwork candidates that were successfully compiled into loadables, as well
as the total amount of memory used per pool by those loadables. For each subnetwork
candidate that failed due to insufficient memory, a message will be emitted to point

out which memory pool was insufficient. In the verbose log, the builder also reports the
memory pool requirements of each loadable.

12.7. Sparsity on DLA

DLA on the NVIDIA Orin platform supports structured sparsity (SS) that offers the
opportunity to minimize latency and maximize throughput in production.
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12.7.1. Structured Sparsity

Structured sparsity (SS) accelerates a 2:4 sparsity pattern along the C dimension. In each
contiguous block of four values, two values must be zero along C. Generally, SS provides
the most benefit for INT8 convolutions that are math-bound, have a channel dimension
that is a multiple of 128.

Structured Sparsity has several requirements and limitations.

Requirements

» Only available for INT8 convolution for formats other than NHWC.
» Channel size must be larger than 64.

Limitations

» Only convolutions whose quantized INT8 weights are at most 256K can benefit from
SS-in practice, the limitation may be more restrictive.

» Only convolutions withk ¢ 64in {0, 1, 2, 4, 8, 16, 32}, whereKisthe number
of kernels (corresponding to the number of output channels), can benefit from SS in
this release.
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Practices

13.1. Measuring Performance

Before starting any optimization effort with TensorRT, it is essential to determine what
should be measured. Without measurements, it is impossible to make reliable progress or
measure whether success has been achieved.

Latency

A performance measurement for network inference is how much time elapses from an
input being presented to the network until an output is available. This is the latency of
the network for a single inference. Lower latencies are better. In some applications, low
latency is a critical safety requirement. In other applications, latency is directly visible to
users as a quality-of-service issue. For bulk processing, latency may not be important at
all.

Throughput

Another performance measurement is how many inferences can be completed in a fixed
unit of time. This is the throughput of the network. Higher throughput is better. Higher
throughputs indicate a more efficient utilization of fixed compute resources. For bulk
processing, the total time taken will be determined by the throughput of the network.

Another way of looking at latency and throughput is to fix the maximum latency and
measure throughput at that latency. A quality-of-service measurement like this can be a
reasonable compromise between the user experience and system efficiency.

Before measuring latency and throughput, you must choose the exact points at which to
start and stop timing. Depending on the network and application, it might make sense to
choose different points.

In many applications, there is a processing pipeline, and the overall system performance
can be measured by the latency and throughput of the entire processing pipeline.
Because the pre- and post-processing steps depend so strongly on the particular
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application, this section considers the latency and throughput of the network inference
only.

Wall-clock time (the elapsed time between the start of a computation and its end) can
be useful for measuring the overall throughput and latency of the application, and for
placing inference times in context within a larger system. C++11 provides high precision
timers in the <chrono> standard library. For example, std: :chrono: :system clock
represents system-wide wall-clock time, and std: :chrono: :high resolution clock
measures time in the highest precision available.

The following example code snippet shows measuring network inference host time:
C++

#include <chrono>

auto startTime = std::chrono::high resolution_clock: :now() ;
context->enqueueV3 (stream) ;

cudaStreamSynchronize (stream) ;

auto endTime = std::chrono::high resolution clock::now() ;
float totalTime = std: :chrono::duration<float, std::milli>
(endTime - startTime) .count()

Python

import time

from cuda import cudart

err, stream = cudart.cudaStreamCreate ()
start_time = time.time()
context.execute async v3(stream)
cudart.cudaStreamSynchronize (stream)
total time = time.time() - start time

If there is only one inference happening on the device at one time, then this can
be a simple way of profiling the time-various operations take. Inference is typically

asynchronous, so ensure you add an explicit CUDA stream or device synchronization to
wait for results to become available.

One problem with timing on the host exclusively is that it requires host/device
synchronization. Optimized applications may have many inferences running in parallel on
the device with overlapping data movement. In addition, the synchronization itself adds
some amount of noise to timing measurements.

To help with these issues, CUDA provides an Event API. This API allows you to place events
into CUDA streams that will be time-stamped by the GPU as they are encountered.
Differences in timestamps can then tell you how long different operations took.

The following example code snippet shows computing the time between two CUDA
events:
C++

cudaEvent_t start, end;
cudaEventCreate (&start) ;
cudaEventCreate (&end) ;

cudaEventRecord (start, stream);

context->enqueueV3stream) ;
cudaEventRecord (end, stream) ;
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cudaEventSynchronize (end) ;
float totalTime;
cudaEventElapsedTime (&totalTime, start, end);

Python

from cuda import cudart

err, stream = cudart.cudaStreamCreate ()

err, start = cudart.cudaEventCreate ()

err, end = cudart.cudaEventCreate ()
cudart.cudaEventRecord (start, stream)
context.execute_async_v3(stream)
cudart.cudaEventRecord (end, stream)
cudart.cudaEventSynchronize (end)

err, total time = cudart.cudaEventElapsedTime (start, end)

Digging deeper into the performance of inference requires more fine-grained timing
measurements within the optimized network.

TensorRT has a pProfiler interface, which you can implement in order to have TensorRT
pass profiling information to your application. When called, the network will run in a
profiling mode. After finishing inference, the profiler object of your class is called to
report the timing for each layer in the network. These timings can be used to locate
bottlenecks, compare different versions of a serialized engine, and debug performance
issues.

The profiling information can be collected from a regular inference enqueuev3 ()
launch or a CUDA graph launch. Refer to TExecutionContext::setProfiler () and
IExecutionContext: :reportToProfiler () for more information.

Layers inside a loop compile into a single monolithic layer, therefore, separate timings
for those layers are not available. Also, some subgraphs (especially with Transformer-like
networks) are handled by a next-generation graph optimizer that is not yet integrated
with the profiler APIs. For those networks, use CUDA Profiling Tools to profile per-layer
performance.

An example showing how to use the 1profiler interface is provided in the common
sample code (common . h).

You can also use trtexec to profile a network with TensorRT given an input network or
plan file. Refer to the trtexec section for details.

The recommended CUDA profiler is NVIDIA Nsight™ Systems. Some CUDA developers may
be more familiar with nvprof and nvvp, however, these are being deprecated. In any case,
these profilers can be used on any CUDA program to report timing information about the
kernels launched during execution, data movement between host and device, and CUDA
API calls used.

Nsight Systems can be configured in various ways to report timing information for only a
portion of the execution of the program or to also report traditional CPU sampling profile
information together with GPU information.
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The basic usage of Nsight Systems is to first run the command nsys profile -o
<OUTPUT> <INFERENCE COMMAND>, then, open the generated <OUTPUT>.nsys-rep file in
the Nsight Systems GUI to visualize the captured profiling results.

When profiling a TensorRT application, you should enable profiling only after the engine
has been built. During the build phase, all possible tactics are tried and timed. Profiling
this portion of the execution will not show any meaningful performance measurements
and will include all possible kernels, not the ones actually selected for inference. One way
to limit the scope of profiling is to:

First phase: Structure the application to build and then serialize the engines in one
phase.

Second phase: Load the serialized engines and run inference in a second phase and
profile this second phase only.

If the application cannot serialize the engines, or if the application must run through the
two phases consecutively, you can also add cudaProfilerStart ()/cudaProfilerStop ()
CUDA APIs around the second phase and add -c cudaProfilerapi flag to Nsight
Systems command to profile only the part between cudaProfilerstart () and
cudaProfilerStop().

In the Nsight Systems Timeline View, the GPU activities are shown at the rows under
CUDA HW and the CPU activities are shown at the rows under Threads. By default, the
rows under CUDA HW are collapsed, therefore, you must click on it to expand the rows.

In a typical inference workflow, the application calls the context->enqueuev3 () or
context->executev3 () APIs to enqueue the jobs and then synchronize on the stream to
wait until the GPU completes the jobs. It may appear as if the system is doing nothing for
a while in the cudastreamSychronize () call if you only look at the CPU activities. In fact,
the GPU may be busy executing the enqueued jobs while the CPU is waiting. The following
figure shows an example timeline of the inference of a query.

The trtexec tool uses a slightly more complicated approach to enqueue the jobs by
engueuing the next query while GPU is still executing the jobs from the previous query.
Refer to the trtexec section for more information.

The following image shows a typical view of the normal inference workloads in the Nsight
Systems timeline view, showing CPU and GPU activities on different rows.
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Figure 16. Normal Inference Workloads in Nsight Systems Timeline
View
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Use the NVTX Tracing in Nsight Systems

Enabling NVIDIA Tools Extension SDK (NVTX) tracing allows Nsight Compute and Nsight
Systems to collect data generated by TensorRT applications. NVTX is a C-based API for
marking events and ranges in your applications.

Decoding the kernel names back to layers in the original network can be complicated.
Because of this, TensorRT uses NVTX to mark a range for each layer, which then allows
the CUDA profilers to correlate each layer with the kernels called to implement it. In
TensorRT, NVTX helps to correlate the runtime engine layer execution with CUDA kernel
calls. Nsight Systems supports collecting and visualizing these events and ranges on the
timeline. Nsight Compute also supports collecting and displaying the state of all active
NVTX domains and ranges in a given thread when the application is suspended.

In TensorRT, each layer may launch one or more kernels to perform its operations. The
exact kernels launched depend on the optimized network and the hardware present.
Depending on the choices of the builder, there may be multiple additional operations that
reorder data interspersed with layer computations; these reformat operations may be
implemented as either device-to-device memory copies or as custom kernels.

For example, the following screenshots are from Nsight Systems.
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Figure 17. The Layer Execution and the Kernel Being Launched on the
CPU Side
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The kernels actually run on the GPU, in other words, the following image shows the
correlation between the layer execution and kernel launch on the CPU side and their
execution on the GPU side.

Figure 18. The Kernels Run on the GPU
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By default, TensorRT only shows layer names in the NVTX markers, while users can control
the level of details by setting the ProfilingVerbosity in the 1Builderconfig when the
engine is built. For example, to disable NVTX tracing, set the ProfilingVerbosity to kNONE:
C++

builderConfig->setProfilingVerbosity (ProfilingVerbosity: :kNONE) ;
Python

builder config.profilling verbosity = trt.ProfilingVerbosity.NONE

On the other hand, you can choose to allow TensorRT to print more detailed layer
information in the NVTX markers, including input and output dimensions, operations,
parameters, tactic numbers, and so on, by setting the profilingverbosity to kDETATILED:
C++

builderConfig->setProfilingVerbosity (ProfilingVerbosity: :kDETAILED) ;
Python

builder config.profilling verbosity = trt.ProfilingVerbosity.DETAILED

Below is an example of the commands to gather Nsight Systems profiles using trtexec
tool:

trtexec --onnx=foo.onnx --profilingVerbosity=detailed --saveEngine=foo.plan
nsys profile -o foo_profile --capture-range cudaProfilerApi trtexec --
profilingVerbosity=detailed --loadEngine=foo.plan --warmUp=0 --duration=0 --iterations=50

The first command builds and serializes the engine to foo.plan, and the second
command runs the inference using foo.plan and generates a foo profile.nsys-rep file
that can then be opened in the Nsight Systems user interface for visualization.

The --profilingVerbosity=detailed flag allows TensorRT to show more detailed layer
information in the NVTX marking, and the --warmUp=0 --duration=0 --iterations=50
flags allow you to control how many inference iterations to run. By default, trtexec runs
inference for three seconds, which may result in a very large output nsys-rep file.

If CUDA graph is enabled, add --cuda-graph-trace=node flag to the nsys command to
see the per-kernel runtime information:

nsys profile -o foo_ profile --capture-range cudaProfilerApi --cuda-graph-trace=node trtexec
--profilingVerbosity=detailed --loadEngine=foo.plan --warmUp=0 --duration=0 --iterations=50
--useCudaGraph

On discrete GPU systems, add the --gpu-metrics-device all flag to the nsys
command to sample GPU metrics, including GPU clock frequencies, DRAM bandwidth,
Tensor Core utilization, and so on. If the flag is added, these GPU metrics appear in the
Nsight Systems web interface.
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13.1.4.1. Profiling for DLA

To profile DLA, add the --accelerator-trace nvmedia flag when using the NVIDIA
Nsight Systems CLI or enable Collect other accelerators trace when using the user
interface. For example, the following command can be used with the NVIDIA Nsight
Systems CLI:

nsys profile -t cuda,nvtx,nvmedia,osrt --accelerator-trace=nvmedia --show-output=true
trtexec --loadEngine=alexnet_int8.plan --warmUp=0 --duration=0 --iterations=20

Below is an example report.
> NvMediaDLASubmit submits a DLA task for each DLA subgraph. The runtime of the
DLA task can be found in the DLA timeline under Other accelerators trace.

» Because GPU fallback was allowed, some CUDA kernels were added by TensorRT
automatically, like permutationKernelPLC3 and copyPackedKernel, which are used for
data reformatting.

» EGLStream APIs were executed because TensorRT usesEGLStreams for data transfer
between GPU memory and DLA.

To maximize GPU utilization, trtexec enqueues the queries one batch ahead of time.

Figure 19. Sample DLA Profiling Report
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The runtime of the DLA task can be found under Other accelerator APl. Some CUDA
kernels and EGLStream API are called for interaction between the GPU and DLA.
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Figure 20. Sample DLA Profiling report
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13.1.5. Tracking Memory

Tracking memory usage can be as important as execution performance. Usually, the
memory will be more constrained on the device than on the host. To keep track of device
memory, the recommended mechanism is to create a simple custom GPU allocator that
internally keeps some statistics then uses the regular CUDA memory allocation functions
cudaMalloc and cudaFree.

A custom GPU allocator can be set for the builder 1Builder for network optimizations,
and for TRuntime when deserializing engines using the 1GpuAllocator APls. One idea for
the custom allocator is to keep track of the current amount of memory allocated, and

to push an allocation event with a timestamp and other information onto a global list of
allocation events. Looking through the list of allocation events allows profiling memory
usage over time.

On mobile platforms, GPU memory and CPU memory share the system memory. On
devices with very limited memory size, like Nano, system memory might run out with large
networks; even the required GPU memory is smaller than system memory. In this case,
increasing the system swap size could solve some problems. An example script is:

echo "######alloc swap######"
if [ ! -e /swapfile ];then
sudo fallocate -1 4G /swapfile
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo /bin/sh -c 'echo "/swapfile \t none \t swap \t defaults \t 0 \t 0" >> /etc/fstab'
sudo swapon -a

13.2. Hardware/Software Environment
for Performance Measurements

Performance measurements are influenced by many factors, including hardware
environment differences like cooling capability of the machine and software environment
differences like GPU clock settings. This section summarizes a few items that may affect
performance measurements.

Note that the items involving nvidia-smi are only supported on dGPU systems and not on
the mobile systems.
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13.2.1. GPU Information Query and GPU
Monitoring

While measuring performance, it is recommended that you record and monitor the GPU
status in parallel to the inference workload. Having the monitoring data allows you to
identify possible root causes when you see unexpected performance measurements
results.

Before the inference starts, call the nvidia-smi -g command to get the detailed
information of the GPU, including the product name, power cap, clock settings, and so
on. Then, while the inference workload is running, run the nvidia-smi dmon -s pcu -
f <FILE> -c <COUNT> command in parallel to print out GPU clock frequencies, power
consumption, temperature, and utilization to a file. Call nvidia-smi dmon --help for
more options about the nvidia-smi device monitoring tool.

13.2.2. GPU Clock Locking and Floating Clock

By default, the GPU clock frequency is floating, meaning that the clock frequency sits
at the idle frequency when there is no active workload, and it boosts to the boost clock
frequency when the workload starts. This is usually the desired behavior in general since
it allows the GPU to generate less heat at idle and to run at maximum speed when there
is active workload.

Alternatively, you can lock the clock at a specific frequency by calling the sudo nvidia-
smi -lgc <freg>command (and conversely, you can let the clock float again with the
sudo nvidia-smi -rgc command). The supported clock frequencies can be found by
the sudo nvidia-smi -q -d SUPPORTED CLOCKS command. After the clock frequency is
locked, it should stay at that frequency unless power throttling or thermal throttling take
place, which will be explained in next sections. When the throttling kicks in, the device
behaves as if the clock were floating.

Running TensorRT workloads with floating clocks or with throttling taking place can lead
to more non-determinism in tactic selections and unstable performance measurements
across inferences because every CUDA kernel may run at slightly different clock
frequencies, depending on which frequency the driver boosts or throttles the clock to at
that moment. On the other hand, running TensorRT workloads with locked clocks allows
more deterministic tactic selections and consistent performance measurements, but
the average performance will not be as good as when the clock is floating or is locked at
maximum frequency with throttling taking place.

There is no definite recommendation on whether the clock should be locked or which
clock frequency to lock the GPU at while running TensorRT workloads. It depends on
whether the deterministic and stable performance or the best average performance is
desired.
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Power throttling occurs when the average GPU power consumption reaches the power
limit, which can be set by the sudo nvidia-smi -pl <power cap>command. When this
happens, the driver has to throttle the clock to a lower frequency to keep the average
power consumption below the limit. The constantly changing clock frequencies may lead
to unstable performance measurements if the measurements are taken within a short
period of time, such as within 20ms.

Power throttling happens by design and is a natural phenomenon when the GPU clock

is not locked or is locked at a higher frequency, especially for the GPUs with lower

power limits such as NVIDIA T4 and NVIDIA A2 GPUs. To avoid performance variations
caused by power throttling, you can lock the GPU clock at a lower frequency so that the
performance numbers become more stable. However, the average performance numbers
will be lower than the performance numbers with floating clocks or with the clock locked
at a higher frequency even though power throttling would happen in this case.

Another issue with power throttling is that it may skew the performance numbers if
there are gaps between inferences in your performance benchmarking applications. For
example, if the application synchronizes at each inference, there will be periods of time
when the GPU is idle between the inferences. The gaps cause the GPU to consume less
power on average such that the clock is throttled less and the GPU can run at higher
clock frequencies on average. However, the throughput numbers measured in this way
are not accurate because when the GPU is fully loaded with no gaps between inferences,
the actual clock frequency will be lower and the actual throughput will not reach the
throughput numbers measured using the benchmarking application.

To avoid this, the trtexec tool is designed to maximize GPU execution by leaving nearly
no gaps between GPU kernel executions so that it can measure the true throughput of a
TensorRT workload. Therefore, if you see performance gaps between your benchmarking
application and what trtexec reports, check if the power throttling and the gaps between
inferences are the cause.

Lastly, power consumption can be dependent on the activation values, causing different
performance measurements for different inputs. For example, if all the network input
values are set to zeros or NaNs, GPU tends to consume less power than if the inputs

are normal values because of fewer bit-flips in DRAM and in L2 cache. To avoid this
discrepancy, always use the input values that best represent the actual value distribution
when measuring the performance. The trtexec tool uses random input values by default,
but you can specify the input by using the --1ocadInputs flag. Refer to the trtexec
section for more information.

Thermal throttling happens when the GPU temperature reaches a predefined threshold,
which is around 85 degrees Celsius for most GPUs, and the driver has to throttle the
clock to a lower frequency to prevent the GPU from overheating. You can tell this by
seeing the temperature logged by the nvidia-smi dmon command gradually increasing
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while the inference workload is running, until it reaches ~85C and the clock frequency
starts to drop.

If thermal throttling happens on actively cooled GPUs like Quadro A8000, then it is
possible that the fans on the GPU are broken, or there are obstacles blocking the airflow.

If thermal throttling happens on passively cooled GPUs like NVIDIA A10, then it is likely
that the GPUs are not properly cooled. Passively cooled GPUs require external fans or
air conditioning to cool down the GPUs, and the airflow must go through the GPUs for
effective cooling. Common cooling problems include installing GPUs in a server that is
not designed for the GPUs or installing wrong numbers of GPUs into the server. In some
cases, the air flows through the “easy path” (that is, the path with the least friction)
around the GPUs instead of going through them. Fixing this requires examination of the
airflow in the server and installation of airflow guidance if necessary.

Note that higher GPU temperature also leads to more leakage current in the circuits,
which increases the power consumed by the GPU at a specific clock frequency. Therefore,
for GPUs that are more likely to be power throttled like NVIDIA T4, poor cooling can lead
to lower stabilized clock frequency with power throttling, and thus worse performance,
even if the GPU clocks have not been thermally throttled yet.

On the other hand, ambient temperature, that is, the temperature of the environment
around the server, does not usually affect GPU performance so long as the GPUs are
properly cooled, except for GPUs with lower power limit whose performance may be
slightly affected.

On dGPU systems, often the input data must be copied from the host memory to

the device memory (H2D) before an inference starts, and the output data must be
copied back from device memory to host memory (D2H) after the inference. These
H2D/D2H data transfers go through PCle buses, and they can sometimes influence the
inference performance or even become the performance bottleneck. The H2D/D2H
copies can also be seen in the Nsight Systems profiles, appearing as cudaMemcpy () or
cudaMemcpyAsync () CUDA API calls.

To achieve maximum throughput, the H2D/D2H data transfers should run in parallel

to the GPU executions of other inferences so that the GPU does not sit idle when the
H2D/D2H copies take place. This can be done by running multiple inferences in different
streams in parallel, or by launching H2D/D2H copies in a different stream than the stream
used for GPU executions and using CUDA events to synchronize between the streams.
The trtexec tool shows as an example for the latter implementation.

When the H2D/D2H copies run in parallel to GPU executions, they can interfere with
the GPU executions especially if the host memory is pageable, which is the default case.
Therefore, it is recommended that you allocate pinned host memory for the input and
output data using cudaHostAlloc () Of cudaMallocHost () CUDA APIs.

To check whether the PCle bandwidth becomes the performance bottleneck, you can
check the Nsight Systems profiles and see if the H2D or D2H copies of an inference
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qguery have longer latencies than the GPU execution part. If PCle bandwidth becomes the
performance bottleneck, here are a few possible solutions.

First, check whether the PCle bus configuration of the GPU is correct in terms of which
generation (for example, Gen3 or Gen4) and how many lanes (for example, x8 or x16) are
used. Next, try reducing the amount of data that must be transferred using the PCle
bus. For example, if the input images have high resolutions and the H2D copies become
the bottleneck, then you can consider transmitting JPEG-compressed images over the
PCle bus and decode the image on the GPUs before the inference workflow, instead of
transmitting raw pixels. Finally, you can consider using NVIDIA GPUDirect technology to
load data directly from/to the network or the filesystems without going through the host
memory.

In addition, if your system has AMD x86_64 CPUs, check the NUMA (Non-Uniform
Memory Access) configurations of the machine with numactl --hardware command. The
PCle bandwidth between a host memory and a device memory located on two different
NUMA nodes is much more limited than the bandwidth between the host/device memory
located on the same NUMA node. Allocate the host memory on the NUMA node on which
the GPU that the data will be copied to resides. Also, pin the CPU threads that will trigger
the H2D/D2H copies on that specific NUMA node.

Note that on mobile platforms, the host, and the device share the same memory, so the
H2D/D2H data transfers are not required if the host memory is allocated using CUDA
APIs and is pinned instead of being pageable.

By default, the trtexec tool measures the latencies of the H2D/D2H data transfers that
tell the user if the TensorRT workload may be bottlenecked by the H2D/D2H copies.
However, if the H2D/D2H copies affect the stability of the GPU Compute Time, you can
add the --nobataTransfers flag to disable H2D/D2H transfers to measure only the
latencies of the GPU execution part.

On Windows machines, there are two driver modes: you can configure the GPU to

be in the TCC mode and the WDDM mode. The mode can be specified by calling the
sudo nvidia-smi -dm [0]1] command, but a GPU connected to a display shall not be
configured into TCC mode Refer to the TCC mode documentation for more information
and limitations about TCC mode.

In TCC mode, the GPU is configured to focus on computation work and the graphics
support like OpenGL or monitor display are disabled. This is the recommended mode for
GPUs that run TensorRT inference workloads. On the other hand, the WDDM mode tends
to cause GPUs to have worse and unstable performance results when running inference
workloads using TensorRT.

This is not applicable to Linux-based OS.

The enqueue () function of IExecutionContext is asynchronous, that is, it returns
immediately after all the CUDA kernels are launched without waiting for the completion
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of CUDA kernel executions. However, in some cases, the enqueue () time can take longer
than the actual GPU executions, causing the latency of enqueue () calls to become the
performance bottleneck. We say that this type of workload is "enqueue-bound". There are
two reasons that may cause a workload to be enqueue-bound.

First, if the workload is very tiny in terms of the amount of computations, such as
containing convolutions with small I/O sizes, matrix multiplications with small GEMM
sizes, or mostly element-wise operations throughout the network, then the workload
tends to be enqueue-bound. This is because most CUDA kernels take the CPU and the
driver around 5-15 microseconds to launch per kernel, so if each CUDA kernel execution
time is only several microseconds long on average, the kernel launching time becomes the
main performance bottleneck.

To solve this, try to increase the amount of the computation per CUDA kernel, such as by
increasing the batch size. Or you can use CUDA Graphs to capture the kernel launches
into a graph and launch the graph instead of calling enqueuev3 ().

Second, if the workload contains operations that require device synchronizations, such

as loops or if-else conditions, then the workload is naturally enqueue-bound. In this case,
increasing the batch size may help improve the throughput without increasing the latency
much.

In trtexec, you can tell that a workload is enqueue-bound if the reported Enqueue Time
is close to or longer than the reported GPU Compute Time. In this case, it is recommended
that you add the --useCudaGraph flag to enable CUDA graphs in trtexec, which will
reduce the Enqueue Time as long as the workload does not contain any synchronization
operations.

If the performance is measured with cudaStreamSynchronize () or
cudaEventSynchronize (), the variations in synchronization overhead may lead to
variations in performance measurements. This section describes the cause of the
variations and how to avoid them.

When cudaStreamSynchronize () is called, there are two ways in which the driver waits
until the completion of the stream. If the cudabDeviceScheduleBlockingSync flag has
been set with cudasetDeviceFlags () calls, then the cudaStreamSynchornize () uses the
blocking-sync mechanism. Otherwise, it uses the spin-wait mechanism.

The similar idea applies to CUDA events. If a CUDA event is created with the
cudaEventDefault flag, then the cudaEventSynchronize () call uses the spin-wait
mechanism; and if a CUDA event is created with the cudaEventBlockingSync flag, then
the cudaEventSynchronize () call will use the blocking-sync mechanism.

When the blocking-sync mode is used, the host thread yields to another thread until the
device work is done. This allows the CPUs to sit idle to save power or to be used by other
CPU workloads when the device is still executing. However, the blocking-sync mode tends
to result in relatively unstable overheads in stream/event synchronizations in some OS,
which in terms lead to variations in latency measurements.
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On the other hand, when the spin-wait mode is used, the host thread is constantly polling
until the device work is done. Using spin-wait makes the latency measurements more
stable due to shorter and more stable overhead in stream/event synchronizations, but it
consumes some CPU computation resources and leads to more power consumption by
the CPUs.

Therefore, if you want to reduce CPU power consumption, or if you do not want the
stream/event synchronizations to consume CPU resources (for example, you are running
other heavy CPU workloads in parallel), use the blocking-sync mode. If you care more
about stable performance measurements, use the spin-wait mode.

In trtexec, the default synchronization mechanism is blocking-sync mode. Add the --
useSpinWait flag to enable synchronizations using the spin-wait mode for more stable
latency measurements, at the cost of more CPU utilizations and power consumptions.

The following sections focus on the general inference flow on GPUs and some of the
general strategies to improve performance. These ideas are applicable to most CUDA
programmers but may not be as obvious to developers coming from other backgrounds.

The most important optimization is to compute as many results in parallel as possible
using batching. In TensorRT, a batch is a collection of inputs that can all be processed
uniformly. Each instance in the batch has the same shape and flows through the network
in exactly the same way. Each instance can, therefore, be trivially computed in parallel.

Each layer of the network will have some amount of overhead and synchronization
required to compute forward inference. By computing more results in parallel, this
overhead is paid off more efficiently. In addition, many layers are performance-limited by
the smallest dimension in the input. If the batch size is one or small, this size can often
be the performance-limiting dimension. For example, the FullyConnected layer with v
inputs and K outputs can be implemented for one batch instance as a matrix multiply

of an 1xv matrix with a vxk weight matrix. If N instances are batched, this becomes an
NxV multiplied by the vxk matrix. The vector-matrix multiplier becomes a matrix-matrix
multiplier, which is much more efficient.

Larger batch sizes are almost always more efficient on the GPU. Extremely large batches,
suchasnN > 2716, can sometimes require extended index computation and so should be
avoided if possible. But generally, increasing the batch size improves total throughput. In
addition, when the network contains MatrixMultiply layers or FullyConnected layers, batch
sizes of multiples of 32 tend to have the best performance for FP16 and INT8 inference
because of the utilization of Tensor Cores, if the hardware supports them.

On NVIDIA Ada Lovelace GPUs or later GPUs, it is possible that decreasing the batch size
may improve the throughput significantly if the smaller batch sizes happen to help the
GPU to cache the input/output values in the L2 cache. Therefore, try various batch sizes
to get the batch size for the optimal performance.
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Sometimes batching inference work is not possible due to the organization of the
application. In some common applications, such as a server that does inference per
request, it can be possible to implement opportunistic batching. For each incoming
request, wait for a time T. If other requests come in during that time, batch them
together. Otherwise, continue with a single instance inference. This type of strategy adds
fixed latency to each request but can improve the maximum throughput of the system by
orders of magnitude.

The NVIDIA Triton Inference Server provides a simple way to enable dynamic batching
with TensorRT engines.

If the explicit batch mode is used when the network is created, then the batch dimension
is part of the tensor dimensions, and you can specify the range of the batch sizes and the
batch size to optimize the engine for by adding optimization profiles. Refer to the Working
with Dynamic Shapes section for more details.

If the implicit batch mode is used when the network is created, the
IExecutionContext::execute (IExecutionContext.execute in Python) and
IExecutionContext: :enqueue (IExecutionContext .execute async in Python)
methods take a batch size parameter. The maximum batch size should also be set for
the builder when building the optimized network with IBuilder: :setMaxBatchSize
(Builder.max batch size in Python). When calling TExecutionContext: :execute

or enqueue, the bindings passed as the bindings parameter are organized per tensor
and not per instance. In other words, the data for one input instance is not grouped
together into one contiguous region of memory. Instead, each tensor binding is an array
of instance data for that tensor.

Another consideration is that building the optimized network optimizes for the given
maximum batch size. The final result will be tuned for the maximum batch size but will
still work correctly for any smaller batch size. It is possible to run multiple build operations
to create multiple optimized engines for different batch sizes, then choose which engine
to use based on the actual batch size at runtime.

In general, CUDA programming streams are a way of organizing asynchronous work.
Asynchronous commands put into a stream are guaranteed to run in sequence but
may execute out of order with respect to other streams. In particular, asynchronous
commands in two streams may be scheduled to run concurrently (subject to hardware
limitations).

In the context of TensorRT and inference, each layer of the optimized final network will
require work on the GPU. However, not all layers will be able to fully use the computation
capabilities of the hardware. Scheduling requests in separate streams allows work to

be scheduled immediately as the hardware becomes available without unnecessary
synchronization. Even if only some layers can be overlapped, overall performance will
improve.
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Starting in TensorRT 8.6, you can use the TBuilderConfig: :setMaxAuxStreams () API
to set the maximum number of auxiliary streams that TensorRT is allowed to use to
run multiple layers in parallel. The auxiliary streams are in contrast to the “main stream”
provided in the enqueuev3 () call, and if enabled, TensorRT will run some layers on the
auxiliary streams in parallel to the layers running on the mainstream.

For example, to run the inference on at most eight streams (that is, seven auxiliary
streams and one mainstream) in total:

C++
config->setMaxAuxStreams (7)
Python
config.max_aux streams = 7

Note that this only sets the maximum number of auxiliary streams, however, TensorRT
may end up using fewer auxiliary streams than this number if it determines that using
more streams does not help.

To get the actual number of auxiliary streams that TensorRT uses for an engine, run:
C++
int32_t nbAuxStreams = engine->getNbAuxStreams ()

Python

num_aux_streams = engine .num_aux s treams

When an execution context is created from the engine, TensorRT automatically creates
the auxiliary streams needed to run the inference. However, you can also specify the
auxiliary streams you would like TensorRT to use:

C++

int32_t nbAuxStreams = engine->getNbAuxStreams() ;
std: :vector<cudaStream t> streams (nbAuxStreams) ;
for (int32_t i = 0; i < nbAuxStreams; ++i)
{

cudaStreamCreate (&streams[i]) ;

}

context->setAuxStreams (streams.data() , nbAuxStreams) ;

Python
from cuda import cudart
num _aux streams = engine.num aux streams
streams = []

for i in range (num_aux streams) :
err, stream = cudart.cudaStreamCreate ()
streams.append (stream)
context.set_aux streams (streams)
TensorRT will always insert event synchronizations between the main stream provided

using enqueuev3 () call and the auxiliary streams:

At the beginning of the enqueuev3 () call, TensorRT will make sure that all the auxiliary
streams wait on the activities on the mainstream.

At the end of the enqueuev3 () call, TensorRT will make sure that the main stream
waits on the activities on all the auxiliary streams.

Note that enabling auxiliary streams may increase the memory consumption because
some activation buffers will no longer be able to be reused.
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In addition to the within-inference streaming, you can also enable streaming between
multiple execution contexts. For example, you can build an engine with multiple
optimization profiles and create an execution context per profile. Then, call the
enqueueVv3 () function of the execution contexts on different streams to allow them to
run in parallel.

Running multiple concurrent streams often leads to situations where several streams
share compute resources at the same time. This means that the network may have less
compute resources available during inference than when the TensorRT engine was being
optimized. This difference in resource availability can cause TensorRT to choose a kernel
that is suboptimal for the actual runtime conditions. In order to mitigate this effect, you
can limit the amount of available compute resources during engine creation to more
closely resemble actual runtime conditions. This approach generally promotes throughput
at the expense of latency. For more information, refer to Limiting Compute Resources.

It is also possible to use multiple host threads with streams. A common pattern is
incoming requests dispatched to a pool of waiting for worker threads. In this case, the
pool of worker threads will each have one execution context and CUDA stream. Each
thread will request work in its own stream as the work becomes available. Each thread will
synchronize with its stream to wait for results without blocking other worker threads.

CUDA graphs are a way to represent a sequence (or more generally a graph) of kernels in a
way that allows their scheduling to be optimized by CUDA. This can be particularly useful
when your application performance is sensitive to the CPU time taken to enqueue the
kernels.

TensorRT's enqueuev3 () method supports CUDA graph capture for models that require
no CPU interaction mid-pipeline. For example:
C++

// Call enqueueV3() once after an input shape change to update internal state.
context->enqueueV3 (stream) ;

// Capture a CUDA graph instance

cudaGraph_t graph;

cudaGraphExec t instance;

cudaStreamBeginCapture (stream, cudaStreamCaptureModeGlobal) ;
context->enqueueV3 (stream) ;

cudaStreamEndCapture (stream, &graph) ;

cudaGraphInstantiate (&instance, graph, 0);

// To run inferences, launch the graph instead of calling enqueueV3().
for (int i = 0; i < iterations; ++i) {

cudaGraphLaunch (instance, stream) ;

cudaStreamSynchronize (stream) ;

}
Python

from cuda import cudart
err, stream = cudart.cudaStreamCreate ()

# Call execute_async v3() once after an input shape change to update internal state.
context.execute_async_v3(stream);
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# Capture a CUDA graph instance

cudaStreamBeginCapture (stream, cudart.cudaStreamCaptureModeGlobal)
context.execute async v3(stream)

err, graph = cudart.cudaStreamEndCapture (stream)

err, instance = cudart.cudaGraphInstantiate (graph, 0)

# To run inferences, launch the graph instead of calling execute_async_v3().
for i in range(iterationms):
cudart.cudaGraphLaunch (instance, stream)
cudart.cudaStreamSynchronize (stream)
Models for which graphs are not supported include those with loops or conditionals.
In this case, cudaStreamEndCapture () Will return cudakErrorStreamCapture* errors,
indicating that the graph capturing has failed, but the context can continue to be used
for normal inference without CUDA graphs.

When capturing a graph, it is important to account for the two-phase execution strategy
used in the presence of dynamic shapes.

1. Update internal state of the model to account for any changes in input size.
2. Stream work to the GPU

For models where input size is fixed at build time, the first phase requires no per-
invocation work. Otherwise, if the input sizes have changed since the last invocation,
some work may be required to update derived properties.

The first phase of work is not designed to be captured, and even if the capture is
successful may increase model execution time. Therefore, after changing the shapes of
inputs or the values of shape tensors, call enqueuev3 () once to flush deferred updates
before capturing the graph.

Graphs captured with TensorRT are specific to the input size for which they were
captured, and also to the state of the execution context. Modifying the context from
which the graph was captured will result in undefined behavior when executing the
graph - in particular, if the application is providing its own memory for activations using
createExecutionContextWithoutDeviceMemory (), the memory address is also captured
as part of the graph. Binding locations are also captured as part of the graph.

Therefore, the best practice is to use one execution context per
captured graph, and to share memory across the contexts with
createExecutionContextWithoutDeviceMemory ().

trtexec allows you to check whether the built TensorRT engine is compatible with CUDA
graph capture. Refer to the trtexec section for more information.

TensorRT attempts to perform many different types of optimizations in a network during
the build phase. In the first phase, layers are fused together whenever possible. Fusions
transform the network into a simpler form but preserve the same overall behavior.
Internally, many layer implementations have extra parameters and options that are not
directly accessible when creating the network. Instead, the fusion optimization step
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detects supported patterns of operations and fuses multiple layers into one layer with
internal options set.

Consider the common case of a convolution followed by RelLU activation. To

create a network with these operations, it involves adding a Convolution layer with
addConvolution, following it with an Activation layer using addactivation with an
ActivationType Of kRELU. The unoptimized graph will contain separate layers for
convolution and activation. The internal implementation of convolution supports
computing the RelLU function on the output in one step directly from the convolution
kernel without requiring a second kernel call. The fusion optimization step will detect
the convolution followed by RelU. Verify that the operations are supported by the
implementation, then fuse them into one layer.

To investigate which fusions have happened, or have not happened, the builder logs its
operations to the logger object provided during construction. Optimization steps are at
the kINFO log level. To see these messages, ensure you log them in the 1Logger callback.

Fusions are normally handled by creating a new layer with a name containing the names
of both of the layers, which were fused. For example, in MNIST, a FullyConnected layer
(InnerProduct) named ip1 is fused with a ReLU Activation layer named relul to create a
new layer named ipl + relul.

The following list describes the types of supported fusions.

ReLU Activation
An Activation layer performing RelLU followed by an activation performing ReLU will be
replaced by a single activation layer.

Convolution and ReLU Activation
The Convolution layer can be of any type and there are no restrictions on values. The
Activation layer must be RelU type.

Convolution and GELU Activation
The precision of input and output should be the same; with both of them FP16 or INT8.
The Activation layer must be GELU type. TensorRT should be running on an NVIDIA
Turing or later device with CUDA version 10.0 or later.

Convolution and Clip Activation
The Convolution layer can be any type and there are no restrictions on values. The
Activation layer must be Clip type.

Scale and Activation
The Scale layer followed by an Activation layer can be fused into a single Activation
layer.

Convolution and ElementWise Operation
A Convolution layer followed by a simple sum, min, or max in an ElementWise layer can
be fused into the Convolution layer. The sum must not use broadcasting, unless the
broadcasting is across the batch size.
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Padding and Convolution/Deconvolution
Padding followed by a Convolution or Deconvolution can be fused into a single
Convolution/Deconvolution layer if all the padding sizes are non-negative.
Shuffle and Reduce
A Shuffle layer without reshape, followed by a Reduce layer can be fused into a single
Reduce layer. The Shuffle layer can perform permutations but cannot perform any
reshape operation. The Reduce layer must have a keepDimensions set of dimensions.
Shuffle and Shuffle
Each Shuffle layer consists of a transpose, a reshape, and a second transpose. A
Shuffle layer followed by another Shuffle layer can be replaced by a single Shuffle (or
nothing). If both Shuffle layers perform reshape operations, this fusion is only allowed
if the second transpose of the first shuffle is the inverse of the first transpose of the
second shuffle.
Scale
A Scale layer that adds 0, multiplied by 1, or computes powers to the 1 can be erased.
Convolution and Scale
A Convolution layer followed by a Scale layer that is kUNIFORM or kCHANNEL can be fused
into a single convolution by adjusting the convolution weights. This fusion is disabled if
the scale has a non-constant power parameter.
Convolution and Generic Activation
This fusion happens after the pointwise fusion mentioned below. A pointwise with one
input and one output can be called as a generic activation layer. A convolution layer
followed by a generic activation layer can be fused into a single convolution layer.
Reduce
A Reduce layer that performs average pooling will be replaced by a Pooling layer. The
Reduce layer must have a keepbDimensions set, reduced across H and w dimensions
from caw input format before batching, using the kavc operation.
Convolution and Pooling
The Convolution and Pooling layers must have the same precision. The Convolution
layer may already have a fused activation operation from a previous fusion.
Depthwise Separable Convolution
A depthwise convolution with activation followed by a convolution with activation may
sometimes be fused into a single optimized DepSepConvolution layer. The precision of
both convolutions must be INT8 and the device's computes capability must be 7.2 or
later.
SoftMax and Log
It can be fused into a single SoftMax layer if the SoftMax has not already been fused
with a previous log operation.
SoftMax and TopK
Can be fused into a single layer. The SoftMax may or may not include a Log operation.
FullyConnected
The FullyConnected layer will be converted into the Convolution layer. All fusions for
convolution will take effect.
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GELU
A group of Unary layer and ElementWise layer that represents the following equations
can be fused into a single GELU reduction operation.

0.5x x (1+tanh(2/m(x+0.044715x3)

Or the alternative representation:

0.5x x (1+erf (X/\/E))

LT1Norm
A Unary layer kaBs operation followed by a Reduce layer ksum operation can be fused
into a single L1Norm reduction operation.

Sum of Squares
A product ElementWise layer with the same input (square operation) followed by a ksum
reduction can be fused into a single square Sum reduction operation.

L2Norm
A sum of squares operation followed by a ksorT UnaryOperation can be fused into a
single L2Norm reduction operation.

LogSum
A Reduce layer ksuMm followed by a kLo UnaryOperation can be fused into a single
LogSum reduction operation.

LogSumExp
A Unary kExpP ElementWise operation followed by a LogSum fusion can be fused into a
single LogSumExp reduction.

Multiple adjacent PointWise layers can be fused into a single PointWise layer, to improve
performance.

The following types of PointWise layers are supported, with some limitations:
Activation

Every activationType is supported.
Constant

Only constant with a single value (size == 1).
ElementWise

Every ElementWiseOperation is supported.
PointWise

PointWise itself is also a PointWise layer.
Scale

Only support scaleMode: : kUNIFORM.
Unary

Every UnaryOperation is supported.
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The size of the fused PointWise layer is not unlimited, therefore, some PointWise layers
may not be fused.

Fusion creates a new layer with a name consisting of both of the layers, which were fused.
For example, an ElementWise layer named addi is fused with a ReLU Activation layer
named relul with a new layer name: fusedPointwiseNode (addl, relul).

Quantized INT8 graphs generated from QAT tools like NVIDIA's Quantization Toolkit
for PyTorch consists of onnx: :QuantizeLinear and onnx: : DequantizeLinear pair of
nodes (Q/DQ) with scales and zero-points. Starting in TensorRT 7.0, it is required that

zero_point is 0.

Q/DQ nodes help convert from FP32 values to INT8 and vice versa. Such a graph would
still have weights and bias in FP32 precision.

Weights are followed by a Q/DQ node pair so that they can be quantized/dequantized if
required. Bias quantization is performed using scales from activations and weights, thus
no extra Q/DQ node pair is required for bias input. Assumption for bias quantization is
that S_weights * S_input = S_bias.

Fusions related to Q/DQ nodes include quantizing/dequantizing weights, commutating
Q/DQ nodes without changing the mathematical equivalence of the model, and erasing
redundant Q/DQ nodes. After applying Q/DQ fusions, the rest of the builder optimizations
would be applied to the graph.

Fuse Q/DQ with weighted node (Conv, FC, Deconv)

If we have a

[Dequantizelinear (Activations), DequantizeLinear (weights)] > Node >
QuantizelLinear

( [DQ, DQ] > Node > Q) sequence, then it is fused to the quantized node (QNode).

Supporting Q/DQ node pairs for weights requires weighted nodes to support more
than one input. Thus we support adding a second input (for weights tensor) and third
input (for bias tensor). Additional inputs can be set using setInput (index, tensor)
API for Convolution, Deconvolution, and FullyConnected layers where index = 2 for
weights tensor and index = 3 for bias tensor.

During fusion with weighted nodes, we would quantize FP32 weights to INT8 and fuse
it with the corresponding weighted node. Similarly, FP32 bias would be quantized to
INT32 and fused.

Fuse Q/DQ with non-weighted node
If we have a DequantizeLinear > Node > QuantizeLinear (DQ > Node > Q)
sequence, then it is fused to the quantized node (QNode).

Commutate Q/DQ nodes

DequantizeLinear commutation is allowed when @ (DQ(x) = = DQ (& (x)).
QuantizeLinear commutation is allowed when Q (@ (x)) = = @ (Q (x).

Also, commutation logic also accounts for available kernel implementations such that
mathematical equivalence is guaranteed.
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Insert missing Q/DQ nodes

If a node has a missing Q/DQ nodes pair, and max (abs (@ (x)) = = max (abs (x)); (for
example, MaxPool), missing Q/DQ pairs would be inserted to run more node with INT8
precision.

Erase redundant Q/DQ nodes
It is possible that after applying all the optimizations, the graph still has Q/DQ
node pairs that are in itself a no-op. Q/DQ node erasure fusion would remove such
redundant pairs.

Limiting the number of compute resources available to TensorRT during engine creation
is beneficial when the reduced amount better represents the expected conditions during
runtime. For example, when the GPU is expected to be performing additional work in
parallel to the TensorRT engine or when the engine is expected to be run on a different
GPU with less resources (note that the recommended approach is to build the engine on
the GPU that will be used for inference, but this may not always be feasible).

You can limit the number of available compute resources with the following steps:

1. Start the CUDA MPS control daemon.
nvidia-cuda-mps-control -d

2. Set the number of compute resources to use with the
CUDA MPS ACTIVE THREAD PERCENTAGE environment variable. For example, export
CUDA MPS ACTIVE THREAD PERCENTAGE=50.

3. Build the network engine.
4. Stop the CUDA MPS control daemon.

echo quit | nvidia-cuda-mps-control

The resulting engine is optimized to the reduced number of compute cores (50% in this
example) and provides better throughput when using similar conditions during inference.
You are encouraged to experiment with different amounts of streams and different MPS
values to determine the best performance for your network.

For more details about nvidia-cuda-mps-control, refer to the nvidia-cuda-mps-control
documentation and the relevant GPU requirements here.

In the engine building phase, TensorRT runs through all the possible tactics and selects
the fastest ones. Since the selection is based on the latency measurements of the
tactics, TensorRT may end up selecting different tactics across different runs if some
tactics have very similar latencies. Therefore, different engines built from the same
INetworkDefinition may behave slightly differently in terms of output values and
performance. You can inspect the selected tactics of an engine by using the Engine
Inspector or by turning on verbose logging while building the engine.

If deterministic tactic selection is desired, the following lists a few suggestions that may
help improve the determinism of tactic selection.
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Locking GPU Clock Frequency

By default, the clock frequency of the GPU is not locked, meaning that the GPU normally
sits at the idle clock frequency and only boosts to the max clock frequency when there
are active GPU workloads. However, there is a latency for the clock to be boosted from
the idle frequency and that may cause performance variations while TensorRT is running
through the tactics and selecting the best ones, resulting in non-deterministic tactic
selections.

Therefore, locking the GPU clock frequency before starting to build a TensorRT engine
may improve the determinism of tactic selection. You can lock the GPU clock frequency
by calling the sudo nvidia-smi -lgc <fregq> command, where <freqg> is the desired
frequency to lock at. You can call nvidia-smi -g -d SUPPORTED CLOCKS to find the
supported clock frequencies by the GPU.

Therefore, locking the GPU clock frequency before starting to build a TensorRT engine
may improve the determinism of tactic selection. Refer to the Hardware/Software
Environment for Performance Measurements section for more information about how to
lock and monitor the GPU clock and the factors that may affect GPU clock frequencies.

Increasing Average Timing lterations

By default, TensorRT runs each tactic for at least four iterations and takes
the average latency. You can increase the number of iterations by calling the
setAvgTimingIterations () AP
C++
builderConfig->setAvgTimingIterations (8) ;
Python
Builder_ config.avg timing iterations = 8
Increasing the number of average timing iterations may improve the determinism of
tactic selections, but the required engine building time will become longer.

Using Timing Cache

Timing Cache records the latencies of each tactic for a specific layer configuration.
The tactic latencies are reused if TensorRT encounters another layer with an identical
configuration. Therefore, by reusing the same timing cache across multiple engine
buildings runs with the same INetworkDefinition and builder config, you can make
TensorRT select an identical set of tactics in the resulting engines.

Refer to the Timing Cache section for more information.
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13.3.8. Overhead of Shape Change and
Optimization Profile Switching

After the IExecutionContext switches to a new optimization profile, or the shapes of
the input bindings change, TensorRT must recompute the tensor shapes throughout the
network and recompute the resources needed by some tactics for the new shapes before
the next inference can start. That means, the first enqueue () call after a shape/profile
change may be longer than the subsequent enqueue () calls.

Optimizing the cost of shape/profile switching is an active area of development.

However, there are still a few cases where the overhead can influence the performance

of the inference applications. For example, some convolution tactics for NVIDIA Volta
GPUs or older GPUs have much longer shape/profile switching overhead, even if their
inference performance is the best among all the available tactics. In this case, disabling
kEDGE MASK_ CONVOLUTIONS tactics from tactic sources when building the engine may help
reduce the overhead of shape/profile switching.

13.4. Optimizing Layer Performance

The following descriptions detail how you can optimize the listed layers.

Concatenation Layer
If using an implicit batch dimension, the main consideration with the Concatenation
layer is that if multiple outputs are concatenated together, they cannot be
broadcasted across the batch dimension and must be explicitly copied. Most layers
support broadcasting across the batch dimension to avoid copying data unnecessarily,
but this will be disabled if the output is concatenated with other tensors.

Gather Layer
To get the maximum performance out of a Gather layer, use an axis of 0. There are no
fusions available for a Gather layer.

Reduce Layer
To get the maximum performance out of a Reduce layer, perform the reduction across
the last dimensions (tail reduce). This allows optimal memory to read/write patterns
through sequential memory locations. If doing common reduction operations, express
the reduction in a way that will be fused to a single operation if possible.

RNN Layer

If possible, opt to use the newer RNNv2 interface in preference to the legacy RNN
interface. The newer interface supports variable sequence lengths and variable batch
sizes, as well as having a more consistent interface. To get maximum performance,
larger batch sizes are better. In general, sizes that are multiples of 64 achieve highest
performance. Bidirectional RNN-mode prevents wavefront propagation because of the
added dependency, therefore, it tends to be slower.

In addition, the newly introduced Loop-based API provides a much more flexible
mechanism to use general layers within recurrence without being limited to a small
set of predefined RNNv2 interface. The ILoopLayer recurrence enables a rich set
of automatic loop optimizations, including loop fusion, unrolling, and loop-invariant
code motion, to name a few. For example, significant performance gains are often
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obtained when multiple instances of the same MatrixMultiply or FullyConnected

layer are properly combined to maximize machine utilization after loop unrolling

along the sequence dimension. This works best if you can avoid a MatrixMultiply or
FullyConnected layer with a recurrent data dependence along the sequence dimension.

Shuffle
Shuffle operations that are equivalent to identity operations on the underlying data are
omitted if the input tensor is only used in the shuffle layer and the input and output
tensors of this layer are not input and output tensors of the network. TensorRT does
not execute additional kernels or memory copies for such operations.

TopK
To get the maximum performance out of a TopK layer, use small values of K reducing
the last dimension of data to allow optimal sequential memory accesses. Reductions
along multiple dimensions at once can be simulated by using a Shuffle layer to reshape
the data, then reinterpreting the index values appropriately.

For more information about layers, refer to the NVIDIA TensorRT Operator's Reference.

Tensor Core is a key technology to deliver high-performance inference on NVIDIA GPUs.
In TensorRT, Tensor Core operations are supported by all compute-intensive layers -
MatrixMultiply, FullyConnected, Convolution, and Deconvolution.

Tensor Core layers tend to achieve better performance if the I/O tensor dimensions are
aligned to a certain minimum granularity:

In Convolution and Deconvolution layers the alignment requirement is on I/O channel
dimension.

In MatrixMultiply and FullyConnected layers the alignment requirement is on matrix
dimensions kK and N in a MatrixMultiply thatisM x Ktimesk x N.

The following table captures the suggested tensor dimension alignment for better Tensor
Core performance.

Table 4. Types of Tensor Cores
Suggested Tensor Dimension Alignment in
Tensor Core Operation Type Elements
TF32 4
FP16 8 for dense math, 16 for sparse math
INT8 32

When using Tensor Core implementations in cases where these requirements are not
met, TensorRT implicitly pads the tensors to the nearest multiple of alignment rounding
up the dimensions in the model definition instead to allow for extra capacity in the model
without increasing computation or memory traffic.
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TensorRT always uses the fastest implementation for a layer, and thus in some cases may
not use a Tensor Core implementation even if available.

To check if Tensor Core is used for a layer, run Nsight Systems with the --gpu-metrics-
device all flag while profiling the TensorRT application. The Tensor Core usage rate
can be found in the profiling result in the Nsight Systems user interface under the SM
instructions/Tensor Active row. Refer to the CUDA Profiling Tools for more information
about how to use Nsight Systems to profile TensorRT applications.

Note that it is not practical to expect a CUDA kernel to reach 100% Tensor Core usage
since there are other overheads such as DRAM reads/writes, instruction stalls, other
computation units, and so on. In general, the more computation-intensive an operation is,
the higher the Tensor Core usage rate the CUDA kernel can achieve.

The following image is an example of Nsight Systems profiling.

Figure 21. Tensor Core Activities on an A100 GPU Running ResNet-50
with FP16 Enabled

15 » |.2ms +331.3ms +331.4ms +331.5ms +331.6ms +331.7ms +331.8ms +331.9ms +332ms +332.1ms +3:
= GPU (0000:07:00.0 - NVIDIA A10
* GPU Metrics (10 kHz)
GPC Clock Frequency

SVS Clack Frequency
GR Active
SM Active

= SM Instructions

» SM Warp Occupancy

» DRAM Bandwidth
» NVLink RX Bandwidth
»  NVLink TX Bandwidth

» Pele Bandhwidn I 2 0
1

~ CUDA HW (0000-07:00.0 - NVID|/ 1

+ [All Streams]

~ 74.5% Stream 18
» 100.0% Kernels

[ EILER]

|
=

NVTX (TensorRT)

b 25.2% Stream 17 [ Wemepy HeoD.
» 0.3% Stream 19 |
3 streams hidden -+

13.6. Optimizing Plugins

TensorRT provides a mechanism for registering custom plugins that perform layer
operations. After a plugin creator is registered, you can look up the registry to find the
creator and add the corresponding plugin object to the network during serialization/
deserialization.

All TensorRT plugins are automatically registered once the plugin library is loaded. For
more information about custom plugins, refer to Extending TensorRT with Custom Layers.

The performance of plugins depends on the CUDA code performing the plugin operation.
Standard CUDA best practices apply. When developing plugins, it can be helpful to
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start with simple standalone CUDA applications that perform the plugin operation
and verify correctness. The plugin program can then be extended with performance
measurements, more unit testing, and alternate implementations. After the code is
working and optimized, it can be integrated as a plugin into TensorRT.

To get the best performance possible, it is important to support as many formats as
possible in the plugin. This removes the need for internal reformat operations during the
execution of the network. Refer to the Extending TensorRT with Custom Layers section
for examples.

13.7. Optimizing Python Performance

When using the Python API, most of the same performance considerations apply.
When building engines, the builder optimization phase will normally be the performance
bottleneck; not API calls to construct the network. Inference time should be nearly
identical between the Python APl and C++ API.

Setting up the input buffers in the Python API involves using pycuda or another CUDA
Python library, like cupy, to transfer the data from the host to device memory. The details
of how this works will depend on where the host data is coming from. Internally, pycuda
supports the Python Buffer Protocol which allows efficient access to memory regions.
This means that if the input data is available in a suitable format in numpy arrays or
another type that also has support for the buffer protocol, this allows efficient access
and transfer to the GPU. For even better performance, ensure that you allocate a page-
locked buffer using pycuda and write your final preprocessed input there.

For more information about using the Python API, refer to NVIDIA TensorRT 8.6.13 API
Reference for DRIVE OS.

13.8. Improving Model Accuracy

TensorRT can execute a layer in FP32, FP16, or INT8 precision depending on the builder
configuration. By default, TensorRT chooses to run a layer in a precision that results in
optimal performance. Sometimes this can result in poor accuracy. Generally, running a
layer in higher precision helps improve accuracy with some performance hit.

There are several steps that we can take to improve model accuracy:
1. Validate layer outputs:

a). Use Polygraphy to dump layer outputs and verify that there are no NaNs or Infs.
The --validate option can check for NaNs and Infs. Also, we can compare layer
outputs with golden values from, for example, ONNX runtime.

b). For FP16, it is possible that a model might require retraining to ensure that
intermediate layer output can be represented in FP16 precision without overflow/
underflow.

c). For INT8, consider recalibrating with a more representative calibration data set.
If your model comes from PyTorch, we also provide NVIDIA's Quantization Toolkit
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for PyTorch for QAT in the framework besides PTQ in TensorRT. You can try both
approaches and choose the one with more accuracy.

2. Manipulate layer precision:
a). Sometimes running a layer in certain precision results in incorrect output. This can

be due to inherent layer constraints (for example, LayerNorm output should not
be INT8), model constraints (output gets diverged resulting in poor accuracy), or

report a TensorRT bug.
b). You can control layer execution precision and output precision.
c). An experimental debug precision tool can help automatically find layers to run in
high precision.
3. Use an Algorithm Selection and Reproducible Builds to disable flaky tactics:

a). When accuracy changes between build+run to build+run, it might be due to a
selection of a bad tactic for a layer.

b). Use an algorithm selector to dump tactics from both good and bad runs.
Configure the algorithm selector to allow only a subset of tactics (that is, just allow
tactics from a good run, and so on).

c). You can use Polygraphy to automate this process.

Accuracy from run-to-run variation should not change; once the engine is built for
a specific GPU, it should result in bit accurate outputs in multiple runs. If not, file a

TensorRT bug.

13.9. Optimizing Builder Performance

For each layer, the TensorRT builder profiles all the available tactics to search for the
fastest inference engine plan. The builder time can be long if the model has a large
number of layers or complicated topology. The following sections provide options to
reduce builder time.

13.9.1. Timing Cache

To reduce builder time, TensorRT creates a layer timing cache to keep the layer-
profiling information. The information it contains is specific to the targeted device,
CUDA, TensorRT versions, and BuilderConfig parameters that can change the layer
implementation such as BuilderFlag: :kTF32 Or BuilderFlag: : KREFIT.

If there are other layers with the same 10 tensor configuration and layer parameters, the
TensorRT builder skips profiling and reuses the cached result for the repeated layers. If a
timing query misses in the cache, the builder times the layer and updates the cache.

The timing cache can be serialized and deserialized. You can load a serialized cache from a
buffer using TBuilderConfig: :createTimingCache..

ITimingCache* cache =
config->createTimingCache (cacheFile.data (), cacheFile.size());

Setting the buffer size to 0 creates a new empty timing cache.

You then attach the cache to a builder configuration before building.
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config->setTimingCache (*cache, false);

During the build, the timing cache can be augmented with more information as a result of
cache misses. After the build, it can be serialized for use with another builder.
IHostMemory* serializedCache = cache->serialize();

If there is no timing cache attached to a builder, the builder creates its own temporary
local cache and destroys it when it is done.

The cache is incompatible with algorithm selection (refer to the Algorithm Selection and
Reproducible Builds section). It can be disabled by setting the BuilderFlag.
config->setFlag (BuilderFlag: :kDISABLE TIMING CACHE) ;

Note: The timing cache supports the most frequently used layer types: Convolution,
Deconvolution, Pooling, SoftMax, MatrixMultiply, ElementWise, Shuffle, and tensor
memory layout conversion. More layer types will be added in future releases.

13.9.2. Tactic Selection Heuristic

TensorRT allows heuristic-based tactic selection to minimize the builder time in the layer
profiling stage. The builder predicts the tactic timing for the given problem size and
prunes the tactics that are not likely to be fast prior to the layer profiling stage. In cases
where the prediction is wrong, the engine will not be as performant as when built with a
profiling-based builder. This feature can be enabled by setting the BuilderFlag.

config->setFlag (BuilderFlag: :kENABLE TACTIC_ HEURISTIC) ;

Note: The tactic selection heuristic feature is only supported by the NVIDIA Ampere
architecture and newer GPUs.

13.10. Builder Optimization Level

Set the optimization level in builder config to adjust how long TensorRT should spend
searching for tactics with potentially better performance. By default, the optimization
level is 3. Setting it to a smaller value results in much faster engine building time, but
the performance of the engine may be worse. On the other hand, setting it to a larger
value will increase the engine building time, but the resulting engine may perform better
if TensorRT is able to find better tactics.

For example, to set the optimization level to O (the fastest):
C++
config->setOptimizationLevel (0) ;

Python

config.optimization_level = 0
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The following sections help answer the most commonly asked questions regarding typical
use cases.

14.1. FAQs

This section is to help troubleshoot the problem and answer our most asked questions.

Q: How do | create an engine that is optimized for several different batch
sizes?

A: While TensorRT allows an engine optimized for a given batch size to run at any smaller
size, the performance for those smaller sizes cannot be as well optimized. To optimize
for multiple different batch sizes, create optimization profiles at the dimensions that are
assigned to optProfilerSelector: : kOPT.

Q: Are calibration tables portable across TensorRT versions?

A: No. Internal implementations are continually optimized and can change between
versions. For this reason, calibration tables are not guaranteed to be binary compatible
with different versions of TensorRT. Applications must build new INT8 calibration tables
when using a new version of TensorRT.

Q: Are engines portable across TensorRT versions?

A: By default, no. Refer to Version Compatibility for how to configure engines for forward
compatibility.

Q: How do | choose the optimal workspace size?

A: Some TensorRT algorithms require additional workspace on the GPU. The method
IBuilderConfig: :setMemoryPoolLimit () controls the maximum amount of workspace
that can be allocated and prevents algorithms that require more workspace from being
considered by the builder. At runtime, the space is allocated automatically when creating
an IExecutionContext. The amount allocated is no more than is required, even if the
amount set in TBuilderConfig: :setMemoryPoolLimit () is much higher. Applications
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should therefore allow the TensorRT builder as much workspace as they can afford; at
runtime, TensorRT allocates no more than this and typically less.

Q: How do | use TensorRT on multiple GPUs?

A: Each IcudaEngine object is bound to a specific GPU when it is instantiated, either by
the builder or on deserialization. To select the GPU, use cudaSetbDevice () before calling
the builder or deserializing the engine. Each IExecutionContext is bound to the same
GPU as the engine from which it was created. When calling execute () or enqueue (),
ensure that the thread is associated with the correct device by calling cudasetbDevice () if
necessary.

Q: How do | get the version of TensorRT from the library file?

A: There is a symbol in the symbol table named tensorrt version # # # # which
contains the TensorRT version number. One possible way to read this symbol on Linux is
to use the nm command like in the following example:

$ nm -D libnvinfer.so.* | grep tensorrt_version
00000000abcd1234 B tensorrt version # # # #

Q: What can | do if my network is producing the wrong answer?

A: There are several reasons why your network can be generating incorrect answers. Here
are some troubleshooting approaches that can help diagnose the problem:

» Turn on VERBOSE level messages from the log stream and check what TensorRT is
reporting.

» Check that your input preprocessing is generating exactly the input format required
by the network.

» If you are using reduced precision, run the network in FP32. If it produces the correct
result, it is possible that lower precision has an insufficient dynamic range for the
network.

» Try marking intermediate tensors in the network as outputs, and verify if they match
what you are expecting.

S Note: Marking tensors as outputs can inhibit optimizations, and therefore, can change
the results.

You can use NVIDIA Polygraphy to assist you with debugging and diagnosis.

Q: How do | implement batch normalization in TensorRT?

A: Batch normalization can be implemented using a sequence of IElementWiseLayer in
TensorRT. More specifically:

adjustedScale = scale / sqrt(variance + epsilon)
batchNorm = (input + bias - (adjustedScale * mean)) * adjustedScale
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Q: Why does my network run slower when using DLA compared to without
DLA?

A: DLA was designed to maximize energy efficiency. Depending on the features
supported by DLA and the features supported by the GPU, either implementation can be
more performant. Which implementation to use depends on your latency or throughput
requirements and your power budget. Since all DLA engines are independent of the GPU
and each other, you could also use both implementations at the same time to further
increase the throughput of your network.

Q: Is INT4 quantization or INT 16 quantization supported by TensorRT?
A: Neither INT4 nor INT 16 quantization is supported by TensorRT at this time.

Q: When will TensorRT support layer XYZ required by my network in the UFF
parser?

A: UFF is deprecated. We recommend users switch their workflows to ONNX. The
TensorRT ONNX parser is an open source project.

Q: Can | use multiple TensorRT builders to compile on different targets?

A: TensorRT assumes that all resources for the device it is building on are available for
optimization purposes. Concurrent use of multiple TensorRT builders (for example,
multiple trtexec instances) to compile on different targets (DLAO, DLA1 and GPU) can
oversubscribe system resources causing undefined behavior (meaning, inefficient plans,
builder failure, or system instability).

It is recommended to use trtexec with the --saveEngine argument to compile for
different targets (DLA and GPU) separately and save their plan files. Such plan files

can then be reused for loading (using trtexec with the --1oadEngine argument) and
submitting multiple inference jobs on the respective targets (DLAO, DLAT, GPU). This two-
step process alleviates over-subscription of system resources during the build phase
while also allowing execution of the plan file to proceed without interference by the
builder.

Q: Which layers are accelerated by Tensor Cores?

A: Most math-bound operations will be accelerated with tensor cores - convolution,
deconvolution, fully connected, and matrix multiply. In some cases, particularly for small
channel counts or small group sizes, another implementation may be faster and be
selected instead of a tensor core implementation.
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Q: Why are reformatting layers observed although there is no warning

Message no implementation obeys reformatting-free rules ?

A: Reformat-free network I/O does not mean that there are no reformatting layers
inserted in the entire network. Only that the input and output network tensors have a
possibility not to require reformatting layers. In other words, reformatting layers can be
inserted by TensorRT for internal tensors to improve performance.

14.2. Understanding Error Messages

If an error is encountered during execution, TensorRT reports an error message that is
intended to help in debugging the problem. Some common error messages that can be
encountered by developers are discussed in the following sections.

UFF Parser Error Messages

The following table captures the common UFF parser error messages.

Error Message Description

The input to the Scale Layer is required to This error message can occur due to
have a minimum of 3 dimensions. ) ) ; ) )
incorrect input dimensions. In UFF, input
kernel weights has count <X> but <¥> was dimensions should always be specified with the
expected implicit batch dimension not included in the

specification.

Invalid scale mode, nbWeights: <X>

<NODE> Axis node has op <OP>, expected As indicated by the error message, the axis
Const. The axis must be specified as a ) . )
must be a build time constant in order for UFF

Const node.
to parse the node correctly.

ONNX Parser Error Messages

The following table captures the common ONNX parser error messages. For more
information on specific ONNX node support, refer to the operators support document.

Error Message Description
[ et o e o Cballecis These error messages signify that an ONNX
Sz e LD e e R node input tensor is expected to be an

initializer in TensorRT. A possible fix is to run
constant folding on the model using TensorRT’s

Polygraphy tool:

polygraphy surgeon sanitize model.onnx --
fold-constants --output model_ folded.onnx

O e f 2GS () RIS Eiehs U, 1 Gl This is an error stating that the ONNX parser
<operator name> version ) . )
1 does not have an import function defined

for a particular operator, and did not find a
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corresponding plugin in the loaded registry for

the operator.

The following table captures the common TensorRT core library error messages.

Installation Errors

Builder Errors

Error Message

Cuda initialization
failure with error
<code>. Please check cuda
installation: http://

docs.nvidia.com/cuda/cuda-

installation-guide-linux
index.html.

Internal error: could not
find any implementation for
node <name>. Try increasing
the workspace size with

Description

This error message can occur
if the CUDA or NVIDIA driver
installation is corrupt. Refer

to the URL for instructions on
installing CUDA and the NVIDIA
driver on your OS.

This error message occurs
because there is no layer
implementation for the

IBuilderConfig: : setMemoryPoolLimit () .

<layer-name>: (kernel|bias)
weights has non-zero count
but null values

<layer-name>: (kernel |bias)
weights has zero count but
non-null values

Builder was created on device
different from current
device.

NVIDIA TensorRT 8.6.13 Developer Guide

given node in the network
that can operate with the
given workspace size. This
usually occurs because the
workspace size is insufficient
but could also indicate a bug.
If increasing the workspace
size as suggested does not
help, report a bug (refer to
Reporting TensorRT Issues).

This error message occurs
when there is a mismatch
between the values and
count fields in a Weights
data structure passed to the
builder. If the count is 0, then
the values field must contain
a null pointer; otherwise, the
count must be non-zero, and
values must contain a non-null
pointer.

This error message can show
up if you:
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Error Message Description
1. Created an 1Builder
targeting one GPU, then

2. Called cudasetDevice ()
to target a different GPU,
then

3. Attempted to use the
IBuilder to create an
engine.

Ensure you only use the
IBuilder when targeting the
GPU that was used to create
the 1Builder.

You can encounter error messages indicating that the tensor
dimensions do not match the semantics of the given layer.
Carefully read the documentation on NvInfer.h on the usage
of each layer and the expected dimensions of the tensor inputs
and outputs to the layer.

INT8 Calibration Errors Tensor <X> is uniformly zero. Thjs warning occurs and
should be treated as an error
when data distribution for a
tensor is uniformly zero. In a
network, the output tensor
distribution can be uniformly
zero under the following
scenarios:

1. Constant tensor with all
zero values; not an error.

2. Activation (ReLU) output
with all negative inputs:
not an error.

3. Data distribution is
forced to all zero due to
computation error in the
previous layer; emit a

warning here.?

2 It is recommended to evaluate the calibration input or validate the previous layer outputs.
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Error Message

Could not find scales for
tensor <X>.

The engine plan file is not
compatible with this version
of TensorRT, expecting
(format|library) version <X>
got <Y¥>, please rebuild.

Engine Compatibility Errors

The engine plan file is
generated on an incompatible
device, expecting compute
<X> got compute <Y¥>, please
rebuild.

Using an engine plan file
across different models of
devices is not recommended
and is likely to affect
performance or even cause
errors.

GPU memory allocation failed
during initialization of
(tensor|layer) : <name>

Out Of Memory Errors

Troubleshooting

Description
4. User does not provide any
calibration images; emit a
warning here.’
This error message indicates
that a calibration failure
occurred with no scaling
factors detected. This could
be due to no INT8 calibrator or
insufficient custom scales for
network layers.

This error message can occur
if you are running TensorRT
using an engine PLAN file
that is incompatible with the
current version of TensorRT.
Ensure you use the same
version of TensorRT when
generating the engine and
running it.

This error message can occur
if you build an engine on a
device of a different compute
capability than the device that
is used to run the engine.

This warning message can
occur if you build an engine
on a device with the same
compute capability but is not
identical to the device that is
used to run the engine.

As indicated by the warning,
itis highly recommended
to use a device of the same
model when generating the
engine and deploying it to
avoid compatibility issues.

These error messages can
occur if there is insufficient

3 It is recommended to evaluate the calibration input or validate the previous layer outputs.
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Error Message Description
GPUlmemory, GPU memory available to
e alen dllae Gl instantiate a given TensorRT

deserialization of weights. ] )

GPU does not meet the minimum engl.n.e. Vern‘y.that the GPU has
memory requirements to run sufficient available memory
thi i - . .

ARSIl to contain the required layer

weights and activation tensors.

FP16 Errors Network needs native FP16 This error message can occur
and platform does not have ) o
native FP16 if you attempt to deserialize

an engine that uses FP16
arithmetic on a GPU that does
not support FP16 arithmetic.
You either must rebuild the
engine without FP 16 precision
inference or upgrade your GPU
to a model that supports FP16
precision inference.

Plugin Errors Custom layer <name> returned  Thjg error message can occur
non-zero initialization

if the initialize () method
of a given plugin layer returns
a non-zero value. Refer to the
implementation of that layer
to debug this error further. For
more information, refer to the
NVIDIA TensorRT Operator's

Reference.

14.3. Code Analysis Tools

14.3.1. Compiler Sanitizers

Google sanitizers are a set of code analysis tools.

14.3.1.1. Issues with dlopen and Address Sanitizer

There is a known issue with sanitizers, documented here. When using dlopen on TensorRT
under a sanitizer, there will be reports of memory leaks unless one of two solutions is
adopted:

1. Do not call dlclose when running under the sanitizers.
2. Pass the flag RTLD NODELETE to dlopen when running under sanitizers.
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14.3.1.2. Issues with dlopen and Thread Sanitizer

The thread sanitizer can list errors when using dlopen from multiple threads. In order to
suppress this warning, create a file called tsan. supp and add the following to the file:

race: :dlopen

When running applications under thread sanitizer, set the environment variable using:
export TSAN OPTIONS="suppressions=tsan.supp”

14.3.1.3. Issues with CUDA and Address Sanitizer

The address sanitizer has a known issue with CUDA applications documented here. In
order to successfully run CUDA libraries such as TensorRT under the address sanitizer,
add the option protect shadow gap=0 to the ASAN OPTIONS environment variable.

On CUDA 11.4, there is a known bug that can trigger mismatched allocation-and-free
errors in the address sanitizer. Add alloc_dealloc mismatch=0 tO ASAN OPTIONS to
disable these errors.

14.3.1.4. Issues with Undefined Behavior Sanitizer

UndefinedBehaviorSanitizer (UBSan) reports false positives with the -
fvisibility=hidden option as documented here. Add the -fno-sanitize=vptr option to
avoid UBSan reporting such false positives.

14.3.2. Valgrind

Valgrind is a framework for dynamic analysis tools that can be used to automatically
detect memory management and threading bugs in applications.

Some versions of valgrind and glibc are affected by a bug, which causes false memory
leaks to be reported when dlopen is used, which can generate spurious errors when
running a TensorRT application under valgrind's memcheck tool. To work around this, add
the following to a valgrind suppressions file as documented here:

{

Memory leak errors with dlopen
Memcheck: Leak
match-leak-kinds: definite

fun: *dlopen*
}

On CUDA 11.4, there is a known bug that can trigger mismatched allocation-and-free
errors in valgrind. Add the option --show-mismatched-frees=no to the valgrind command
line to suppress these errors.

14.3.3. Compute Sanitizer

When running a TensorRT application under compute-sanitizer, cuGetProcAddress can
fail with error code 500 due to missing functions. This error can be ignored or suppressed
with --report-api-errors no option. This is due to CUDA backward compatibility
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checking if a function is usable on the CUDA toolkit/driver combination. The functions are
introduced in a later version of CUDA but are not available on the current platform.

14.4. Understanding Formats Printed in
Logs

In logs from TensorRT, formats are printed as a type followed by stride and vectorization
information. For example:

Half(60,1:8,12,3)

The Half indicates that the element type is DataType: : kHALF, that is, 16-bit floating
point. The : 8 indicates the format packs eight elements per vector, and that vectorization
is along the second axis. The rest of the numbers are strides in units of vectors. For this
tensor, the mapping of a coordinate (n,c,h,w) to an address is:

((half*)base_address) + (60*n + l*floor(c/8) + 12*h + 3*w) * 8 + (c mod 8)

The 1: is common to NHWC formats. For example, here is another example for an NCHW
format:
Int8(105,15:4,3,1)

The INT8 indicates that the element type is DataType: : kINTS8, and the :4 indicates a
vector size of 4. For this tensor, the mapping of a coordinate (n, c,h,w) to an address is:
(int8_t*)base_address + (105*n + 15*floor(c/4) + 3*h + w) * 4 + (c mod 4)

Scalar formats have a vector size of 1. For brevity, printing omits the 1.

In general, the coordinates to address mappings have the following form:

(type*)base_address + (vec_coordinate - strides) * vec_size + vec_mod

Where:

» the dot denotes an inner product

» strides are the printed strides, that is, strides in units of vectors

» vec_sizeis the number of elements per vectors

» vec coordinate is the original coordinate with the coordinate along the vectorized
axis divided by vec size

» vec modis the origi_nal coordinate along the vectorized axis modulo vec size

14.5. Reporting TensorRT Issues

If you encounter issues when using TensorRT, first confirm that you have followed

the instructions in this Developer Guide. Also, check the FAQs and the Understanding
Error Messages sections to look for similar failing patterns. For example, many engine
building failures can be solved by sanitizing and constant-folding the ONNX model using
Polygraphy with the following command:

polygraphy surgeon sanitize model.onnx --fold-constants --output
model folded.onnx
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In addition, it is highly recommended that you first try our latest TensorRT release before
filing an issue if you have not done so, since your issue may have been fixed in the latest
release.

14.5.1. Channels for TensorRT Issue Reporting

If none of the FAQs or the Understanding Error Messages work, there are two main
channels where you can report the issue: NVIDIA Developer Forum or TensorRT GitHub
Issue page. These channels are constantly monitored to provide feedback to the issues
you encountered.

Here are the steps to report an issue on the NVIDIA Developer Forum:

Register for the NVIDIA Developer website.

Log in to the developer site.

Click on your name in the upper right corner.

Click My account > My Bugs and select Submit a New Bug.

Fill out the bug reporting page. Be descriptive and if possible, provide the steps to
reproduce the problem.

6. Click Submit a bug.

e e

When reporting an issue, provide setup details and include the following information:
» Environment information:
» OS or Linux distro and version
» GPU type
» NVIDIA driver version
» CUDA version
» CcuDNN version
» Python version (if Python is used).
» TensorFlow, PyTorch, and ONNX version (if any of them is used).
» TensorRT version
» NGC TensorRT container version (if TensorRT container is used).
» Jetson (if used), include OS and hardware versions
» Thorough description of the issue.
» Steps to reproduce the issue:
» ONNX file (if ONNX is used).
» Minimal commands or scripts to trigger the issue

» Verbose logs by enabling kVERBOSE in ILogger

Depending on the type of the issue, providing more information listed below can expedite
the response and debugging process.
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14.5.2. Reporting a Functional Issue

When reporting functional issues, such as linker errors, segmentation faults, engine
building failures, inference failures, and so on, provide the scripts and the commands to
reproduce the issue as well as the detailed description of the environment. Having more
details helps us in debugging the functional issue faster.

Since the TensorRT engine is specific to a specific TensorRT version and a specific
GPU type, do not build the engine in one environment and use it to run it in another
environment with different GPUs or dependency software stack, such as TensorRT
version, CUDA version, cuDNN version, and so on. Also, ensure that the application
is linked to the correct TensorRT and cuDNN shared object files by checking the
environment variable LD LIBRARY PATH (or $PATHS on Windows).

14.5.3. Reporting an Accuracy Issue

When reporting an accuracy issue, provide the scripts and the commands used to
calculate the accuracy metrics. Describe what the expected accuracy level is and, if
possible, share the steps to get the expected results using other frameworks like ONNX-
Runtime.

The Polygraphy tool can be used to debug the accuracy issue and produce a minimal
failing case. Refer to the Debugging TensorRT Accuracy Issues documentation for the
instructions. Having a Polygraphy command that shows the accuracy issue or having the
minimal failing case expedites the time it takes for us to debug your accuracy issue.

Note that it is not practical to expect bitwise identical results between TensorRT and
other frameworks like PyTorch, TensorFlow, or ONNX-Runtime even in FP32 precision
since the order of the computations on the floating-point numbers can result in
slight differences in output values. In practice, small numeric differences should not
significantly affect the accuracy metric of the application, such as the mAP score for
object-detection networks or the BLEU score for translation networks. If you do see
a significant drop in the accuracy metric between using TensorRT and using other
frameworks such as PyTorch, TensorFlow, or ONNX-Runtime, it may be a genuine
TensorRT bug.

If you are seeing NaNs or infinite values in TensorRT engine output when FP 16 precision
is enabled, it is possible that intermediate layer outputs in the network overflow in FP16.
Some approaches to help mitigate this include:

» Ensuring that network weights and inputs are restricted to a reasonably narrow
range (such as [-1, 1] instead of [-100, 100]). This may require making changes to the
network and retraining.

» Consider pre-processing input by scaling or clipping it to the restricted range
before passing it to the network for inference.
» Overriding precision for individual layers vulnerable to overflows (for example, Reduce
and Element-Wise Power ops) to FP32.

Polygraphy can help you diagnose common problems with using reduced precision. Refer
to Polygraphy's Working with Reduced Precision how-to guide for more details.
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Refer to the Improving Model Accuracy section for some possible solutions to accuracy
issues, and the Working with INT8 section for instructions about using INT8 precision.

If you are reporting a performance issue, share the full trtexec logs using this command:

trtexec --onnx=<onnx file> <precision_and_shape_ flags> --verbose --
profilingVerbosity=detailed --dumplLayerInfo --dumpProfile --separateProfileRun --useCudaGraph
--noDataTransfers --useSpinWait --duration=60

The verbose logs help us to identify the performance issue. If possible, also share the
Nsight Systems profiling files using these commands:

trtexec --onnx=<onnx file> <precision_and shape flags> --verbose --
profilingVerbosity=detailed --dumplayerInfo --saveEngine=<engine_path>

nsys profile --cuda-graph-trace=node -o <output profile> trtexec --loadEngine=<engine path>
<precision_and_shape flags> --useCudaGraph --noDataTransfers --useSpinWait --warmUp=0 --
duration=0 --iterations=20

Refer to the trtexec section for more instructions about how to use the trtexec tool and
the meaning of these flags.

If you do not use trtexec to measure performance, provide the scripts and the
commands that you use to measure the performance. If possible, compare the
performance measurement from your script with that from the trtexec tool. If the
two numbers differ, there may be some issues about the performance measurement
methodology in your scripts.

Refer to the Hardware/Software Environment for Performance Measurements section for
some environment factors that may affect the performance.

NVIDIA TensorRT 8.6.13 Developer Guide SWE-SWDOCTRT-005-DEVG | 159


https://developer.nvidia.com/nsight-systems

Appendix A. Appendix

A.1. Data Format Descriptions

TensorRT supports different data formats. There are two aspects to consider: data type
and layout.

Data Type Format

The data type is the representation of each individual value. Its size determines the range
of values and the precision of the representation, which are FP32 (32-bit floating point,
or single precision), FP16 (16-bit floating point or half precision), INT32 (32-bit integer
representation), and INT8 (8-bit representation).

Layout Format

The layout format determines the ordering in which values are stored. Typically, batch
dimensions are the leftmost dimensions, and the other dimensions refer to aspects of
each data item, such as c is channel, 1 is height, and w is width, in images. Ignoring batch
sizes, which are always preceding these, c, 5, and w are typically sorted as chw (refer to
Figure 22) or nwc (refer to Figure 23).

The following image is divided into #xw matrices, one per channel, and the matrices are
stored in sequence; all the values of a channel are stored contiguously.
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Figure 22. Layout Format for cuw

J

The image is stored as a single Hxw matrix, whose value is actually C-tuple, with a value per
channel; all the values of a point (pixel) are stored contiguously.
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Figure 23. Layout format for awc
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To enable faster computations, more formats are defined to pack together channel
values and use reduced precision. For this reason, TensorRT also supports formats like Nc,
2HW2 and NHWCS.

In NC, 2HW2 (TensorFormat::kCHW2), pairs of channel values are packed together in each
HxW matrix (with an empty value in the case of an odd number of channels). The result is a
format in which the values of #c/2# Hxw matrices are pairs of values of two consecutive
channels (refer to Figure 24); notice that this ordering interleaves dimension as values of
channels that have stride 1 if they are in the same pair and stride 2xHxw otherwise.

A pair of channel values is packed together in each Hxw matrix. The result is a format in
which the values of #c/2# Hxw matrices are pairs of values of two consecutive channels.
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Figure 24. Values of #c/2# Hxw Matrices are Pairs of Values of Two
Consecutive Channels

e

In NHWC8 (TensorFormat: :kHWC8), the entries of an HxW matrix include the values of all
the channels (refer to Figure 25). In addition, these values are packed together in #c/8# 8-
tuples, and c is rounded up to the nearest multiple of 8.

In this NnEWC8 format, the entries of an Exw matrix include the values of all the channels.
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Figure 25. In NHWC8 Format, the Entries of an Hxw Matrix Include the
Values of all the Channels
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Other TensorFormat follow similar rules to TensorFormat: : kCHW2 and
TensorFormat : : kHWC8 mentioned previously.

A.2. Command-Line Programs

A2.1. trtexec

Included in the samples directory is a command-line wrapper tool called trtexec. trtexec
is a tool to quickly utilize TensorRT without having to develop your own application. The
trtexec tool has three main purposes:

» Itis useful for benchmarking networks on random or user-provided input data.
» Itis useful for generating serialized engines from models.

» Itis useful for generating serialized timing cache from the builder.
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If you have a model saved as an ONNX file, UFF file, or if you have a network description
in a Caffe prototxt format, you can use the trtexec tool to test the performance of
running inference on your network using TensorRT. The trtexec tool has many options
for specifying inputs and outputs, iterations for performance timing, precision allowed,
and other options.

To maximize GPU utilization, trtexec enqueues the inferences one batch ahead of time.
In other words, it does the following:

enqueue batch 0 -> enqueue batch 1 -> wait until batch 0 is done -> enqueue batch 2 -> wait
until batch 1 is done -> enqueue batch 3 -> wait until batch 2 is done -> enqueue batch 4 -

P> o006

If cross-inference multi-stream (--infstreams=N flag) is used, then trtexec follows this
pattern on each stream separately.

The trtexec tool prints the following performance metrics. The following figure shows

an example Nsight System profile of a trtexec run with markers showing what each

performance metric means.

Throughput
The observed throughput is computed by dividing the number of inferences by the
Total Host Walltime. If this is significantly lower than the reciprocal of GPU Compute
Time, the GPU may be underutilized because of host-side overheads or data transfers.
Using CUDA graphs (with --usecudaGraph) or disabling H2D/D2H transfers (with --
noDataTransfer) may improve GPU utilization. The output log provides guidance on
which flag to use when trtexec detects that the GPU is underutilized.

Host Latency
The summation of H2D Latency, GPU Compute Time, and D2H Latency. This is the
latency to infer a single inference.

Enqueue Time
The host latency to enqueue an inference, including calling H2D/D2H CUDA APIs,
running host-side heuristics, and launching CUDA kernels. If this is longer than GPU
Compute Time, the GPU may be underutilized and the throughput may be dominated
by host-side overhead. Using CUDA graphs (with --useCudaGraph) may reduce
engueue time.

H2D Latency
The latency for host-to-device data transfers for input tensors of a single inference.
Add --nobataTransfer to disable H2D/D2H data transfers.

D2H Latency
The latency for device-to-host data transfers for output tensors of a single inference.
Add --nobataTransfer to disable H2D/D2H data transfers.

GPU Compute Time
The GPU latency to execute the CUDA kernels for an inference.

Total Host Walltime
The host walltime from when the first inference (after warm-ups) is enqueued to when
the last inference was completed.
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Total GPU Compute Time
The summation of the GPU Compute Time of all the inferences. If this is significantly
shorter than Total Host Walltime, the GPU may be under utilized because of host-side
overheads or data transfers.

Performance metrics in a normal trtexec run under Nsight Systems (ShuffleNet, BS=16,
best, TitanRTX at 1200 MHz).

Note: In the latest Nsight Systems, the GPU rows appear above the CPU rows rather than
beneath the CPU rows.

Figure 26. Performance Metrics in a Normal trtexec Run under Nsight
Systems
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Host latency = (H2D latency) + (GPU Compute latency) + (D2H latency)

Throughput = (Total host wall time for N queries) / N

Add the --dumpprofile flag to trtexec to show per-layer performance profiles, which
allows users to understand which layers in the network take the most time in GPU
execution. The per-layer performance profiling works with launching inference as a CUDA
graph as well. In addition, build the engine with the --profilingvVerbosity=detailed flag
and add the --dumpLayerInfo flag to show detailed engine information, including per-
layer detail and binding information. This allows you to understand which operation each
layer in the engine corresponds to and their parameters.
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A.2.1.2. Serialized Engine Generation

If you generate a saved serialized engine file, you can pull it into another application

that runs inference. For example, you can use the NVIDIA Triton Inference Server to run
the engine with multiple execution contexts from multiple threads in a fully pipelined
asynchronous way to test parallel inference performance. There are some caveats; for
example, in INT8 mode, trtexec sets random dynamic ranges for tensors unless the
calibration cache file is provided with the --calib=<file> flag, so the resulting accuracy
will not be as expected.

A.2.1.3. Serialized Timing Cache Generation

If you provide a timing cache file to the --timingCacheFile option, the builder can load
existing profiling data from it and add new profiling data entries during layer profiling.
The timing cache file can be reused in other builder instances to improve the builder
execution time. It is suggested to reuse this cache only in the same hardware/software
configurations (for example, CUDA/cuDNN/TensorRT versions, device model, and clock
frequency); otherwise, functional or performance issues may occur.

A.2.1.4. Commonly Used Command-line Flags

The section lists the commonly used trtexec command-line flags.

Flags for the Build Phase

--onnx=<model>: Specify the input ONNX model.
--deploy=<caffe prototxt>: Specify the input Caffe prototxt model.
--uff=<model>: Specify the input UFF model.

vV v v VY

--output=<tensor>: Specify output tensor names. Only required if the input models
are in UFF or Caffe formats.

» -—-maxBatch=<BS>: Specify the maximum batch size to build the engine with. Only
needed if the input models are in UFF or Caffe formats. If the input model is in ONNX
format, use the --minShapes, ——optShapes, and --maxShapes flags to control the
range of input shapes including batch size.

> --minShapes=<shapes>, ——optShapes=<shapes>, and --maxShapes=<shapes>: Specify
the range of the input shapes to build the engine with. Only required if the input
model is in ONNX format.

» —-memPoolSize=<pool spec>: Specify the maximum size of the workspace that
tactics are allowed to use, as well as the sizes of the memory pools that DLA will
allocate per loadable.

» --saveEngine=<file>: Specify the path to save the engine to.
> -—-fpl6, --int8, -—noTF32, and --best: Specify network-level precision.
> --sparsity=[disable|enable|force]: Specify whether to use tactics that support

structured sparsity.
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disable: Disable all tactics using structured sparsity. This is the default.

enable: Enable tactics using structured sparsity. Tactics will only be used if the
weights in the ONNX file meet the requirements for structured sparsity.

force: Enable tactics using structured sparsity and allow trtexec to overwrite the
weights in the ONNX file to enforce them to have structured sparsity patterns.
Note that the accuracy is not preserved, so this is to get inference performance
only.

--timingCacheFile=<file>: Specify the timing cache to load from and save to.

--verbose: Turn on verbose logging.

--skipInference: Build and save the engine without running inference.

--profilingVerbosity=[layer names only|detailed|none]: Specify the profiling
verbosity to build the engine with.

-—dumpLayerInfo, ——exportLayerInfo=<file>: Print/Save the layer information of
the engine.

--precisionConstraints=spec: Control precision constraint setting.

none: No constraints.

prefer: Meet precision constraints set by --layerPrecisions/--
layerOutputTypes if possible.

obey: Meet precision constraints set by --layerPrecisions/--layerOutputTypes
or fail otherwise.

--layerPrecisions=spec: Control per-layer precision constraints. Effective only when
precisionConstraints is set to obey or prefer. The specs are read left to right, and

later ones override earlier ones. "*" can be used as a layerName to specify the default
precision for all the unspecified layers.

For example: --layerPrecisions=*:£fpl6, layer 1:£fp32 sets the precision of all
layers to FP16 except for 1ayer 1, which will be set to FP32.

--layerOutputTypes=spec: Control per-layer output type constraints. Effective only
when precisionConstraints is set to obey or prefer. The specs are read left to right,
and later ones override earlier ones. "*" can be used as a layerName to specify the
default precision for all the unspecified layers. If a layer has more than one output,

then multiple types separated by "+" can be provided for this layer.

For example: --layerOutputTypes=*:fpl6, layer 1:fp32+fplé6 sets the precision
of all layer outputs to FP16 except for 1ayer 1, whose first output will be set to
FP32 and whose second output will be set to FP16.

--layerDeviceTypes=spec: Explicitly set per-layer device type to either GpU or DLA.
The specs are read left to right, and later ones override earlier ones.

-—useDLACore=N: Use the specified DLA core for layers that support DLA.
-—allowGPUFallback: Allow layers unsupported on DLA to run on GPU instead.
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--versionCompatible, --vc: Enable version compatible mode for engine build and
inference. Any engine built with this flag enabled is compatible with newer versions of
TensorRT on the same host OS when run with TensorRT's dispatch and lean runtimes.
Only supported with explicit batch mode.

--excludeLeanRuntime: When --versionCompatible is enabled, this flag indicates
that the generated engine should not include an embedded lean runtime. If this is set,
you must explicitly specify a valid lean runtime to use when loading the engine. Only
supported with explicit batch and weights within the engine.

--tempdir=<dir>: Overrides the default temporary directory TensorRT will use

when creating temporary files. Refer to the TRuntime: : setTemporaryDirectory API
documentation for more information.

--tempfileControls=controls: Controls what TensorRT is allowed to use when
creating temporary executable files. Should be a comma-separated list with entries in
the format [in memory|temporary]:[allow|deny].

Options include:

in memory: Controls whether TensorRT is allowed to create temporary in-
memory executable files.

temporary: Controls whether TensorRT is allowed to create temporary
executable files in the filesystem (in the directory given by --tempdir).

Example usage. --tempfileControls=in memory:allow,temporary:deny

--dynamicPlugins=<file>: Load the plugin library dynamically and serialize it with
the engine when it is included in --setPluginsToSerialize (can be specified multiple
times).

--setPluginsToSerialize=<file>: Set the plugin library to be serialized with the
engine (can be specified multiple times).

--builderOptimizationLevel=N: Set the builder optimization level to build the engine
with. Higher level allows TensorRT to spend more building time for more optimization
options.

--maxAuxStreams=N: Set maximum number of auxiliary streams per inference stream
that TRT is allowed to use to run kernels in parallel if the network contains ops that
can run in parallel, with the cost of more memory usage. Set this to O for optimal
memory usage. Refer to the Within-Inference Multi-Streaming section for more
information.

--loadEngine=<file>: Load the engine from a serialized plan file instead of building it
from input ONNX, UFF, or Caffe model.

--batch=<N>: Specify the batch size to run the inference with. Only needed if the
input models are in UFF or Caffe formats. If the input model is in ONNX format or if
the engine is built with explicit batch dimension, use --shapes instead.
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» --shapes=<shapes>: Specify the input shapes to run the inference with.

» --loadInputs=<specs>: Load input values from files. Default is to generate random
inputs.
»  —-warmUp=<duration in ms>, -—duration=<duration in seconds>, —-

iterations=<N>: Specify the minimum duration of the warm-up runs, the minimum
duration for the inference runs, and the minimum iterations of the inference runs. For
example, setting -—warmUp=0 --duration=0 --iterations=N allows you to control
exactly how many iterations to run the inference for.

» -—-useCudaGraph: Capture the inference to a CUDA graph and run inference by
launching the graph. This argument may be ignored when the built TensorRT engine
contains operations that are not permitted under CUDA graph capture mode.

» --noDataTransfers: Turn off host to device and device-to-host data transfers.
> -—-useSpinWait: Actively synchronize on GPU events. This option makes latency
measurement more stable but increases CPU usage and power,

> -—-infStreams=<N>. Run inference with multiple cross-inference streams in parallel.
Refer to the Cross-Inference Multi-Streaming section for more information.

» --verbose: Turn on verbose logging.

» -—-dumpProfile, --exportProfile=<file>:Print/Save the per-layer performance
profile.

» -——-dumpLayerInfo, --exportLayerInfo=<file>:Printlayer information of the engine.

» --profilingVerbosity=[layer names only|detailed|none]: Specify the profiling
verbosity to run the inference with.

> -—-useRuntime=[full|lean|dispatch]: TensorRT runtime to execute engine. lean
and dispatch require --versionCompatible t0 be enabled and are used to load a VC
engine. All engines (VC or not) must be built with full runtime.

> --leanDLLPath=<file>: External lean runtime DLL to use in version compatible mode.
Requires --useRuntime=[lean|dispatch].

» --dynamicPlugins=<file>:Load the plugin library dynamically when the library is not
included in the engine plan file (can be specified multiple times).

Refer to trtexec --help for all the supported flags and detailed explanations.

Refer to the GitHub: trtexec/README.md file for detailed information about how to build
this tool and examples of its usage.

A.3. Glossary

Data-Dependent Shape
A tensor shape with a dynamic dimension that is not calculated solely from network
input dimensions and network input shape tensors.
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Device
A specific GPU. Two GPUs are considered identical devices if they have the same model
name and same configuration.

Explicitly Data-Dependent Shape
A tensor shape that depends on the dimensions of an output of INonzZeroLayer or
INMSLayer.

Implicitly Data-Dependent Shape
A tensor shape with a dynamic dimension that is calculated from data other than
network input dimensions, network input shape tensors, and INonZeroLayer Or
INMSLayer. For example, a shape with a dimension calculated from data output by a
convolution.

Platform
A combination of architecture and OS. Example platforms are Linux on x86 and QNX
Standard on Aarch64. Platforms with different architectures or different OS are
considered different platforms.

TensorRT uses elements from the following software, whose licenses are reproduced
below.

This license applies to all parts of Protocol Buffers except the following:

Atomicops support for generic gcc, located in src/google/protobuf/stubs/
atomicops internals generic_gcc.h. This file is copyrighted by Red Hat Inc.

Atomicops support for AIX/POWER, located in src/google/protobuf/stubs/
atomicops internals power.h. This file is copyrighted by Bloomberg Finance LP.

Copyright 2014, Google Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright naotice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

Neither the name of Google Inc. nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
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PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Code generated by the Protocol Buffer compiler is owned by the owner of the input file
used when generating it. This code is not standalone and requires a support library to be
linked with it. This support library is itself covered by the above license.

Apache License Version 2.0, January 2004 http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution
as defined by Sections 1 through 9 of this document.

"Licensor” shall mean the copyright owner or entity authorized by the copyright owner
that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that
control, are controlled by, or are under common control with that entity. For the
purposes of this definition, "control" means (i) the power, direct or indirect, to cause
the direction or management of such entity, whether by contract or otherwise, or (ii)
ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial
ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions
granted by this License.

"Source” form shall mean the preferred form for making modifications, including but
not limited to software source code, documentation source, and configuration files.

"Object” form shall mean any form resulting from mechanical transformation or
translation of a Source form, including but not limited to compiled object code,
generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made
available under the License, as indicated by a copyright notice that is included in or
attached to the work (an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is
based on (or derived from) the Work and for which the editorial revisions, annotations,

NVIDIA TensorRT 8.6.13 Developer Guide SWE-SWDOCTRT-005-DEVG | 172


http://www.apache.org/licenses/

Appendix

elaborations, or other modifications represent, as a whole, an original work of
authorship. For the purposes of this License, Derivative Works shall not include works
that remain separable from, or merely link (or bind by name) to the interfaces of, the
Work and Derivative Works thereof.

"Contribution” shall mean any work of authorship, including the original version

of the Work and any modifications or additions to that Work or Derivative Works
thereof, that is intentionally submitted to Licensor for inclusion in the Work by the
copyright owner or by an individual or Legal Entity authorized to submit on behalf

of the copyright owner. For the purposes of this definition, "submitted” means any
form of electronic, verbal, or written communication sent to the Licensor or its
representatives, including but not limited to communication on electronic mailing lists,
source code control systems, and issue tracking systems that are managed by, or on
behalf of, the Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise designated in
writing by the copyright owner as "Not a Contribution.”

"Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom
a Contribution has been received by Licensor and subsequently incorporated within
the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works
of, publicly display, publicly perform, sublicense, and distribute the Work and such
Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable (except as stated in this section) patent license to make,
have made, use, offer to sell, sell, import, and otherwise transfer the Work, where
such license applies only to those patent claims licensable by such Contributor that
are necessarily infringed by their Contribution(s) alone or by combination of their
Contribution(s) with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a cross-claim or counterclaim
in a lawsuit) alleging that the Work or a Contribution incorporated within the Work
constitutes direct or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate as of the date such
litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative
Works thereof in any medium, with or without modifications, and in Source or Object
form, provided that You meet the following conditions:

a). You must give any other recipients of the Work or Derivative Works a copy of this
License; and
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b). You must cause any modified files to carry prominent notices stating that You
changed the files; and

c). You must retain, in the Source form of any Derivative Works that You distribute,
all copyright, patent, trademark, and attribution notices from the Source form of
the Work, excluding those notices that do not pertain to any part of the Derivative
Works; and

d). If the Work includes a "NOTICE" text file as part of its distribution, then any
Derivative Works that You distribute must include a readable copy of the
attribution notices contained within such NOTICE file, excluding those notices that
do not pertain to any part of the Derivative Works, in at least one of the following
places: within a NOTICE text file distributed as part of the Derivative Works;
within the Source form or documentation, if provided along with the Derivative
Works; or, within a display generated by the Derivative Works, if and wherever
such third-party notices normally appear. The contents of the NOTICE file are for
informational purposes only and do not modify the License. You may add Your own
attribution notices within Derivative Works that You distribute, alongside or as
an addendum to the NOTICE text from the Work, provided that such additional
attribution notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide
additional or different license terms and conditions for use, reproduction, or
distribution of Your modifications, or for any such Derivative Works as a whole,
provided Your use, reproduction, and distribution of the Work otherwise complies
with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution
intentionally submitted for inclusion in the Work by You to the Licensor shall be under
the terms and conditions of this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify the terms of
any separate license agreement you may have executed with Licensor regarding such
Contributions.

6. Trademarks. This License does not grant permission to use the trade names,
trademarks, service marks, or product names of the Licensor, except as required for
reasonable and customary use in describing the origin of the Work and reproducing
the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing,
Licensor provides the Work (and each Contributor provides its Contributions) on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
or implied, including, without limitation, any warranties or conditions of TITLE, NON-
INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You
are solely responsible for determining the appropriateness of using or redistributing
the Work and assume any risks associated with Your exercise of permissions under
this License.
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8. Limitation of Liability. In no event and under no legal theory, whether in tort (including
negligence), contract, or otherwise, unless required by applicable law (such as
deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor
be liable to You for damages, including any direct, indirect, special, incidental, or
consequential damages of any character arising as a result of this License or out of
the use or inability to use the Work (including but not limited to damages for loss
of goodwill, work stoppage, computer failure or malfunction, or any and all other
commercial damages or losses), even if such Contributor has been advised of the
possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative
Works thereof, You may choose to offer, and charge a fee for, acceptance of support,
warranty, indemnity, or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only on Your own behalf
and on Your sole responsibility, not on behalf of any other Contributor, and only if
You agree to indemnify, defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason of your accepting
any such warranty or additional liability.

END OF TERMS AND CONDITIONS

To apply the Apache License to your work, attach the following boilerplate notice, with

the fields enclosed by brackets "[]" replaced with your own identifying information. (Don't
include the brackets!) The text should be enclosed in the appropriate comment syntax for
the file format. We also recommend that a file or class name and description of purpose
be included on the same "printed page" as the copyright notice for easier identification
within third-party archives.

Copyright 2014 Google Inc.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file
except in compliance with the License. You may obtain a copy of the License at: http://
www.apache.org/licenses/LICENSE-2.0.

Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
ANY KIND, either express or implied. See the License for the specific language governing
permissions and limitations under the License.

COPYRIGHT
All contributions by the University of California:

Copyright (c) 2014, 2015, The Regents of the University of California (Regents)
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All rights reserved.

All other contributions:

Copyright (c) 2014, 2015, the respective contributors
All rights reserved.

Caffe uses a shared copyright model: each contributor holds copyright over their
contributions to Caffe. The project versioning records all such contribution and copyright
details. If a contributor wants to further mark their specific copyright on a particular
contribution, they should indicate their copyright solely in the commit message of the
change when it is committed.

LICENSE

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

CONTRIBUTION AGREEMENT

By contributing to the BVLC/caffe repository through pull-request, comment, or
otherwise, the contributor releases their content to the license and copyright terms
herein.

Copyright (c) 2012-2017 Christian Rau <rauy@users.sourceforge.net>

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
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without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

jQuery.js is generated automatically under doxygen.

In all cases TensorRT uses the functions under the MIT license.

TensorRT includes CRC routines from FreeBSD.

# $FreeBSD: head/COPYRIGHT 260125 2013-12-31 12:18:10Z gjb $

# @(#H)COPYRIGHT 8.2 (Berkeley) 3/21/94

The compilation of software known as FreeBSD is distributed under the following terms:
Copyright (c) 1992-2014 The FreeBSD Project. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ™ "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
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OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The 4.4BSD and 4.4BSD-Lite software is distributed under the following terms:

All of the documentation and software included in the 4.4BSD and 4.4BSD-Lite Releases
is copyrighted by The Regents of the University of California.

Copyright 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992, 1993, 1994 The Regents of
the University of California. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright naotice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. All advertising materials mentioning features or use of this software must display
the following acknowledgement: This product includes software developed by the
University of California, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ™ "AS IS™ AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

The Institute of Electrical and Electronics Engineers and the American National Standards
Committee X3, on Information Processing Systems have given us permission to reprint
portions of their documentation.

In the following statement, the phrase ° "this text" refers to portions of the system
documentation.

Portions of this text are reprinted and reproduced in electronic form in the second
BSD Networking Software Release, from IEEE Std 1003.1-1988, IEEE Standard Portable
Operating System Interface for Computer Environments (POSIX), copyright C 1988 by
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the Institute of Electrical and Electronics Engineers, Inc. In the event of any discrepancy
between these versions and the original IEEE Standard, the original IEEE Standard is the
referee document.

In the following statement, the phrase " " This material" refers to portions of the system
documentation.

This material is reproduced with permission from American National Standards
Committee X3, on Information Processing Systems. Computer and Business Equipment
Manufacturers Association (CBEMA), 311 First St., NW, Suite 500, Washington, DC
20001-2178. The developmental work of Programmming Language C was completed by the
X3J11 Technical Committee.

The views and conclusions contained in the software and documentation are those of the
authors and should not be interpreted as representing official policies, either expressed
or implied, of the Regents of the University of California.

=/ Note: The copyright of UC Berkeley's Berkeley Software Distribution ("BSD") source
has been updated. The copyright addendum may be found at ftp://ftp.cs.berkeley.edu/
pub/4bsd/README.Impt.License.Change and is included below.
July 22, 1999
To All Licensees, Distributors of Any Version of BSD:

As you know, certain of the Berkeley Software Distribution ("BSD") source code files
require that further distributions of products containing all or portions of the software,
acknowledge within their advertising materials that such products contain software
developed by UC Berkeley and its contributors.

Specifically, the provision reads:

" * 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:

* This product includes software developed by the University of

* California, Berkeley and its contributors.”

Effective immediately, licensees and distributors are no longer required to include the
acknowledgement within advertising materials. Accordingly, the foregoing paragraph of
those BSD Unix files containing it is hereby deleted in its entirety.

William Hoskins
Director, Office of Technology Licensing

University of California, Berkeley
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$0penBSD: getopt_long.cv 1.23 2007/10/31 12:34:57 chl Exp $
$NetBSD: getopt_long.cyv 1.152002/01/31 22:43:40 tv Exp $
Copyright (c) 2002 Todd C. Miller <Todd.Miller@courtesan.com>

Permission to use, copy, modify, and distribute this software for any purpose with
or without fee is hereby granted, provided that the above copyright notice and this
permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR
IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Sponsored in part by the Defense Advanced Research Projects Agency (DARPA) and Air
Force Research Laboratory, Air Force Materiel Command, USAF, under agreement number
F39502-99-1-0512.

Copyright (c) 2000 The NetBSD Foundation, Inc.
All rights reserved.

This code is derived from software contributed to The NetBSD Foundation by Dieter
Baron and Thomas Klausner.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright naotice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
" TAS IS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER

IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
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ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

MIT License
Copyright (c) ONNX Project Contributors

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE

The MIT License (MIT)
Copyright (c) 2016 Shaoging Ren

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
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Apache License Version 2.0

Copyright (c) OpenSSL Project Contributors
Apache License

Version 2.0, January 2004
https://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution
as defined by Sections 1 through 9 of this document.

"Licensor” shall mean the copyright owner or entity authorized by the copyright owner
that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that
control, are controlled by, or are under common control with that entity. For the
purposes of this definition, "control" means (i) the power, direct or indirect, to cause
the direction or management of such entity, whether by contract or otherwise, or (ii)
ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial
ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions
granted by this License.

"Source” form shall mean the preferred form for making modifications, including but
not limited to software source code, documentation source, and configuration files.

"Object” form shall mean any form resulting from mechanical transformation or
translation of a Source form, including but not limited to compiled object code,
generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made
available under the License, as indicated by a copyright notice that is included in or
attached to the work (an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is
based on (or derived from) the Work and for which the editorial revisions, annotations,
elaborations, or other modifications represent, as a whole, an original work of
authorship. For the purposes of this License, Derivative Works shall not include works
that remain separable from, or merely link (or bind by name) to the interfaces of, the
Work and Derivative Works thereof.

"Contribution” shall mean any work of authorship, including the original version
of the Work and any modifications or additions to that Work or Derivative Works
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thereof, that is intentionally submitted to Licensor for inclusion in the Work by the
copyright owner or by an individual or Legal Entity authorized to submit on behalf

of the copyright owner. For the purposes of this definition, "submitted” means any
form of electronic, verbal, or written communication sent to the Licensor or its
representatives, including but not limited to communication on electronic mailing lists,
source code control systems, and issue tracking systems that are managed by, or on
behalf of, the Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise designated in
writing by the copyright owner as "Not a Contribution.

"Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom
a Contribution has been received by Licensor and subsequently incorporated within
the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works
of, publicly display, publicly perform, sublicense, and distribute the Work and such
Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable (except as stated in this section) patent license to make,
have made, use, offer to sell, sell, import, and otherwise transfer the Work, where
such license applies only to those patent claims licensable by such Contributor that
are necessarily infringed by their Contribution(s) alone or by combination of their
Contribution(s) with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a cross-claim or counterclaim
in a lawsuit) alleging that the Work or a Contribution incorporated within the Work
constitutes direct or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate as of the date such
litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative

Works thereof in any medium, with or without modifications, and in Source or Object
form, provided that You meet the following conditions:

a). You must give any other recipients of the Work or Derivative Works a copy of this
License; and

b). You must cause any modified files to carry prominent notices stating that You
changed the files; and

c¢). You must retain, in the Source form of any Derivative Works that You distribute,
all copyright, patent, trademark, and attribution notices from the Source form of
the Work, excluding those notices that do not pertain to any part of the Derivative
Works; and
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d). If the Work includes a "NOTICE" text file as part of its distribution, then any
Derivative Works that You distribute must include a readable copy of the
attribution notices contained within such NOTICE file, excluding those notices that
do not pertain to any part of the Derivative Works, in at least one of the following
places: within a NOTICE text file distributed as part of the Derivative Works;
within the Source form or documentation, if provided along with the Derivative
Works; or, within a display generated by the Derivative Works, if and wherever
such third-party notices normally appear. The contents of the NOTICE file are for
informational purposes only and do not modify the License. You may add Your own
attribution notices within Derivative Works that You distribute, alongside or as
an addendum to the NOTICE text from the Work, provided that such additional
attribution notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide
additional or different license terms and conditions for use, reproduction, or
distribution of Your modifications, or for any such Derivative Works as a whole,
provided Your use, reproduction, and distribution of the Work otherwise complies
with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution
intentionally submitted for inclusion in the Work by You to the Licensor shall be under
the terms and conditions of this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify the terms of
any separate license agreement you may have executed with Licensor regarding such
Contributions.

6. Trademarks. This License does not grant permission to use the trade names,
trademarks, service marks, or product names of the Licensor, except as required for
reasonable and customary use in describing the origin of the Work and reproducing
the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing,
Licensor provides the Work (and each Contributor provides its Contributions) on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
or implied, including, without limitation, any warranties or conditions of TITLE, NON-
INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You
are solely responsible for determining the appropriateness of using or redistributing
the Work and assume any risks associated with Your exercise of permissions under
this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including
negligence), contract, or otherwise, unless required by applicable law (such as
deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor
be liable to You for damages, including any direct, indirect, special, incidental, or
consequential damages of any character arising as a result of this License or out of
the use or inability to use the Work (including but not limited to damages for loss
of goodwill, work stoppage, computer failure or malfunction, or any and all other
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commercial damages or losses), even if such Contributor has been advised of the
possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative
Works thereof, You may choose to offer, and charge a fee for, acceptance of support,
warranty, indemnity, or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only on Your own behalf
and on Your sole responsibility, not on behalf of any other Contributor, and only if
You agree to indemnify, defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason of your accepting
any such warranty or additional liability.

END OF TERMS AND CONDITIONS

Copyright (c) 2016-2017 Vinnie Falco (vinnie dot falco at gmail dot com)
Boost Software License - Version 1.0 - August 17th, 2003

Permission is hereby granted, free of charge, to any person or organization obtaining

a copy of the software and accompanying documentation covered by this license (the
"Software") to use, reproduce, display, distribute, execute, and transmit the Software, and
to prepare derivative works of the Software, and to permit third-parties to whom the
Software is furnished to do so, all subject to the following:

The copyright notices in the Software and this entire statement, including the above
license grant, this restriction and the following disclaimer, must be included in all copies
of the Software, in whole or in part, and all derivative works of the Software, unless such
copies or derivative works are solely in the form of machine-executable object code
generated by a source language processor.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE
LIABLE FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGS IN THE SOFTWARE.
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This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product.
NVIDIA Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained
in this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information
or for any infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or
deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without
notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise
agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual
obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in
applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use
is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each
product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained
in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in
order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA
product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related
to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this
document or (i) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or
a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights
of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full
compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the
products described herein shall be limited in accordance with the Terms of Sale for the product.

Arm
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