
OpenGL
R©

ES
Version 3.0.3 (December 18, 2013)

Editor: Benj Lipchak

Copyright c© 2006-2013 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary
to the Khronos Group, Inc. It or any components may not be reproduced, repub-
lished, distributed, transmitted, displayed, broadcast or otherwise exploited in any
manner without the express prior written permission of Khronos Group. You may
use this specification for implementing the functionality therein, without altering or
removing any trademark, copyright or other notice from the specification, but the
receipt or possession of this specification does not convey any rights to reproduce,
disclose, or distribute its contents, or to manufacture, use, or sell anything that it
may describe, in whole or in part.

Khronos Group grants express permission to any current Promoter, Contributor
or Adopter member of Khronos to copy and redistribute UNMODIFIED versions
of this specification in any fashion, provided that NO CHARGE is made for the
specification and the latest available update of the specification for any version
of the API is used whenever possible. Such distributed specification may be re-
formatted AS LONG AS the contents of the specification are not changed in any
way. The specification may be incorporated into a product that is sold as long as
such product includes significant independent work developed by the seller. A link
to the current version of this specification on the Khronos Group web-site should
be included whenever possible with specification distributions.

Khronos Group makes no, and expressly disclaims any, representations or war-
ranties, express or implied, regarding this specification, including, without limita-
tion, any implied warranties of merchantability or fitness for a particular purpose
or non-infringement of any intellectual property. Khronos Group makes no, and
expressly disclaims any, warranties, express or implied, regarding the correctness,
accuracy, completeness, timeliness, and reliability of the specification. Under no
circumstances will the Khronos Group, or any of its Promoters, Contributors or
Members or their respective partners, officers, directors, employees, agents or rep-
resentatives be liable for any damages, whether direct, indirect, special or conse-
quential damages for lost revenues, lost profits, or otherwise, arising from or in
connection with these materials.

Khronos is a trademark of The Khronos Group Inc. OpenGL is a registered trade-
mark, and OpenGL ES is a trademark, of Silicon Graphics International.

Contents

1 Introduction 1
1.1 What is the OpenGL ES Graphics System? 1
1.2 Programmer’s View of OpenGL ES 1
1.3 Implementor’s View of OpenGL ES 2
1.4 Our View . 2
1.5 Companion Documents . 3

1.5.1 OpenGL ES Shading Language 3
1.5.2 Window System Bindings 3

2 OpenGL ES Operation 4
2.1 OpenGL ES Fundamentals . 4

2.1.1 Floating-Point Computation 6
2.1.2 16-Bit Floating-Point Numbers 7
2.1.3 Unsigned 11-Bit Floating-Point Numbers 7
2.1.4 Unsigned 10-Bit Floating-Point Numbers 8
2.1.5 Fixed-Point Computation 9
2.1.6 Fixed-Point Data Conversions 9

2.2 GL State . 11
2.2.1 Shared Object State . 12

2.3 GL Command Syntax . 12
2.3.1 Data Conversion For State-Setting Commands 14

2.4 Basic GL Operation . 14
2.5 GL Errors . 17
2.6 Primitives and Vertices . 19

2.6.1 Primitive Types . 20
2.7 Vertex Specification . 22
2.8 Vertex Arrays . 23

2.8.1 Transferring Array Elements 26
2.8.2 Packed Vertex Data Formats 27

i

CONTENTS ii

2.8.3 Drawing Commands . 27
2.9 Buffer Objects . 31

2.9.1 Creating and Binding Buffer Objects 32
2.9.2 Creating Buffer Object Data Stores 34
2.9.3 Mapping and Unmapping Buffer Data 36
2.9.4 Effects of Accessing Outside Buffer Bounds 40
2.9.5 Copying Between Buffers 40
2.9.6 Vertex Arrays in Buffer Objects 41
2.9.7 Array Indices in Buffer Objects 42
2.9.8 Buffer Object State . 42

2.10 Vertex Array Objects . 42
2.11 Vertex Shaders . 43

2.11.1 Shader Objects . 44
2.11.2 Loading Shader Binaries 46
2.11.3 Program Objects . 47
2.11.4 Program Binaries . 52
2.11.5 Vertex Attributes . 54
2.11.6 Uniform Variables . 57
2.11.7 Samplers . 71
2.11.8 Output Variables . 71
2.11.9 Shader Execution . 74
2.11.10 Required State . 79

2.12 Coordinate Transformations . 81
2.12.1 Controlling the Viewport 81

2.13 Asynchronous Queries . 82
2.14 Transform Feedback . 84

2.14.1 Transform Feedback Objects 85
2.14.2 Transform Feedback Primitive Capture 86

2.15 Primitive Queries . 90
2.16 Flatshading . 91
2.17 Primitive Clipping . 91

2.17.1 Clipping Shader Outputs 92

3 Rasterization 94
3.1 Discarding Primitives Before Rasterization 95
3.2 Invariance . 95
3.3 Multisampling . 96
3.4 Points . 97

3.4.1 Basic Point Rasterization 97
3.4.2 Point Multisample Rasterization 98

OpenGL ES 3.0.3 (December 18, 2013)

CONTENTS iii

3.5 Line Segments . 98
3.5.1 Basic Line Segment Rasterization 98
3.5.2 Other Line Segment Features 101
3.5.3 Line Rasterization State 102
3.5.4 Line Multisample Rasterization 102

3.6 Polygons . 103
3.6.1 Basic Polygon Rasterization 103
3.6.2 Depth Offset . 106
3.6.3 Polygon Multisample Rasterization 107
3.6.4 Polygon Rasterization State 107

3.7 Pixel Rectangles . 107
3.7.1 Pixel Storage Modes and Pixel Buffer Objects 108
3.7.2 Transfer of Pixel Rectangles 109

3.8 Texturing . 120
3.8.1 Texture Objects . 121
3.8.2 Sampler Objects . 123
3.8.3 Texture Image Specification 125
3.8.4 Immutable-Format Texture Images 135
3.8.5 Alternate Texture Image Specification Commands 138
3.8.6 Compressed Texture Images 144
3.8.7 Texture Parameters . 148
3.8.8 Depth Component Textures 149
3.8.9 Cube Map Texture Selection 149
3.8.10 Texture Minification . 151
3.8.11 Texture Magnification 158
3.8.12 Combined Depth/Stencil Textures 158
3.8.13 Texture Completeness 158
3.8.14 Texture State . 160
3.8.15 Texture Comparison Modes 161
3.8.16 sRGB Texture Color Conversion 162
3.8.17 Shared Exponent Texture Color Conversion 163

3.9 Fragment Shaders . 163
3.9.1 Shader Variables . 164
3.9.2 Shader Execution . 165

4 Per-Fragment Operations and the Framebuffer 170
4.1 Per-Fragment Operations . 171

4.1.1 Pixel Ownership Test . 172
4.1.2 Scissor Test . 172
4.1.3 Multisample Fragment Operations 173

OpenGL ES 3.0.3 (December 18, 2013)

CONTENTS iv

4.1.4 Stencil Test . 174
4.1.5 Depth Test . 176
4.1.6 Occlusion Queries . 176
4.1.7 Blending . 177
4.1.8 sRGB Conversion . 181
4.1.9 Dithering . 182
4.1.10 Additional Multisample Fragment Operations 182

4.2 Whole Framebuffer Operations 183
4.2.1 Selecting Buffers for Writing 183
4.2.2 Fine Control of Buffer Updates 185
4.2.3 Clearing the Buffers . 186

4.3 Reading and Copying Pixels . 189
4.3.1 Selecting Buffers for Reading 189
4.3.2 Reading Pixels . 190
4.3.3 Copying Pixels . 195
4.3.4 Pixel Draw/Read State 197

4.4 Framebuffer Objects . 197
4.4.1 Binding and Managing Framebuffer Objects 198
4.4.2 Attaching Images to Framebuffer Objects 201
4.4.3 Feedback Loops Between Textures and the Framebuffer . 208
4.4.4 Framebuffer Completeness 210
4.4.5 Effects of Framebuffer State on Framebuffer Dependent

Values . 214
4.4.6 Mapping between Pixel and Element in Attached Image . 215

4.5 Invalidating Framebuffer Contents 216

5 Special Functions 218
5.1 Flush and Finish . 218
5.2 Sync Objects and Fences . 218

5.2.1 Waiting for Sync Objects 220
5.2.2 Signalling . 222

5.3 Hints . 223

6 State and State Requests 224
6.1 Querying GL State . 224

6.1.1 Simple Queries . 224
6.1.2 Data Conversions . 225
6.1.3 Enumerated Queries . 225
6.1.4 Texture Queries . 226
6.1.5 Sampler Queries . 226

OpenGL ES 3.0.3 (December 18, 2013)

CONTENTS v

6.1.6 String Queries . 227
6.1.7 Asynchronous Queries 228
6.1.8 Sync Object Queries . 229
6.1.9 Buffer Object Queries 230
6.1.10 Vertex Array Object Queries 231
6.1.11 Transform Feedback Queries 232
6.1.12 Shader and Program Queries 232
6.1.13 Framebuffer Object Queries 237
6.1.14 Renderbuffer Object Queries 240
6.1.15 Internal Format Queries 240

6.2 State Tables . 241

A Invariance 278
A.1 Repeatability . 278
A.2 Multi-pass Algorithms . 279
A.3 Invariance Rules . 279
A.4 What All This Means . 280

B Corollaries 282

C Compressed Texture Image Formats 284
C.1 ETC Compressed Texture Image Formats 284

C.1.1 Format COMPRESSED_RGB8_ETC2 287
C.1.2 Format COMPRESSED_SRGB8_ETC2 294
C.1.3 Format COMPRESSED_RGBA8_ETC2_EAC 294
C.1.4 Format COMPRESSED_SRGB8_ALPHA8_ETC2_EAC 297
C.1.5 Format COMPRESSED_R11_EAC 297
C.1.6 Format COMPRESSED_RG11_EAC 300
C.1.7 Format COMPRESSED_SIGNED_R11_EAC 301
C.1.8 Format COMPRESSED_SIGNED_RG11_EAC 304
C.1.9 Format

COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2 . . 304
C.1.10 Format

COMPRESSED_SRGB8_PUNCHTHROUGH_ALPHA1_ETC2 . 311

D Shared Objects and Multiple Contexts 312
D.1 Object Deletion Behavior . 312

D.1.1 Side Effects of Shared Context Destruction 312
D.1.2 Automatic Unbinding of Deleted Objects 313
D.1.3 Deleted Object and Object Name Lifetimes 313

OpenGL ES 3.0.3 (December 18, 2013)

CONTENTS vi

D.2 Sync Objects and Multiple Contexts 314
D.3 Propagating Changes to Objects 314

D.3.1 Determining Completion of Changes to an object 315
D.3.2 Definitions . 315
D.3.3 Rules . 315

E Version 3.0 and Before 317
E.1 New Features . 317
E.2 Change Log for 3.0.3 . 319
E.3 Change Log for 3.0.2 . 321
E.4 Change Log for 3.0.1 . 322
E.5 Credits and Acknowledgements 324

F OpenGL ES 2.0 Compatibility 327
F.1 Legacy Features . 327
F.2 Differences in Runtime Behavior 328

OpenGL ES 3.0.3 (December 18, 2013)

List of Figures

2.1 Block diagram of the GL. 14
2.2 Vertex processing and primitive assembly. 19
2.3 Triangle strips, fans, and independent triangles. 21

3.1 Rasterization. 94
3.2 Visualization of Bresenham’s algorithm. 99
3.3 Rasterization of wide lines. 101
3.4 The region used in rasterizing a multisampled line segment. 102
3.5 Transfer of pixel rectangles. 109
3.6 Selecting a subimage from an image 115
3.7 A texture image and the coordinates used to access it. 134

4.1 Per-fragment operations. 171
4.2 Operation of ReadPixels. 190

vii

List of Tables

2.1 GL command suffixes . 13
2.2 GL data types . 15
2.3 Summary of GL errors . 18
2.4 Vertex array sizes (values per vertex) and data types 24
2.5 Packed component layout. 27
2.6 Buffer object binding targets. 32
2.7 Buffer object parameters and their values. 33
2.8 Buffer object initial state. 36
2.9 Buffer object state set by MapBufferRange. 38
2.10 OpenGL ES Shading Language type tokens 63
2.11 Output types for OpenGL ES Shading Language variables 89
2.12 Provoking vertex selection. 91

3.1 PixelStorei parameters. 108
3.2 Valid combinations of format, type, and sized internalformat. . . . 111
3.3 Valid combinations of format, type, and unsized internalformat. . 112
3.4 Pixel data types. 113
3.5 Pixel data formats. 114
3.6 Packed pixel formats. 116
3.7 UNSIGNED_SHORT formats . 117
3.8 UNSIGNED_INT formats . 118
3.9 FLOAT_UNSIGNED_INT formats 118
3.10 Packed pixel field assignments. 119
3.11 Conversion from RGBA, depth, and stencil pixel components to

internal texture components. 126
3.12 Effective internal format corresponding to external format and type. 127
3.13 Sized internal color formats. 131
3.14 Sized internal depth and stencil formats. 132
3.15 ReadPixels format and type used during CopyTex*. 139

viii

LIST OF TABLES ix

3.16 Valid CopyTexImage source framebuffer/destination texture base
internal format combinations. 139

3.17 Effective internal format corresponding to destination internalfor-
mat and linear source buffer component sizes. 141

3.18 Effective internal format corresponding to destination internalfor-
mat and sRGB source buffer component sizes. 141

3.19 Compressed internal formats. 145
3.20 Texture parameters and their values. 149
3.21 Selection of cube map images. 150
3.22 Texel location wrap mode application. 154
3.23 Depth texture comparison functions. 162
3.24 Correspondence of filtered texture components to texture base

components. 166

4.1 RGB and Alpha blend equations. 179
4.2 Blending functions. 180
4.3 Buffer selection for a framebuffer object 183
4.4 PixelStorei parameters. 191
4.5 ReadPixels GL data types and reversed component conversion for-

mulas. 194
4.6 Framebuffer attachment points. 205

5.1 Initial properties of a sync object created with FenceSync. 220
5.2 Hint targets and descriptions . 223

6.1 State Variable Types . 242
6.2 Vertex Array Object State . 243
6.3 Vertex Array Data (not in vertex array objects) 244
6.4 Buffer Object State . 245
6.5 Transformation State . 246
6.6 Rasterization . 247
6.7 Multisampling . 248
6.8 Textures (selector, state per texture unit) 249
6.9 Textures (state per texture object) 250
6.10 Textures (state per sampler object) 251
6.11 Pixel Operations . 252
6.12 Framebuffer Control . 253
6.13 Framebuffer (state per framebuffer object) 254
6.14 Framebuffer (state per attachment point) 255
6.15 Renderbuffer (state per renderbuffer object) 256

OpenGL ES 3.0.3 (December 18, 2013)

LIST OF TABLES x

6.16 Pixels . 257
6.17 Shader Object State . 258
6.18 Program Object State . 259
6.19 Program Object State (cont.) . 260
6.20 Program Object State (cont.) . 261
6.21 Program Object State (cont.) . 262
6.22 Vertex Shader State (not part of program objects) 263
6.23 Query Object State . 264
6.24 Transform Feedback State . 265
6.25 Uniform Buffer Binding State 266
6.26 Sync (state per sync object) . 267
6.27 Hints . 268
6.28 Implementation Dependent Values 269
6.29 Implementation Dependent Values (cont.) 270
6.30 Implementation Dependent Version and Extension Support 271
6.31 Implementation Dependent Vertex Shader Limits 272
6.32 Implementation Dependent Fragment Shader Limits 273
6.33 Implementation Dependent Aggregate Shader Limits 274
6.34 Implementation Dependent Transform Feedback Limits 275
6.35 Framebuffer Dependent Values 276
6.36 Miscellaneous . 277

C.1 Pixel layout for a 8 × 8 texture using four COMPRESSED_RGB8_-
ETC2 compressed blocks. 286

C.2 Pixel layout for an COMPRESSED_RGB8_ETC2 compressed block. 288
C.3 Texel Data format for RGB8_ETC2 compressed textures formats . 289
C.4 Two 2× 4-pixel subblocks side-by-side. 290
C.5 Two 4× 2-pixel subblocks on top of each other. 290
C.6 Intensity modifier sets for ‘individual’ and ‘differential’ modes: . . 291
C.7 Mapping from pixel index values to modifier values for

COMPRESSED_RGB8_ETC2 compressed textures 291
C.8 Distance table for ‘T’ and ‘H’ modes. 292
C.9 Texel Data format for alpha part of COMPRESSED_RGBA8_ETC2_-

EAC compressed textures. 295
C.10 Intensity modifier sets for alpha component. 296
C.11 Texel Data format for RGB8_PUNCHTHROUGH_ALPHA1_ETC2

compressed textures formats . 305
C.12 Intensity modifier sets if ‘opaque’ is set and if ‘opaque’ is unset. . 307

OpenGL ES 3.0.3 (December 18, 2013)

LIST OF TABLES xi

C.13 Mapping from pixel index values to modifier values for
COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2 compressed
textures . 308

OpenGL ES 3.0.3 (December 18, 2013)

Chapter 1

Introduction

This document describes the OpenGL ES graphics system: what it is, how it acts,
and what is required to implement it. We assume that the reader has at least a
rudimentary understanding of computer graphics. This means familiarity with the
essentials of computer graphics algorithms as well as familiarity with basic graph-
ics hardware and associated terms.

1.1 What is the OpenGL ES Graphics System?

OpenGL ES (“Open Graphics Library for Embedded Systems”) is a software in-
terface to graphics hardware. The interface consists of a set of several hundred
commands that allow a programmer to specify the objects and operations involved
in producing high-quality graphical images, specifically color images of three-
dimensional objects.

Most of OpenGL ES requires that the graphics hardware contain a framebuffer.
Many OpenGL ES calls pertain to drawing objects such as points, lines, and poly-
gons, but the way that some of this drawing occurs relies on the existence of a
framebuffer. Further, some of OpenGL ES is specifically concerned with frame-
buffer manipulation.

1.2 Programmer’s View of OpenGL ES

To the programmer, OpenGL ES is a set of commands that allow the specification
of geometric objects in two or three dimensions, together with commands that
control how these objects are rendered into the framebuffer.

A typical program that uses OpenGL ES begins with calls to open a window
into the framebuffer into which the program will draw. Then, calls are made to

1

1.3. IMPLEMENTOR’S VIEW OF OPENGL ES 2

allocate an OpenGL ES context and associate it with the window. Once an OpenGL
ES context is allocated, the programmer is free to issue OpenGL ES commands.
Some calls are used to draw simple geometric objects (i.e. points, line segments,
and polygons), while others affect the rendering of these primitives including how
they are lit or colored and how they are mapped from the user’s two- or three-
dimensional model space to the two-dimensional screen. There are also calls to
effect direct control of the framebuffer, such as reading and writing pixels.

1.3 Implementor’s View of OpenGL ES

To the implementor, OpenGL ES is a set of commands that affect the operation of
graphics hardware. If the hardware consists only of an addressable framebuffer,
then OpenGL ES must be implemented almost entirely on the host CPU. More
typically, the graphics hardware may comprise varying degrees of graphics accel-
eration, from a raster subsystem capable of rendering two-dimensional lines and
polygons to sophisticated floating-point processors capable of transforming and
computing on geometric data. The OpenGL ES implementor’s task is to provide
the CPU software interface while dividing the work for each OpenGL ES com-
mand between the CPU and the graphics hardware. This division must be tailored
to the available graphics hardware to obtain optimum performance in carrying out
OpenGL ES calls.

OpenGL ES maintains a considerable amount of state information. This state
controls how objects are drawn into the framebuffer. Some of this state is directly
available to the user: he or she can make calls to obtain its value. Some of it,
however, is visible only by the effect it has on what is drawn. One of the main
goals of this specification is to make OpenGL ES state information explicit, to
elucidate how it changes, and to indicate what its effects are.

1.4 Our View

We view OpenGL ES as a pipeline having some programmable stages and some
state-driven stages that control a set of specific drawing operations. This model
should engender a specification that satisfies the needs of both programmers and
implementors. It does not, however, necessarily provide a model for implementa-
tion. An implementation must produce results conforming to those produced by
the specified methods, but there may be ways to carry out a particular computation
that are more efficient than the one specified.

OpenGL ES 3.0.3 (December 18, 2013)

1.5. COMPANION DOCUMENTS 3

1.5 Companion Documents

1.5.1 OpenGL ES Shading Language

This specification should be read together with a companion document titled The
OpenGL ES Shading Language. The latter document (referred to as the OpenGL
ES Shading Language Specification hereafter) defines the syntax and semantics
of the programming language used to write vertex and fragment shaders (see sec-
tions 2.11 and 3.9). These sections may include references to concepts and terms
(such as shading language variable types) defined in the companion document.

OpenGL ES 3.0 implementations are guaranteed to support versions 3.00 and
1.00 of the OpenGL ES Shading Language. All references to sections of that speci-
fication refer to version 3.00. The latest supported version of the shading language
may be queried as described in section 6.1.5.

1.5.2 Window System Bindings

OpenGL ES requires a companion API to create and manage graphics contexts,
windows to render into, and other resources beyond the scope of this Specification.
There are several such APIs supporting different operating and window systems.

The Khronos Native Platform Graphics Interface or “EGL Specification” de-
scribes the EGL API for use of OpenGL ES on mobile and embedded devices.
EGL implementations may be available supporting OpenGL as well. The EGL
Specification is available in the Khronos Extension Registry at URL

http://www.khronos.org/registry/egl

The EAGL API supports use of OpenGL ES with iOS. EAGL is documented
on Apple’s developer website.

OpenGL ES 3.0.3 (December 18, 2013)

http://www.khronos.org/registry/egl

Chapter 2

OpenGL ES Operation

2.1 OpenGL ES Fundamentals

OpenGL ES (henceforth, the “GL”) is concerned only with rendering into a frame-
buffer (and reading values stored in that framebuffer). There is no support for
other peripherals sometimes associated with graphics hardware, such as mice and
keyboards. Programmers must rely on other mechanisms to obtain user input.

The GL draws primitives subject to a number of selectable modes and shader
programs. Each primitive is a point, line segment, or polygon. Each mode may
be changed independently; the setting of one does not affect the settings of oth-
ers (although many modes may interact to determine what eventually ends up in
the framebuffer). Modes are set, primitives specified, and other GL operations
described by sending commands in the form of function or procedure calls.

Primitives are defined by a group of one or more vertices. A vertex defines
a point, an endpoint of an edge, or a corner of a polygon where two edges meet.
Data such as positional coordinates, colors, normals, texture coordinates, etc. are
associated with a vertex and each vertex is processed independently, in order, and
in the same way. The only exception to this rule is if the group of vertices must
be clipped so that the indicated primitive fits within a specified region; in this
case vertex data may be modified and new vertices created. The type of clipping
depends on which primitive the group of vertices represents.

Commands are always processed in the order in which they are received, al-
though there may be an indeterminate delay before the effects of a command are
realized. This means, for example, that one primitive must be drawn completely
before any subsequent one can affect the framebuffer. It also means that queries
and pixel read operations return state consistent with complete execution of all
previously invoked GL commands, except where explicitly specified otherwise. In

4

2.1. OPENGL ES FUNDAMENTALS 5

general, the effects of a GL command on either GL modes or the framebuffer must
be complete before any subsequent command can have any such effects.

In the GL, data binding occurs on call. This means that data passed to a com-
mand are interpreted when that command is received. Even if the command re-
quires a pointer to data, those data are interpreted when the call is made, and any
subsequent changes to the data have no effect on the GL (unless the same pointer
is used in a subsequent command).

The GL provides direct control over the fundamental operations of 3D and 2D
graphics. This includes specification of parameters of application-defined shader
programs performing transformation, lighting, texturing, and shading operations,
as well as built-in functionality such as texture filtering. It does not provide a
means for describing or modeling complex geometric objects. Another way to
describe this situation is to say that the GL provides mechanisms to describe how
complex geometric objects are to be rendered rather than mechanisms to describe
the complex objects themselves.

The model for interpretation of GL commands is client-server. That is, a pro-
gram (the client) issues commands, and these commands are interpreted and pro-
cessed by the GL (the server). The server may or may not operate on the same
computer as the client. In this sense, the GL is “network-transparent.” A server
may maintain a number of GL contexts, each of which is an encapsulation of cur-
rent GL state. A client may choose to connect to any one of these contexts. Issuing
GL commands when the program is not connected to a context results in undefined
behavior.

The GL interacts with two classes of framebuffers: window system-provided
and application-created. There is at most one window system-provided framebuffer
at any time, referred to as the default framebuffer. Application-created frame-
buffers, referred to as framebuffer objects, may be created as desired. These two
types of framebuffer are distinguished primarily by the interface for configuring
and managing their state.

The effects of GL commands on the default framebuffer are ultimately con-
trolled by the window system, which allocates framebuffer resources, determines
which portions of the default framebuffer the GL may access at any given time, and
communicates to the GL how those portions are structured. Therefore, there are
no GL commands to initialize a GL context or configure the default framebuffer.
Similarly, display of framebuffer contents on a physical display device (including
the transformation of individual framebuffer values by such techniques as gamma
correction) is not addressed by the GL.

Allocation and configuration of the default framebuffer occurs outside of the
GL in conjunction with the window system, using companion APIs described in
section 1.5.2.

OpenGL ES 3.0.3 (December 18, 2013)

2.1. OPENGL ES FUNDAMENTALS 6

Allocation and initialization of GL contexts is also done using these companion
APIs. GL contexts can typically be associated with different default framebuffers,
and some context state is determined at the time this association is performed.

It is possible to use a GL context without a default framebuffer, in which case
a framebuffer object must be used to perform all rendering. This is useful for
applications needing to perform offscreen rendering.

The GL is designed to be run on a range of graphics platforms with varying
graphics capabilities and performance. To accommodate this variety, we specify
ideal behavior instead of actual behavior for certain GL operations. In cases where
deviation from the ideal is allowed, we also specify the rules that an implemen-
tation must obey if it is to approximate the ideal behavior usefully. This allowed
variation in GL behavior implies that two distinct GL implementations may not
agree pixel for pixel when presented with the same input even when run on identi-
cal framebuffer configurations.

Finally, command names, constants, and types are prefixed in the GL (by gl,
GL_, and GL, respectively in C) to reduce name clashes with other packages. The
prefixes are omitted in this document for clarity.

2.1.1 Floating-Point Computation

The GL must perform a number of floating-point operations during the course of
its operation. In some cases, the representation and/or precision of such operations
is defined or limited; by the OpenGL ES Shading Language Specification for op-
erations in shaders, and in some cases implicitly limited by the specified format
of vertex, texture, or renderbuffer data consumed by the GL. Otherwise, the rep-
resentation of such floating-point numbers, and the details of how operations on
them are performed, is not specified. We require simply that numbers’ floating-
point parts contain enough bits and that their exponent fields are large enough so
that individual results of floating-point operations are accurate to about 1 part in
105. The maximum representable magnitude for all floating-point values must be
at least 232. x ·0 = 0 ·x = 0 for any non-infinite and non-NaN x. 1 ·x = x ·1 = x.
x+ 0 = 0 + x = x. 00 = 1. (Occasionally further requirements will be specified.)
Most single-precision floating-point formats meet these requirements.

The special values Inf and −Inf encode values with magnitudes too large to
be represented; the special value NaN encodes “Not A Number” values resulting
from undefined arithmetic operations such as 0

0 . Implementations are permitted,
but not required, to support Inf s and NaN s in their floating-point computations.

Any representable floating-point value is legal as input to a GL command that
requires floating-point data. The result of providing a value that is not a floating-
point number to such a command is unspecified, but must not lead to GL interrup-

OpenGL ES 3.0.3 (December 18, 2013)

2.1. OPENGL ES FUNDAMENTALS 7

tion or termination. In IEEE arithmetic, for example, providing a negative zero or a
denormalized number to a GL command yields predictable results, while providing
a NaN or an infinity yields unspecified results.

Some calculations require division. In such cases (including implied divisions
required by vector normalizations), a division by zero produces an unspecified re-
sult but must not lead to GL interruption or termination.

2.1.2 16-Bit Floating-Point Numbers

A 16-bit floating-point number has a 1-bit sign (S), a 5-bit exponent (E), and a
10-bit mantissa (M). The value V of a 16-bit floating-point number is determined
by the following:

V =



(−1)S × 0.0, E = 0,M = 0

(−1)S × 2−14 × M
210
, E = 0,M 6= 0

(−1)S × 2E−15 ×
(
1 + M

210

)
, 0 < E < 31

(−1)S × Inf , E = 31,M = 0

NaN , E = 31,M 6= 0

If the floating-point number is interpreted as an unsigned 16-bit integerN , then

S =

⌊
N mod 65536

32768

⌋
E =

⌊
N mod 32768

1024

⌋
M = N mod 1024.

Any representable 16-bit floating-point value is legal as input to a GL command
that accepts 16-bit floating-point data. The result of providing a value that is not a
floating-point number (such as Inf or NaN) to such a command is unspecified, but
must not lead to GL interruption or termination. Providing a denormalized number
or negative zero to GL must yield predictable results, whereby the value is either
preserved or forced to positive or negative zero.

2.1.3 Unsigned 11-Bit Floating-Point Numbers

An unsigned 11-bit floating-point number has no sign bit, a 5-bit exponent (E), and
a 6-bit mantissa (M). The value V of an unsigned 11-bit floating-point number is
determined by the following:

OpenGL ES 3.0.3 (December 18, 2013)

2.1. OPENGL ES FUNDAMENTALS 8

V =



0.0, E = 0,M = 0

2−14 × M
64 , E = 0,M 6= 0

2E−15 ×
(
1 + M

64

)
, 0 < E < 31

Inf , E = 31,M = 0

NaN , E = 31,M 6= 0

If the floating-point number is interpreted as an unsigned 11-bit integerN , then

E =

⌊
N

64

⌋
M = N mod 64.

When a floating-point value is converted to an unsigned 11-bit floating-point
representation, finite values are rounded to the closest representable finite value.
While less accurate, implementations are allowed to always round in the direction
of zero. This means negative values are converted to zero. Likewise, finite posi-
tive values greater than 65024 (the maximum finite representable unsigned 11-bit
floating-point value) are converted to 65024. Additionally: negative infinity is con-
verted to zero; positive infinity is converted to positive infinity; and both positive
and negative NaN are converted to positive NaN .

Any representable unsigned 11-bit floating-point value is legal as input to a
GL command that accepts 11-bit floating-point data. The result of providing a
value that is not a floating-point number (such as Inf or NaN) to such a command
is unspecified, but must not lead to GL interruption or termination. Providing a
denormalized number to GL must yield predictable results, whereby the value is
either preserved or forced to zero.

2.1.4 Unsigned 10-Bit Floating-Point Numbers

An unsigned 10-bit floating-point number has no sign bit, a 5-bit exponent (E), and
a 5-bit mantissa (M). The value V of an unsigned 10-bit floating-point number is
determined by the following:

V =



0.0, E = 0,M = 0

2−14 × M
32 , E = 0,M 6= 0

2E−15 ×
(
1 + M

32

)
, 0 < E < 31

Inf , E = 31,M = 0

NaN , E = 31,M 6= 0

OpenGL ES 3.0.3 (December 18, 2013)

2.1. OPENGL ES FUNDAMENTALS 9

If the floating-point number is interpreted as an unsigned 10-bit integerN , then

E =

⌊
N

32

⌋
M = N mod 32.

When a floating-point value is converted to an unsigned 10-bit floating-point
representation, finite values are rounded to the closest representable finite value.
While less accurate, implementations are allowed to always round in the direction
of zero. This means negative values are converted to zero. Likewise, finite posi-
tive values greater than 64512 (the maximum finite representable unsigned 10-bit
floating-point value) are converted to 64512. Additionally: negative infinity is con-
verted to zero; positive infinity is converted to positive infinity; and both positive
and negative NaN are converted to positive NaN .

Any representable unsigned 10-bit floating-point value is legal as input to a
GL command that accepts 10-bit floating-point data. The result of providing a
value that is not a floating-point number (such as Inf or NaN) to such a command
is unspecified, but must not lead to GL interruption or termination. Providing a
denormalized number to GL must yield predictable results, whereby the value is
either preserved or forced to zero.

2.1.5 Fixed-Point Computation

Vertex attributes may be specified using a 32-bit two’s complement signed repre-
sentation with 16 bits to the right of the binary point (fraction bits).

2.1.6 Fixed-Point Data Conversions

When generic vertex attributes and pixel color or depth components are repre-
sented as integers, they are often (but not always) considered to be normalized.
Normalized integer values are treated specially when being converted to and from
floating-point values, and are usually referred to as normalized fixed-point. Such
values are always either signed or unsigned.

In the remainder of this section, b denotes the bit width of the fixed-point in-
teger representation. When the integer is one of the types defined in table 2.2, b
is the minimum required bit width of that type. When the integer is a texture or
renderbuffer color or depth component (see section 3.8.3), b is the number of bits
allocated to that component in the internal format of the texture or renderbuffer.
When the integer is a framebuffer color or depth component (see section 4), b is
the number of bits allocated to that component in the framebuffer.

OpenGL ES 3.0.3 (December 18, 2013)

2.1. OPENGL ES FUNDAMENTALS 10

The signed and unsigned fixed-point representations are assumed to be b-bit
binary two’s-complement integers and binary unsigned integers, respectively.

All the conversions described below are performed as defined, even if the im-
plemented range of an integer data type is greater than the minimum required range.

Conversion from Normalized Fixed-Point to Floating-Point

Unsigned normalized fixed-point integers represent numbers in the range [0, 1].
The conversion from an unsigned normalized fixed-point value c to the correspond-
ing floating-point value f is defined as

f =
c

2b − 1
. (2.1)

Signed normalized fixed-point integers represent numbers in the range [−1, 1].
The conversion from a signed normalized fixed-point value c to the corresponding
floating-point value f is performed using

f = max

{
c

2b−1 − 1
,−1.0

}
. (2.2)

Only the range [−2b−1 + 1, 2b−1 − 1] is used to represent signed fixed-point
values in the range [−1, 1]. For example, if b = 8, then the integer value−127 cor-
responds to−1.0 and the value 127 corresponds to 1.0. Note that while zero can be
exactly expressed in this representation, one value (−128 in the example) is outside
the representable range, and must be clamped before use. This equation is used ev-
erywhere that signed normalized fixed-point values are converted to floating-point,
including for all signed normalized fixed-point parameters in GL commands, such
as vertex attribute values1, as well as for specifying texture or framebuffer values
using signed normalized fixed-point.

Conversion from Floating-Point to Normalized Fixed-Point

The conversion from a floating-point value f to the corresponding unsigned nor-
malized fixed-point value c is defined by first clamping f to the range [0, 1], then
computing

f ′ = convert float uint(f × (2b − 1), b) (2.3)

1 This is a behavior change in OpenGL ES 3.0. In previous versions, a different conversion for
signed normalized values was used in which−128 mapped to−1.0, 127 mapped to 1.0, and 0.0 was
not exactly representable.

OpenGL ES 3.0.3 (December 18, 2013)

2.2. GL STATE 11

where convert float uint(r, b) returns one of the two unsigned binary integer
values with exactly b bits which are closest to the floating-point value r (where
rounding to nearest is preferred).

The conversion from a floating-point value f to the corresponding signed nor-
malized fixed-point value c is performed by clamping f to the range [−1, 1], then
computing

f ′ = convert float int(f × (2b−1 − 1), b) (2.4)

where convert float int(r, b) returns one of the two signed two’s-
complement binary integer values with exactly b bits which are closest to the
floating-point value r (where rounding to nearest is preferred).

This equation is used everywhere that floating-point values are converted to
signed normalized fixed-point, including when querying floating-point state (see
section 6) and returning integers2, as well as for specifying signed normalized tex-
ture or framebuffer values using floating-point.

2.2 GL State

The GL maintains considerable state. This document enumerates each state vari-
able and describes how each variable can be changed. For purposes of discussion,
state variables are categorized somewhat arbitrarily by their function. Although we
describe the operations that the GL performs on the framebuffer, the framebuffer
is not a part of GL state.

We distinguish two types of state. The first type of state, called GL server
state, resides in the GL server. The majority of GL state falls into this category.
The second type of state, called GL client state, resides in the GL client. Unless
otherwise specified, all state referred to in this document is GL server state; GL
client state is specifically identified. Each instance of a GL context implies one
complete set of GL server state; each connection from a client to a server implies
a set of both GL client state and GL server state.

While an implementation of the GL may be hardware dependent, this discus-
sion is independent of the specific hardware on which a GL is implemented. We are
therefore concerned with the state of graphics hardware only when it corresponds
precisely to GL state.

2 This is a behavior change in OpenGL ES 3.0. In previous versions, a different conversion for
signed normalized values was used in which−1.0 mapped to−128, 1.0 mapped to 127, and 0.0 was
not exactly representable.

OpenGL ES 3.0.3 (December 18, 2013)

2.3. GL COMMAND SYNTAX 12

2.2.1 Shared Object State

It is possible for groups of contexts to share certain state. Enabling such sharing
between contexts is done through window system binding APIs such as those de-
scribed in section 1.5.2. These APIs are responsible for creation and management
of contexts and are not discussed further here. More detailed discussion of the
behavior of shared objects is included in appendix D. Except as defined in this
appendix, all state in a context is specific to that context only.

2.3 GL Command Syntax

GL commands are functions or procedures. Various groups of commands perform
the same operation but differ in how arguments are supplied to them. To conve-
niently accommodate this variation, we adopt a notation for describing commands
and their arguments.

GL commands are formed from a name which may be followed, depending on
the particular command, by a sequence of characters describing a parameter to the
command. If present, a digit indicates the required length (number of values) of the
indicated type. Next, a string of characters making up one of the type descriptors
from table 2.1 indicates the specific size and data type of parameter values. A
final v character, if present, indicates that the command takes a pointer to an array
(a vector) of values rather than a series of individual arguments. Two specific
examples are:

void Uniform4f(int location, float v0, float v1,
float v2, float v3);

and

void GetFloatv(enum value, float *data);

These examples show the ANSI C declarations for these commands. In general,
a command declaration has the form3

rtype Name{ε1234}{ε i i64 f ui }{εv}
([args ,] T arg1 , . . . , T argN [, args]);

3The declarations shown in this document apply to ANSI C. Languages such as C++ and Ada
that allow passing of argument type information admit simpler declarations and fewer entry points.

OpenGL ES 3.0.3 (December 18, 2013)

2.3. GL COMMAND SYNTAX 13

Type Descriptor Corresponding GL Type
i int

i64 int64
f float

ui uint

Table 2.1: Correspondence of command suffix type descriptors to GL argument
types. Refer to table 2.2 for definitions of the GL types.

rtype is the return type of the function. The braces ({}) enclose a series of type
descriptors (see table 2.1), of which one is selected. ε indicates no type descriptor.
The arguments enclosed in brackets ([args ,] and [, args]) may or may not be
present. The N arguments arg1 through argN have type T, which corresponds to
one of the type descriptors indicated in table 2.1 (if there are no letters, then the
arguments’ type is given explicitly). If the final character is not v, then N is given
by the digit 1, 2, 3, or 4 (if there is no digit, then the number of arguments is fixed).
If the final character is v, then only arg1 is present and it is an array of N values of
the indicated type.

For example,

void Uniform{1234}{if}(int location, T value);

indicates the eight declarations

void Uniform1i(int location, int value);
void Uniform1f(int location, float value);
void Uniform2i(int location, int v0, int v1);
void Uniform2f(int location, float v0, float v1);
void Uniform3i(int location, int v0, int v1, int v2);
void Uniform3f(int location, float v0, float v1,

float v2);
void Uniform4i(int location, int v0, int v1, int v2,

int v3);
void Uniform4f(int location, float v0, float v1,

float v2, float v3);

Arguments whose type is fixed (i.e. not indicated by a suffix on the command)
are of one of the GL data types summarized in table 2.2, or pointers to one of these

OpenGL ES 3.0.3 (December 18, 2013)

2.4. BASIC GL OPERATION 14

types.4

2.3.1 Data Conversion For State-Setting Commands

Many GL commands specify a value or values to which GL state of a specific type
(boolean, enum, integer, or floating-point) is to be set. When multiple versions of
such a command exist, using the type descriptor syntax described above, any such
version may be used to set the state value. When state values are specified using
a different parameter type than the actual type of that state, data conversions are
performed as follows:

• When the type of internal state is boolean, zero integer or floating-point val-
ues are converted to FALSE and non-zero values are converted to TRUE.

• When the type of internal state is integer or enum, boolean values of FALSE
and TRUE are converted to 0 and 1, respectively. Floating-point values are
rounded to the nearest integer. If the resulting value is so large in magnitude
that it cannot be represented by the internal state variable, the internal state
value is undefined.

• When the type of internal state is floating-point, boolean values of FALSE
and TRUE are converted to 0.0 and 1.0, respectively. Integer values are con-
verted to floating-point.

For commands taking arrays of the specified type, these conversions are per-
formed for each element of the passed array.

Each command following these conversion rules refers back to this section.
Some commands have additional conversion rules specific to certain state values
and data types, which are described following the reference.

Validation of values performed by state-setting commands is performed after
conversion, unless specified otherwise for a specific command.

2.4 Basic GL Operation

Figure 2.1 shows a schematic diagram of the GL. Commands enter the GL on the
left. Some commands specify geometric objects to be drawn while others control
how the objects are handled by the various stages. Commands are effectively sent
through a processing pipeline.

4Note that OpenGL ES 3.0 uses float where OpenGL ES 2.0 used clampf. Clamping is
now explicitly specified to occur only where and when appropriate, retaining proper clamping in
conjunction with fixed-point framebuffers. Because clampf and float are both defined as the
same floating-point type, this change should not introduce compatibility obstacles.

OpenGL ES 3.0.3 (December 18, 2013)

2.4. BASIC GL OPERATION 15

GL Type Minimum Description
Bit Width

boolean 1 Boolean
byte 8 Signed two’s complement binary inte-

ger
ubyte 8 Unsigned binary integer
char 8 Characters making up strings
short 16 Signed two’s complement binary inte-

ger
ushort 16 Unsigned binary integer
int 32 Signed two’s complement binary inte-

ger
uint 32 Unsigned binary integer
int64 64 Signed two’s complement binary inte-

ger
uint64 64 Unsigned binary integer
fixed 32 Signed two’s complement 16.16

scaled integer
sizei 32 Non-negative binary integer size
enum 32 Enumerated binary integer value
intptr ptrbits Signed two’s complement binary inte-

ger
sizeiptr ptrbits Non-negative binary integer size
sync ptrbits Sync object handle (see section 5.2)
bitfield 32 Bit field
half 16 Half-precision floating-point value

encoded in an unsigned scalar
float 32 Floating-point value
clampf 32 Floating-point value clamped to [0, 1]

Table 2.2: GL data types. GL types are not C types. Thus, for example, GL
type int is referred to as GLint outside this document, and is not necessarily
equivalent to the C type int. An implementation may use more bits than the
number indicated in the table to represent a GL type. Correct interpretation of
integer values outside the minimum range is not required, however.
ptrbits is the number of bits required to represent a pointer type; in other words,
types intptr, sizeiptr, and sync must be sufficiently large as to store any
address.

OpenGL ES 3.0.3 (December 18, 2013)

2.4. BASIC GL OPERATION 16

Figure 2.1. Block diagram of the GL.

OpenGL ES 3.0.3 (December 18, 2013)

2.5. GL ERRORS 17

The first stage operates on geometric primitives described by vertices: points,
line segments, and polygons. In this stage vertices may be transformed and lit,
followed by assembly into geometric primitives. The final resulting primitives are
clipped to a clip volume in preparation for the next stage, rasterization. The raster-
izer produces a series of framebuffer addresses and values using a two-dimensional
description of a point, line segment, or polygon. Each fragment so produced is fed
to the next stage that performs operations on individual fragments before they fi-
nally alter the framebuffer. These operations include conditional updates into the
framebuffer based on incoming and previously stored depth values (to effect depth
buffering), blending of incoming fragment colors with stored colors, as well as
masking.

Finally, values may also be read back from the framebuffer. These transfers
may include some type of decoding or encoding.

This ordering is meant only as a tool for describing the GL, not as a strict rule
of how the GL is implemented, and we present it only as a means to organize the
various operations of the GL.

2.5 GL Errors

The GL detects only a subset of those conditions that could be considered errors.
This is because in many cases error checking would adversely impact the perfor-
mance of an error-free program.

The command

enum GetError(void);

is used to obtain error information. Each detectable error is assigned a numeric
code. When an error is detected, a flag is set and the code is recorded. Further
errors, if they occur, do not affect this recorded code. When GetError is called,
the code is returned and the flag is cleared, so that a further error will again record
its code. If a call to GetError returns NO_ERROR, then there has been no detectable
error since the last call to GetError (or since the GL was initialized).

To allow for distributed implementations, there may be several flag-code pairs.
In this case, after a call to GetError returns a value other than NO_ERROR each
subsequent call returns the non-zero code of a distinct flag-code pair (in unspecified
order), until all non-NO_ERROR codes have been returned. When there are no more
non-NO_ERROR error codes, all flags are reset. This scheme requires some positive
number of pairs of a flag bit and an integer. The initial state of all flags is cleared
and the initial value of all codes is NO_ERROR.

OpenGL ES 3.0.3 (December 18, 2013)

2.5. GL ERRORS 18

Error Description Offending com-
mand ignored?

INVALID_ENUM enum argument out of range Yes
INVALID_VALUE Numeric argument out of range Yes
INVALID_OPERATION Operation illegal in current state Yes
INVALID_FRAMEBUFFER_OPERATION Framebuffer object is not com-

plete
Yes

OUT_OF_MEMORY Not enough memory left to exe-
cute command

Unknown

Table 2.3: Summary of GL errors

Table 2.3 summarizes GL errors. Currently, when an error flag is set, results of
GL operation are undefined only if OUT_OF_MEMORY has occurred. In other cases,
the command generating the error is ignored so that it has no effect on GL state or
framebuffer contents. Except where otherwise noted, if the generating command
returns a value, it returns zero. If the generating command modifies values through
a pointer argument, no change is made to these values. These error semantics
apply only to GL errors, not to system errors such as memory access errors. This
behavior is the current behavior; the action of the GL in the presence of errors is
subject to change.

Several error generation conditions are implicit in the description of every GL
command:

• If a command that requires an enumerated value is passed a symbolic con-
stant that is not one of those specified as allowable for that command, the
error INVALID_ENUM is generated. This is the case even if the argument is
a pointer to a symbolic constant, if the value pointed to is not allowable for
the given command.

• If a negative number is provided where an argument of type sizei or
sizeiptr is specified, the error INVALID_VALUE is generated.

• If memory is exhausted as a side effect of the execution of a command, the
error OUT_OF_MEMORY may be generated.

Otherwise, errors are generated only for conditions that are explicitly described in
this specification.

OpenGL ES 3.0.3 (December 18, 2013)

2.6. PRIMITIVES AND VERTICES 19

Figure 2.2. Vertex processing and primitive assembly.

2.6 Primitives and Vertices

In the GL, most geometric objects are drawn by specifying a series of generic
attribute sets using DrawArrays or one of the other drawing commands defined in
section 2.8.3. Points, lines, polygons, and a variety of related geometric objects
(see section 2.6.1) can be drawn in this way.

Each vertex is specified with one or more generic vertex attributes. Each at-
tribute is specified with one, two, three, or four scalar values. Generic vertex
attributes can be accessed from within vertex shaders (section 2.11) and used to
compute values for consumption by later processing stages.

The methods by which generic attributes are sent to the GL, as well as how
attributes are used by vertex shaders to generate vertices mapped to the two-
dimensional screen, are discussed later.

Before vertex shader execution, the state required by a vertex is its generic
vertex attributes. Vertex shader execution processes vertices producing a homoge-
neous vertex position and any outputs explicitly written by the vertex shader.

Figure 2.2 shows the sequence of operations that builds a primitive (point, line
segment, or polygon) from a sequence of vertices. After a primitive is formed, it

OpenGL ES 3.0.3 (December 18, 2013)

2.6. PRIMITIVES AND VERTICES 20

is clipped to a clip volume. This may alter the primitive by altering vertex co-
ordinates and vertex shader outputs. In the case of line and polygon primitives,
clipping may insert new vertices into the primitive. The vertices defining a primi-
tive to be rasterized have outputs associated with them.

2.6.1 Primitive Types

A sequence of vertices is passed to the GL using DrawArrays or one of the other
drawing commands defined in section 2.8.3. There is no limit to the number of
vertices that may be specified, other than the size of the vertex arrays. The mode
parameter of these commands determines the type of primitives to be drawn using
the vertices. The types, and the corresponding mode parameters, are:

Points
A series of individual points may be specified with mode POINTS. Each vertex

defines a separate point.

Line Strips
A series of one or more connected line segments may be specified with mode

LINE_STRIP. In this case, the first vertex specifies the first segment’s start point
while the second vertex specifies the first segment’s endpoint and the second seg-
ment’s start point. In general, the ith vertex (for i > 1) specifies the beginning of
the ith segment and the end of the i − 1st. The last vertex specifies the end of the
last segment. If only one vertex is specified, then no primitive is generated.

The required state consists of the processed vertex produced from the last ver-
tex that was sent (so that a line segment can be generated from it to the current
vertex), and a boolean flag indicating if the current vertex is the first vertex.

Line Loops
Line loops may be specified with mode LINE_LOOP. Loops are the same as

line strips except that a final segment is added from the final specified vertex to the
first vertex. The required state consists of the processed first vertex, in addition to
the state required for line strips.

Separate Lines
Individual line segments, each specified by a pair of vertices, may be speci-

fied with mode LINES. The first two vertices passed define the first segment, with
subsequent pairs of vertices each defining one more segment. If the number of
specified vertices is odd, then the last one is ignored. The state required is the same
as for line strips but it is used differently: a processed vertex holding the first vertex
of the current segment, and a boolean flag indicating whether the current vertex is

OpenGL ES 3.0.3 (December 18, 2013)

2.6. PRIMITIVES AND VERTICES 21

(a) (b) (c)

1

2

3

4

5 1

2
3

4

5
1

2

3

4

5

6

Figure 2.3. (a) A triangle strip. (b) A triangle fan. (c) Independent triangles. The
numbers give the sequencing of the vertices in order within the vertex arrays. Note
that in (a) and (b) triangle edge ordering is determined by the first triangle, while in
(c) the order of each triangle’s edges is independent of the other triangles.

odd or even (a segment start or end).

Triangle Strips
A triangle strip is a series of triangles connected along shared edges, and may

be specified with mode TRIANGLE_STRIP. In this case, the first three vertices
define the first triangle (and their order is significant). Each subsequent vertex
defines a new triangle using that point along with two vertices from the previous
triangle. If fewer than three vertices are specified, no primitive is produced. See
figure 2.3.

The required state consists of a flag indicating if the first triangle has been
completed, two stored processed vertices, (called vertex A and vertex B), and a
one bit pointer indicating which stored vertex will be replaced with the next vertex.
The pointer is initialized to point to vertex A. Each successive vertex toggles the
pointer. Therefore, the first vertex is stored as vertex A, the second stored as vertex
B, the third stored as vertex A, and so on. Any vertex after the second one sent
forms a triangle from vertex A, vertex B, and the current vertex (in that order).

Triangle Fans
A triangle fan is the same as a triangle strip with one exception: each vertex

after the first always replaces vertex B of the two stored vertices. A triangle fan
may be specified with mode TRIANGLE_FAN.

OpenGL ES 3.0.3 (December 18, 2013)

2.7. VERTEX SPECIFICATION 22

Separate Triangles
Separate triangles are specified with mode TRIANGLES. In this case, The 3i+

1st, 3i + 2nd, and 3i + 3rd vertices (in that order) determine a triangle for each
i = 0, 1, . . . , n− 1, where there are 3n+ k vertices drawn. k is either 0, 1, or 2; if
k is not zero, the final k vertices are ignored. For each triangle, vertex A is vertex
3i and vertex B is vertex 3i + 1. Otherwise, separate triangles are the same as a
triangle strip.

A polygon primitive is one generated from a drawing command with mode
TRIANGLE_FAN, TRIANGLE_STRIP or TRIANGLES. The order of vertices in such
a primitive is significant in polygon rasterization and fragment shading (see sec-
tions 3.6.1 and 3.9.2).

2.7 Vertex Specification

Vertex shaders (see section 2.11) access an array of 4-component generic vertex
attributes. The first slot of this array is numbered 0, and the size of the array is
specified by the implementation-dependent constant MAX_VERTEX_ATTRIBS.

Current generic attribute values define generic attributes for a vertex when a
vertex array defining that data is not enabled, as described in section 2.8. The cur-
rent values of a generic shader attribute declared as a floating-point scalar, vector,
or matrix may be changed at any time by issuing one of the commands

void VertexAttrib{1234}f(uint index,float values);
void VertexAttrib{1234}fv(uint index,const float

*values);

These commands specify values that are converted directly to the internal
floating-point representation.

The resulting value(s) are loaded into the generic attribute at slot index, whose
components are named x, y, z, and w. The VertexAttrib1* family of commands
sets the x coordinate to the provided single argument while setting y and z to 0 and
w to 1. Similarly, VertexAttrib2* commands set x and y to the specified values,
z to 0 and w to 1; VertexAttrib3* commands set x, y, and z, with w set to 1, and
VertexAttrib4* commands set all four coordinates.

The VertexAttrib* entry points may also be used to load shader attributes de-
clared as a floating-point matrix. Each column of a matrix takes up one generic
4-component attribute slot out of the MAX_VERTEX_ATTRIBS available slots. Ma-
trices are loaded into these slots in column major order. Matrix columns are loaded
in increasing slot numbers.

OpenGL ES 3.0.3 (December 18, 2013)

2.8. VERTEX ARRAYS 23

The resulting attribute values are undefined if the base type of the shader at-
tribute at slot index is not floating-point (e.g. is signed or unsigned integer). To
load current values of a generic shader attribute declared as a signed or unsigned
scalar or vector, use the commands

void VertexAttribI4{i ui}(uint index, T values);
void VertexAttribI4{i ui}v(uint index, const T values);

These commands specify full signed or unsigned integer values that are loaded
into the generic attribute at slot index in the same fashion as described above.

The resulting attribute values are undefined if the base type of the shader at-
tribute at slot index is floating-point; if the base type is integer and unsigned inte-
ger values are supplied (the VertexAttribI4ui* commands); or if the base type
is unsigned integer and signed integer values are supplied (the VertexAttribI4i*
commands)

The error INVALID_VALUE is generated by VertexAttrib* if index is greater
than or equal to MAX_VERTEX_ATTRIBS.

The state required to support vertex specification consists of the value of
MAX_VERTEX_ATTRIBS four-component vectors to store generic vertex attributes.

The initial values for all generic vertex attributes are (0.0, 0.0, 0.0, 1.0).

2.8 Vertex Arrays

Vertex data are placed into arrays that are stored in the client’s address space (de-
scribed here) or in the server’s address space (described in section 2.9). Blocks
of data in these arrays may then be used to specify multiple geometric primitives
through the execution of a single GL command. The client may specify up to
the value of MAX_VERTEX_ATTRIBS arrays to store one or more generic vertex
attributes. The commands

void VertexAttribPointer(uint index, int size, enum type,
boolean normalized, sizei stride, const
void *pointer);

void VertexAttribIPointer(uint index, int size, enum type,
sizei stride, const void *pointer);

describe the locations and organizations of these arrays. For each command, type
specifies the data type of the values stored in the array. size indicates the number
of values per vertex that are stored in the array. Table 2.4 indicates the allowable
values for size and type. For type the values BYTE, SHORT, INT, FIXED, FLOAT, and

OpenGL ES 3.0.3 (December 18, 2013)

2.8. VERTEX ARRAYS 24

Integer
Command Sizes Handling Types
VertexAttribPointer 1, 2, 3, 4 flag byte, ubyte, short,

ushort, int, uint,
fixed, float, half,
packed

VertexAttribIPointer 1, 2, 3, 4 integer byte, ubyte, short,
ushort, int, uint

Table 2.4: Vertex array sizes (values per vertex) and data types. The “Integer Han-
dling” column indicates how fixed-point data types are handled: “integer” means
that they remain as integer values, and “flag” means that they are either converted
to floating-point directly, or converted by normalizing to [0, 1] (for unsigned types)
or [−1, 1] (for signed types), depending on the setting of the normalized flag in
VertexAttribPointer. packed is not a GL type, but indicates commands accept-
ing multiple components packed into a single uint.

HALF_FLOAT indicate types byte, short, int, fixed, float, and half, re-
spectively; the values UNSIGNED_BYTE, UNSIGNED_SHORT, and UNSIGNED_INT

indicate types ubyte, ushort, and uint, respectively; and the values INT_2_-
10_10_10_REV and UNSIGNED_INT_2_10_10_10_REV, indicating respectively
four signed or unsigned elements packed into a single uint, both correspond to
the term packed in that table.

An INVALID_VALUE error is generated if size is not one of the values allowed
in table 2.4 for the corresponding command.

An INVALID_OPERATION error is generated under any of the following con-
ditions:

• type is INT_2_10_10_10_REV or UNSIGNED_INT_2_10_10_10_REV,
and size is not 4;

• VertexAttribPointer or VertexAttribIPointer is called while a non-zero
vertex array object is bound (see section 2.10), zero is bound to the ARRAY_-
BUFFER buffer object binding point (see section 2.9.6), and the pointer ar-
gument is not NULL5.

5 This error makes it impossible to create a vertex array object containing client array pointers,
while still allowing buffer objects to be unbound.

OpenGL ES 3.0.3 (December 18, 2013)

2.8. VERTEX ARRAYS 25

The index parameter in the VertexAttribPointer and VertexAttribIPointer
commands identifies the generic vertex attribute array being described. The er-
ror INVALID_VALUE is generated if index is greater than or equal to the value
of MAX_VERTEX_ATTRIBS. Generic attribute arrays with integer type arguments
can be handled in one of three ways: converted to float by normalizing to [0, 1]
or [−1, 1] as described in equations 2.1 and 2.2, respectively; converted directly
to float, or left as integers. Integer data for an array specified by VertexAttrib-
Pointer will be converted to floating-point by normalizing if normalized is TRUE,
and converted directly to floating-point otherwise. The normalized flag is ignored
if type is FIXED, FLOAT, or HALF_FLOAT. Data for an array specified by Vertex-
AttribIPointer will always be left as integer values; such data are referred to as
pure integers.

The one, two, three, or four values in an array that correspond to a single vertex
comprise an array element. The values within each array element are stored se-
quentially in memory. If stride is specified as zero, then array elements are stored
sequentially as well. The error INVALID_VALUE is generated if stride is negative.
Otherwise pointers to the ith and (i + 1)st elements of an array differ by stride
basic machine units (typically unsigned bytes), the pointer to the (i+ 1)st element
being greater. For each command, pointer specifies the location in memory of the
first value of the first element of the array being specified.

When values for a vertex shader attribute variable are sourced from an enabled
generic vertex attribute array, the array must be specified by a command compat-
ible with the data type of the variable. The values loaded into a shader attribute
variable bound to generic attribute index are undefined if the array for index was
not specified by:

• VertexAttribPointer, for floating-point base type attributes;

• VertexAttribIPointer with type BYTE, SHORT, or INT for signed integer
base type attributes; or

• VertexAttribIPointer with type UNSIGNED_BYTE, UNSIGNED_SHORT, or
UNSIGNED_INT for unsigned integer base type attributes.

An individual generic vertex attribute array is enabled or disabled by calling
one of

void EnableVertexAttribArray(uint index);
void DisableVertexAttribArray(uint index);

OpenGL ES 3.0.3 (December 18, 2013)

2.8. VERTEX ARRAYS 26

where index identifies the generic vertex attribute array to enable or disable. The
error INVALID_VALUE is generated if index is greater than or equal to the value of
MAX_VERTEX_ATTRIBS.

The command

void VertexAttribDivisor(uint index, uint divisor);

modifies the rate at which generic vertex attributes advance, which is useful when
rendering multiple instances of primitives in a single draw call (see DrawAr-
raysInstanced and DrawElementsInstanced in section 2.8.3). If divisor is zero,
the attribute at slot index advances once per vertex. If divisor is non-zero, the at-
tribute advances once per divisor instances of the primitives being rendered. An
attribute is referred to as instanced if its divisor value is non-zero.

An INVALID_VALUE error is generated if index is greater than or equal to the
value of MAX_VERTEX_ATTRIBS.

2.8.1 Transferring Array Elements

When an array element i is transferred to the GL by DrawArrays, DrawElements,
or the other Draw* commands described below, each generic attribute is expanded
to four components. If size is one then the x component of the attribute is specified
by the array. If size is two then the x and y components of the attribute are specified
by the array. If size is three then x, y, and z are specified by the array. If size is four
then all components are specified by the array. Unspecified y and z components
are implicitly set to 0.0 for floating-point array types and 0 for integer array types.
Unspecified w components are implicitly set to 1.0 for floating-point array types
and 1 for integer array types.

Primitive restarting is enabled or disabled by calling one of the commands

void Enable(enum target);

and

void Disable(enum target);

with target PRIMITIVE_RESTART_FIXED_INDEX. When DrawElements,
DrawElementsInstanced, or DrawRangeElements transfers a set of generic at-
tribute array elements to the GL, if the index within the vertex arrays corresponding
to that set is equal to 2N − 1, where N is 8, 16 or 32 if the type is UNSIGNED_-
BYTE, UNSIGNED_SHORT, or UNSIGNED_INT, respectively, then the GL does not
process those elements as a vertex. Instead, it is as if the drawing command ended

OpenGL ES 3.0.3 (December 18, 2013)

2.8. VERTEX ARRAYS 27

with the immediately preceding transfer, and another drawing command is imme-
diately started with the same parameters, but only transferring the immediately
following element through the end of the originally specified elements.

2.8.2 Packed Vertex Data Formats

UNSIGNED_INT_2_10_10_10_REV and INT_2_10_10_10_REV vertex data for-
mats describe packed, 4 component formats stored in a single 32-bit word.

For the UNSIGNED_INT_2_10_10_10_REV vertex data format, the first (x),
second (y), and third (z) components are represented as 10-bit unsigned integer
values and the fourth (w) component is represented as a 2-bit unsigned integer
value.

For the INT_2_10_10_10_REV vertex data format, the x, y and z compo-
nents are represented as 10-bit signed two’s complement integer values and the w
component is represented as a 2-bit signed two’s complement integer value.

The normalized value is used to indicate whether to normalize the data to [0, 1]
(for unsigned types) or [−1, 1] (for signed types). During normalization, the con-
version rules specified in equations 2.1 and 2.2 are followed.

Table 2.5 describes how these components are laid out in a 32-bit word.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

w z y x

Table 2.5: Packed component layout. Bit numbers are indicated for each compo-
nent.

2.8.3 Drawing Commands

The command

void DrawArraysOneInstance(enum mode, int first,
sizei count, int instance);

does not exist in the GL, but is used to describe functionality in the rest of this sec-
tion. This command constructs a sequence of geometric primitives by successively
transferring elements for count vertices. Elements first through first + count − 1,
inclusive, of each enabled non-instanced array are transferred to the GL. If count
is zero, no elements are transferred. mode specifies what kind of primitives are
constructed, as defined in section 2.6.1.

OpenGL ES 3.0.3 (December 18, 2013)

2.8. VERTEX ARRAYS 28

The value of instance may be read by a vertex shader as gl_InstanceID, as
described in section 2.11.9.

If an enabled vertex attribute array is instanced (it has a non-zero divisor as
specified by VertexAttribDivisor), the element that is transferred to the GL, for
all vertices, is given by: ⌊

instance

divisor

⌋
If an array corresponding to a generic attribute is not enabled, then the corre-

sponding element is taken from the current generic attribute state (see section 2.7).
Otherwise, if an array is enabled, the corresponding current generic attribute value
is unaffected by the execution of DrawArraysOneInstance.

Specifying first < 0 results in undefined behavior. Generating the error
INVALID_VALUE is recommended in this case.

The command

void DrawArrays(enum mode, int first, sizei count);

is equivalent to the command sequence

DrawArraysOneInstance(mode, first, count, 0);

The command

void DrawArraysInstanced(enum mode, int first,
sizei count, sizei instanceCount);

behaves identically to DrawArrays except that instanceCount instances of the
range of elements are executed and the value of instance advances for each iter-
ation. Those attributes that have non-zero values for divisor, as specified by Ver-
texAttribDivisor, advance once every divisor instances. It has the same effect
as:

if (mode, count, or instanceCount is invalid)
generate appropriate error

else {
for (i = 0; i < instanceCount; i++) {

DrawArraysOneInstance(mode, first, count, i);
}

}

OpenGL ES 3.0.3 (December 18, 2013)

2.8. VERTEX ARRAYS 29

The command

void DrawElementsOneInstance(enum mode, sizei count,
enum type, const void *indices, int instance);

does not exist in the GL, but is used to describe functionality in the rest of this
section. This command constructs a sequence of geometric primitives by suc-
cessively transferring elements for count vertices. The ith element transferred by
DrawElementsOneInstance will be taken from element indices[i] of each en-
abled non-instanced array, where indices specifies the location in memory of the
first index of the element array being specified. type must be one of UNSIGNED_-
BYTE, UNSIGNED_SHORT, or UNSIGNED_INT, indicating that the index values are
of GL type ubyte, ushort, or uint respectively. mode specifies what kind of
primitives are constructed, as defined in section 2.6.1.

The value of instance may be read by a vertex shader as gl_InstanceID, as
described in section 2.11.9.

If an enabled vertex attribute array is instanced (it has a non-zero divisor as
specified by VertexAttribDivisor), the element that is transferred to the GL, for
all vertices, is given by: ⌊

instance

divisor

⌋
If type is UNSIGNED_INT, an implementation may restrict the maximum value

that can be used as an index to less than the maximum value that can be repre-
sented by the uint type. The maximum value supported by an implementation
may be queried by calling GetInteger64v with pname MAX_ELEMENT_INDEX.
Using an index value greater than MAX_ELEMENT_INDEX will result in undefined
implementation-dependent behavior, unless primitive restart is enabled (see sec-
tion 2.8.1) and the index value is 232 − 1.

If an array corresponding to a generic attribute is not enabled, then the corre-
sponding element is taken from the current generic attribute state (see section 2.7).
Otherwise, if an array is enabled, the corresponding current generic attribute value
is unaffected by the execution of DrawElementsOneInstance.

The command

void DrawElements(enum mode, sizei count, enum type,
const void *indices);

behaves identically to DrawElementsOneInstance with the instance parameter
set to zero; the effect of calling

OpenGL ES 3.0.3 (December 18, 2013)

2.8. VERTEX ARRAYS 30

DrawElements(mode, count, type, indices);

is equivalent to the command sequence:

if (mode, count or type is invalid)
generate appropriate error

else
DrawElementsOneInstance(mode, count, type, indices, 0);

The command

void DrawElementsInstanced(enum mode, sizei count,
enum type, const void *indices, sizei instanceCount);

behaves identically to DrawElements except that instanceCount instances of the
set of elements are executed and the value of instance advances between each set.
Instanced attributes are advanced as they do during execution of DrawArraysIn-
stanced. It has the same effect as:

if (mode, count, instanceCount, or type is invalid)
generate appropriate error

else {
for (int i = 0; i < instanceCount; i++) {

DrawElementsOneInstance(mode, count, type, indices, i);
}

}

The command

void DrawRangeElements(enum mode, uint start,
uint end, sizei count, enum type, const
void *indices);

is a restricted form of DrawElements. mode, count, type, and indices match the
corresponding arguments to DrawElements, with the additional constraint that all
index values identified by indices must lie between start and end inclusive.

Implementations denote recommended maximum amounts of vertex and index
data, which may be queried by calling GetIntegerv with the symbolic constants
MAX_ELEMENTS_VERTICES and MAX_ELEMENTS_INDICES. If end − start + 1
is greater than the value of MAX_ELEMENTS_VERTICES, or if count is greater than
the value of MAX_ELEMENTS_INDICES, then the call may operate at reduced per-
formance. There is no requirement that all vertices in the range [start, end] be

OpenGL ES 3.0.3 (December 18, 2013)

2.9. BUFFER OBJECTS 31

referenced. However, the implementation may partially process unused vertices,
reducing performance from what could be achieved with an optimal index set.

The error INVALID_VALUE is generated if end < start. Invalid mode, count,
or type parameters generate the same errors as would the corresponding call to
DrawElements. It is an error for index values (other than the primitive restart
index when primitive restart is enabled) to lie outside the range [start, end],
but implementations are not required to check for this. Such indices will cause
implementation-dependent behavior.

If the number of supported generic vertex attributes (the value of MAX_-

VERTEX_ATTRIBS) is n, then the state required to implement vertex arrays con-
sists of n boolean values, n memory pointers, n integer stride values, n symbolic
constants representing array types, n integers representing values per element, n
boolean values indicating normalization, n boolean values indicating whether the
attribute values are pure integers, and n integers representing vertex attribute divi-
sors.

In the initial state, the boolean values are each false, the memory pointers are
each NULL, the strides are each zero, the array types are each FLOAT, the integers
representing values per element are each four, the normalized and pure integer flags
are each false, and the divisors are each zero.

2.9 Buffer Objects

The GL uses many types of data supplied by the client. Some of this data must be
stored in server memory, and it is usually desirable to store other types of frequently
used client data, such as vertex array and pixel data, in server memory even if the
option to store it in client memory exists. Buffer objects provide a mechanism
to allocate, initialize, and render from such memory. The name space for buffer
objects is the unsigned integers, with zero reserved for the GL.

The command

void GenBuffers(sizei n, uint *buffers);

returns n previously unused buffer object names in buffers. These names are
marked as used, for the purposes of GenBuffers only, but they do not acquire
buffer state until they are first bound with BindBuffer (see below), just as if they
were unused.

Buffer objects are deleted by calling

void DeleteBuffers(sizei n, const uint *buffers);

OpenGL ES 3.0.3 (December 18, 2013)

2.9. BUFFER OBJECTS 32

Target name Purpose Described in section(s)
ARRAY_BUFFER Vertex attributes 2.9.6
COPY_READ_BUFFER Buffer copy source 2.9.5
COPY_WRITE_BUFFER Buffer copy destination 2.9.5
ELEMENT_ARRAY_BUFFER Vertex array indices 2.9.7
PIXEL_PACK_BUFFER Pixel read target 4.3.2, 6.1
PIXEL_UNPACK_BUFFER Texture data source 3.7
TRANSFORM_FEEDBACK_BUFFER Transform feedback buffer 2.14
UNIFORM_BUFFER Uniform block storage 2.11.6

Table 2.6: Buffer object binding targets.

buffers contains n names of buffer objects to be deleted. After a buffer object is
deleted it has no contents, and its name is again unused. If any portion of a buffer
object being deleted is mapped in the current context or any context current to
another thread, it is as though UnmapBuffer (see section 2.9.3) is executed in
each such context prior to deleting the data store of the buffer.

Unused names in buffers that have been marked as used for the purposes of
GenBuffers are marked as unused again. Unused names in buffers are silently
ignored, as is the value zero.

2.9.1 Creating and Binding Buffer Objects

A buffer object is created by binding an unused name to a buffer target. The binding
is effected by calling

void BindBuffer(enum target, uint buffer);

target must be one of the targets listed in table 2.6. If the buffer object named
buffer has not been previously bound, or has been deleted since the last binding,
the GL creates a new state vector, initialized with a zero-sized memory buffer and
comprising all the state and with the same initial values listed in table 2.7.

Buffer objects created by binding an unused name to any of the valid tar-
gets are formally equivalent, but the GL may make different choices about storage
location and layout based on the initial binding.

BindBuffer may also be used to bind an existing buffer object. If the bind is
successful no change is made to the state of the newly bound buffer object, and any
previous binding to target is broken.

OpenGL ES 3.0.3 (December 18, 2013)

2.9. BUFFER OBJECTS 33

Name Type Initial Value Legal Values
BUFFER_SIZE int64 0 any non-negative integer
BUFFER_USAGE enum STATIC_DRAW STREAM_DRAW, STREAM_READ,

STREAM_COPY, STATIC_DRAW,
STATIC_READ, STATIC_COPY,
DYNAMIC_DRAW, DYNAMIC_READ,
DYNAMIC_COPY

BUFFER_ACCESS_FLAGS int 0 See section 2.9.3
BUFFER_MAPPED boolean FALSE TRUE, FALSE
BUFFER_MAP_POINTER void* NULL address
BUFFER_MAP_OFFSET int64 0 any non-negative integer
BUFFER_MAP_LENGTH int64 0 any non-negative integer

Table 2.7: Buffer object parameters and their values.

While a buffer object is bound, GL operations on the target to which it is bound
affect the bound buffer object, and queries of the target to which a buffer object is
bound return state from the bound object. Operations on the target also affect any
other bindings of that object.

If a buffer object is deleted while it is bound, all bindings to that object in
the current context (i.e. in the thread that called DeleteBuffers) are reset to zero.
Bindings to that buffer in other contexts are not affected, and the deleted buffer
may continue to be used at any places it remains bound or attached, as described
in appendix D.1.

Initially, each buffer object target is bound to zero. There is no buffer object
corresponding to the name zero, so client attempts to modify or query buffer object
state for a target bound to zero generate an INVALID_OPERATION error.

Binding Buffer Objects to Indexed Targets

Buffer objects may be created and bound to indexed targets by calling one of the
commands

void BindBufferRange(enum target, uint index,
uint buffer, intptr offset, sizeiptr size);

void BindBufferBase(enum target, uint index, uint buffer);

target must be TRANSFORM_FEEDBACK_BUFFER or UNIFORM_BUFFER. Addi-
tional language specific to each target is included in sections referred to for each
target in table 2.6.

OpenGL ES 3.0.3 (December 18, 2013)

2.9. BUFFER OBJECTS 34

Each target represents an indexed array of buffer object binding points, as well
as a single general binding point that can be used by other buffer object manipu-
lation functions such as BindBuffer or MapBufferRange. Both commands bind
the buffer object named by buffer to both the general binding point, and to the
binding point in the array given by index. If the binds are successful no change
is made to the state of the bound buffer object, and any previous bindings to the
general binding point or to the binding point in the array are broken. The error
INVALID_VALUE is generated if index is greater than or equal to the number of
target-specific indexed binding points.

If the buffer object named buffer has not been previously bound, or has been
deleted since the last binding, the GL creates a new state vector, initialized with
a zero-sized memory buffer and comprising all the state and with the same initial
values listed in table 2.7.

For BindBufferRange, offset specifies a starting offset into the buffer object
buffer, and size specifies the amount of data that can be read from or written to
the buffer object while used as an indexed target. Both offset and size are in basic
machine units. The error INVALID_VALUE is generated if buffer is not zero and
size is less than or equal to zero or if buffer is not zero and offset is negative or offset
or size do not respectively satisfy the constraints described for those parameters for
the specified target, as described in sections 2.11.6 and 2.14.2.

BindBufferBase binds the entire buffer, even when the size of the buffer is
changed after the binding is established. The starting offset is zero, and the amount
of data that can be read from or written to the buffer is determined by the size of
the bound buffer at the time the binding is used.

Regardless of the size specified with BindBufferRange, the GL will never read
or write beyond the end of a bound buffer. In some cases this constraint may result
in visibly different behavior when a buffer overflow would otherwise result, such
as described for transform feedback operations in section 2.14.2.

2.9.2 Creating Buffer Object Data Stores

The data store of a buffer object is created and initialized by calling

void BufferData(enum target, sizeiptr size, const
void *data, enum usage);

with target set to one of the targets listed in table 2.6, size set to the size of the data
store in basic machine units, and data pointing to the source data in client memory.
If data is non-NULL, then the source data is copied to the buffer object’s data store.
If data is NULL, then the contents of the buffer object’s data store are undefined.

OpenGL ES 3.0.3 (December 18, 2013)

2.9. BUFFER OBJECTS 35

usage is specified as one of nine enumerated values, indicating the expected
application usage pattern of the data store. The values are:

STREAM_DRAW The data store contents will be specified once by the application,
and used at most a few times as the source for GL drawing and image speci-
fication commands.

STREAM_READ The data store contents will be specified once by reading data from
the GL, and queried at most a few times by the application.

STREAM_COPY The data store contents will be specified once by reading data from
the GL, and used at most a few times as the source for GL drawing and image
specification commands.

STATIC_DRAW The data store contents will be specified once by the application,
and used many times as the source for GL drawing and image specification
commands.

STATIC_READ The data store contents will be specified once by reading data from
the GL, and queried many times by the application.

STATIC_COPY The data store contents will be specified once by reading data from
the GL, and used many times as the source for GL drawing and image spec-
ification commands.

DYNAMIC_DRAW The data store contents will be respecified repeatedly by the ap-
plication, and used many times as the source for GL drawing and image
specification commands.

DYNAMIC_READ The data store contents will be respecified repeatedly by reading
data from the GL, and queried many times by the application.

DYNAMIC_COPY The data store contents will be respecified repeatedly by reading
data from the GL, and used many times as the source for GL drawing and
image specification commands.

usage is provided as a performance hint only. The specified usage value does
not constrain the actual usage pattern of the data store.

BufferData deletes any existing data store, and sets the values of the buffer
object’s state variables as shown in table 2.8.

If any portion of the buffer object is mapped in the current context or any
context current to another thread, it is as though UnmapBuffer (see section 2.9.3)
is executed in each such context prior to deleting the existing data store.

OpenGL ES 3.0.3 (December 18, 2013)

2.9. BUFFER OBJECTS 36

Name Value
BUFFER_SIZE size
BUFFER_USAGE usage
BUFFER_ACCESS_FLAGS 0
BUFFER_MAPPED FALSE

BUFFER_MAP_POINTER NULL

BUFFER_MAP_OFFSET 0
BUFFER_MAP_LENGTH 0

Table 2.8: Buffer object initial state.

Clients must align data elements consistently with the requirements of the
client platform, with an additional base-level requirement that an offset within a
buffer to a datum comprising N basic machine units be a multiple of N .

If the GL is unable to create a data store of the requested size, the error OUT_-
OF_MEMORY is generated.

To modify some or all of the data contained in a buffer object’s data store, the
client may use the command

void BufferSubData(enum target, intptr offset,
sizeiptr size, const void *data);

with target set to one of the targets listed in table 2.6. offset and size indicate the
range of data in the buffer object that is to be replaced, in terms of basic machine
units. data specifies a region of client memory size basic machine units in length,
containing the data that replace the specified buffer range. An INVALID_VALUE er-
ror is generated if offset or size is less than zero or if offset +size is greater than the
value of BUFFER_SIZE. An INVALID_OPERATION error is generated if any part
of the specified buffer range is mapped with MapBufferRange (see section 2.9.3).

2.9.3 Mapping and Unmapping Buffer Data

All or part of the data store of a buffer object may be mapped into the client’s
address space by calling

void *MapBufferRange(enum target, intptr offset,
sizeiptr length, bitfield access);

with target set to one of the targets listed in table 2.6. offset and length indicate the
range of data in the buffer object that is to be mapped, in terms of basic machine

OpenGL ES 3.0.3 (December 18, 2013)

2.9. BUFFER OBJECTS 37

units. access is a bitfield containing flags which describe the requested mapping.
These flags are described below.

If no error occurs, a pointer to the beginning of the mapped range is returned
once all pending operations on that buffer have completed, and may be used to
modify and/or query the corresponding range of the buffer, according to the fol-
lowing flag bits set in access:

• MAP_READ_BIT indicates that the returned pointer may be used to read
buffer object data. No GL error is generated if the pointer is used to query
a mapping which excludes this flag, but the result is undefined and system
errors (possibly including program termination) may occur.

• MAP_WRITE_BIT indicates that the returned pointer may be used to modify
buffer object data. No GL error is generated if the pointer is used to modify
a mapping which excludes this flag, but the result is undefined and system
errors (possibly including program termination) may occur.

Pointer values returned by MapBufferRange may not be passed as parameter
values to GL commands. For example, they may not be used to specify array
pointers, or to specify or query pixel or texture image data; such actions produce
undefined results, although implementations may not check for such behavior for
performance reasons.

Mappings to the data stores of buffer objects may have nonstandard perfor-
mance characteristics. For example, such mappings may be marked as uncacheable
regions of memory, and in such cases reading from them may be very slow. To en-
sure optimal performance, the client should use the mapping in a fashion consistent
with the values of BUFFER_USAGE and access. Using a mapping in a fashion in-
consistent with these values is liable to be multiple orders of magnitude slower
than using normal memory.

The following optional flag bits in access may be used to modify the mapping:

• MAP_INVALIDATE_RANGE_BIT indicates that the previous contents of the
specified range may be discarded. Data within this range are undefined with
the exception of subsequently written data. No GL error is generated if sub-
sequent GL operations access unwritten data, but the result is undefined and
system errors (possibly including program termination) may occur. This flag
may not be used in combination with MAP_READ_BIT.

• MAP_INVALIDATE_BUFFER_BIT indicates that the previous contents of the
entire buffer may be discarded. Data within the entire buffer are undefined
with the exception of subsequently written data. No GL error is generated if

OpenGL ES 3.0.3 (December 18, 2013)

2.9. BUFFER OBJECTS 38

Name Value
BUFFER_ACCESS_FLAGS access
BUFFER_MAPPED TRUE

BUFFER_MAP_POINTER pointer to the data store
BUFFER_MAP_OFFSET offset
BUFFER_MAP_LENGTH length

Table 2.9: Buffer object state set by MapBufferRange.

subsequent GL operations access unwritten data, but the result is undefined
and system errors (possibly including program termination) may occur. This
flag may not be used in combination with MAP_READ_BIT.

• MAP_FLUSH_EXPLICIT_BIT indicates that one or more discrete subranges
of the mapping may be modified. When this flag is set, modifications to
each subrange must be explicitly flushed by calling FlushMappedBuffer-
Range. No GL error is set if a subrange of the mapping is modified and
not flushed, but data within the corresponding subrange of the buffer are un-
defined. This flag may only be used in conjunction with MAP_WRITE_BIT.
When this option is selected, flushing is strictly limited to regions that are
explicitly indicated with calls to FlushMappedBufferRange prior to un-
map; if this option is not selected UnmapBuffer will automatically flush the
entire mapped range when called.

• MAP_UNSYNCHRONIZED_BIT indicates that the GL should not attempt to
synchronize pending operations on the buffer prior to returning from Map-
BufferRange. No GL error is generated if pending operations which source
or modify the buffer overlap the mapped region, but the result of such previ-
ous and any subsequent operations is undefined.

A successful MapBufferRange sets buffer object state values as shown in ta-
ble 2.9.

If an error occurs, MapBufferRange returns a NULL pointer.
An INVALID_VALUE error is generated if offset or length is negative, if offset+

length is greater than the value of BUFFER_SIZE, or if access has any bits set other
than those defined above.

An INVALID_OPERATION error is generated for any of the following condi-
tions:

• length is zero.

OpenGL ES 3.0.3 (December 18, 2013)

2.9. BUFFER OBJECTS 39

• The buffer is already in a mapped state.

• Neither MAP_READ_BIT nor MAP_WRITE_BIT is set.

• MAP_READ_BIT is set and any of MAP_INVALIDATE_RANGE_BIT, MAP_-
INVALIDATE_BUFFER_BIT, or MAP_UNSYNCHRONIZED_BIT is set.

• MAP_FLUSH_EXPLICIT_BIT is set and MAP_WRITE_BIT is not set.

An OUT_OF_MEMORY error is generated if MapBufferRange fails because
memory for the mapping could not be obtained.

No error is generated if memory outside the mapped range is modified or
queried, but the result is undefined and system errors (possibly including program
termination) may occur.

If a buffer is mapped with the MAP_FLUSH_EXPLICIT_BIT flag, modifications
to the mapped range may be indicated by calling

void FlushMappedBufferRange(enum target, intptr offset,
sizeiptr length);

with target set to one of the targets listed in table 2.6. offset and length indi-
cate a modified subrange of the mapping, in basic machine units. The specified
subrange to flush is relative to the start of the currently mapped range of buffer.
FlushMappedBufferRange may be called multiple times to indicate distinct sub-
ranges of the mapping which require flushing.

An INVALID_VALUE error is generated if offset or length is negative, or if
offset + length exceeds the size of the mapping.

An INVALID_OPERATION error is generated if zero is bound to target.
An INVALID_OPERATION error is generated if the buffer bound to target is

not mapped, or is mapped without the MAP_FLUSH_EXPLICIT_BIT flag.

Unmapping Buffers

After the client has specified the contents of a mapped buffer range, and before the
data in that range are dereferenced by any GL commands, the mapping must be
relinquished by calling

boolean UnmapBuffer(enum target);

with target set to one of the targets listed in table 2.6. Unmapping a mapped buffer
object invalidates the pointer to its data store and sets the object’s BUFFER_-

MAPPED, BUFFER_MAP_POINTER, BUFFER_ACCESS_FLAGS, BUFFER_MAP_-

OFFSET, and BUFFER_MAP_LENGTH state variables to the initial values shown in
table 2.8.

OpenGL ES 3.0.3 (December 18, 2013)

2.9. BUFFER OBJECTS 40

UnmapBuffer returns TRUE unless data values in the buffer’s data store have
become corrupted during the period that the buffer was mapped. Such corruption
can be the result of a screen resolution change or other window system-dependent
event that causes system heaps such as those for high-performance graphics mem-
ory to be discarded. GL implementations must guarantee that such corruption can
occur only during the periods that a buffer’s data store is mapped. If such corrup-
tion has occurred, UnmapBuffer returns FALSE, and the contents of the buffer’s
data store become undefined.

If the buffer data store is already in the unmapped state, UnmapBuffer returns
FALSE, and an INVALID_OPERATION error is generated.

Buffers are implicitly unmapped as a side effect of deletion or reinitialization
(i.e. calling DeleteBuffers or BufferData).

Effects of Mapping Buffers on Other GL Commands

Any GL command which attempts to read from, write to, or change the state of
a buffer object may generate an INVALID_OPERATION error if all or part of the
buffer object is mapped. However, only commands which explicitly describe this
error are required to do so. If an error is not generated, using such commands to
perform invalid reads, writes, or state changes will have undefined results and may
result in GL interruption or termination.

2.9.4 Effects of Accessing Outside Buffer Bounds

Many GL commands generate an INVALID_OPERATION error if the command
attempts to read from or write to a location in a bound buffer object at an offset
less than zero, or greater than or equal to the buffer’s size. Commands that are not
specified to detect these errors are not required to do so, and using such commands
to perform invalid reads or writes will have undefined results, which may include
GL interruption or termination.

2.9.5 Copying Between Buffers

All or part of the data store of a buffer object may be copied to the data store of
another buffer object by calling

void CopyBufferSubData(enum readtarget, enum writetarget,
intptr readoffset, intptr writeoffset, sizeiptr size);

with readtarget and writetarget each set to one of the targets listed in table 2.6.
While any of these targets may be used, the COPY_READ_BUFFER and COPY_-

WRITE_BUFFER targets are provided specifically for copies, so that they can be

OpenGL ES 3.0.3 (December 18, 2013)

2.9. BUFFER OBJECTS 41

done without affecting other buffer binding targets that may be in use. writeoffset
and size specify the range of data in the buffer object bound to writetarget that is
to be replaced, in terms of basic machine units. readoffset and size specify the
range of data in the buffer object bound to readtarget that is to be copied to the
corresponding region of writetarget.

An INVALID_VALUE error is generated if any of readoffset, writeoffset, or size
are negative, if readoffset + size exceeds the size of the buffer object bound to
readtarget, or if writeoffset + size exceeds the size of the buffer object bound to
writetarget.

An INVALID_VALUE error is generated if the same buffer object is bound to
both readtarget and writetarget, and the ranges [readoffset , readoffset + size) and
[writeoffset ,writeoffset + size) overlap.

An INVALID_OPERATION error is generated if zero is bound to readtarget or
writetarget.

An INVALID_OPERATION error is generated if the buffer objects bound to
either readtarget or writetarget are mapped.

2.9.6 Vertex Arrays in Buffer Objects

Blocks of vertex array data may be stored in buffer objects with the same format
and layout options supported for client-side vertex arrays. A buffer object binding
point is added to the client state associated with each vertex array index. The com-
mands that specify the locations and organizations of vertex arrays copy the buffer
object name that is bound to ARRAY_BUFFER to the binding point corresponding
to the vertex array of the index being specified. For example, the VertexAttrib-
Pointer command copies the value of ARRAY_BUFFER_BINDING (the queriable
name of the buffer binding corresponding to the target ARRAY_BUFFER) to the
client state variable VERTEX_ATTRIB_ARRAY_BUFFER_BINDING for the speci-
fied index.

Rendering command DrawArrays and the other drawing commands defined
in section 2.8.3 operate as previously defined, except that data for enabled generic
attribute arrays are sourced from buffers if the array’s buffer binding is non-zero.
When an array is sourced from a buffer object, the pointer value of that array is
used to compute an offset, in basic machine units, into the data store of the buffer
object. This offset is computed by subtracting a NULL pointer from the pointer
value, where both pointers are treated as pointers to basic machine units.

It is acceptable for generic attribute arrays to be sourced from any combination
of client memory and various buffer objects during a single rendering operation.

OpenGL ES 3.0.3 (December 18, 2013)

2.10. VERTEX ARRAY OBJECTS 42

2.9.7 Array Indices in Buffer Objects

Blocks of array indices may be stored in buffer objects with the same format
options that are supported for client-side index arrays. Initially zero is bound
to ELEMENT_ARRAY_BUFFER, indicating that DrawElements, DrawRangeEle-
ments, and DrawElementsInstanced are to source their indices from arrays
passed as their indices parameters.

A buffer object is bound to ELEMENT_ARRAY_BUFFER by calling BindBuffer
with target set to ELEMENT_ARRAY_BUFFER, and buffer set to the name of the
buffer object. If no corresponding buffer object exists, one is initialized as defined
in section 2.9.

While a non-zero buffer object name is bound to ELEMENT_ARRAY_BUFFER,
DrawElements, DrawRangeElements, and DrawElementsInstanced source
their indices from that buffer object, using their indices parameters as offsets into
the buffer object in the same fashion as described in section 2.9.6.

In some cases performance will be optimized by storing indices and array data
in separate buffer objects, and by creating those buffer objects with the correspond-
ing binding points.

2.9.8 Buffer Object State

The state required to support buffer objects consists of binding names for each of
the buffer targets in table 2.6, and for each of the indexed buffer targets in sec-
tion 2.9.1. The state required for index buffer targets for transform feedback and
uniform buffer array bindings is summarized in tables 6.24 and 6.25, respectively.

Additionally, each vertex array has an associated binding so there is a buffer
object binding for each of the vertex attribute arrays. The initial values for all
buffer object bindings is zero.

The state of each buffer object consists of a buffer size in basic machine units, a
usage parameter, an access parameter, a mapped boolean, two integers for the offset
and size of the mapped region, a pointer to the mapped buffer (NULL if unmapped),
and the sized array of basic machine units for the buffer data.

2.10 Vertex Array Objects

The buffer objects that are to be used by the vertex stage of the GL are collected
together to form a vertex array object. All state related to the definition of data used
by the vertex processor is encapsulated in a vertex array object. The name space
for vertex array objects is the unsigned integers, with zero reserved by the GL to
represent the default vertex array object.

OpenGL ES 3.0.3 (December 18, 2013)

2.11. VERTEX SHADERS 43

The command

void GenVertexArrays(sizei n, uint *arrays);

returns n previously unused vertex array object names in arrays. These names
are marked as used, for the purposes of GenVertexArrays only, but they do not
acquire array state until they are first bound.

Vertex array objects are deleted by calling

void DeleteVertexArrays(sizei n, const uint *arrays);

arrays contains n names of vertex array objects to be deleted. Once a vertex array
object is deleted it has no contents and its name is again unused. If a vertex array
object that is currently bound is deleted, the binding for that object reverts to zero
and the default vertex array becomes current. Unused names in arrays that have
been marked as used for the purposes of GenVertexArrays are marked as unused
again. Unused names in arrays are silently ignored, as is the value zero.

A vertex array object is created by binding a name returned by GenVertexAr-
rays with the command

void BindVertexArray(uint array);

array is the vertex array object name. The resulting vertex array object is a new
state vector, comprising all the state and with the same initial values listed in
table 6.2.

BindVertexArray may also be used to bind an existing vertex array object.
If the bind is successful no change is made to the state of the bound vertex array
object, and any previous binding is broken.

The currently bound vertex array object is used for all commands which modify
vertex array state, such as VertexAttribPointer and EnableVertexAttribArray;
all commands which draw from vertex arrays, such as DrawArrays and DrawEle-
ments; and all queries of vertex array state (see chapter 6).

BindVertexArray fails and an INVALID_OPERATION error is generated if ar-
ray is not zero or a name returned from a previous call to GenVertexArrays, or if
such a name has since been deleted with DeleteVertexArrays.

2.11 Vertex Shaders

Vertex shaders describe the operations that occur on vertex values and their asso-
ciated data.

OpenGL ES 3.0.3 (December 18, 2013)

2.11. VERTEX SHADERS 44

A vertex shader is an array of strings containing source code for the operations
that are meant to occur on each vertex that is processed. The language used for
vertex shaders is described in the OpenGL ES Shading Language Specification.

To use a vertex shader, shader source code is first loaded into a shader object
and then compiled. A shader object corresponds to a stage in the rendering pipeline
referred to as its shader stage or type. Alternatively, pre-compiled shader binary
code may be directly loaded into a shader object. A GL implementation must
support shader compilation (the boolean value SHADER_COMPILERmust be TRUE).
If the integer value of NUM_SHADER_BINARY_FORMATS is greater than zero, then
shader binary loading is supported.

A vertex shader object is attached to a program object. The program object is
then linked, which generates executable code from all the compiled shader objects
attached to the program. Alternatively, pre-compiled program binary code may be
directly loaded into a program object (see section 2.11.4).

When a linked program object is used as the current program object, the ex-
ecutable code for the vertex shader it contains is used to process vertices. If no
program object is currently in use, the results of vertex shader execution are unde-
fined.

In addition to vertex shaders, fragment shaders can be created, compiled, and
linked into program objects. Fragment shaders affect the processing of fragments
during rasterization (see section 3.9). A program object must contain both vertex
and fragment shaders.

A vertex shader can reference a number of variables as it executes. Vertex
attributes are the per-vertex values specified in section 2.7. Uniforms are per-
program variables that are constant during program execution. Samplers are a
special form of uniform used for texturing (section 3.8). Output variables hold
the results of vertex shader execution that are used later in the pipeline. Each of
these variable types is described in more detail below.

2.11.1 Shader Objects

The source code that makes up a program that gets executed by one of the pro-
grammable stages is encapsulated in a shader object.

The name space for shader objects is the unsigned integers, with zero reserved
for the GL. This name space is shared with program objects. The following sections
define commands that operate on shader and program objects by name. Commands
that accept shader or program object names will generate the error INVALID_-
VALUE if the provided name is not the name of either a shader or program object
and INVALID_OPERATION if the provided name identifies an object that is not the
expected type.

OpenGL ES 3.0.3 (December 18, 2013)

2.11. VERTEX SHADERS 45

To create a shader object, use the command

uint CreateShader(enum type);

The shader object is empty when it is created. The type argument specifies the type
of shader object to be created. For vertex shaders, type must be VERTEX_SHADER.
A non-zero name that can be used to reference the shader object is returned. If an
error occurs, zero will be returned.

The command

void ShaderSource(uint shader, sizei count, const
char * const *string, const int *length);

loads source code into the shader object named shader. string is an array of count
pointers to optionally null-terminated character strings that make up the source
code. The length argument is an array with the number of chars in each string (the
string length). If an element in length is negative, its accompanying string is null-
terminated. If length is NULL, all strings in the string argument are considered null-
terminated. The ShaderSource command sets the source code for the shader to
the text strings in the string array. If shader previously had source code loaded into
it, the existing source code is completely replaced. Any length passed in excludes
the null terminator in its count.

The strings that are loaded into a shader object are expected to form the source
code for a valid shader as defined in the OpenGL ES Shading Language Specifica-
tion.

Once the source code for a shader has been loaded, a shader object can be
compiled with the command

void CompileShader(uint shader);

Each shader object has a boolean status, COMPILE_STATUS, that is modified as
a result of compilation. This status can be queried with GetShaderiv (see sec-
tion 6.1.12). This status will be set to TRUE if shader was compiled without errors
and is ready for use, and FALSE otherwise. Compilation can fail for a variety of
reasons as listed in the OpenGL ES Shading Language Specification. If Compile-
Shader failed, any information about a previous compile is lost. Thus a failed
compile does not restore the old state of shader.

Changing the source code of a shader object with ShaderSource does not
change its compile status or the compiled shader code.

OpenGL ES 3.0.3 (December 18, 2013)

2.11. VERTEX SHADERS 46

Each shader object has an information log, which is a text string that is over-
written as a result of compilation. This information log can be queried with Get-
ShaderInfoLog to obtain more information about the compilation attempt (see
section 6.1.12).

Resources allocated by the shader compiler may be released with the command

void ReleaseShaderCompiler(void);

This is a hint from the application, and does not prevent later use of the shader
compiler. If shader source is loaded and compiled after ReleaseShaderCompiler
has been called, CompileShader must succeed provided there are no errors in the
shader source.

The range and precision for different numeric formats supported by the shader
compiler may be determined with the command GetShaderPrecisionFormat (see
section 6.1.12).

Shader objects can be deleted with the command

void DeleteShader(uint shader);

If shader is not attached to any program object, it is deleted immediately. Oth-
erwise, shader is flagged for deletion and will be deleted when it is no longer
attached to any program object. If an object is flagged for deletion, its boolean
status bit DELETE_STATUS is set to true. The value of DELETE_STATUS can be
queried with GetShaderiv (see section 6.1.12). DeleteShader will silently ignore
the value zero.

2.11.2 Loading Shader Binaries

Precompiled shader binaries may be loaded with the command

void ShaderBinary(sizei count, const uint *shaders,
enum binaryformat, const void *binary, sizei length);

shaders contains a list of count shader object handles. Each handle refers to a
unique shader type (vertex shader or fragment shader). binary points to length
bytes of pre-compiled binary shader code in client memory, and binaryformat de-
notes the format of the pre-compiled code.

The binary image will be decoded according to the extension specification
defining the specified binaryformat. OpenGL ES defines no specific binary for-
mats, but does provide a mechanism to obtain token values for such formats pro-
vided by extensions. The number of shader binary formats supported can be ob-

OpenGL ES 3.0.3 (December 18, 2013)

2.11. VERTEX SHADERS 47

tained by querying the value of NUM_SHADER_BINARY_FORMATS. The list of spe-
cific binary formats supported can be obtained by querying the value of SHADER_-
BINARY_FORMATS.

Depending on the types of the shader objects in shaders, ShaderBinary will
individually load binary vertex or fragment shaders, or load an executable binary
that contains an optimized pair of vertex and fragment shaders stored in the same
binary.

An INVALID_ENUM error is generated if binaryformat is not a supported format
returned in SHADER_BINARY_FORMATS. An INVALID_VALUE error is generated
if the data pointed to by binary does not match the specified binaryformat. Addi-
tional errors corresponding to specific binary formats may be generated as specified
by the extensions defining those formats. An INVALID_OPERATION error is gen-
erated if more than one of the handles refers to the same type of shader (vertex or
fragment).

If ShaderBinary succeeds, the COMPILE_STATUS of the shader is set to TRUE.
If ShaderBinary fails, the old state of shader objects for which the binary was

being loaded will not be restored.
Note that if shader binary interfaces are supported, then an OpenGL ES imple-

mentation may require that an optimized pair of vertex and fragment shader bina-
ries that were compiled together be specified to LinkProgram. Not specifying an
optimized pair may cause LinkProgram to fail.

2.11.3 Program Objects

The shader objects that are to be used by the programmable stages of the GL are
collected together to form a program object. The programs that are executed by
these programmable stages are called executables. All information necessary for
defining an executable is encapsulated in a program object. A program object is
created with the command

uint CreateProgram(void);

Program objects are empty when they are created. A non-zero name that can be
used to reference the program object is returned. If an error occurs, zero will be
returned.

To attach a shader object to a program object, use the command

void AttachShader(uint program, uint shader);

Shader objects may be attached to program objects before source code has been
loaded into the shader object, or before the shader object has been compiled. Mul-
tiple shader objects of the same type may not be attached to a single program object.

OpenGL ES 3.0.3 (December 18, 2013)

2.11. VERTEX SHADERS 48

However, a single shader object may be attached to more than one program object.
The error INVALID_OPERATION is generated if shader is already attached to pro-
gram, or if another shader object of the same type as shader is already attached to
program.

To detach a shader object from a program object, use the command

void DetachShader(uint program, uint shader);

The error INVALID_OPERATION is generated if shader is not attached to program.
If shader has been flagged for deletion and is not attached to any other program
object, it is deleted.

In order to use the shader objects contained in a program object, the program
object must be linked. The command

void LinkProgram(uint program);

will link the program object named program. Each program object has a boolean
status, LINK_STATUS, that is modified as a result of linking. This status can be
queried with GetProgramiv (see section 6.1.12). This status will be set to TRUE if
a valid executable is created, and FALSE otherwise.

Linking can fail for a variety of reasons as specified in the OpenGL ES Shading
Language Specification. Linking will also fail if one or more of the shader objects
attached to program are not compiled successfully, if program does not contain
both a vertex shader and a fragment shader, if the shaders do not use the same
shader language version, or if more active uniform or active sampler variables are
used in program than allowed (see sections 2.11.6 and 2.11.7).

If LinkProgram failed, any information about a previous link of that program
object is lost. Thus, a failed link does not restore the old state of program.

When successfully linked program objects are used for rendering operations,
they may access GL state and interface with other stages of the GL pipeline through
active variables and active interface blocks. The GL provides various commands
allowing applications to enumerate and query properties of active variables and in-
terface blocks for a specified program. If one of these commands is called with a
program for which LinkProgram succeeded, the information recorded when the
program was linked is returned. If one of these commands is called with a program
for which LinkProgram failed, no error is generated unless otherwise noted. Im-
plementations may return information on variables and interface blocks that would
have been active had the program been linked successfully. In cases where the link
failed because the program required too many resources, these commands may
help applications determine why limits were exceeded. However, the information

OpenGL ES 3.0.3 (December 18, 2013)

2.11. VERTEX SHADERS 49

returned in this case is implementation-dependent and may be incomplete. If one
of these commands is called with a program for which LinkProgram had never
been called, no error will be generated unless otherwise noted, and the program
object is considered to have no active variables or interface blocks.

When LinkProgram is called, the GL builds lists of active variables and in-
terface blocks for the program. Each active variable or interface block is assigned
an associated name string, which may be returned as a null-terminated string by
commands such as GetActiveUniform and GetActiveUniformBlockName. The
entries of active resource lists are generated as follows:

• For an active variable declared as a single instance of a basic type, a single
entry will be generated, using the variable name from the shader source.

• For an active variable declared as an array of basic types, a single entry will
be generated, with its name string formed by concatenating the name of the
array and the string "[0]".

• For an active variable declared as a structure, a separate entry will be gener-
ated for each active structure member. The name of each entry is formed by
concatenating the name of the structure, the "." character, and the name of
the structure member. If a structure member to enumerate is itself a structure
or array, these enumeration rules are applied recursively.

• For an active variable declared as an array of an aggregate data type (struc-
tures or arrays), a separate entry will be generated for each active array el-
ement, unless noted immediately below. The name of each entry is formed
by concatenating the name of the array, the "[" character, an integer identi-
fying the element number, and the "]" character. These enumeration rules
are applied recursively, treating each enumerated array element as a separate
active variable.

• For active variables belonging to interface blocks, separate entries will be
generated for each active block member. If the interface block is declared
without an instance name, the name of each entry is formed by recursively
applying these enumeration rules to the block member. If the interface block
is declared with an instance name, the name of each entry is formed by con-
catenating the block name (not the instance name), the "." character, and
the name obtained by recursively applying these enumeration rules to the
block member. If the interface block is declared as an array of instances,
only a single set of entries will be generated for the block, regardless of the
number of block instances. The names of such entries will include the block
name, but will not include either an instance name or an instance number.

OpenGL ES 3.0.3 (December 18, 2013)

2.11. VERTEX SHADERS 50

• For an active interface block not declared as an array of block instances, a
single entry will be generated, using the block name from the shader source.

• For an active interface block declared as an array of instances, separate en-
tries will be generated for each active instance. The name of the instance
is formed by concatenating the block name, the "[" character, an integer
identifying the instance number, and the "]" character.

An active variable may be declared as a member of an interface block declared
as an array of instances. While such a block member has a separate value for each
block instance, it is treated as a single variable. Such variables are considered active
if the block layout is one of shared or std140, or if the variable is referenced in
any instance of the block, unless the compiler and linker determine that all such
references have no observable effect.

Commands such as GetUniformIndices and GetUniformBlockIndex are
used to determine the position of variables or interface blocks identified by null-
terminated strings in the list of active variables or interface blocks of a given type.
If a string provided to such commands exactly matches a name string enumerated
according to the rules above, it is considered to match the corresponding variable
or interface block. Additionally, if the string provided is the name of an array vari-
able and would exactly match the enumerated name of the array if "[0]" were
appended, it is considered to match that array. Any other string is considered not
be the name of an active variable or interface block of the given type.

Commands such as GetAttribLocation, GetUniformLocation, and GetFrag-
DataLocation are used to determine resources associated with active variables
identified by null-terminated strings. If a string provided to such commands exactly
matches a name string enumerated according to the rules above, it is considered to
match the corresponding variable. A string is considered to match an active array
variable (enumerated with a "[0]" suffix):

• if it identifies the base name of the array and would exactly match the enu-
merated name if the suffix "[0]" were appended; or

• if it identifies an active element of the array, where the string ends with the
concatenation of the "[" character, an integer identifying the array element,
and the "]" character, the integer is less than the number of active elements
of the array variable, and would exactly match the enumerated name of the
array if the decimal integer were replaced with zero.

Any other string is considered not to identify an active variable. If the string
specifies an element of an enumerated array variable, it identifies the resources

OpenGL ES 3.0.3 (December 18, 2013)

2.11. VERTEX SHADERS 51

associated with that element; if it specifies the base name of an array, it identifies
the resources associated with the first element of the array.

When an integer array element or block instance number is part of a name
string enumerated by or passed to the GL, it must be specified in decimal form
without a "+" or "-" sign or any extra leading zeroes. Additionally, a valid name
may not include white space anywhere in the string.

Each program object has an information log that is overwritten as a result of a
link operation. This information log can be queried with GetProgramInfoLog to
obtain more information about the link operation or the validation information (see
section 6.1.12).

If a program has been successfully linked by LinkProgram or Program-
Binary (see section 2.11.4), it can be made part of the current rendering state with
the command

void UseProgram(uint program);

If program is non-zero, this command will make program the current program ob-
ject. This will install executable code as part of the current rendering state for
the vertex and fragment shaders present when the program was last successfully
linked. If UseProgram is called with program set to zero, then there is no cur-
rent program object, and the results of vertex and fragment shader execution are
undefined. However, this is not an error. If program has not been linked, or was
last linked unsuccessfully, the error INVALID_OPERATION is generated and the
current rendering state is not modified.

While a program object is in use, applications are free to modify attached
shader objects, compile attached shader objects, attach additional shader objects,
and detach shader objects. These operations do not affect the link status or exe-
cutable code of the program object.

If LinkProgram or ProgramBinary successfully re-links a program object
that was already in use as a result of a previous call to UseProgram, then the
generated executable code will be installed as part of the current rendering state.

If that program object that is in use is re-linked unsuccessfully, the link status
will be set to FALSE, but existing executable and associated state will remain part
of the current rendering state until a subsequent call to UseProgram removes it
from use. After such a program is removed from use, it can not be made part of the
current rendering state until it is successfully re-linked.

To set a program object parameter, call

void ProgramParameteri(uint program, enum pname,
int value);

OpenGL ES 3.0.3 (December 18, 2013)

2.11. VERTEX SHADERS 52

pname identifies which parameter to set for program. value holds the value
being set. Legal values for pname and value are discussed in section 2.11.4.

Program objects can be deleted with the command

void DeleteProgram(uint program);

If program is not the current program for any GL context, it is deleted immediately.
Otherwise, program is flagged for deletion and will be deleted when it is no longer
the current program for any context. When a program object is deleted, all shader
objects attached to it are detached. DeleteProgram will silently ignore the value
zero.

2.11.4 Program Binaries

The command

void GetProgramBinary(uint program, sizei bufSize,
sizei *length, enum *binaryFormat, void *binary);

returns a binary representation of the program object’s compiled and linked exe-
cutable source, henceforth referred to as its program binary. The maximum number
of bytes that may be written into binary is specified by bufSize. If bufSize is less
than the number of bytes in the program binary, then an INVALID_OPERATION

error is generated. Otherwise, the actual number of bytes written into binary is
returned in length and its format is returned in binaryFormat. If length is NULL,
then no length is returned.

The number of bytes in the program binary can be queried by calling Get-
Programiv with pname PROGRAM_BINARY_LENGTH. When a program object’s
LINK_STATUS is FALSE, its program binary length is zero, and a call to GetPro-
gramBinary will generate an INVALID_OPERATION error.

The command

void ProgramBinary(uint program, enum binaryFormat,
const void *binary, sizei length);

loads a program object with a program binary previously returned from GetPro-
gramBinary. This is useful for future instantiations of the GL to avoid online
compilation, while still using OpenGL ES Shading Language source shaders as
a portable initial format. binaryFormat and binary must be those returned by a
previous call to GetProgramBinary, and length must be the length of the pro-
gram binary as returned by GetProgramBinary or GetProgramiv with pname

OpenGL ES 3.0.3 (December 18, 2013)

2.11. VERTEX SHADERS 53

PROGRAM_BINARY_LENGTH. Loading the program binary will fail, setting the
LINK_STATUS of program to FALSE, if these conditions are not met.

Loading a program binary may also fail if the implementation determines that
there has been a change in hardware or software configuration from when the pro-
gram binary was produced such as having been compiled with an incompatible or
outdated version of the compiler. In this case the application should fall back to
providing the original OpenGL ES Shading Language source shaders, and perhaps
again retrieve the program binary for future use.

A program object’s program binary is replaced by calls to LinkProgram or
ProgramBinary. Where linking success or failure is concerned, ProgramBinary
can be considered to perform an implicit linking operation. LinkProgram and
ProgramBinary both set the program object’s LINK_STATUS to TRUE or FALSE,
as queried with GetProgramiv, to reflect success or failure and update the infor-
mation log, queried with GetProgramInfoLog, to provide details about warnings
or errors.

A successful call to ProgramBinary will reset all uniform variables to their
initial values, FALSE for booleans and zero for all others.

Additionally, all vertex shader input and fragment shader output assignments
that were in effect when the program was linked before saving are restored when
ProgramBinary is called successfully.

If ProgramBinary fails to load a binary, no error is generated, but any infor-
mation about a previous link or load of that program object is lost. Thus, a failed
load does not restore the old state of program. The failure does not alter other
program state not affected by linking such as the attached shaders, and the vertex
attribute location bindings as set by BindAttribLocation.

OpenGL ES defines no specific binary formats. Queries of values NUM_-

PROGRAM_BINARY_FORMATS and PROGRAM_BINARY_FORMATS return the num-
ber of program binary formats and the list of program binary format values sup-
ported by an implementation. The binaryFormat returned by GetProgramBinary
must be present in this list.

Any program binary retrieved using GetProgramBinary and submitted using
ProgramBinary under the same configuration must be successful. Any programs
loaded successfully by ProgramBinary must be run properly with any legal GL
state vector. If a GL implementation needs to recompile or otherwise modify pro-
gram executables based on GL state outside the program, GetProgramBinary is
required to save enough information to allow such recompilation. To indicate that
a program binary is likely to be retrieved later, ProgramParameteri should be
called with pname set to PROGRAM_BINARY_RETRIEVABLE_HINT and value set
to TRUE. This setting will not be in effect until the next time LinkProgram or
ProgramBinary has been called successfully. Additionally, GetProgramBinary

OpenGL ES 3.0.3 (December 18, 2013)

2.11. VERTEX SHADERS 54

calls may be deferred until after using the program with all non-program state vec-
tors that it is likely to encounter. Such deferral may allow implementations to save
additional information in the program binary that would minimize recompilation
in future uses of the program binary.

2.11.5 Vertex Attributes

Vertex shaders can define named attribute variables, which are bound to the generic
vertex attributes that are set by VertexAttrib*. This binding can be specified by
the application before the program is linked, either through BindAttribLocation
(described below) or explicitly within the shader text, or automatically assigned by
the GL when the program is linked.

When an attribute variable declared as a float, vec2, vec3 or vec4 is bound
to a generic attribute index i, its value(s) are taken from the x, (x, y), (x, y, z), or
(x, y, z, w) components, respectively, of the generic attribute i. When an attribute
variable is declared as a mat2, mat3x2 or mat4x2, its matrix columns are taken
from the (x, y) components of generic attributes i and i+1 (mat2), from attributes
i through i + 2 (mat3x2), or from attributes i through i + 3 (mat4x2). When an
attribute variable is declared as a mat2x3, mat3 or mat4x3, its matrix columns
are taken from the (x, y, z) components of generic attributes i and i+ 1 (mat2x3),
from attributes i through i+2 (mat3), or from attributes i through i+3 (mat4x3).
When an attribute variable is declared as a mat2x4, mat3x4 or mat4, its matrix
columns are taken from the (x, y, z, w) components of generic attributes i and i+1
(mat2x4), from attributes i through i + 2 (mat3x4), or from attributes i through
i+ 3 (mat4).

A generic attribute variable is considered active if it is determined by the com-
piler and linker that the attribute may be accessed when the shader is executed. At-
tribute variables that are declared in a vertex shader but never used will not count
as active vertex attributes. In cases where the compiler and linker cannot make a
conclusive determination, an attribute will be considered active. Special built-in
inputs gl_VertexID and gl_InstanceID are also considered active vertex at-
tributes. A program object will fail to link if the number of active vertex attributes
exceeds MAX_VERTEX_ATTRIBS, unless device-dependent optimizations are able
to make the program fit within available hardware resources.

When a program is linked, a list of active vertex attribute variables is built
as described in section 2.11.3. The variables in this list are assigned consecutive
indices, beginning with zero. The total number of variables in the list may be
queried by calling GetProgramiv (section 6.1.12) with a pname of ACTIVE_-
ATTRIBUTES. The command

OpenGL ES 3.0.3 (December 18, 2013)

2.11. VERTEX SHADERS 55

void GetActiveAttrib(uint program, uint index,
sizei bufSize, sizei *length, int *size, enum *type,
char *name);

can be used to determine the properties of the active vertex attribute with an in-
dex of index in the list of active attribute variables for program object program.
If index is greater than or equal to the value of ACTIVE_ATTRIBUTES, the error
INVALID_VALUE is generated. Note that index has no relation to the generic at-
tribute that the corresponding variable may be bound to.

The name of the selected attribute is returned as a null-terminated string in
name. The actual number of characters written into name, excluding the null termi-
nator, is returned in length. If length is NULL, no length is returned. The maximum
number of characters that may be written into name, including the null termina-
tor, is specified by bufSize. The returned attribute name must be the name of a
generic attribute. The length of the longest attribute name in program is given by
ACTIVE_ATTRIBUTE_MAX_LENGTH, which can be queried with GetProgramiv
(see section 6.1.12).

For the selected attribute, the type of the attribute is returned into type.
The size of the attribute is returned into size. The value in size is in units of
the type returned in type. The type returned can be any of FLOAT, FLOAT_-
VEC2, FLOAT_VEC3, FLOAT_VEC4, FLOAT_MAT2, FLOAT_MAT3, FLOAT_MAT4,
FLOAT_MAT2x3, FLOAT_MAT2x4, FLOAT_MAT3x2, FLOAT_MAT3x4, FLOAT_-
MAT4x2, FLOAT_MAT4x3, INT, INT_VEC2, INT_VEC3, INT_VEC4, UNSIGNED_-
INT, UNSIGNED_INT_VEC2, UNSIGNED_INT_VEC3, or UNSIGNED_INT_VEC4.

If an error occurred, the return parameters length, size, type and name will be
unmodified.

After a program object has been linked successfully, the bindings of attribute
variable names to indices can be queried. The command

int GetAttribLocation(uint program, const char *name);

returns the generic attribute index that the attribute variable named name was bound
to when the program object named program was last linked. name must be a null-
terminated string. If name is active and is an attribute matrix, GetAttribLocation
returns the index of the first column of that matrix. If program has not been linked,
or was last linked unsuccessfully, the error INVALID_OPERATION is generated. If
name is not an active attribute, or if an error occurs, -1 will be returned.

The binding of an attribute variable to a generic attribute index can also be
specified explicitly. The command

void BindAttribLocation(uint program, uint index, const
char *name);

OpenGL ES 3.0.3 (December 18, 2013)

2.11. VERTEX SHADERS 56

specifies that the attribute variable named name in program program should be
bound to generic vertex attribute index when the program is next linked. If name
was bound previously, its assigned binding is replaced with index. name must be a
null-terminated string. The error INVALID_VALUE is generated if index is equal or
greater than MAX_VERTEX_ATTRIBS. BindAttribLocation has no effect until the
program is linked. In particular, it doesn’t modify the bindings of active attribute
variables in a program that has already been linked.

The error INVALID_OPERATION is generated if name starts with the reserved
"gl_" prefix.

When a program is linked, any active attributes without a binding specified
either through BindAttribLocation or explicitly set within the shader text will au-
tomatically be bound to vertex attributes by the GL. Such bindings can be queried
using the command GetAttribLocation. LinkProgram will fail if the assigned
binding of an active attribute variable would cause the GL to reference a non-
existent generic attribute (one greater than or equal to the value of MAX_VERTEX_-
ATTRIBS). LinkProgram will fail if the attribute bindings specified either through
BindAttribLocation or explicitly set within the shader text do not leave enough
space to assign a location for an active matrix attribute, which requires multiple
contiguous generic attributes. If an active attribute has a binding explicitly set
within the shader text and a different binding assigned by BindAttribLocation,
the assignment in the shader text is used.

BindAttribLocation may be issued before any vertex shader objects are at-
tached to a program object. Hence it is allowed to bind any name to an index,
including a name that is never used as an attribute in any vertex shader object. As-
signed bindings for attribute variables that do not exist or are not active are ignored.

The values of generic attributes sent to generic attribute index i are part of
current state. If a new program object has been made active, then these values
will be tracked by the GL in such a way that the same values will be observed by
attributes in the new program object that are also bound to index i.

Binding more than one attribute name to the same location is referred to
as aliasing, and is not permitted in OpenGL ES Shading Language 3.00 vertex
shaders. LinkProgram will fail when this condition exists. However, aliasing is
possible in OpenGL ES Shading Language 1.00 vertex shaders. This will only
work if only one of the aliased attributes is active in the executable program, or if
no path through the shader consumes more than one attribute of a set of attributes
aliased to the same location. A link error can occur if the linker determines that
every path through the shader consumes multiple aliased attributes, but implemen-
tations are not required to generate an error in this case. The compiler and linker
are allowed to assume that no aliasing is done, and may employ optimizations that
work only in the absence of aliasing.

OpenGL ES 3.0.3 (December 18, 2013)

2.11. VERTEX SHADERS 57

2.11.6 Uniform Variables

Shaders can declare named uniform variables, as described in the OpenGL ES
Shading Language Specification. Values for these uniforms are constant over a
primitive, and typically they are constant across many primitives. A uniform is
considered active if it is determined by the compiler and linker that the uniform
will actually be accessed when the executable code is executed. In cases where the
compiler and linker cannot make a conclusive determination, the uniform will be
considered active.

Sets of uniforms can be grouped into uniform blocks. The values of each uni-
form in such a set are extracted from the data store of a buffer object correspond-
ing to the uniform block. OpenGL ES Shading Language syntax serves to delimit
named blocks of uniforms that can be backed by a buffer object. These are referred
to as named uniform blocks, and are assigned a uniform block index. Uniforms that
are declared outside of a named uniform block are said to be part of the default
uniform block. Default uniform blocks have no name or uniform block index. Uni-
forms in the default uniform block are program object-specific state. They retain
their values once loaded, and their values are restored whenever a program object
is used, as long as the program object has not been re-linked. Like uniforms, uni-
form blocks can be active or inactive. Active uniform blocks are those that contain
active uniforms after a program has been compiled and linked.

All members of a named uniform block declared with a shared or std140
layout qualifier are considered active, even if they are not referenced in any shader
in the program. The uniform block itself is also considered active, even if no
member of the block is referenced.

The amount of storage available for uniform variables in the default uniform
block accessed by a vertex shader is specified by the value of the implementation-
dependent constant MAX_VERTEX_UNIFORM_COMPONENTS. The implementation-
dependent constant MAX_VERTEX_UNIFORM_VECTORS has a value equal to the
value of MAX_VERTEX_UNIFORM_COMPONENTS divided by four. The total amount
of combined storage available for uniform variables in all uniform blocks accessed
by a vertex shader (including the default uniform block) is specified by the value
of the implementation-dependent constant MAX_COMBINED_VERTEX_UNIFORM_-
COMPONENTS. These values represent the numbers of individual floating-point, in-
teger, or boolean values that can be held in uniform variable storage for a vertex
shader. A link error is generated if an attempt is made to utilize more than the space
available for vertex shader uniform variables.

When a program is successfully linked, all active uniforms belonging to the
program object’s default uniform block are initialized: to 0.0 for floating-point uni-
forms, to 0 for integer uniforms, and to FALSE for boolean uniforms. A successful

OpenGL ES 3.0.3 (December 18, 2013)

2.11. VERTEX SHADERS 58

link will also generate a location for each active uniform in the default uniform
block. The values of active uniforms in the default uniform block can be changed
using this location and the appropriate Uniform* command (see below). These
locations are invalidated and new ones assigned after each successful re-link.

Similarly, when a program is successfully linked, all active uniforms belong-
ing to the program’s named uniform blocks are assigned offsets (and strides for
array and matrix type uniforms) within the uniform block according to layout rules
described below. Uniform buffer objects provide the storage for named uniform
blocks, so the values of active uniforms in named uniform blocks may be changed
by modifying the contents of the buffer object using commands such as Buffer-
Data, BufferSubData, MapBufferRange, and UnmapBuffer. Uniforms in a
named uniform block are not assigned a location and may not be modified using the
Uniform* commands. The offsets and strides of all active uniforms belonging to
named uniform blocks of a program object are invalidated and new ones assigned
after each successful re-link.

To find the location within a program object of an active uniform variable as-
sociated with the default uniform block, use the command

int GetUniformLocation(uint program, const
char *name);

This command will return the location of uniform variable name if it is as-
sociated with the default uniform block. name must be a null-terminated string,
without white space. The value -1 will be returned if name does not correspond to
an active uniform variable name in program, or if name is associated with a named
uniform block.

If program has not been linked, or was last linked unsuccessfully, the error
INVALID_OPERATION is generated. After a program is linked, the location of a
uniform variable will not change, unless the program is re-linked.

Locations for sequential array indices are not required to be sequential. The
location for "a[1]" may or may not be equal to the location for "a[0]" + 1.
Furthermore, since unused elements at the end of uniform arrays may be trimmed
(see the discussion of the size parameter of GetActiveUniform), the location of
the i+ 1’th array element may not be valid even if the location of the i’th element
is valid. As a direct consequence, the value of the location of "a[0]" + 1 may
refer to a different uniform entirely. Applications that wish to set individual array
elements should query the locations of each element separately.

When a program is linked, a list of active uniform blocks is built as described
in section 2.11.3. The blocks in this list are assigned consecutive indices, begin-
ning with zero. The total number of blocks in the list may be queried by calling

OpenGL ES 3.0.3 (December 18, 2013)

2.11. VERTEX SHADERS 59

GetProgramiv (section 6.1.12) with a pname of ACTIVE_UNIFORM_BLOCKS. The
command

uint GetUniformBlockIndex(uint program, const
char *uniformBlockName);

can be used to determine the index assigned to an active uniform block associated
with the null-terminated string uniformBlockName in program object program. If
uniformBlockName does not match an active uniform block or if an error occurred,
INVALID_INDEX is returned.

The command

void GetActiveUniformBlockName(uint program,
uint uniformBlockIndex, sizei bufSize, sizei *length,
char *uniformBlockName);

can be used to determine the name of the active uniform block with an index of
uniformBlockIndex in the list of active uniform blocks for program object program.
If uniformBlockIndex is greater then or equal to the value of ACTIVE_UNIFORM_-
BLOCKS, the error INVALID_VALUE is generated.

The string name of the uniform block identified by uniformBlockIndex is re-
turned into uniformBlockName. The name is null-terminated. The actual number
of characters written into uniformBlockName, excluding the null terminator, is re-
turned in length. If length is NULL, no length is returned.

bufSize contains the maximum number of characters (including the null termi-
nator) that will be written back to uniformBlockName.

If an error occurs, nothing will be written to uniformBlockName or length.
The command

void GetActiveUniformBlockiv(uint program,
uint uniformBlockIndex, enum pname, int *params);

can be used to determine properties of the active uniform block with an index of
uniformBlockIndex in the list of active uniform blocks for program object program.
If uniformBlockIndex is greater than or equal to the value of ACTIVE_UNIFORM_-
BLOCKS, the error INVALID_VALUE is generated.

If no error occurs, the uniform block parameter(s) specified by pname are re-
turned in params. Otherwise, nothing will be written to params.

If pname is UNIFORM_BLOCK_BINDING, then the index of the uniform buffer
binding point associated with uniformBlockIndex is returned. If an index of the uni-
form buffer binding points array hasn’t been previously associated with the speci-
fied uniform block index, zero is returned.

OpenGL ES 3.0.3 (December 18, 2013)

2.11. VERTEX SHADERS 60

If pname is UNIFORM_BLOCK_DATA_SIZE, then the implementation-
dependent minimum total buffer object size, in basic machine units, required to
hold all active uniforms in the uniform block identified by uniformBlockIndex is
returned. It is neither guaranteed nor expected that a given implementation will
arrange uniform values as tightly packed in a buffer object. The exception to this
is the std140 uniform block layout, which guarantees specific packing behavior
and does not require the application to query for offsets and strides. In this case the
minimum size may still be queried, even though it is determined in advance based
only on the uniform block declaration (see “Standard Uniform Block Layout” in
section 2.11.6).

The total amount of buffer object storage available for any given uniform block
is subject to an implementation-dependent limit. The maximum amount of avail-
able space, in basic machine units, can be queried by calling GetInteger64v with
the constant MAX_UNIFORM_BLOCK_SIZE. If the amount of storage required for a
uniform block exceeds this limit, a program may fail to link.

If pname is UNIFORM_BLOCK_NAME_LENGTH, then the total length (includ-
ing the null terminator) of the name of the uniform block identified by uniform-
BlockIndex is returned.

If pname is UNIFORM_BLOCK_ACTIVE_UNIFORMS, then the number of active
uniforms in the uniform block identified by uniformBlockIndex is returned.

If pname is UNIFORM_BLOCK_ACTIVE_UNIFORM_INDICES, then a list of the
active uniform indices for the uniform block identified by uniformBlockIndex is
returned. The number of elements that will be written to params is the value of
UNIFORM_BLOCK_ACTIVE_UNIFORMS for uniformBlockIndex.

If pname is UNIFORM_BLOCK_REFERENCED_BY_VERTEX_SHADER or
UNIFORM_BLOCK_REFERENCED_BY_FRAGMENT_SHADER, then a boolean value
indicating whether the uniform block identified by uniformBlockIndex is refer-
enced by the vertex or fragment programming stages of program, respectively, is
returned.

When a program is linked, a list of active uniform variables is built as de-
scribed in section 2.11.3. This list includes uniforms in named uniform blocks,
default block uniforms declared in shader code, as well as built-in uniforms used
in shader code. The variables in this list are assigned consecutive indices, begin-
ning with zero. The total number of variables in the list may be queried by calling
GetProgramiv (section 6.1.12) with a pname of ACTIVE_UNIFORMS. The com-
mand

void GetUniformIndices(uint program,
sizei uniformCount, const char * const
*uniformNames, uint *uniformIndices);

OpenGL ES 3.0.3 (December 18, 2013)

2.11. VERTEX SHADERS 61

can be used to determine the indices assigned to a list of active uniforms in program
object program. uniformCount indicates both the number of elements in the array
of null-terminated name strings uniformNames and the number of indices that may
be written to uniformIndices. For each name string in uniformNames, the index
assigned to the active uniform of that name will be written to the corresponding
element of uniformIndices. If a string in uniformNames does not match the name of
an active uniform, the value INVALID_INDEX will be written to the corresponding
element of uniformIndices. If an error occurs, nothing is written to uniformIndices.

The commands

void GetActiveUniform(uint program, uint uniformIndex,
sizei bufSize, sizei *length, int *size, enum *type,
char *name);

and

void GetActiveUniformsiv(uint program,
sizei uniformCount, const uint *uniformIndices,
enum pname, int *params);

can be used to determine properties of active uniforms in program object program.
For GetActiveUniform, index specifies the index of a single uniform in the list
of active uniform blocks for program. For GetActiveUniformsiv, uniformIndices
specifies an array of uniformCount indices in this list. If index or any value in
uniformIndices is greater than or equal to the value of ACTIVE_UNIFORMS, the
error INVALID_VALUE is generated.

For the selected uniform, GetActiveUniform returns the uniform name as a
null-terminated string in name. The actual number of characters written into name,
excluding the null terminator, is returned in length. If length is NULL, no length
is returned. The maximum number of characters that may be written into name,
including the null terminator, is specified by bufSize. The returned uniform name
can be the name of built-in uniform state as well. The complete list of built-in
uniform state is described in section 7.5 of the OpenGL ES Shading Language
Specification. The length of the longest uniform name in program is given by
ACTIVE_UNIFORM_MAX_LENGTH.

Each active uniform variable is broken down into one or more strings using the
"." (dot) and "[]" operators, if necessary, to the point that it is legal to pass each
string back into GetUniformIndices.

If the active uniform is an array, the uniform name returned in name will always
be the name of the uniform array appended with "[0]".

OpenGL ES 3.0.3 (December 18, 2013)

2.11. VERTEX SHADERS 62

For the selected uniform, GetActiveUniform returns the type of the uniform
into type and the size of the uniform into size. The value in size is in units of the
uniform type, which can be any of the type name tokens in table 2.10, correspond-
ing to OpenGL ES Shading Language type keywords also shown in that table.

If one or more elements of an array are active, GetActiveUniform will return
the name of the array in name, subject to the restrictions listed above. The type of
the array is returned in type. The size parameter contains the highest array element
index used, plus one. The compiler or linker determines the highest index used.
There will be only one active uniform reported by the GL per uniform array.

If an error occurs, nothing is written to length, size, type, or name.

Type Name Token Keyword
FLOAT float

FLOAT_VEC2 vec2

FLOAT_VEC3 vec3

FLOAT_VEC4 vec4

INT int

INT_VEC2 ivec2

INT_VEC3 ivec3

INT_VEC4 ivec4

UNSIGNED_INT uint

UNSIGNED_INT_VEC2 uvec2

UNSIGNED_INT_VEC3 uvec3

UNSIGNED_INT_VEC4 uvec4

BOOL bool

BOOL_VEC2 bvec2

BOOL_VEC3 bvec3

BOOL_VEC4 bvec4

FLOAT_MAT2 mat2

FLOAT_MAT3 mat3

FLOAT_MAT4 mat4

FLOAT_MAT2x3 mat2x3

FLOAT_MAT2x4 mat2x4

FLOAT_MAT3x2 mat3x2

FLOAT_MAT3x4 mat3x4

FLOAT_MAT4x2 mat4x2

FLOAT_MAT4x3 mat4x3

(Continued on next page)

OpenGL ES 3.0.3 (December 18, 2013)

2.11. VERTEX SHADERS 63

OpenGL ES Shading Language Type Tokens (continued)
Type Name Token Keyword
SAMPLER_2D sampler2D

SAMPLER_3D sampler3D

SAMPLER_CUBE samplerCube

SAMPLER_2D_SHADOW sampler2DShadow

SAMPLER_2D_ARRAY sampler2DArray

SAMPLER_2D_ARRAY_SHADOW sampler2DArrayShadow

SAMPLER_CUBE_SHADOW samplerCubeShadow

INT_SAMPLER_2D isampler2D

INT_SAMPLER_3D isampler3D

INT_SAMPLER_CUBE isamplerCube

INT_SAMPLER_2D_ARRAY isampler2DArray

UNSIGNED_INT_SAMPLER_2D usampler2D

UNSIGNED_INT_SAMPLER_3D usampler3D

UNSIGNED_INT_SAMPLER_CUBE usamplerCube

UNSIGNED_INT_SAMPLER_2D_ARRAY usampler2DArray

Table 2.10: OpenGL ES Shading Language type tokens re-
turned by GetActiveUniform and GetActiveUniformsiv, and cor-
responding shading language keywords declaring each such type.

For GetActiveUniformsiv, uniformCount indicates both the number of ele-
ments in the array of indices uniformIndices and the number of parameters written
to params upon successful return. pname identifies a property of each uniform in
uniformIndices that should be written into the corresponding element of params.
If an error occurs, nothing will be written to params.

If pname is UNIFORM_TYPE, then an array identifying the types of the uniforms
specified by the corresponding array of uniformIndices is returned. The returned
types can be any of the values in table 2.10.

If pname is UNIFORM_SIZE, then an array identifying the size of the uniforms
specified by the corresponding array of uniformIndices is returned. The sizes re-
turned are in units of the type returned by a query of UNIFORM_TYPE. For active
uniforms that are arrays, the size is the number of active elements in the array; for
all other uniforms, the size is one.

If pname is UNIFORM_NAME_LENGTH, then an array identifying the length,
including the null terminator, of the uniform name strings specified by the corre-
sponding array of uniformIndices is returned.

OpenGL ES 3.0.3 (December 18, 2013)

2.11. VERTEX SHADERS 64

If pname is UNIFORM_BLOCK_INDEX, then an array identifying the uniform
block index of each of the uniforms specified by the corresponding array of unifor-
mIndices is returned. The index of a uniform associated with the default uniform
block is -1. The index of a uniform that is a member of an interface block declared
as an array of block instances is the index of the first block of the array.

If pname is UNIFORM_OFFSET, then an array of uniform buffer offsets is re-
turned. For uniforms in a named uniform block, the returned value will be its offset,
in basic machine units, relative to the beginning of the uniform block in the buffer
object data store. For uniforms in the default uniform block, -1 will be returned.
For a uniform that is a member of an interface block declared as an array of block
instances, the uniform will have the same offset in all block instances.

If pname is UNIFORM_ARRAY_STRIDE, then an array identifying the stride
between elements, in basic machine units, of each of the uniforms specified by
the corresponding array of uniformIndices is returned. The stride of a uniform
associated with the default uniform block is -1. Note that this information only
makes sense for uniforms that are arrays. For uniforms that are not arrays, but are
declared in a named uniform block, an array stride of zero is returned.

If pname is UNIFORM_MATRIX_STRIDE, then an array identifying the stride
between columns of a column-major matrix or rows of a row-major matrix, in ba-
sic machine units, of each of the uniforms specified by the corresponding array of
uniformIndices is returned. The matrix stride of a uniform associated with the de-
fault uniform block is -1. Note that this information only makes sense for uniforms
that are matrices. For uniforms that are not matrices, but are declared in a named
uniform block, a matrix stride of zero is returned.

If pname is UNIFORM_IS_ROW_MAJOR, then an array identifying whether each
of the uniforms specified by the corresponding array of uniformIndices is a row-
major matrix or not is returned. A value of one indicates a row-major matrix, and
a value of zero indicates a column-major matrix, a matrix in the default uniform
block, or a non-matrix.

Loading Uniform Variables In The Default Uniform Block

To load values into the uniform variables of the default uniform block of the pro-
gram object that is currently in use, use the commands

void Uniform{1234}{if}(int location, T value);
void Uniform{1234}{if}v(int location, sizei count, const

T value);
void Uniform{1234}ui(int location, T value);

OpenGL ES 3.0.3 (December 18, 2013)

2.11. VERTEX SHADERS 65

void Uniform{1234}uiv(int location, sizei count, const
T value);

void UniformMatrix{234}fv(int location, sizei count,
boolean transpose, const float *value);

void UniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3}fv(
int location, sizei count, boolean transpose, const
float *value);

The given values are loaded into the default uniform block uniform variable loca-
tion identified by location.

The Uniform*f{v} commands will load count sets of one to four floating-point
values into a uniform location defined as a float, a floating-point vector, an array of
floats, or an array of floating-point vectors.

The Uniform*i{v} commands will load count sets of one to four integer val-
ues into a uniform location defined as a sampler, an integer, an integer vector, an
array of samplers, an array of integers, or an array of integer vectors. Only the
Uniform1i{v} commands can be used to load sampler values (see below).

The Uniform*ui{v} commands will load count sets of one to four unsigned
integer values into a uniform location defined as a unsigned integer, an unsigned
integer vector, an array of unsigned integers or an array of unsigned integer vectors.

The UniformMatrix{234}fv commands will load count 2× 2, 3× 3, or 4× 4
matrices (corresponding to 2, 3, or 4 in the command name) of floating-point values
into a uniform location defined as a matrix or an array of matrices. If transpose
is FALSE, the matrix is specified in column major order, otherwise in row major
order.

The UniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3}fv commands will load count
2×3, 3×2, 2×4, 4×2, 3×4, or 4×3 matrices (corresponding to the numbers in the
command name) of floating-point values into a uniform location defined as a matrix
or an array of matrices. The first number in the command name is the number of
columns; the second is the number of rows. For example, UniformMatrix2x4fv
is used to load a matrix consisting of two columns and four rows. If transpose
is FALSE, the matrix is specified in column major order, otherwise in row major
order.

When loading values for a uniform declared as a boolean, a boolean vector,
an array of booleans, or an array of boolean vectors, the Uniform*i{v}, Uni-
form*ui{v}, and Uniform*f{v} set of commands can be used to load boolean
values. Type conversion is done by the GL. The uniform is set to FALSE if the
input value is 0 or 0.0f, and set to TRUE otherwise. The Uniform* command used
must match the size of the uniform, as declared in the shader. For example, to
load a uniform declared as a bvec2, any of the Uniform2{if ui}* commands may

OpenGL ES 3.0.3 (December 18, 2013)

2.11. VERTEX SHADERS 66

be used. An INVALID_OPERATION error will be generated if an attempt is made
to use a non-matching Uniform* command. In this example using Uniform1iv
would generate an error.

For all other uniform types the Uniform* command used must match the
size and type of the uniform, as declared in the shader. No type conversions are
done. For example, to load a uniform declared as a vec4, Uniform4f{v} must be
used. To load a 3 × 3 matrix, UniformMatrix3fv must be used. An INVALID_-

OPERATION error will be generated if an attempt is made to use a non-matching
Uniform* command. In this example, using Uniform4i{v} would generate an
error.

When loading N elements starting at an arbitrary position k in a uniform de-
clared as an array, elements k through k + N − 1 in the array will be replaced
with the new values. Values for any array element that exceeds the highest array
element index used, as reported by GetActiveUniform, will be ignored by the GL.

If the value of location is -1, the Uniform* commands will silently ignore the
data passed in, and the current uniform values will not be changed.

If any of the following conditions occur, an INVALID_OPERATION error is
generated by the Uniform* commands, and no uniform values are changed:

• if the size indicated in the name of the Uniform* command used does not
match the size of the uniform declared in the shader,

• if the uniform declared in the shader is not of type boolean and the type
indicated in the name of the Uniform* command used does not match the
type of the uniform,

• if count is greater than one, and the uniform declared in the shader is not an
array variable,

• if no variable with a location of location exists in the program object cur-
rently in use and location is not -1, or

• if there is no program object currently in use.

Uniform Blocks

The values of uniforms arranged in named uniform blocks are extracted from buffer
object storage. The mechanisms for placing individual uniforms in a buffer object
and connecting a uniform block to an individual buffer object are described below.

There is a set of implementation-dependent maximums for the number of ac-
tive uniform blocks used by each shader (vertex and fragment). If the number of
uniform blocks used by any shader in the program exceeds its corresponding limit,

OpenGL ES 3.0.3 (December 18, 2013)

2.11. VERTEX SHADERS 67

the program will fail to link. The limits for vertex and fragment shaders can be
obtained by calling GetIntegerv with pname values of MAX_VERTEX_UNIFORM_-
BLOCKS and MAX_FRAGMENT_UNIFORM_BLOCKS, respectively.

Additionally, there is an implementation-dependent limit on the sum of the
number of active uniform blocks used by each shader of a program. If a uniform
block is used by multiple shaders, each such use counts separately against this
combined limit. The combined uniform block use limit can be obtained by calling
GetIntegerv with a pname of MAX_COMBINED_UNIFORM_BLOCKS.

When a named uniform block is declared by multiple shaders in a program, it
must be declared identically in each shader. The uniforms within the block must
be declared with the same names and types, and in the same order. If a program
contains multiple shaders with different declarations for the same named uniform
block, the program will fail to link.

Uniform Buffer Object Storage

When stored in buffer objects associated with uniform blocks, uniforms are repre-
sented in memory as follows:

• Members of type bool are extracted from a buffer object by reading a single
uint-typed value at the specified offset. All non-zero values correspond to
true, and zero corresponds to false.

• Members of type int are extracted from a buffer object by reading a single
int-typed value at the specified offset.

• Members of type uint are extracted from a buffer object by reading a single
uint-typed value at the specified offset.

• Members of type float are extracted from a buffer object by reading a
single float-typed value at the specified offset.

• Vectors with N elements with basic data types of bool, int, uint, or
float are extracted as N values in consecutive memory locations begin-
ning at the specified offset, with components stored in order with the first
(X) component at the lowest offset. The GL data type used for component
extraction is derived according to the rules for scalar members above.

• Column-major matrices with C columns and R rows (using the type
matCxR, or simply matC if C = R) are treated as an array of C floating-
point column vectors, each consisting of R components. The column vec-
tors will be stored in order, with column zero at the lowest offset. The dif-

OpenGL ES 3.0.3 (December 18, 2013)

2.11. VERTEX SHADERS 68

ference in offsets between consecutive columns of the matrix will be re-
ferred to as the column stride, and is constant across the matrix. The column
stride, UNIFORM_MATRIX_STRIDE, is an implementation-dependent value
and may be queried after a program is linked.

• Row-major matrices with C columns and R rows (using the type matCxR,
or simply matC if C = R) are treated as an array of R floating-point row
vectors, each consisting of C components. The row vectors will be stored in
order, with row zero at the lowest offset. The difference in offsets between
consecutive rows of the matrix will be referred to as the row stride, and is
constant across the matrix. The row stride, UNIFORM_MATRIX_STRIDE, is
an implementation-dependent value and may be queried after a program is
linked.

• Arrays of scalars, vectors, and matrices are stored in memory by element
order, with array member zero at the lowest offset. The difference in offsets
between each pair of elements in the array in basic machine units is referred
to as the array stride, and is constant across the entire array. The array stride,
UNIFORM_ARRAY_STRIDE, is an implementation-dependent value and may
be queried after a program is linked.

Standard Uniform Block Layout

By default, uniforms contained within a uniform block are extracted from buffer
storage in an implementation-dependent manner. Applications may query the off-
sets assigned to uniforms inside uniform blocks with query functions provided by
the GL.

The layout qualifier provides shaders with control of the layout of uniforms
within a uniform block. When the std140 layout is specified, the offset of each
uniform in a uniform block can be derived from the definition of the uniform block
by applying the set of rules described below.

If a uniform block is declared in multiple shaders linked together into a single
program, the link will fail unless the uniform block declaration, including layout
qualifier, are identical in all such shaders.

When using the std140 storage layout, structures will be laid out in buffer
storage with its members stored in monotonically increasing order based on their
location in the declaration. A structure and each structure member have a base
offset and a base alignment, from which an aligned offset is computed by rounding
the base offset up to a multiple of the base alignment. The base offset of the first
member of a structure is taken from the aligned offset of the structure itself. The
base offset of all other structure members is derived by taking the offset of the

OpenGL ES 3.0.3 (December 18, 2013)

2.11. VERTEX SHADERS 69

last basic machine unit consumed by the previous member and adding one. Each
structure member is stored in memory at its aligned offset. The members of a top-
level uniform block are laid out in buffer storage by treating the uniform block as
a structure with a base offset of zero.

1. If the member is a scalar consuming N basic machine units, the base align-
ment is N .

2. If the member is a two- or four-component vector with components consum-
ing N basic machine units, the base alignment is 2N or 4N , respectively.

3. If the member is a three-component vector with components consuming N
basic machine units, the base alignment is 4N .

4. If the member is an array of scalars or vectors, the base alignment and array
stride are set to match the base alignment of a single array element, according
to rules (1), (2), and (3), and rounded up to the base alignment of a vec4. The
array may have padding at the end; the base offset of the member following
the array is rounded up to the next multiple of the base alignment.

5. If the member is a column-major matrix with C columns and R rows, the
matrix is stored identically to an array of C column vectors with R compo-
nents each, according to rule (4).

6. If the member is an array of S column-major matrices with C columns and
R rows, the matrix is stored identically to a row of S × C column vectors
with R components each, according to rule (4).

7. If the member is a row-major matrix with C columns andR rows, the matrix
is stored identically to an array of R row vectors with C components each,
according to rule (4).

8. If the member is an array of S row-major matrices with C columns and R
rows, the matrix is stored identically to a row of S × R row vectors with C
components each, according to rule (4).

9. If the member is a structure, the base alignment of the structure is N , where
N is the largest base alignment value of any of its members, and rounded
up to the base alignment of a vec4. The individual members of this sub-
structure are then assigned offsets by applying this set of rules recursively,
where the base offset of the first member of the sub-structure is equal to the
aligned offset of the structure. The structure may have padding at the end;
the base offset of the member following the sub-structure is rounded up to
the next multiple of the base alignment of the structure.

OpenGL ES 3.0.3 (December 18, 2013)

2.11. VERTEX SHADERS 70

10. If the member is an array of S structures, the S elements of the array are laid
out in order, according to rule (9).

Uniform Buffer Object Bindings

The value an active uniform inside a named uniform block is extracted from the
data store of a buffer object bound to one of an array of uniform buffer binding
points. The number of binding points can be queried using GetIntegerv with the
constant MAX_UNIFORM_BUFFER_BINDINGS.

Regions of buffer objects are bound as storage for uniform blocks by calling
one of the commands BindBufferRange or BindBufferBase (see section 2.9.1)
with target set to UNIFORM_BUFFER. In addition to the general errors described in
section 2.9.1, BindBufferRange will generate an INVALID_VALUE error if index
is greater than or equal to the value of MAX_UNIFORM_BUFFER_BINDINGS, or if
offset is not a multiple of the implementation-dependent alignment requirement
(the value of UNIFORM_BUFFER_OFFSET_ALIGNMENT).

Each of a program’s active uniform blocks has a corresponding uniform buffer
object binding point. This binding point can be assigned by calling:

void UniformBlockBinding(uint program,
uint uniformBlockIndex, uint uniformBlockBinding);

program is a name of a program object for which the command LinkProgram
has been issued in the past.

An INVALID_VALUE error is generated if uniformBlockIndex is not an active
uniform block index of program, or if uniformBlockBinding is greater than or equal
to the value of MAX_UNIFORM_BUFFER_BINDINGS.

If successful, UniformBlockBinding specifies that program will use the data
store of the buffer object bound to the binding point uniformBlockBinding to extract
the values of the uniforms in the uniform block identified by uniformBlockIndex.

When executing shaders that access uniform blocks, the binding point corre-
sponding to each active uniform block must be populated with a buffer object with
a size no smaller than the minimum required size of the uniform block (the value
of UNIFORM_BLOCK_DATA_SIZE). For binding points populated by BindBuffer-
Range, the size in question is the value of the size parameter. If any active uniform
block is not backed by a sufficiently large buffer object, the results of shader ex-
ecution are undefined, and may result in GL interruption or termination. Shaders
may be executed to process the primitives and vertices specified by vertex array
commands (see section 2.8).

When a program object is linked or re-linked, the uniform buffer object binding
point assigned to each of its active uniform blocks is reset to zero.

OpenGL ES 3.0.3 (December 18, 2013)

2.11. VERTEX SHADERS 71

2.11.7 Samplers

Samplers are special uniforms used in the OpenGL ES Shading Language to iden-
tify the texture object used for each texture lookup. The value of a sampler in-
dicates the texture image unit being accessed. Setting a sampler’s value to i
selects texture image unit number i. The values of i range from zero to the
implementation-dependent maximum supported number of texture image units mi-
nus one.

The type of the sampler identifies the target on the texture image unit. The
texture object bound to that texture image unit’s target is then used for the texture
lookup. For example, a variable of type sampler2D selects target TEXTURE_2D
on its texture image unit. Binding of texture objects to targets is done as usual with
BindTexture. Selecting the texture image unit to bind to is done as usual with
ActiveTexture.

The location of a sampler needs to be queried with GetUniformLocation, just
like any uniform variable. Sampler values need to be set by calling Uniform1i{v}.
Loading samplers with any of the other Uniform* entry points is not allowed and
will result in an INVALID_OPERATION error. Loading samplers with values out-
side of the range from zero to the implementation-dependent maximum supported
number of texture image units minus one will result in an INVALID_VALUE error.

It is not allowed to have variables of different sampler types pointing to the
same texture image unit within a program object. This situation can only be de-
tected at the next rendering command issued, and an INVALID_OPERATION error
will then be generated.

Active samplers are samplers actually being used in a program object. The
LinkProgram command determines if a sampler is active or not. The LinkPro-
gram command will attempt to determine if the active samplers in the shader(s)
contained in the program object exceed the maximum allowable limits. If it deter-
mines that the count of active samplers exceeds the allowable limits, then the link
fails (these limits can be different for different types of shaders). Each active sam-
pler variable counts against the limit, even if multiple samplers refer to the same
texture image unit.

2.11.8 Output Variables

A vertex shader may define one or more output variables or outputs (see the
OpenGL ES Shading Language Specification).

The OpenGL ES Shading Language Specification also defines a set of built-in
outputs that vertex shaders can write to (see section 7.1 of the OpenGL ES Shading
Language Specification). These output variables are used to communicate values to

OpenGL ES 3.0.3 (December 18, 2013)

2.11. VERTEX SHADERS 72

the fixed-function processing that occurs after vertex shading and to the fragment
shader.

The values of all output variables are expected to be interpolated across the
primitive being rendered, unless flatshaded.

The number of components (individual scalar numeric values) of output vari-
ables that can be written by the vertex shader is given by the value of the
implementation-dependent constant MAX_VERTEX_OUTPUT_COMPONENTS. Out-
puts declared as vectors, matrices, and arrays will all consume multiple compo-
nents.

When a program is linked, all components of any outputs written by a vertex
shader will count against this limit. A program whose vertex shader writes more
than the value of MAX_VERTEX_OUTPUT_COMPONENTS components worth of out-
puts may fail to link, unless device-dependent optimizations are able to make the
program fit within available hardware resources.

Additionally, there is a limit on the total number of components used as
vertex shader outputs or fragment shader inputs. This limit is given by the
value of the implementation-dependent constant MAX_VARYING_COMPONENTS.
The implementation-dependent constant MAX_VARYING_VECTORS has a value
equal to the value of MAX_VARYING_COMPONENTS divided by four. Each out-
put variable component used as either a vertex shader output or fragment shader
input count against this limit, except for the components of gl_Position. A pro-
gram that accesses more than this limit’s worth of components of outputs may fail
to link, unless device-dependent optimizations are able to make the program fit
within available hardware resources.

Each program object can specify a set of one or more vertex shader output
variables to be recorded in transform feedback mode (see section 2.14). Transform
feedback records the values of the selected vertex shader output variables from the
emitted vertices. The values to record are specified with the command

void TransformFeedbackVaryings(uint program,
sizei count, const char * const *varyings,
enum bufferMode);

program specifies the program object. count specifies the number of out-
put variables used for transform feedback. varyings is an array of count zero-
terminated strings specifying the names of the outputs to use for transform feed-
back. The variables specified in varyings can be either built-in (beginning with
"gl_") or user-defined variables. Output variables are written out in the or-
der they appear in the array varyings. bufferMode is either INTERLEAVED_-

ATTRIBS or SEPARATE_ATTRIBS, and identifies the mode used to capture the

OpenGL ES 3.0.3 (December 18, 2013)

2.11. VERTEX SHADERS 73

outputs when transform feedback is active. The error INVALID_VALUE is gener-
ated if bufferMode is SEPARATE_ATTRIBS and count is greater than the value of
the implementation-dependent limit MAX_TRANSFORM_FEEDBACK_SEPARATE_-
ATTRIBS.

The state set by TransformFeedbackVaryings has no effect on the execu-
tion of the program until program is subsequently linked. When LinkProgram
is called, the program is linked so that the values of the specified outputs for the
vertices of each primitive generated by the GL are written to a single buffer object
(if the buffer mode is INTERLEAVED_ATTRIBS) or multiple buffer objects (if the
buffer mode is SEPARATE_ATTRIBS). A program will fail to link if:

• any variable name specified in the varyings array is not declared as an output
in the vertex shader;

• any two entries in the varyings array specify the same output variable;

• the total number of components to capture in any output in varyings is greater
than the constant MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS
and the buffer mode is SEPARATE_ATTRIBS; or

• the total number of components to capture is greater than the constant
MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS and the buffer
mode is INTERLEAVED_ATTRIBS.

When a program is linked, a list of output variables that will be captured in
transform feedback mode is built as described in section 2.11.3. The variables in
this list are assigned consecutive indices, beginning with zero. The total number of
variables in the list may be queried by calling GetProgramiv (section 6.1.12) with
a pname of TRANSFORM_FEEDBACK_VARYINGS. The command

void GetTransformFeedbackVarying(uint program,
uint index, sizei bufSize, sizei *length, sizei *size,
enum *type, char *name);

can be used to determine properties of the variable with an index of index in the list
of output variables that will be captured in transform feedback mode for program
object program. If index is greater then or equal to the value of TRANSFORM_-
FEEDBACK_VARYINGS, the error INVALID_VALUE is generated.

The name of the selected output is returned as a null-terminated string in name.
The actual number of characters written into name, excluding the null terminator,
is returned in length. If length is NULL, no length is returned. The maximum
number of characters that may be written into name, including the null terminator,

OpenGL ES 3.0.3 (December 18, 2013)

2.11. VERTEX SHADERS 74

is specified by bufSize. The returned output name can be the name of either a
built-in (beginning with "gl_") or user-defined output variable. See the OpenGL
ES Shading Language Specification for a complete list. The length of the longest
output name in program is given by TRANSFORM_FEEDBACK_VARYING_MAX_-

LENGTH, which can be queried with GetProgramiv (see section 6.1.12).
The type of the selected output is returned into type. The size of the output is

returned into size. The value in size is in units of the type returned in type. The
type returned can be any of the scalar, vector, or matrix attribute types returned by
GetActiveAttrib. If an error occurred, the return parameters length, size, type and
name will be unmodified.

2.11.9 Shader Execution

If a successfully linked program object that contains a vertex shader is made current
by calling UseProgram, the executable version of the vertex shader is used to
process incoming vertex values.

The following operations are applied to vertices processed by the vertex shader:

• Perspective division on clip coordinates (section 2.12).

• Viewport mapping, including depth range scaling (section 2.12.1).

• Flatshading (section 2.16).

• Clipping (section 2.17).

• Front face determination (section 3.6.1).

• Generic attribute clipping (section 2.17.1).

There are several special considerations for vertex shader execution described
in the following sections.

Shader Texturing

This section describes texture functionality that is accessible through vertex or
fragment shaders. Also refer to section 3.8 and to section 8.7 of the OpenGL ES
Shading Language Specification.

OpenGL ES 3.0.3 (December 18, 2013)

2.11. VERTEX SHADERS 75

Texel Fetches

The OpenGL ES Shading Language texel fetch functions provide the ability to ex-
tract a single texel from a specified texture image. The integer coordinates passed
to the texel fetch functions are used as the texel coordinates (i, j, k) into the tex-
ture image. This in turn means the texture image is point-sampled (no filtering is
performed), but the remaining steps of texture access (described below) are still
applied.

The level of detail accessed is computed by adding the specified level-of-detail
parameter lod to the base level of the texture, levelbase.

The texel fetch functions can not perform depth comparisons or access cube
maps. Unlike filtered texel accesses, texel fetches do not support LOD clamping
or any texture wrap mode, and do not replace the specified level of detail with the
base level when the minification filter is NEAREST or LINEAR.

The results of the texel fetch are undefined if any of the following conditions
hold:

• the computed level of detail is less than the texture’s base level (levelbase) or
greater than the maximum defined level, q (see section 3.8.10)

• the computed level of detail is not the texture’s base level and the texture’s
minification filter is NEAREST or LINEAR

• the layer specified for array textures is negative or greater than the number
of layers in the array texture,

• the texel coordinates (i, j, k) refer to a texel outside the defined extents of
the computed level of detail, where any of

i < 0 i ≥ wt

j < 0 j ≥ ht
k < 0 k ≥ dt

and the size parameters wt, ht, and dt refer to the width, height, and depth
of the image, as defined in section 3.8.3.

• the texture being accessed is not complete, as defined in section 3.8.13.

Texture Size Query

The OpenGL ES Shading Language texture size functions provide the ability to
query the size of a texture image. The LOD value lod passed in as an argument

OpenGL ES 3.0.3 (December 18, 2013)

2.11. VERTEX SHADERS 76

to the texture size functions is added to the levelbase of the texture to determine
a texture image level. The dimensions of that image level are then returned. If
the computed texture image level is outside the range [levelbase, q], the results are
undefined. When querying the size of an array texture, both the dimensions and
the layer index are returned.

Texture Access

Shaders have the ability to do a lookup into a texture map. The maximum num-
ber of texture image units available to vertex or fragment shaders are respectively
the values of the implementation-dependent constants MAX_VERTEX_TEXTURE_-
IMAGE_UNITS and MAX_TEXTURE_IMAGE_UNITS. The vertex shader and frag-
ment shader combined cannot use more than the value of MAX_COMBINED_-

TEXTURE_IMAGE_UNITS texture image units. If both the vertex shader and frag-
ment shader access the same texture image unit, each such access counts separately
against the MAX_COMBINED_TEXTURE_IMAGE_UNITS limit.

When a texture lookup is performed in a vertex shader, the filtered texture value
τ is computed in the manner described in sections 3.8.10 and 3.8.11, and converted
to a texture base color Cb as shown in table 3.24, followed by application of the
texture swizzle as described in section 3.9.2 to compute the texture source color Cs

and As.
The resulting four-component vector (Rs, Gs, Bs, As) is returned to the shader.

Texture lookup functions (see section 8.7 of the OpenGL ES Shading Language
Specification) may return floating-point, signed, or unsigned integer values de-
pending on the function and the internal format of the texture.

In a vertex shader, it is not possible to perform automatic level-of-detail calcu-
lations using partial derivatives of the texture coordinates with respect to window
coordinates as described in section 3.8.10. Hence, there is no automatic selection
of an image array level. Minification or magnification of a texture map is controlled
by a level-of-detail value optionally passed as an argument in the texture lookup
functions. If the texture lookup function supplies an explicit level-of-detail value l,
then the pre-bias level-of-detail value λbase(x, y) = l (replacing equation 3.14). If
the texture lookup function does not supply an explicit level-of-detail value, then
λbase(x, y) = 0. The scale factor ρ(x, y) and its approximation function f(x, y)
(see equation 3.18) are ignored.

Texture lookups involving textures with depth component data generate a tex-
ture base color Cb either using depth data directly or by performing a comparison
with the Dref value used to perform the lookup, as described in section 3.8.15.
The resulting value Rt is then expanded to a color Cb = (Rt, 0, 0, 1), and swiz-
zling is performed as described in section 3.9.2, but only the first component Cs[0]

OpenGL ES 3.0.3 (December 18, 2013)

2.11. VERTEX SHADERS 77

is returned to the shader when a comparison has been performed. The compari-
son operation is requested in the shader by using any of the shadow sampler types
(sampler*Shadow), and in the texture using the TEXTURE_COMPARE_MODE pa-
rameter. These requests must be consistent; the results of a texture lookup are
undefined if any of the following conditions are true:

• The sampler used in a texture lookup function is not one of the shadow sam-
pler types, the texture object’s base internal format is DEPTH_COMPONENT
or DEPTH_STENCIL, and the TEXTURE_COMPARE_MODE is not NONE.

• The sampler used in a texture lookup function is one of the shadow sam-
pler types, the texture object’s base internal format is DEPTH_COMPONENT
or DEPTH_STENCIL, and the TEXTURE_COMPARE_MODE is NONE.

• The sampler used in a texture lookup function is one of the shadow sam-
pler types, and the texture object’s base internal format is not DEPTH_-
COMPONENT or DEPTH_STENCIL.

The stencil index texture internal component is ignored if the base internal
format is DEPTH_STENCIL.

If a sampler is used in a vertex shader and the sampler’s associated texture is
not complete, as defined in section 3.8.13, (0, 0, 0, 1) will be returned for a non-
shadow sampler and 0 for a shadow sampler.

Shader Inputs

Besides having access to vertex attributes and uniform variables, vertex shaders
can access the read-only built-in variables gl_VertexID and gl_InstanceID.

gl_VertexID holds the integer index i implicitly passed by DrawArrays or
one of the other drawing commands defined in section 2.8.3. The value of gl_-
VertexID is defined if and only if all enabled vertex arrays have non-zero buffer
object bindings.

gl_InstanceID holds the integer instance number of the current primitive in
an instanced draw call (see section 2.8.3).

Section 7.1 of the OpenGL ES Shading Language Specification also describes
these variables.

Shader Outputs

A vertex shader can write to user-defined output variables. These values will
be interpolated across the primitive it outputs, unless they are specified to be flat

OpenGL ES 3.0.3 (December 18, 2013)

2.11. VERTEX SHADERS 78

shaded. Refer to sections 4.3.6, 7.1, and 7.6 of the OpenGL ES Shading Language
Specification for more detail.

The built-in output gl_Position is intended to hold the homogeneous vertex
position. Writing gl_Position is optional.

The built in output gl_PointSize, if written, holds the size of the point to be
rasterized, measured in pixels.

Validation

It is not always possible to determine at link time if a program object actually
will execute. Therefore validation is done when the first rendering command is
issued, to determine if the currently active program object can be executed. If there
is no current program object, the results of rendering commands are undefined.
However, this is not an error. If there is a current program object and it cannot be
executed then no fragments will be rendered, and the error INVALID_OPERATION
will be generated.

This error is generated by any command that transfers vertices to the GL if:

• any two active samplers in the current program object are of different types,
but refer to the same texture image unit,

• the sum of the number of active samplers in the program exceeds the maxi-
mum number of texture image units allowed.

The INVALID_OPERATION error reported by these rendering commands may
not provide enough information to find out why the currently active program object
would not execute. No information at all is available about a program object that
would still execute, but is inefficient or suboptimal given the current GL state. As
a development aid, use the command

void ValidateProgram(uint program);

to validate the program object program against the current GL state. Each program
object has a boolean status, VALIDATE_STATUS, that is modified as a result of
validation. This status can be queried with GetProgramiv (see section 6.1.12).
If validation succeeded this status will be set to TRUE, otherwise it will be set to
FALSE. If validation succeeded the program object is guaranteed to execute, given
the current GL state. If validation failed, the program object is guaranteed to not
execute, given the current GL state.

ValidateProgram will check for all of the error conditions described in this
section, and may check for other conditions as well. For example, it could give a

OpenGL ES 3.0.3 (December 18, 2013)

2.11. VERTEX SHADERS 79

hint on how to optimize some piece of shader code. The information log of pro-
gram is overwritten with information on the results of the validation, which could
be an empty string. The results written to the information log are typically only
useful during application development; an application should not expect different
GL implementations to produce identical information.

A shader should not fail to compile, and a program object should not fail to
link due to lack of instruction space or lack of temporary variables. Implementa-
tions should ensure that all valid shaders and program objects may be successfully
compiled, linked and executed.

Undefined Behavior

When using array or matrix variables in a shader, it is possible to access a vari-
able with an index computed at run time that is outside the declared extent of the
variable. Such out-of-bounds accesses have undefined behavior, and system er-
rors (possibly including program termination) may occur. The level of protection
provided against such errors in the shader is implementation-dependent.

2.11.10 Required State

The GL maintains state to indicate which shader and program object names are in
use. Initially, no shader or program objects exist, and no names are in use.

The state required per shader object consists of:

• An unsigned integer specifying the shader object name.

• An integer holding the value of SHADER_TYPE.

• A boolean holding the delete status, initially FALSE.

• A boolean holding the status of the last compile, initially FALSE.

• An array of type char containing the information log, initially empty.

• An integer holding the length of the information log.

• An array of type char containing the concatenated shader string, initially
empty.

• An integer holding the length of the concatenated shader string.

The state required per program object consists of:

OpenGL ES 3.0.3 (December 18, 2013)

2.11. VERTEX SHADERS 80

• An unsigned integer indicating the program object name.

• A boolean holding the delete status, initially FALSE.

• A boolean holding the status of the last link attempt, initially FALSE.

• A boolean holding the status of the last validation attempt, initially FALSE.

• An integer holding the number of attached shader objects.

• A list of unsigned integers to keep track of the names of the shader objects
attached.

• An array of type char containing the information log, initially empty.

• An integer holding the length of the information log.

• An integer holding the number of active uniforms.

• For each active uniform, three integers, holding its location, size, and type,
and an array of type char holding its name.

• An array holding the values of each active uniform.

• An integer holding the number of active attributes.

• For each active attribute, three integers holding its location, size, and type,
and an array of type char holding its name.

• A boolean holding the hint to the retrievability of the program binary, ini-
tially FALSE.

Additional state required to support transform feedback consists of:

• An integer holding the transform feedback mode, initially INTERLEAVED_-
ATTRIBS.

• An integer holding the number of outputs to be captured, initially zero.

• An integer holding the length of the longest output name being captured,
initially zero.

• For each output being captured, two integers holding its size and type, and
an array of type char holding its name.

OpenGL ES 3.0.3 (December 18, 2013)

2.12. COORDINATE TRANSFORMATIONS 81

Additionally, one unsigned integer is required to hold the name of the current pro-
gram object, if any.

This list of program object state is not complete. Tables 6.18-6.21 describe ad-
ditional program object state specific to program binaries and uniform blocks. Ta-
ble 6.22 describes state related to vertex shaders that is not program object state.

2.12 Coordinate Transformations

Clip coordinates for a vertex result from vertex shader execution, which yields a
vertex coordinate gl_Position. Perspective division on clip coordinates yields
normalized device coordinates, followed by a viewport transformation to convert
these coordinates into window coordinates.

If a vertex in clip coordinates is given by


xc
yc
zc
wc


then the vertex’s normalized device coordinates arexdyd

zd

 =

 xc
wc
yc
wc
zc
wc

 .

2.12.1 Controlling the Viewport

The viewport transformation is determined by the viewport’s width and height in
pixels, px and py, respectively, and its center (ox, oy) (also in pixels). The vertex’s

window coordinates,

xwyw
zw

 , are given by

xwyw
zw

 =

 px
2 xd + ox
py
2 yd + oy

f−n
2 zd + n+f

2

 .

The factor and offset applied to zd encoded by n and f are set using

void DepthRangef(float n, float f);

zw may be represented using either a fixed-point or floating-point representation.
However, a floating-point representation must be used if the draw framebuffer has
a floating-point depth buffer. If an m-bit fixed-point representation is used, we

OpenGL ES 3.0.3 (December 18, 2013)

2.13. ASYNCHRONOUS QUERIES 82

assume that it represents each value k/(2m− 1), where k ∈ {0, 1, . . . , 2m− 1}, as
k (e.g. 1.0 is represented in binary as a string of all ones). The parameters n and f
are clamped to the range [0, 1] when specified.

Viewport transformation parameters are specified using

void Viewport(int x, int y, sizei w, sizei h);

where x and y give the x and y window coordinates of the viewport’s lower left
corner and w and h give the viewport’s width and height, respectively. The viewport
parameters shown in the above equations are found from these values as

ox = x+ w
2

oy = y + h
2

px = w
py = h.

Viewport width and height are clamped to implementation-dependent maxi-
mums when specified. The maximum width and height may be found by issuing
an appropriate Get command (see chapter 6). The maximum viewport dimensions
must be greater than or equal to the larger of the visible dimensions of the display
being rendered to (if a display exists), and the largest renderbuffer image which
can be successfully created and attached to a framebuffer object (see chapter 4).
INVALID_VALUE is generated if either w or h is negative.

The state required to implement the viewport transformation is four integers
and two clamped floating-point values. In the initial state, w and h are set to the
width and height, respectively, of the window into which the GL is to do its ren-
dering. If the default framebuffer is bound but no default framebuffer is associated
with the GL context (see chapter 4), then w and h are initially set to zero. ox, oy,
n, and f are set to w

2 , h
2 , 0.0, and 1.0, respectively.

2.13 Asynchronous Queries

Asynchronous queries provide a mechanism to return information about the pro-
cessing of a sequence of GL commands. There are two query types sup-
ported by the GL. Primitive queries with a target of TRANSFORM_FEEDBACK_-
PRIMITIVES_WRITTEN (see section 2.15) return information on the number of
primitives written to one or more buffer objects. Occlusion queries (see sec-
tion 4.1.6) set a boolean to true when any fragments or samples pass the depth
test.

The results of asynchronous queries are not returned by the GL immediately
after the completion of the last command in the set; subsequent commands can

OpenGL ES 3.0.3 (December 18, 2013)

2.13. ASYNCHRONOUS QUERIES 83

be processed while the query results are not complete. When available, the query
results are stored in an associated query object. The commands described in sec-
tion 6.1.7 provide mechanisms to determine when query results are available and
return the actual results of the query. The name space for query objects is the
unsigned integers, with zero reserved by the GL.

Each type of query supported by the GL has an active query object name. If
the active query object name for a query type is non-zero, the GL is currently
tracking the information corresponding to that query type and the query results
will be written into the corresponding query object. If the active query object for a
query type name is zero, no such information is being tracked.

The command

void GenQueries(sizei n, uint *ids);

returns n previously unused query object names in ids. These names are marked as
used, for the purposes of GenQueries only, but no object is associated with them
until the first time they are used by BeginQuery.

A query object is created and made active by calling

void BeginQuery(enum target, uint id);

passing it a name id returned by GenQueries. target indicates the type of query to
be performed; valid values of target are defined in subsequent sections.The result-
ing query object is a new state vector, comprising all the state and with the same
initial values listed in table 6.23.

BeginQuery can also be used to make active an existing query object of type
target.

BeginQuery fails and an INVALID_OPERATION error is generated if id is not
a name returned from a previous call to GenQueries, or if such a name has since
been deleted with DeleteQueries.

BeginQuery sets the active query object name for the query type given by
target to id. BeginQuery generates an INVALID_OPERATION error if any of the
following conditions hold: id is zero; id is the name of an existing query object
whose type does not match target; id is the active query object name for any
query type; or the active query object name for target is non-zero (for the tar-
gets ANY_SAMPLES_PASSED and ANY_SAMPLES_PASSED_CONSERVATIVE, the
active query for either target is non-zero).

The command

void EndQuery(enum target);

OpenGL ES 3.0.3 (December 18, 2013)

2.14. TRANSFORM FEEDBACK 84

marks the end of the sequence of commands to be tracked for the query type given
by target. The active query object for target is updated to indicate that query results
are not available, and the active query object name for target is reset to zero. When
the commands issued prior to EndQuery have completed and a final query result
is available, the query object active when EndQuery is called is updated by the
GL. The query object is updated to indicate that the query results are available and
to contain the query result. If the active query object name for target is zero when
EndQuery is called, the error INVALID_OPERATION is generated.

Query objects are deleted by calling

void DeleteQueries(sizei n, const uint *ids);

ids contains n names of query objects to be deleted. After a query object is deleted,
its name is again unused. If an active query object is deleted its name immediately
becomes unused, but the underlying object is not deleted until it is no longer active
(see section D.1). Unused names in ids that have been marked as used for the
purposes of GenQueries are marked as unused again. Unused names in ids are
silently ignored, as is the value zero.

Query objects contain two pieces of state: a single bit indicating whether a
query result is available, and an integer containing the query result value. The
number of bits, n, used to represent the query result is implementation-dependent
and may vary by query object type. In the initial state of a query object, the result
is not available (the flag is FALSE) and the result value is zero.

If the query result overflows (exceeds the value 2n − 1), its value becomes
undefined. It is recommended, but not required, that implementations handle this
overflow case by saturating at 2n − 1 and incrementing no further.

The necessary state for each query type is an unsigned integer holding the
active query object name (zero if no query object is active), and any state necessary
to keep the current results of an asynchronous query in progress. Only a single type
of occlusion query can be active at one time, so the required state for occlusion
queries is shared.

2.14 Transform Feedback

Transform feedback mode captures the values of output variables written by the
vertex shader. The vertices are captured before flatshading and clipping. The
transformed vertices may be optionally discarded after being stored into one or
more buffer objects, or they can be passed on down to the clipping stage for further
processing. The set of output variables captured is determined when a program is
linked.

OpenGL ES 3.0.3 (December 18, 2013)

2.14. TRANSFORM FEEDBACK 85

2.14.1 Transform Feedback Objects

The set of buffer objects used to capture vertex output variables and related state
are stored in a transform feedback object. The set of output variables captured
in transform feedback mode is determined using the state of the active program
object. The name space for transform feedback objects is the unsigned integers.
The name zero designates the default transform feedback object.

The command

void GenTransformFeedbacks(sizei n, uint *ids);

returns n previously unused transform feedback object names in ids. These names
are marked as used, for the purposes of GenTransformFeedbacks only, but they
do not acquire transform feedback state until they are first bound.

Transform feedback objects are deleted by calling

void DeleteTransformFeedbacks(sizei n, const
uint *ids);

ids contains n names of transform feedback objects to be deleted. After a trans-
form feedback object is deleted it has no contents, and its name is again unused.
Unused names in ids that have been marked as used for the purposes of GenTrans-
formFeedbacks are marked as unused again. Unused names in ids are silently
ignored, as is the value zero. The default transform feedback object cannot be
deleted.

The error INVALID_OPERATION is generated by DeleteTransformFeedbacks
if the transform feedback operation for any object named by ids is currently active.

A transform feedback object is created by binding a name returned by Gen-
TransformFeedbacks with the command

void BindTransformFeedback(enum target, uint id);

target must be TRANSFORM_FEEDBACK and id is the transform feedback object
name. The resulting transform feedback object is a new state vector, comprising
all the state and with the same initial values listed in table 6.24. Additionally, the
new object is bound to the GL state vector and is used for subsequent transform
feedback operations.

BindTransformFeedback can also be used to bind an existing transform feed-
back object to the GL state for subsequent use. If the bind is successful, no change
is made to the state of the newly bound transform feedback object and any previous
binding to target is broken.

OpenGL ES 3.0.3 (December 18, 2013)

2.14. TRANSFORM FEEDBACK 86

While a transform feedback object is bound, GL operations on the target to
which it is bound affect the bound transform feedback object, and queries of the
target to which a transform feedback object is bound return state from the bound
object. When buffer objects are bound for transform feedback, they are attached to
the currently bound transform feedback object. Buffer objects are used for trans-
form feedback only if they are attached to the currently bound transform feedback
object.

In the initial state, a default transform feedback object is bound and treated as
a transform feedback object with a name of zero. That object is bound any time
BindTransformFeedback is called with id of zero.

The error INVALID_OPERATION is generated by BindTransformFeedback if
the transform feedback operation is active on the currently bound transform feed-
back object, and that operation is not paused (as described below).

BindTransformFeedback fails and an INVALID_OPERATION error is gener-
ated if id is not zero or a name returned from a previous call to GenTransform-
Feedbacks, or if such a name has since been deleted with DeleteTransformFeed-
backs.

2.14.2 Transform Feedback Primitive Capture

Transform feedback for the currently bound transform feedback object is started
and finished by calling

void BeginTransformFeedback(enum primitiveMode);

and

void EndTransformFeedback(void);

respectively. Transform feedback is said to be active after a call to BeginTrans-
formFeedback and inactive after a call to EndTransformFeedback. EndTrans-
formFeedback first performs an implicit ResumeTransformFeedback (see be-
low) if transform feedback is paused. primitiveMode is one of TRIANGLES, LINES,
or POINTS, and specifies the output type of primitives that will be recorded into the
buffer objects bound for transform feedback (see below). primitiveMode restricts
the primitive types that may be rendered while transform feedback is active and not
paused.

Transform feedback commands must be paired; the error INVALID_-

OPERATION is generated by BeginTransformFeedback if transform feedback is
active for the current transform feedback object, and by EndTransformFeedback
if transform feedback is inactive. Transform feedback is initially inactive.

OpenGL ES 3.0.3 (December 18, 2013)

2.14. TRANSFORM FEEDBACK 87

Transform feedback operations for the currently bound transform feedback ob-
ject may be paused and resumed by calling

void PauseTransformFeedback(void);

and

void ResumeTransformFeedback(void);

respectively. When transform feedback operations are paused, transform feedback
is still considered active and changing most transform feedback state related to the
object results in an error. However, a new transform feedback object may be bound
while transform feedback is paused. The error INVALID_OPERATION is gener-
ated by PauseTransformFeedback if the currently bound transform feedback is
not active or is paused. The error INVALID_OPERATION is generated by Resume-
TransformFeedback if the currently bound transform feedback is not active or is
not paused.

When transform feedback is active and not paused, all geometric primitives
generated must match the value of primitiveMode passed to BeginTransform-
Feedback. The error INVALID_OPERATION is generated by DrawArrays and
DrawArraysInstanced if mode is not identical to primitiveMode. The error
INVALID_OPERATION is also generated by DrawElements, DrawElementsIn-
stanced, and DrawRangeElements while transform feedback is active and not
paused, regardless of mode. Any primitive type may be used while transform feed-
back is paused.

Regions of buffer objects are bound as the targets of transform feedback by
calling one of the commands BindBufferRange or BindBufferBase (see sec-
tion 2.9.1) with target set to TRANSFORM_FEEDBACK_BUFFER. In addition to
the general errors described in section 2.9.1, BindBufferRange will generate an
INVALID_VALUE error if index is greater than or equal to the value of MAX_-
TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS, or if either offset or size is not a
multiple of 4.

When an individual point, line, or triangle primitive reaches the transform feed-
back stage while transform feedback is active and not paused, the values of the
specified output variables of the vertex are appended to the buffer objects bound
to the transform feedback binding points. The output variables of the first vertex
received after BeginTransformFeedback are written at the starting offsets of the
bound buffer objects set by BindBufferRange, and subsequent output variables are
appended to the buffer object. When capturing line and triangle primitives, all out-
put variables of the first vertex are written first, followed by output variables of the

OpenGL ES 3.0.3 (December 18, 2013)

2.14. TRANSFORM FEEDBACK 88

subsequent vertices. When writing output variables that are arrays, individual array
elements are written in order. For multi-component output variables or elements of
output arrays, the individual components are written in order. Variables declared
with lowp or mediump precision are promoted to highp before being written. See
Table 2.11 showing the output buffer type for each OpenGL ES Shading Language
variable type. The value for any output variable specified to be streamed to a buffer
object but not actually written by a vertex shader is undefined.

When transform feedback is paused, no vertices are recorded. When transform
feedback is resumed, subsequent vertices are appended to the bound buffer ob-
jects immediately following the last vertex written before transform feedback was
paused.

Incomplete primitives are not recorded.
Transform feedback can operate in either INTERLEAVED_ATTRIBS or

SEPARATE_ATTRIBS mode.
In INTERLEAVED_ATTRIBS mode, the values of one or more output variables

written by a vertex shader are written, interleaved, into the buffer object bound to
the first transform feedback binding point (index = 0). If more than one output
variable is written to a buffer object, they will be recorded in the order specified by
TransformFeedbackVaryings (see section 2.11.8).

In SEPARATE_ATTRIBS mode, the first output variable specified by Trans-
formFeedbackVaryings is written to the first transform feedback binding point;
subsequent output variables are written to the subsequent transform feedback bind-
ing points. The total number of variables that may be captured in separate mode is
given by MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS.

The error INVALID_OPERATION is generated by DrawArrays and DrawAr-
raysInstanced if recording the vertices of a primitive to the buffer objects being
used for transform feedback purposes would result in either exceeding the limits of
any buffer object’s size, or in exceeding the end position offset + size − 1, as set
by BindBufferRange.

In either separate or interleaved modes, all transform feedback binding points
that will be written to must have buffer objects bound when BeginTransformFeed-
back is called. The error INVALID_OPERATION is generated by BeginTrans-
formFeedback if any binding point used in transform feedback mode does not
have a buffer object bound. In interleaved mode, only the first buffer object bind-
ing point is ever written to. The error INVALID_OPERATION is also generated
by BeginTransformFeedback if no binding points would be used, either because
no program object is active or because the active program object has specified no
output variables to record.

When BeginTransformFeedback is called, the set of output variables captured
during transform feedback is taken from the active program object and may not be

OpenGL ES 3.0.3 (December 18, 2013)

2.14. TRANSFORM FEEDBACK 89

Keyword Output Type
float float

vec2

vec3

vec4

mat2

mat3

mat4

mat2x3

mat2x4

mat3x2

mat3x4

mat4x2

mat4x3

int int

ivec2

ivec3

ivec4

uint uint

uvec2

uvec3

uvec4

bool

bvec2

bvec3

bvec4

Table 2.11: OpenGL ES Shading Language keywords declaring each type and
corresponding output buffer type.

OpenGL ES 3.0.3 (December 18, 2013)

2.15. PRIMITIVE QUERIES 90

changed while transform feedback is active. That program object must be active
until the EndTransformFeedback is called, except while the transform feedback
object is paused. The error INVALID_OPERATION is generated:

• by UseProgram if the current transform feedback object is active and not
paused;

• by LinkProgram or ProgramBinary if program is the name of a program
being used by one or more active transform feedback objects, even if the
objects are not currently bound or are paused;

• by ResumeTransformFeedback if the program object being used by the
current transform feedback object is not active or has been re-linked since
transform feedback became active for the current transform feedback object;
and

• by BindBufferRange or BindBufferBase if target is TRANSFORM_-

FEEDBACK_BUFFER and transform feedback is currently active.

Buffers should not be bound or in use for both transform feedback and other
purposes in the GL. Specifically, if a buffer object is simultaneously bound to a
transform feedback buffer binding point and elsewhere in the GL, any writes to
or reads from the buffer generate undefined values. Examples of such bindings
include ReadPixels to a pixel buffer object binding point and client access to a
buffer mapped with MapBufferRange.

However, if a buffer object is written and read sequentially by transform feed-
back and other mechanisms, it is the responsibility of the GL to ensure that data
are accessed consistently, even if the implementation performs the operations in a
pipelined manner. For example, MapBufferRange may need to block pending the
completion of a previous transform feedback operation.

2.15 Primitive Queries

Primitive queries use query objects to track the number of primitives written to
transform feedback buffers.

When BeginQuery is called with a target of TRANSFORM_FEEDBACK_-

PRIMITIVES_WRITTEN, the transform-feedback-primitives-written count main-
tained by the GL is set to zero. When the transform feedback primitive written
query is active, the transform-feedback-primitives-written count is incremented ev-
ery time a primitive is recorded into a buffer object. If transform feedback is not
active, this counter is not incremented.

OpenGL ES 3.0.3 (December 18, 2013)

2.16. FLATSHADING 91

Type of primitive i Provoking vertex
point i

independent line 2i

line loop i+ 1, if i < n
1, if i = n

line strip i+ 1

independent triangle 3i

triangle strip i+ 2

triangle fan i+ 2

Table 2.12: Provoking vertex selection. The output values used for flatshading the
ith primitive generated by drawing commands with the indicated primitive type
are derived from the corresponding values of the vertex whose index is shown in
the table. Vertices are numbered 1 through n, where n is the number of vertices
drawn.

2.16 Flatshading

Flatshading a vertex shader output means to assign all vertices of the primitive the
same value for that output.

The output values assigned are those of the provoking vertex of the primitive,
as shown in table 2.12.

User-defined output variables may be flatshaded by using the flat qualifier
when declaring the output, as described in section 4.3.6 of the OpenGL ES Shading
Language Specification.

2.17 Primitive Clipping

Primitives are clipped to the clip volume. In clip coordinates, the clip volume is
defined by

−wc ≤ xc ≤ wc

−wc ≤ yc ≤ wc

−wc ≤ zc ≤ wc.

If the primitive under consideration is a point, then clipping passes it un-
changed if it lies within the near and far clip planes; otherwise, it is discarded.

If the primitive is a line segment, then clipping does nothing to it if it lies
entirely within the near and far clip planes, and discards it if it lies entirely outside
these planes.

OpenGL ES 3.0.3 (December 18, 2013)

2.17. PRIMITIVE CLIPPING 92

If part of the line segment lies between the near and far clip planes and part lies
outside, then the line segment is clipped and new vertex coordinates are computed
for one or both vertices. A clipped line segment endpoint lies on both the original
line segment and the near and/or far clip planes.

This clipping produces a value, 0 ≤ t ≤ 1, for each clipped vertex. If the
coordinates of a clipped vertex are P and the original vertices’ coordinates are P1

and P2, then t is given by

P = tP1 + (1− t)P2.

The value of t is used to clip vertex shader outputs as described in section 2.17.1.
If the primitive is a polygon, then it is passed if every one of its edges lies

entirely inside the clip volume and either clipped or discarded otherwise. Polygon
clipping may cause polygon edges to be clipped, but because polygon connectivity
must be maintained, these clipped edges are connected by new edges that lie along
the clip volume’s boundary. Thus, clipping may require the introduction of new
vertices into a polygon.

If it happens that a polygon intersects an edge of the clip volume’s boundary,
then the clipped polygon must include a point on this boundary edge.

2.17.1 Clipping Shader Outputs

Next, vertex shader outputs are clipped. The output values associated with a
vertex that lies within the clip volume are unaffected by clipping. If a primitive is
clipped, however, the output values assigned to vertices produced by clipping are
clipped.

Let the output values assigned to the two vertices P1 and P2 of an unclipped
edge be c1 and c2. The value of t (section 2.17) for a clipped point P is used to
obtain the output value associated with P as 6

c = tc1 + (1− t)c2.

(Multiplying an output value by a scalar means multiplying each of x, y, z, and w
by the scalar.)

Polygon clipping may create a clipped vertex along an edge of the clip volume’s
boundary. This situation is handled by noting that polygon clipping proceeds by
clipping against one half-space at a time. Output value clipping is done in the
same way, so that clipped points always occur at the intersection of polygon edges
(possibly already clipped) with the clip volume’s boundary.

6 Since this computation is performed in clip space before division by wc, clipped output values
are perspective-correct.

OpenGL ES 3.0.3 (December 18, 2013)

2.17. PRIMITIVE CLIPPING 93

Outputs of integer or unsigned integer type must always be declared with the
flat qualifier. Since such outputs are constant over the primitive being rasterized
(see sections 3.5.1 and 3.6.1), no interpolation is performed.

OpenGL ES 3.0.3 (December 18, 2013)

Chapter 3

Rasterization

Rasterization is the process by which a primitive is converted to a two-dimensional
image. Each point of this image contains such information as color and depth.
Thus, rasterizing a primitive consists of two parts. The first is to determine which
squares of an integer grid in window coordinates are occupied by the primitive.
The second is assigning a depth value and one or more color values to each such
square. The results of this process are passed on to the next stage of the GL (per-
fragment operations), which uses the information to update the appropriate loca-
tions in the framebuffer. Figure 3.1 diagrams the rasterization process. The color
values assigned to a fragment are determined by a fragment shader as defined in
section 3.9. The final depth value is initially determined by the rasterization op-
erations and may be modified or replaced by a fragment shader. The results from
rasterizing a point, line, or polygon are routed through a fragment shader.

A grid square along with its z (depth) and shader output parameters is called
a fragment; the parameters are collectively dubbed the fragment’s associated data.
A fragment is located by its lower left corner, which lies on integer grid coordi-
nates. Rasterization operations also refer to a fragment’s center, which is offset by
(1/2, 1/2) from its lower left corner (and so lies on half-integer coordinates).

Grid squares need not actually be square in the GL. Rasterization rules are not
affected by the actual aspect ratio of the grid squares. Display of non-square grids,
however, will cause rasterized points and line segments to appear fatter in one
direction than the other. We assume that fragments are square, since it simplifies
texturing.

Several factors affect rasterization. Primitives may be discarded before rasteri-
zation. Points may be given differing sizes and line segments differing widths.

94

3.1. DISCARDING PRIMITIVES BEFORE RASTERIZATION 95

Point
Rasterization

Triangle
Rasterization

Line
Rasterization

Fragment
Program

From
Primitive
Assembly Fragments

Figure 3.1. Rasterization.

3.1 Discarding Primitives Before Rasterization

Primitives can be optionally discarded before rasterization by calling Enable and
Disable with RASTERIZER_DISCARD. When enabled, primitives are discarded im-
mediately before the rasterization stage, but after the optional transform feedback
stage (see section 2.14). When disabled, primitives are passed through to the ras-
terization stage to be processed normally. When enabled, RASTERIZER_DISCARD
also causes the Clear and ClearBuffer* commands to be ignored.

3.2 Invariance

Consider a primitive p′ obtained by translating a primitive p through an offset (x, y)
in window coordinates, where x and y are integers. As long as neither p′ nor p is
clipped, it must be the case that each fragment f ′ produced from p′ is identical to
a corresponding fragment f from p except that the center of f ′ is offset by (x, y)
from the center of f .

OpenGL ES 3.0.3 (December 18, 2013)

3.3. MULTISAMPLING 96

3.3 Multisampling

Multisampling is a mechanism to antialias all GL primitives: points, lines, and
polygons. The technique is to sample all primitives multiple times at each pixel.
The color sample values are resolved to a single, displayable color. For window
system-provided framebuffers, this occurs each time a pixel is updated, so the an-
tialiasing appears to be automatic at the application level. For application-created
framebuffers, this must be requested by calling the BlitFramebuffer command
(see section 4.3.3). Because each sample includes color, depth, and stencil infor-
mation, the color (including texture operation), depth, and stencil functions per-
form equivalently to the single-sample mode.

An additional buffer, called the multisample buffer, is added to the window
system-provided framebuffer. Pixel sample values, including color, depth, and
stencil values, are stored in this buffer. Samples contain separate color values for
each fragment color. When the window system-provided framebuffer includes a
multisample buffer, it does not include depth or stencil buffers, even if the multi-
sample buffer does not store depth or stencil values. Color buffers do coexist with
the multisample buffer, however.

Multisample antialiasing is most valuable for rendering polygons, because it
requires no sorting for hidden surface elimination, and it correctly handles adjacent
polygons, object silhouettes, and even intersecting polygons.

If the value of SAMPLE_BUFFERS is one, the rasterization of all primitives
is changed, and is referred to as multisample rasterization. Otherwise, primitive
rasterization is referred to as single-sample rasterization. The value of SAMPLE_-
BUFFERS is a framebuffer-dependent constant, and is queried by calling GetInte-
gerv with pname set to SAMPLE_BUFFERS.

During multisample rendering the contents of a pixel fragment are changed in
two ways. First, each fragment includes a coverage value with SAMPLES bits. The
value of SAMPLES is a framebuffer-dependent constant, and is queried by calling
GetIntegerv with pname set to SAMPLES.

Second, each fragment includes SAMPLES depth values and sets of associated
data, instead of the single depth value and set of associated data that is maintained
in single-sample rendering mode. An implementation may choose to assign the
same associated data to more than one sample. The location for evaluating such
associated data can be anywhere within the pixel including the fragment center or
any of the sample locations. The different associated data values need not all be
evaluated at the same location. Each pixel fragment thus consists of integer x and y
grid coordinates, SAMPLES depth values and sets of associated data, and a coverage
value with a maximum of SAMPLES bits.

Multisample rasterization is only in effect when the value of SAMPLE_-

OpenGL ES 3.0.3 (December 18, 2013)

3.4. POINTS 97

BUFFERS is one. Multisample rasterization of all primitives differs substantially
from single-sample rasterization. It is understood that each pixel in the framebuffer
has SAMPLES locations associated with it. These locations are exact positions,
rather than regions or areas, and each is referred to as a sample point. The sample
points associated with a pixel may be located inside or outside of the unit square
that is considered to bound the pixel. Furthermore, the relative locations of sample
points may be identical for each pixel in the framebuffer, or they may differ.

If the sample locations differ per pixel, they should be aligned to window, not
screen, boundaries. Otherwise rendering results will be window-position specific.
The invariance requirement described in section 3.2 is relaxed for all multisample
rasterization, because the sample locations may be a function of pixel location.

3.4 Points

A point is drawn by generating a set of fragments in the shape of a square centered
around the vertex of the point. Each vertex has an associated point size, measured
in window coordinates, that controls the size of that square.

The point size is taken from the shader built-in gl_PointSize written by the
vertex shader, and clamped to the implementation-dependent point size range. If
the value written to gl_PointSize is less than or equal to zero, or if no value
is written, the point size is undefined. The supported range is determined by the
ALIASED_POINT_SIZE_RANGE and may be queried as described in chapter 6.
The maximum point size supported must be at least one.

3.4.1 Basic Point Rasterization

Point rasterization produces a fragment for each framebuffer pixel whose center
lies inside a square centered at the point’s (xw, yw), with side length equal to the
current point size.

All fragments produced in rasterizing a point are assigned the same associ-
ated data, which are those of the vertex corresponding to the point. However, the
fragment shader builtin gl_PointCoord defines a per-fragment coordinate space
(s, t) where s varies from 0 to 1 across the point horizontally left-to-right, and t
varies from 0 to 1 across the point vertically top-to-bottom.

The following formula is used to evaluate (s, t) values:

s =
1

2
+

(
xf + 1

2 − xw
)

size
(3.1)

OpenGL ES 3.0.3 (December 18, 2013)

3.5. LINE SEGMENTS 98

t =
1

2
−
(
yf + 1

2 − yw
)

size
(3.2)

where size is the point’s size, xf and yf are the (integral) window coordinates of
the fragment, and xw and yw are the exact, unrounded window coordinates of the
vertex for the point.

3.4.2 Point Multisample Rasterization

If the value of SAMPLE_BUFFERS is one, then points are rasterized using the fol-
lowing algorithm. Point rasterization produces a fragment for each framebuffer
pixel with one or more sample points that intersect a region centered at the point’s
(xw, yw). This region is a square with sides equal to the current point size. Cov-
erage bits that correspond to sample points that intersect the region are 1, other
coverage bits are 0. All data associated with each sample for the fragment are the
data associated with the point being rasterized.

3.5 Line Segments

A line segment results from a line strip, a line loop, or a series of separate line
segments. Line segment rasterization is controlled by several variables. Line width,
which may be set by calling

void LineWidth(float width);

with an appropriate positive floating-point width, controls the width of rasterized
line segments, measured in window coordinates. The default width is 1.0. Val-
ues less than or equal to 0.0 generate the error INVALID_VALUE. The supported
range is determined by the ALIASED_LINE_WIDTH_RANGE and may be queried as
described in chapter 6. The maximum line width supported must be at least one.

3.5.1 Basic Line Segment Rasterization

Line segment rasterization begins by characterizing the segment as either x-major
or y-major. x-major line segments have slope in the closed interval [−1, 1]; all
other line segments are y-major (slope is determined by the segment’s endpoints).
We shall specify rasterization only for x-major segments except in cases where the
modifications for y-major segments are not self-evident.

OpenGL ES 3.0.3 (December 18, 2013)

3.5. LINE SEGMENTS 99

Ideally, the GL uses a “diamond-exit” rule to determine those fragments that
are produced by rasterizing a line segment. For each fragment f with center at win-
dow coordinates xf and yf , define a diamond-shaped region that is the intersection
of four half planes:

Rf = { (x, y) | |x− xf |+ |y − yf | < 1/2.}

Essentially, a line segment starting at pa and ending at pb produces those frag-
ments f for which the segment intersects Rf , except if pb is contained in Rf . See
figure 3.2.

To avoid difficulties when an endpoint lies on a boundary of Rf we (in princi-
ple) perturb the supplied endpoints by a tiny amount. Let pa and pb have window
coordinates (xa, ya) and (xb, yb), respectively. Obtain the perturbed endpoints p′a
given by (xa, ya) − (ε, ε2) and p′b given by (xb, yb) − (ε, ε2). Rasterizing the line
segment starting at pa and ending at pb produces those fragments f for which the
segment starting at p′a and ending on p′b intersects Rf , except if p′b is contained in
Rf . ε is chosen to be so small that rasterizing the line segment produces the same
fragments when δ is substituted for ε for any 0 < δ ≤ ε.

When pa and pb lie on fragment centers, this characterization of fragments
reduces to Bresenham’s algorithm with one modification: lines produced in this
description are “half-open,” meaning that the final fragment (corresponding to pb)
is not drawn. This means that when rasterizing a series of connected line segments,
shared endpoints will be produced only once rather than twice (as would occur with
Bresenham’s algorithm).

Because the initial and final conditions of the diamond-exit rule may be difficult
to implement, other line segment rasterization algorithms are allowed, subject to
the following rules:

1. The coordinates of a fragment produced by the algorithm may not deviate by
more than one unit in either x or y window coordinates from a corresponding
fragment produced by the diamond-exit rule.

2. The total number of fragments produced by the algorithm may differ from
that produced by the diamond-exit rule by no more than one.

3. For an x-major line, no two fragments may be produced that lie in the same
window-coordinate column (for a y-major line, no two fragments may ap-
pear in the same row).

4. If two line segments share a common endpoint, and both segments are either
x-major (both left-to-right or both right-to-left) or y-major (both bottom-to-
top or both top-to-bottom), then rasterizing both segments may not produce

OpenGL ES 3.0.3 (December 18, 2013)

3.5. LINE SEGMENTS 100

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

Figure 3.2. Visualization of Bresenham’s algorithm. A portion of a line segment is
shown. A diamond shaped region of height 1 is placed around each fragment center;
those regions that the line segment exits cause rasterization to produce correspond-
ing fragments.

duplicate fragments, nor may any fragments be omitted so as to interrupt
continuity of the connected segments.

Next we must specify how the data associated with each rasterized fragment
are obtained. Let the window coordinates of a produced fragment center be given
by pr = (xd, yd) and let pa = (xa, ya) and pb = (xb, yb). Set

t =
(pr − pa) · (pb − pa)

‖pb − pa‖2
. (3.3)

(Note that t = 0 at pa and t = 1 at pb.) The value of an associated datum f for the
fragment, whether it be a shader output or the clip w coordinate, is found as

f =
(1− t)fa/wa + tfb/wb

(1− t)/wa + t/wb
(3.4)

where fa and fb are the data associated with the starting and ending endpoints of
the segment, respectively; wa and wb are the clip w coordinates of the starting and
ending endpoints of the segments, respectively. However, depth values for lines
must be interpolated by

z = (1− t)za + tzb (3.5)

OpenGL ES 3.0.3 (December 18, 2013)

3.5. LINE SEGMENTS 101

width = 2 width = 3

Figure 3.3. Rasterization of wide lines. x-major line segments are shown. The heavy
line segment is the one specified to be rasterized; the light segment is the offset
segment used for rasterization. x marks indicate the fragment centers produced by
rasterization.

where za and zb are the depth values of the starting and ending endpoints of the
segment, respectively.

The flat keyword used to declare shader outputs affects how they are in-
terpolated. When it is not specified, interpolation is performed as described in
equation 3.4. When the flat keyword is specified, no interpolation is performed,
and outputs are taken from the corresponding input value of the provoking vertex
corresponding to that primitive (see section 2.16).

3.5.2 Other Line Segment Features

We have just described the rasterization of line segments of width one. We now
describe the rasterization of line segments for general values of line width.

Wide Lines

The actual width of lines is determined by rounding the supplied width to the near-
est integer, then clamping it to the implementation-dependent maximum line width.
This implementation-dependent value must be no less than 1. If rounding the spec-
ified width results in the value 0, then it is as if the value were 1.

OpenGL ES 3.0.3 (December 18, 2013)

3.5. LINE SEGMENTS 102

Line segments of width other than one are rasterized by offsetting them in the
minor direction (for an x-major line, the minor direction is y, and for a y-major
line, the minor direction is x) and replicating fragments in the minor direction
(see figure 3.3). Let w be the width rounded to the nearest integer (if w = 0,
then it is as if w = 1). If the line segment has endpoints given by (x0, y0) and
(x1, y1) in window coordinates, the segment with endpoints (x0, y0 − (w − 1)/2)
and (x1, y1 − (w − 1)/2) is rasterized, but instead of a single fragment, a column
of fragments of height w (a row of fragments of length w for a y-major segment)
is produced at each x (y for y-major) location. The lowest fragment of this column
is the fragment that would be produced by rasterizing the segment of width 1 with
the modified coordinates.

3.5.3 Line Rasterization State

The state required for line rasterization consists of the floating-point line width.
The initial value of the line width is 1.0.

3.5.4 Line Multisample Rasterization

If the value of SAMPLE_BUFFERS is one, then lines are rasterized using the follow-
ing algorithm. Line rasterization produces a fragment for each framebuffer pixel
with one or more sample points that intersect a rectangle centered on the line seg-
ment (see figure 3.4). Two of the edges are parallel to the specified line segment;
each is at a distance of one-half the line width from that segment: one above the
segment and one below it. The other two edges pass through the line endpoints and
are perpendicular to the direction of the specified line segment.

Coverage bits that correspond to sample points that intersect a rectangle are 1,
other coverage bits are 0. Each depth value and set of associated data is produced
by substituting the corresponding sample location into equation 3.3, then using
the result to evaluate equation 3.4. An implementation may choose to assign the
associated data to more than one sample by evaluating equation 3.3 at any location
within the pixel including the fragment center or any one of the sample locations,
then substituting into equation 3.4. The different associated data values need not
be evaluated at the same location.

Not all widths need be supported for multisampled line segments, but width
1.0 segments must be provided.

OpenGL ES 3.0.3 (December 18, 2013)

3.6. POLYGONS 103

� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �

Figure 3.4. The region used in rasterizing a multisampled line segment (an x-major
line segment is shown).

3.6 Polygons

A polygon results from a triangle arising from a triangle strip, triangle fan, or series
of separate triangles.

3.6.1 Basic Polygon Rasterization

The first step of polygon rasterization is to determine if the polygon is back-facing
or front-facing. This determination is made based on the sign of the (clipped or
unclipped) polygon’s area computed in window coordinates. One way to compute
this area is

a =
1

2

n−1∑
i=0

xiwy
i⊕1
w − xi⊕1w yiw (3.6)

where xiw and yiw are the x and y window coordinates of the ith vertex of
the n-vertex polygon (vertices are numbered starting at zero for purposes of this
computation) and i⊕1 is (i+1) mod n. The interpretation of the sign of this value
is controlled with

void FrontFace(enum dir);

OpenGL ES 3.0.3 (December 18, 2013)

3.6. POLYGONS 104

Setting dir to CCW (corresponding to counter-clockwise orientation of the pro-
jected polygon in window coordinates) uses a as computed above. Setting dir to
CW (corresponding to clockwise orientation) indicates that the sign of a should be
reversed prior to use. Front face determination requires one bit of state, and is
initially set to CCW.

If the sign of a (including the possible reversal of this sign as determined by
FrontFace) is positive, the polygon is front-facing; otherwise, it is back-facing.
This determination is used in conjunction with the CullFace enable bit and mode
value to decide whether or not a particular polygon is rasterized. The CullFace
mode is set by calling

void CullFace(enum mode);

mode is a symbolic constant: one of FRONT, BACK or FRONT_AND_BACK. Culling
is enabled or disabled with Enable or Disable using the symbolic constant CULL_-
FACE. Front-facing polygons are rasterized if either culling is disabled or the Cull-
Face mode is BACK while back-facing polygons are rasterized only if either culling
is disabled or the CullFace mode is FRONT. The initial setting of the CullFace
mode is BACK. Initially, culling is disabled.

The rule for determining which fragments are produced by polygon rasteriza-
tion is called point sampling. The two-dimensional projection obtained by taking
the x and y window coordinates of the polygon’s vertices is formed. Fragment
centers that lie inside of this polygon are produced by rasterization. Special treat-
ment is given to a fragment whose center lies on a polygon edge. In such a case
we require that if two polygons lie on either side of a common edge (with identical
endpoints) on which a fragment center lies, then exactly one of the polygons results
in the production of the fragment during rasterization.

As for the data associated with each fragment produced by rasterizing a poly-
gon, we begin by specifying how these values are produced for fragments in a
triangle. Define barycentric coordinates for a triangle. Barycentric coordinates are
a set of three numbers, a, b, and c, each in the range [0, 1], with a + b + c = 1.
These coordinates uniquely specify any point p within the triangle or on the trian-
gle’s boundary as

p = apa + bpb + cpc,

where pa, pb, and pc are the vertices of the triangle. a, b, and c can be found as

a =
A(ppbpc)

A(papbpc)
, b =

A(ppapc)

A(papbpc)
, c =

A(ppapb)

A(papbpc)
,

where A(lmn) denotes the area in window coordinates of the triangle with vertices
l, m, and n.

OpenGL ES 3.0.3 (December 18, 2013)

3.6. POLYGONS 105

Denote an associated datum at pa, pb, or pc as fa, fb, or fc, respectively. Then
the value f of a datum at a fragment produced by rasterizing a triangle is given by

f =
afa/wa + bfb/wb + cfc/wc

a/wa + b/wb + c/wc
(3.7)

where wa, wb and wc are the clip w coordinates of pa, pb, and pc, respectively.
a, b, and c are the barycentric coordinates of the fragment for which the data are
produced. a, b, and c must correspond precisely to the exact coordinates of the
center of the fragment. Another way of saying this is that the data associated with
a fragment must be sampled at the fragment’s center. However, depth values for
polygons must be interpolated by

z = aza + bzb + czc (3.8)

where za, zb, and zc are the depth values of pa, pb, and pc, respectively.
The flat keyword used to declare shader outputs affects how they are in-

terpolated. When it is not specified, interpolation is performed as described in
equation 3.7. When the flat keyword is specified, no interpolation is performed,
and outputs are taken from the corresponding input value of the provoking vertex
corresponding to that primitive (see section 2.16).

For a polygon with more than three edges, such as may be produced by clipping
a triangle, we require only that a convex combination of the values of the datum
at the polygon’s vertices can be used to obtain the value assigned to each fragment
produced by the rasterization algorithm. That is, it must be the case that at every
fragment

f =

n∑
i=1

aifi

where n is the number of vertices in the polygon, fi is the value of the f at vertex
i; for each i 0 ≤ ai ≤ 1 and

∑n
i=1 ai = 1. The values of the ai may differ from

fragment to fragment, but at vertex i, aj = 0, j 6= i and ai = 1.
One algorithm that achieves the required behavior is to triangulate a polygon

(without adding any vertices) and then treat each triangle individually as already
discussed. A scan-line rasterizer that linearly interpolates data along each edge
and then linearly interpolates data across each horizontal span from edge to edge
also satisfies the restrictions (in this case, the numerator and denominator of equa-
tion 3.7 should be iterated independently and a division performed for each frag-
ment).

OpenGL ES 3.0.3 (December 18, 2013)

3.6. POLYGONS 106

3.6.2 Depth Offset

The depth values of all fragments generated by the rasterization of a polygon may
be offset by a single value that is computed for that polygon. The function that
determines this value is specified by calling

void PolygonOffset(float factor, float units);

factor scales the maximum depth slope of the polygon, and units scales an
implementation-dependent constant that relates to the usable resolution of the
depth buffer. The resulting values are summed to produce the polygon offset value.
Both factor and units may be either positive or negative.

The maximum depth slope m of a triangle is

m =

√(
∂zw
∂xw

)2

+

(
∂zw
∂yw

)2

(3.9)

where (xw, yw, zw) is a point on the triangle. m may be approximated as

m = max

{∣∣∣∣ ∂zw∂xw

∣∣∣∣ , ∣∣∣∣∂zw∂yw

∣∣∣∣} . (3.10)

The minimum resolvable difference r is an implementation-dependent param-
eter that depends on the depth buffer representation. It is the smallest difference in
window coordinate z values that is guaranteed to remain distinct throughout poly-
gon rasterization and in the depth buffer. All pairs of fragments generated by the
rasterization of two polygons with otherwise identical vertices, but zw values that
differ by r, will have distinct depth values.

For fixed-point depth buffer representations, r is constant throughout the range
of the entire depth buffer. For floating-point depth buffers, there is no single min-
imum resolvable difference. In this case, the minimum resolvable difference for a
given polygon is dependent on the maximum exponent, e, in the range of z values
spanned by the primitive. If n is the number of bits in the floating-point mantissa,
the minimum resolvable difference, r, for the given primitive is defined as

r = 2e−n.

If no depth buffer is present, r is undefined.
The offset value o for a polygon is

o = m× factor + r × units. (3.11)

OpenGL ES 3.0.3 (December 18, 2013)

3.7. PIXEL RECTANGLES 107

m is computed as described above. If the depth buffer uses a fixed-point represen-
tation, m is a function of depth values in the range [0, 1], and o is applied to depth
values in the same range.

Boolean state value POLYGON_OFFSET_FILL determines whether o is applied
during the rasterization of polygons. This boolean state value is enabled and dis-
abled with the commands Enable and Disable.

For fixed-point depth buffers, fragment depth values are always limited to the
range [0, 1] by clamping after offset addition is performed. Fragment depth values
are clamped even when the depth buffer uses a floating-point representation.

3.6.3 Polygon Multisample Rasterization

If the value of SAMPLE_BUFFERS is one, then polygons are rasterized using the
following algorithm. Polygon rasterization produces a fragment for each frame-
buffer pixel with one or more sample points that satisfy the point sampling criteria
described in section 3.6.1. If a polygon is culled, based on its orientation and the
CullFace mode, then no fragments are produced during rasterization.

Coverage bits that correspond to sample points that satisfy the point sampling
criteria are 1, other coverage bits are 0. Each associated datum is produced as
described in section 3.6.1, but using the corresponding sample location instead of
the fragment center. An implementation may choose to assign the same associated
data values to more than one sample by barycentric evaluation using any location
within the pixel including the fragment center or one of the sample locations.

The flat qualifier affects how shader outputs are interpolated in the same
fashion as described for basic polygon rasterization in section 3.6.1.

3.6.4 Polygon Rasterization State

The state required for polygon rasterization consists of whether polygon offsets are
enabled or disabled, and the factor and bias values of the polygon offset equation.
The initial polygon offset factor and bias values are both 0; initially polygon offset
is disabled.

3.7 Pixel Rectangles

Rectangles of color, depth, and certain other values may be specified to the GL
using TexImage*D (see section 3.8.3). Some of the parameters and operations
governing the operation of these commands are shared by ReadPixels (used to
obtain pixel values from the framebuffer); the discussion of ReadPixels, how-
ever, is deferred until chapter 4 after the framebuffer has been discussed in detail.

OpenGL ES 3.0.3 (December 18, 2013)

3.7. PIXEL RECTANGLES 108

Parameter Name Type Initial Value Valid Range
UNPACK_ROW_LENGTH integer 0 [0,∞)

UNPACK_SKIP_ROWS integer 0 [0,∞)

UNPACK_SKIP_PIXELS integer 0 [0,∞)

UNPACK_ALIGNMENT integer 4 1,2,4,8
UNPACK_IMAGE_HEIGHT integer 0 [0,∞)

UNPACK_SKIP_IMAGES integer 0 [0,∞)

Table 3.1: PixelStorei parameters pertaining to one or more of TexImage2D,
TexImage3D, TexSubImage2D, and TexSubImage3D.

Nevertheless, we note in this section when parameters and state pertaining to these
commands also pertain to ReadPixels.

A number of parameters control the encoding of pixels in buffer object or client
memory (for reading and writing) and how pixels are processed before being placed
in or after being read from the framebuffer (for reading, writing, and copying).
These parameters are set with PixelStorei.

3.7.1 Pixel Storage Modes and Pixel Buffer Objects

Pixel storage modes affect the operation of TexImage*D, TexSubImage*D, and
ReadPixels when one of these commands is issued. Pixel storage modes are set
with

void PixelStorei(enum pname, int param);

pname is a symbolic constant indicating a parameter to be set, and param is the
value to set it to. Tables 3.1 and 4.4 summarize the pixel storage parameters, their
types, their initial values, and their allowable ranges. Setting a parameter to a value
outside the given range results in the error INVALID_VALUE.

In addition to storing pixel data in client memory, pixel data may also be
stored in buffer objects (described in section 2.9). The current pixel unpack and
pack buffer objects are designated by the PIXEL_UNPACK_BUFFER and PIXEL_-

PACK_BUFFER targets respectively.
Initially, zero is bound for the PIXEL_UNPACK_BUFFER, indicating that im-

age specification commands such as TexImage*D source their pixels from client
memory pointer parameters. However, if a non-zero buffer object is bound as the
current pixel unpack buffer, then the pointer parameter is treated as an offset into
the designated buffer object.

OpenGL ES 3.0.3 (December 18, 2013)

3.7. PIXEL RECTANGLES 109

Unpack

byte, short, or packed
pixel component data stream

Convert to Float

Convert L to RGB

Clamp to [0,1]

RGBA pixel data out

Pixel Storage
Operations

Final
Conversion

Figure 3.5. Transfer of pixel rectangles to the GL. Output is RGBA pixels. Depth
and stencil pixel paths are not shown.

3.7.2 Transfer of Pixel Rectangles

The process of transferring pixels encoded in buffer object or client memory is
diagrammed in figure 3.5. We describe the stages of this process in the order in
which they occur.

Commands accepting or returning pixel rectangles take the following argu-
ments (as well as additional arguments specific to their function):

format is a symbolic constant indicating what the values in memory represent.
internalformat is a symbolic constant indicating with what format and mini-

mum precision the values should be stored by the GL.
width and height are the width and height, respectively, of the pixel rectangle

to be transferred.
data refers to the data to be transferred. These data are represented with one

of several GL data types, specified by type. The correspondence between the type
token values and the GL data types they indicate is given in table 3.4.

Not all combinations of format, type, and internalformat are valid. The com-
binations accepted by the GL are defined in tables 3.2 and 3.3. Some additional
constraints on the combinations of format and type values that are accepted are

OpenGL ES 3.0.3 (December 18, 2013)

3.7. PIXEL RECTANGLES 110

discussed below. Additional restrictions may be imposed by specific commands.

External
Bytes Internal

Format Type per Pixel Format
RGBA UNSIGNED_BYTE 4 RGBA8, RGB5_A1,

RGBA4,
SRGB8_ALPHA8

RGBA BYTE 4 RGBA8_SNORM

RGBA UNSIGNED_SHORT_4_4_4_4 2 RGBA4

RGBA UNSIGNED_SHORT_5_5_5_1 2 RGB5_A1

RGBA UNSIGNED_INT_2_10_10_10_REV 4 RGB10_A2, RGB5_A1
RGBA HALF_FLOAT 8 RGBA16F

RGBA FLOAT 16 RGBA32F, RGBA16F
RGBA_INTEGER UNSIGNED_BYTE 4 RGBA8UI

RGBA_INTEGER BYTE 4 RGBA8I

RGBA_INTEGER UNSIGNED_SHORT 8 RGBA16UI

RGBA_INTEGER SHORT 8 RGBA16I

RGBA_INTEGER UNSIGNED_INT 16 RGBA32UI

RGBA_INTEGER INT 16 RGBA32I

RGBA_INTEGER UNSIGNED_INT_2_10_10_10_REV 4 RGB10_A2UI

RGB UNSIGNED_BYTE 3 RGB8, RGB565,
SRGB8

RGB BYTE 3 RGB8_SNORM

RGB UNSIGNED_SHORT_5_6_5 2 RGB565

RGB UNSIGNED_INT_10F_11F_11F_REV 4 R11F_G11F_B10F

RGB UNSIGNED_INT_5_9_9_9_REV 4 RGB9_E5

RGB HALF_FLOAT 6 RGB16F,
R11F_G11F_B10F,
RGB9_E5

RGB FLOAT 12 RGB32F, RGB16F,
R11F_G11F_B10F,
RGB9_E5

RGB_INTEGER UNSIGNED_BYTE 3 RGB8UI

RGB_INTEGER BYTE 3 RGB8I

RGB_INTEGER UNSIGNED_SHORT 6 RGB16UI

RGB_INTEGER SHORT 6 RGB16I

Valid combinations of format, type, and sized internalformat continued on next page

OpenGL ES 3.0.3 (December 18, 2013)

3.7. PIXEL RECTANGLES 111

Valid combinations of format, type, and sized internalformat continued from previous page
External

Bytes Internal
Format Type per Pixel Format
RGB_INTEGER UNSIGNED_INT 12 RGB32UI

RGB_INTEGER INT 12 RGB32I

RG UNSIGNED_BYTE 2 RG8

RG BYTE 2 RG8_SNORM

RG HALF_FLOAT 4 RG16F

RG FLOAT 8 RG32F, RG16F
RG_INTEGER UNSIGNED_BYTE 2 RG8UI

RG_INTEGER BYTE 2 RG8I

RG_INTEGER UNSIGNED_SHORT 4 RG16UI

RG_INTEGER SHORT 4 RG16I

RG_INTEGER UNSIGNED_INT 8 RG32UI

RG_INTEGER INT 8 RG32I

RED UNSIGNED_BYTE 1 R8

RED BYTE 1 R8_SNORM

RED HALF_FLOAT 2 R16F

RED FLOAT 4 R32F, R16F
RED_INTEGER UNSIGNED_BYTE 1 R8UI

RED_INTEGER BYTE 1 R8I

RED_INTEGER UNSIGNED_SHORT 2 R16UI

RED_INTEGER SHORT 2 R16I

RED_INTEGER UNSIGNED_INT 4 R32UI

RED_INTEGER INT 4 R32I

DEPTH_COMPONENT UNSIGNED_SHORT 2 DEPTH_COMPONENT16

DEPTH_COMPONENT UNSIGNED_INT 4 DEPTH_COMPONENT24,
DEPTH_COMPONENT16

DEPTH_COMPONENT FLOAT 4 DEPTH_COMPONENT32F

DEPTH_STENCIL UNSIGNED_INT_24_8 4 DEPTH24_STENCIL8

DEPTH_STENCIL FLOAT_32_UNSIGNED_INT_24_8_REV 8 DEPTH32F_STENCIL8

Table 3.2: Valid combinations of format, type, and sized internal-
format.

OpenGL ES 3.0.3 (December 18, 2013)

3.7. PIXEL RECTANGLES 112

External
Bytes Internal

Format Type per Pixel Format
RGBA UNSIGNED_BYTE 4 RGBA

RGBA UNSIGNED_SHORT_4_4_4_4 2 RGBA

RGBA UNSIGNED_SHORT_5_5_5_1 2 RGBA

RGB UNSIGNED_BYTE 3 RGB

RGB UNSIGNED_SHORT_5_6_5 2 RGB

LUMINANCE_ALPHA UNSIGNED_BYTE 2 LUMINANCE_ALPHA

LUMINANCE UNSIGNED_BYTE 1 LUMINANCE

ALPHA UNSIGNED_BYTE 1 ALPHA

Table 3.3: Valid combinations of format, type, and unsized inter-
nalformat.

Unpacking

Data are taken from the currently bound pixel unpack buffer or client memory as a
sequence of signed or unsigned bytes (GL data types byte and ubyte), signed or
unsigned short integers (GL data types short and ushort), signed or unsigned
integers (GL data types int and uint), or floating point values (GL data types
half and float). These elements are grouped into sets of one, two, three, or
four values, depending on the format, to form a group. Table 3.5 summarizes the
format of groups obtained from memory; it also indicates those formats that yield
stencil values (indices) and those that yield floating-point or integer components.

If a pixel unpack buffer is bound (as indicated by a non-zero value of PIXEL_-
UNPACK_BUFFER_BINDING), data is an offset into the pixel unpack buffer and
the pixels are unpacked from the buffer relative to this offset; otherwise, data is a
pointer to client memory and the pixels are unpacked from client memory relative
to the pointer. If a pixel unpack buffer object is bound and unpacking the pixel data
according to the process described below would access memory beyond the size of
the pixel unpack buffer’s memory size, an INVALID_OPERATION error results. If a
pixel unpack buffer object is bound and data is not evenly divisible by the number
of basic machine units needed to store in memory the corresponding GL data type
from table 3.4 for the type parameter (or not evenly divisible by 4 for type FLOAT_-
32_UNSIGNED_INT_24_8_REV, which does not have a corresponding GL data
type), an INVALID_OPERATION error results.

OpenGL ES 3.0.3 (December 18, 2013)

3.7. PIXEL RECTANGLES 113

type Parameter Corresponding Special
Token Name GL Data Type Interpretation
UNSIGNED_BYTE ubyte No
BYTE byte No
UNSIGNED_SHORT ushort No
SHORT short No
UNSIGNED_INT uint No
INT int No
HALF_FLOAT half No
FLOAT float No
UNSIGNED_SHORT_5_6_5 ushort Yes
UNSIGNED_SHORT_4_4_4_4 ushort Yes
UNSIGNED_SHORT_5_5_5_1 ushort Yes
UNSIGNED_INT_2_10_10_10_REV uint Yes
UNSIGNED_INT_24_8 uint Yes
UNSIGNED_INT_10F_11F_11F_REV uint Yes
UNSIGNED_INT_5_9_9_9_REV uint Yes
FLOAT_32_UNSIGNED_INT_24_8_REV n/a Yes

Table 3.4: Pixel data type parameter values and the corresponding GL data types.
Refer to table 2.2 for definitions of GL data types. Special interpretations are
described near the end of section Special Interpretations.

OpenGL ES 3.0.3 (December 18, 2013)

3.7. PIXEL RECTANGLES 114

Format Name Element Meaning and Order Target Buffer
DEPTH_COMPONENT Depth Depth
DEPTH_STENCIL Depth and Stencil Depth and Stencil
RED R Color
RG R, G Color
RGB R, G, B Color
RGBA R, G, B, A Color
LUMINANCE Luminance Color
ALPHA A Color
LUMINANCE_ALPHA Luminance, A Color
RED_INTEGER iR Color
RG_INTEGER iR, iG Color
RGB_INTEGER iR, iG, iB Color
RGBA_INTEGER iR, iG, iB, iA Color

Table 3.5: Pixel data formats. The second column gives a description of and the
number and order of elements in a group. Except for stencil, formats yield com-
ponents. Components are floating-point unless prefixed with the letter ’i’, which
indicates they are integer.

OpenGL ES 3.0.3 (December 18, 2013)

3.7. PIXEL RECTANGLES 115

The values of each GL data type are interpreted as they would be specified in
the language of the client’s GL binding.

The groups in memory are treated as being arranged in a rectangle. This rect-
angle consists of a series of rows, with the first element of the first group of the
first row pointed to by data. If the value of UNPACK_ROW_LENGTH is zero, then the
number of groups in a row is width; otherwise the number of groups is UNPACK_-
ROW_LENGTH. If p indicates the location in memory of the first element of the first
row, then the first element of the N th row is indicated by

p+Nk (3.12)

where N is the row number (counting from zero) and k is defined as

k =

{
nl s ≥ a,
a
s

⌈
snl
a

⌉
s < a

(3.13)

where n is the number of elements in a group, l is the number of groups in the row,
a is the value of UNPACK_ALIGNMENT, and s is the size, in units of GL ubytes, of
an element. If the number of bits per element is not 1, 2, 4, or 8 times the number
of bits in a GL ubyte, then k = nl for all values of a.

There is a mechanism for selecting a sub-rectangle of groups from a
larger containing rectangle. This mechanism relies on three integer parameters:
UNPACK_ROW_LENGTH, UNPACK_SKIP_ROWS, and UNPACK_SKIP_PIXELS. Be-
fore obtaining the first group from memory, the data pointer is advanced by
(UNPACK_SKIP_PIXELS)n + (UNPACK_SKIP_ROWS)k elements. Then width
groups are obtained from contiguous elements in memory (without advancing the
pointer), after which the pointer is advanced by k elements. height sets of width
groups of values are obtained this way. See figure 3.6.

Special Interpretations

A type matching one of the types in table 3.6 is a special case in which all the
components of each group are packed into a single unsigned byte, unsigned short,
or unsigned int, depending on the type. If type is FLOAT_32_UNSIGNED_INT_-
24_8_REV, the components of each group are contained within two 32-bit words;
the first word contains the float component, and the second word contains a packed
24-bit unused field, followed by an 8-bit component. The number of components
per packed pixel is fixed by the type, and must match the number of components
per group indicated by the format parameter, as listed in table 3.6. The error
INVALID_OPERATION is generated by any command processing pixel rectangles
if a mismatch occurs.

OpenGL ES 3.0.3 (December 18, 2013)

3.7. PIXEL RECTANGLES 116

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

SKIP_ROWS

SKIP_PIXELS

ROW_LENGTH

subimage

Figure 3.6. Selecting a subimage from an image. The indicated parameter names
are prefixed by UNPACK_ for TexImage* and by PACK_ for ReadPixels.

type Parameter GL Data Number of Matching
Token Name Type Components Pixel Formats
UNSIGNED_SHORT_5_6_5 ushort 3 RGB

UNSIGNED_SHORT_4_4_4_4 ushort 4 RGBA

UNSIGNED_SHORT_5_5_5_1 ushort 4 RGBA

UNSIGNED_INT_2_10_10_10_REV uint 4 RGBA, RGBA_INTEGER
UNSIGNED_INT_24_8 uint 2 DEPTH_STENCIL

UNSIGNED_INT_10F_11F_11F_REV uint 3 RGB

UNSIGNED_INT_5_9_9_9_REV uint 4 RGB

FLOAT_32_UNSIGNED_INT_24_8_REV n/a 2 DEPTH_STENCIL

Table 3.6: Packed pixel formats.

OpenGL ES 3.0.3 (December 18, 2013)

3.7. PIXEL RECTANGLES 117

Bitfield locations of the first, second, third, and fourth components of each
packed pixel type are illustrated in tables 3.7- 3.9. Each bitfield is interpreted as
an unsigned integer value. If the base GL type is supported with more than the
minimum precision (e.g. a 9-bit byte) the packed components are right-justified in
the pixel.

Components are normally packed with the first component in the most signif-
icant bits of the bitfield, and successive component occupying progressively less
significant locations. Types whose token names end with _REV reverse the compo-
nent packing order from least to most significant locations. In all cases, the most
significant bit of each component is packed in the most significant bit location of
its location in the bitfield.

UNSIGNED_SHORT_5_6_5:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd

UNSIGNED_SHORT_4_4_4_4:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd 4th

UNSIGNED_SHORT_5_5_5_1:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd 4th

Table 3.7: UNSIGNED_SHORT formats

OpenGL ES 3.0.3 (December 18, 2013)

3.7. PIXEL RECTANGLES 118

UNSIGNED_INT_2_10_10_10_REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

UNSIGNED_INT_24_8:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd

UNSIGNED_INT_10F_11F_11F_REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

3rd 2nd 1st Component

UNSIGNED_INT_5_9_9_9_REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

Table 3.8: UNSIGNED_INT formats

FLOAT_32_UNSIGNED_INT_24_8_REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Unused 2nd

Table 3.9: FLOAT_UNSIGNED_INT formats

OpenGL ES 3.0.3 (December 18, 2013)

3.7. PIXEL RECTANGLES 119

Format First Second Third Fourth
Component Component Component Component

RGB red green blue
RGBA red green blue alpha
DEPTH_STENCIL depth stencil

Table 3.10: Packed pixel field assignments.

The assignment of component to fields in the packed pixel is as described in
table 3.10.

The above discussions of row length and image extraction are valid for packed
pixels, if “group” is substituted for “component” and the number of components
per group is understood to be one.

A type of UNSIGNED_INT_10F_11F_11F_REV and format of RGB is a special
case in which the data are a series of GL uint values. Each uint value specifies 3
packed components as shown in table 3.8. The 1st, 2nd, and 3rd components are
called fred (11 bits), fgreen (11 bits), and fblue (10 bits) respectively.

fred and fgreen are treated as unsigned 11-bit floating-point values and con-
verted to floating-point red and green components respectively as described in sec-
tion 2.1.3. fblue is treated as an unsigned 10-bit floating-point value and converted
to a floating-point blue component as described in section 2.1.4.

A type of UNSIGNED_INT_5_9_9_9_REV and format of RGB is a special case
in which the data are a series of GL uint values. Each uint value specifies 4
packed components as shown in table 3.8. The 1st, 2nd, 3rd, and 4th components
are called pred, pgreen, pblue, and pexp respectively and are treated as unsigned
integers. These are then used to compute floating-point RGB components (ignoring
the “Conversion to floating-point” section below in this case) as follows:

red = pred2pexp−B−N

green = pgreen2pexp−B−N

blue = pblue2
pexp−B−N

where B = 15 (the exponent bias) and N = 9 (the number of mantissa bits).

Conversion to floating-point

This step applies only to groups of normalized fixed-point components. It is not
performed on indices or integer components. For groups containing both compo-

OpenGL ES 3.0.3 (December 18, 2013)

3.8. TEXTURING 120

nents and indices, such as DEPTH_STENCIL, the indices are not converted.
Each element in a group is converted to a floating-point value. For unsigned

normalized fixed-point elements, equation 2.1 is used. For signed normalized
fixed-point elements, equation 2.2 is used.

Conversion to RGB

This step is applied only if the format is LUMINANCE or LUMINANCE_ALPHA. If
the format is LUMINANCE, then each group of one element is converted to a group
of R, G, and B (three) elements by copying the original single element into each of
the three new elements. If the format is LUMINANCE_ALPHA, then each group of
two elements is converted to a group of R, G, B, and A (four) elements by copying
the first original element into each of the first three new elements and copying the
second original element to the A (fourth) new element.

Final Expansion to RGBA

This step is performed only for non-depth component groups. Each group is con-
verted to a group of 4 elements as follows: if a group does not contain an A ele-
ment, then A is added and set to 1 for integer components or 1.0 for floating-point
components. If any of R, G, or B is missing from the group, each missing element
is added and assigned a value of 0 for integer components or 0.0 for floating-point
components.

3.8 Texturing

Texturing maps a portion of one or more specified images onto a fragment or
vertex. This mapping is accomplished in shaders by sampling the color of an
image at the location indicated by specified (s, t, r) texture coordinates. Texture
lookups are typically used to modify a fragment’s RGBA color but may be used
for any purpose in a shader.

The internal data type of a texture may be signed or unsigned normalized fixed-
point, signed or unsigned integer, or floating-point, depending on the internal for-
mat of the texture. The correspondence between the internal format and the internal
data type is given in tables 3.13-3.14. Fixed-point and floating-point textures return
a floating-point value and integer textures return signed or unsigned integer values.
The fragment shader is responsible for interpreting the result of a texture lookup as
the correct data type, otherwise the result is undefined.

Each of the supported types of texture is a collection of images built from
two- or three-dimensional arrays of image elements referred to as texels. Two-

OpenGL ES 3.0.3 (December 18, 2013)

3.8. TEXTURING 121

and three-dimensional textures consist respectively of two- or three-dimensional
texel arrays. Two-dimensional array textures are arrays of two-dimensional im-
ages, consisting of one or more layers. Cube maps are special two-dimensional
array textures with six layers that represent the faces of a cube. When accessing
a cube map, the texture coordinates are projected onto one of the six faces of the
cube.

Implementations must support texturing using multiple images. The following
subsections (up to and including section 3.8.10) specify the GL operation with a
single texture. The process by which multiple texture images may be sampled and
combined by the application-supplied vertex and fragment shaders is described in
sections 2.11 and 3.9.

The coordinates used for texturing in a fragment shader are defined by the
OpenGL ES Shading Language Specification.

The command

void ActiveTexture(enum texture);

specifies the active texture unit selector, ACTIVE_TEXTURE. Each texture image
unit consists of all the texture state defined in section 3.8.

The active texture unit selector selects the texture image unit accessed by com-
mands involving texture image processing. Such commands include TexParam-
eter, TexImage, BindTexture, and queries of all such state.

ActiveTexture generates the error INVALID_ENUM if an invalid texture is spec-
ified. texture is a symbolic constant of the form TEXTUREi, indicating that texture
unit i is to be modified. The constants obey TEXTUREi = TEXTURE0+ i (i is in the
range 0 to k − 1, where k is the value of MAX_COMBINED_TEXTURE_IMAGE_-

UNITS).
The state required for the active texture image unit selector is a single integer.

The initial value is TEXTURE0.

3.8.1 Texture Objects

Textures in GL are represented by named objects. The name space for texture ob-
jects is the unsigned integers, with zero reserved by the GL to represent the default
texture object. The default texture object is bound to each of the TEXTURE_-

2D, TEXTURE_3D, TEXTURE_2D_ARRAY, and TEXTURE_CUBE_MAP targets dur-
ing context initialization.

A new texture object is created by binding an unused name to one of these
texture targets. The command

void GenTextures(sizei n, uint *textures);

OpenGL ES 3.0.3 (December 18, 2013)

3.8. TEXTURING 122

returns n previously unused texture names in textures. These names are marked as
used, for the purposes of GenTextures only, but they do not acquire texture state
and a dimensionality until they are first bound, just as if they were unused. The
binding is effected by calling

void BindTexture(enum target, uint texture);

with target set to the desired texture target and texture set to the unused name. The
resulting texture object is a new state vector, comprising all the state and with the
same initial values listed in section 3.8.14. The new texture object bound to target
is, and remains a texture of the dimensionality and type specified by target until it
is deleted.

BindTexture may also be used to bind an existing texture object to any of
these targets. The error INVALID_OPERATION is generated if an attempt is made
to bind a texture object of different dimensionality than the specified target. If the
bind is successful no change is made to the state of the bound texture object, and
any previous binding to target is broken.

While a texture object is bound, GL operations on the target to which it is
bound affect the bound object, and queries of the target to which it is bound return
state from the bound object. If texture mapping of the dimensionality of the target
to which a texture object is bound is enabled, the state of the bound texture object
directs the texturing operation.

Texture objects are deleted by calling

void DeleteTextures(sizei n, const uint *textures);

textures contains n names of texture objects to be deleted. After a texture object
is deleted, it has no contents or dimensionality, and its name is again unused. If
a texture that is currently bound to any of the target bindings of BindTexture is
deleted, it is as though BindTexture had been executed with the same target and
texture zero. Additionally, special care must be taken when deleting a texture if any
of the images of the texture are attached to a framebuffer object. See section 4.4.2
for details.

Unused names in textures that have been marked as used for the purposes of
GenTextures are marked as unused again. Unused names in textures are silently
ignored, as is the name zero.

The texture object name space, including the initial two- and three- dimen-
sional, two-dimensional array, and cube map texture objects, is shared among all
texture units. A texture object may be bound to more than one texture unit simul-
taneously. After a texture object is bound, any GL operations on that target object
affect any other texture units to which the same texture object is bound.

OpenGL ES 3.0.3 (December 18, 2013)

3.8. TEXTURING 123

Texture binding is affected by the setting of the state ACTIVE_TEXTURE. If a
texture object is deleted, it as if all texture units which are bound to that texture
object are rebound to texture object zero.

3.8.2 Sampler Objects

The state necessary for texturing can be divided into two categories as described
in section 3.8.14. A GL texture object includes both categories. The first category
represents dimensionality and other image parameters, and the second category
represents sampling state. Additionally, a sampler object may be created to encap-
sulate only the second category - the sampling state - of a texture object.

A new sampler object is created by binding an unused name to a texture unit.
The command

void GenSamplers(sizei count, uint *samplers);

returns count previously unused sampler object names in samplers. The name zero
is reserved by the GL to represent no sampler being bound to a texture unit. The
names are marked as used, for the purposes of GenSamplers only, but they acquire
state only when they are first used as a parameter to BindSampler, SamplerPa-
rameter*, GetSamplerParameter*, or IsSampler. When a sampler object is first
used in one of these functions, the resulting sampler object is initialized with a
new state vector, comprising all the state and with the same initial values listed in
table 6.10.

When a sampler object is bound to a texture unit, its state supersedes that of the
texture object(s) bound to that texture unit. If the sampler name zero is bound to a
texture unit, the currently bound texture’s sampler state becomes active. A single
sampler object may be bound to multiple texture units simultaneously.

A sampler binding is effected by calling

void BindSampler(uint unit, uint sampler);

with unit set to the texture unit to which to bind the sampler and sampler set to the
name of a sampler object returned from a previous call to GenSamplers.

If the bind is successful no change is made to the state of the bound sampler
object, and any previous binding to unit is broken.

BindSampler fails and an INVALID_OPERATION error is generated if sam-
pler is not zero or a name returned from a previous call to GenSamplers, or if
such a name has since been deleted with DeleteSamplers. An INVALID_VALUE

error is generated if unit is greater than or equal to the value of MAX_COMBINED_-
TEXTURE_IMAGE_UNITS.

OpenGL ES 3.0.3 (December 18, 2013)

3.8. TEXTURING 124

The currently bound sampler may be queried by calling GetIntegerv with
pname set to SAMPLER_BINDING. When a sampler object is unbound from the
texture unit (by binding another sampler object, or the sampler object named zero,
to that texture unit) the modified state is again replaced with the sampler state as-
sociated with the texture object bound to that texture unit.

The parameters represented by a sampler object are a subset of those described
in section 3.8.7. Each parameter of a sampler object is set by calling

void SamplerParameter{if}(uint sampler, enum pname,
T param);

void SamplerParameter{if}v(uint sampler, enum pname,
const T *params);

sampler is the name of a sampler object previously reserved by a call to Gen-
Samplers. pname is the name of a parameter to modify. In the first form of the
command, param is a value to which to set a single-valued parameter; in the sec-
ond form, params is an array of parameters whose type depends on the parameter
being set.

An INVALID_OPERATION error is generated if sampler is not the
name of a sampler object previously returned from a call to GenSam-
plers. The values accepted in the pname parameter are TEXTURE_WRAP_-

S, TEXTURE_WRAP_T, TEXTURE_WRAP_R, TEXTURE_MIN_FILTER, TEXTURE_-
MAG_FILTER, TEXTURE_MIN_LOD, TEXTURE_MAX_LOD, TEXTURE_COMPARE_-
MODE, and TEXTURE_COMPARE_FUNC.

Data conversions are performed as specified in section 2.3.1.
An INVALID_ENUM error is generated if pname is not the name of a parame-

ter accepted by SamplerParameter*. If the value of param is not an acceptable
value for the parameter specified in pname, an error is generated as specified in the
description of TexParameter*.

Modifying a parameter of a sampler object affects all texture units to which
that sampler object is bound. Calling TexParameter has no effect on the sampler
object bound to the active texture unit. It will modify the parameters of the texture
object bound to that unit.

Sampler objects are deleted by calling

void DeleteSamplers(sizei count, const uint *samplers);

samplers contains count names of sampler objects to be deleted. After a sampler
object is deleted, its name is again unused. If a sampler object that is currently
bound to one or more texture units is deleted, it is as though BindSampler is called

OpenGL ES 3.0.3 (December 18, 2013)

3.8. TEXTURING 125

once for each texture unit to which the sampler is bound, with unit set to the texture
unit and sampler set to zero. Unused names in samplers that have been marked as
used for the purposes of GenSamplers are marked as unused again. Unused names
in samplers are silently ignored, as is the reserved name zero.

3.8.3 Texture Image Specification

The command

void TexImage3D(enum target, int level, int internalformat,
sizei width, sizei height, sizei depth, int border,
enum format, enum type, const void *data);

is used to specify a three-dimensional texture image. target must be one of
TEXTURE_3D for a three-dimensional texture or TEXTURE_2D_ARRAY for an two-
dimensional array texture. format, type, and data specify the format of the image
data, the type of those data, and a reference to the image data in the currently bound
pixel unpack buffer or client memory, as described in section 3.7.2.

The groups in memory are treated as being arranged in a sequence of adjacent
rectangles. Each rectangle is a two-dimensional image, whose size and organiza-
tion are specified by the width and height parameters to TexImage3D. The val-
ues of UNPACK_ROW_LENGTH and UNPACK_ALIGNMENT control the row-to-row
spacing in these images as described in section 3.7.2. If the value of the integer
parameter UNPACK_IMAGE_HEIGHT is zero, then the number of rows in each two-
dimensional image is height; otherwise the number of rows is UNPACK_IMAGE_-
HEIGHT. Each two-dimensional image comprises an integral number of rows, and
is exactly adjacent to its neighbor images.

The mechanism for selecting a sub-volume of a three-dimensional image relies
on the integer parameter UNPACK_SKIP_IMAGES. If UNPACK_SKIP_IMAGES is
positive, the pointer is advanced by UNPACK_SKIP_IMAGES times the number of
elements in one two-dimensional image before obtaining the first group from mem-
ory. Then depth two-dimensional images are processed, each having a subimage
extracted as described in section 3.7.2.

The selected groups are transferred to the GL as described in section 3.7.2 and
then clamped to the representable range of the internal format. If the internal-
format of the texture is signed or unsigned integer, components are clamped to
[−2n−1, 2n−1 − 1] or [0, 2n − 1], respectively, where n is the number of bits per
component. For color component groups, if the internalformat of the texture is
signed or unsigned normalized fixed-point, components are clamped to [−1, 1] or
[0, 1], respectively. For depth component groups, the depth value is clamped to
[0, 1]. Otherwise, values are not modified.

OpenGL ES 3.0.3 (December 18, 2013)

3.8. TEXTURING 126

Base Internal Format RGBA, Depth, and Stencil Values Internal Components
DEPTH_COMPONENT Depth D

DEPTH_STENCIL Depth,Stencil D,S
LUMINANCE R L

ALPHA A A

LUMINANCE_ALPHA R,A L,A
RED R R

RG R,G R,G
RGB R,G,B R,G,B
RGBA R,G,B,A R,G,B,A

Table 3.11: Conversion from RGBA, depth, and stencil pixel components to inter-
nal texture components. Texture components L, R, G, B, and A are converted
back to RGBA colors during filtering as shown in table 3.24.

Components are then selected from the resulting R, G, B, A, depth, or stencil
values to obtain a texture with the base internal format specified by (or derived
from) internalformat. Table 3.11 summarizes the mapping of R, G, B, A, depth,
or stencil values to texture components, as a function of the base internal format
of the texture image. Specifying a combination of values for format, type, and
internalformat that is not listed as a valid combination in tables 3.2 or 3.3 generates
the error INVALID_OPERATION.

Textures with a base internal format of DEPTH_COMPONENT or DEPTH_-

STENCIL are supported by texture image specification commands only if target is
TEXTURE_2D, TEXTURE_2D_ARRAY, or TEXTURE_CUBE_MAP. Using these for-
mats in conjunction with any other target will result in an INVALID_OPERATION

error.
The internal component resolution is the number of bits allocated to each value

in a texture image. If internalformat is specified as a base internal format, the GL
stores the resulting texture with internal component resolutions of its own choos-
ing.

If internalformat is a sized internal format, the effective internal format is the
specified sized internal format. Otherwise, if internalformat is a base internal for-
mat, the effective internal format is a sized internal format that is derived from the
format and type for internal use by the GL. Table 3.12 specifies the mapping of
format and type to effective internal formats. The effective internal format is used
by the GL for purposes such as texture completeness or type checks for CopyTex*
commands. In these cases, the GL is required to operate as if the effective inter-

OpenGL ES 3.0.3 (December 18, 2013)

3.8. TEXTURING 127

nal format was used as the internalformat when specifying the texture data. Note
that unless specified elsewhere, the effective internal format values described in
table 3.12 are not legal for an application to pass directly to the GL.

Format Type Effective Internal Format
RGBA UNSIGNED_BYTE RGBA8

RGBA UNSIGNED_SHORT_4_4_4_4 RGBA4

RGBA UNSIGNED_SHORT_5_5_5_1 RGB5_A1

RGB UNSIGNED_BYTE RGB8

RGB UNSIGNED_SHORT_5_6_5 RGB565

LUMINANCE_ALPHA UNSIGNED_BYTE Luminance8Alpha8
LUMINANCE UNSIGNED_BYTE Luminance8
ALPHA UNSIGNED_BYTE Alpha8

Table 3.12: Effective internal format corresponding to external for-
mat and type. Formats in italics do not correspond to GL constants.

If a sized internal format is specified, the mapping of the R, G, B, A, depth,
and stencil values to texture components is equivalent to the mapping of the cor-
responding base internal format’s components, as specified in table 3.11; the type
(unsigned int, float, etc.) is assigned the same type specified by internalformat;
and the memory allocation per texture component is assigned by the GL to match
or exceed the allocations listed in tables 3.13 - 3.14.

Required Texture Formats

Implementations are required to support the following sized internal formats. Re-
questing one of these sized internal formats for any texture type will allocate at
least the internal component sizes, and exactly the component types shown for that
format in tables 3.13- 3.14:

• Texture and renderbuffer color formats (see section 4.4.2).

– RGBA32I, RGBA32UI, RGBA16I, RGBA16UI, RGBA8, RGBA8I,
RGBA8UI, SRGB8_ALPHA8, RGB10_A2, RGB10_A2UI, RGBA4, and
RGB5_A1.

– RGB8 and RGB565.

OpenGL ES 3.0.3 (December 18, 2013)

3.8. TEXTURING 128

– RG32I, RG32UI, RG16I, RG16UI, RG8, RG8I, and RG8UI.

– R32I, R32UI, R16I, R16UI, R8, R8I, and R8UI.

• Texture-only color formats:

– RGBA32F, RGBA16F, and RGBA8_SNORM.

– RGB32F, RGB32I, and RGB32UI.

– RGB16F, RGB16I, and RGB16UI.

– RGB8_SNORM, RGB8I, RGB8UI, and SRGB8.

– R11F_G11F_B10F and RGB9_E5.

– RG32F, RG16F, and RG8_SNORM.

– R32F, R16F, and R8_SNORM.

• Depth formats: DEPTH_COMPONENT32F, DEPTH_COMPONENT24, and
DEPTH_COMPONENT16.

• Combined depth+stencil formats: DEPTH32F_STENCIL8 and DEPTH24_-

STENCIL8.

Encoding of Special Internal Formats

If internalformat is R11F_G11F_B10F, the red, green, and blue bits are converted
to unsigned 11-bit, unsigned 11-bit, and unsigned 10-bit floating-point values as
described in sections 2.1.3 and 2.1.4.

If internalformat is RGB9_E5, the red, green, and blue bits are converted to a
shared exponent format according to the following procedure:

Components red, green, and blue are first clamped (in the process, mapping
NaN to zero) as follows:

redc = max(0,min(sharedexpmax, red))

greenc = max(0,min(sharedexpmax, green))

bluec = max(0,min(sharedexpmax, blue))

where

sharedexpmax =
(2N − 1)

2N
2Emax−B.

N is the number of mantissa bits per component (9), B is the exponent bias (15),
and Emax is the maximum allowed biased exponent value (31).

The largest clamped component, maxc, is determined:

OpenGL ES 3.0.3 (December 18, 2013)

3.8. TEXTURING 129

maxc = max(redc, greenc, bluec)

A preliminary shared exponent expp is computed:

expp = max(−B − 1, blog2(maxc)c) + 1 +B

A refined shared exponent exps is computed:

maxs =
⌊ maxc

2expp−B−N
+ 0.5

⌋

exps =

{
expp, 0 ≤ maxs < 2N

expp + 1, maxs = 2N

Finally, three integer values in the range 0 to 2N − 1 are computed:

reds =

⌊
redc

2exps−B−N
+ 0.5

⌋
greens =

⌊ greenc
2exps−B−N

+ 0.5
⌋

blues =

⌊
bluec

2exps−B−N
+ 0.5

⌋
The resulting reds, greens, blues, and exps are stored in the red, green, blue,

and shared bits respectively of the texture image.
An implementation accepting pixel data of type UNSIGNED_INT_5_9_9_9_-

REV with format RGB is allowed to store the components “as is”.

Sized Base R G B A Shared Color- Texture-
Internal Format Internal Format bits bits bits bits bits renderable filterable
R8 RED 8 � �
R8_SNORM RED s8 – �
RG8 RG 8 8 � �
RG8_SNORM RG s8 s8 – �
RGB8 RGB 8 8 8 � �
RGB8_SNORM RGB s8 s8 s8 – �
RGB565 RGB 5 6 5 � �
RGBA4 RGBA 4 4 4 4 � �

Sized internal color formats continued on next page

OpenGL ES 3.0.3 (December 18, 2013)

3.8. TEXTURING 130

Sized internal color formats continued from previous page
Sized Base R G B A Shared Color- Texture-
Internal Format Internal Format bits bits bits bits bits renderable filterable
RGB5_A1 RGBA 5 5 5 1 � �
RGBA8 RGBA 8 8 8 8 � �
RGBA8_SNORM RGBA s8 s8 s8 s8 – �
RGB10_A2 RGBA 10 10 10 2 � �
RGB10_A2UI RGBA ui10 ui10 ui10 ui2 � –
SRGB8 RGB 8 8 8 – �
SRGB8_ALPHA8 RGBA 8 8 8 8 � �
R16F RED f16 – �
RG16F RG f16 f16 – �
RGB16F RGB f16 f16 f16 – �
RGBA16F RGBA f16 f16 f16 f16 – �
R32F RED f32 – –
RG32F RG f32 f32 – –
RGB32F RGB f32 f32 f32 – –
RGBA32F RGBA f32 f32 f32 f32 – –
R11F_G11F_B10F RGB f11 f11 f10 – �
RGB9_E5 RGB 9 9 9 5 – �
R8I RED i8 � –
R8UI RED ui8 � –
R16I RED i16 � –
R16UI RED ui16 � –
R32I RED i32 � –
R32UI RED ui32 � –
RG8I RG i8 i8 � –
RG8UI RG ui8 ui8 � –
RG16I RG i16 i16 � –
RG16UI RG ui16 ui16 � –
RG32I RG i32 i32 � –
RG32UI RG ui32 ui32 � –
RGB8I RGB i8 i8 i8 – –
RGB8UI RGB ui8 ui8 ui8 – –
RGB16I RGB i16 i16 i16 – –
RGB16UI RGB ui16 ui16 ui16 – –
RGB32I RGB i32 i32 i32 – –

Sized internal color formats continued on next page

OpenGL ES 3.0.3 (December 18, 2013)

3.8. TEXTURING 131

Sized internal color formats continued from previous page
Sized Base R G B A Shared Color- Texture-
Internal Format Internal Format bits bits bits bits bits renderable filterable
RGB32UI RGB ui32 ui32 ui32 – –
RGBA8I RGBA i8 i8 i8 i8 � –
RGBA8UI RGBA ui8 ui8 ui8 ui8 � –
RGBA16I RGBA i16 i16 i16 i16 � –
RGBA16UI RGBA ui16 ui16 ui16 ui16 � –
RGBA32I RGBA i32 i32 i32 i32 � –
RGBA32UI RGBA ui32 ui32 ui32 ui32 � –

Table 3.13: Correspondence of sized internal color formats to base
internal formats, internal data type, minimum component resolu-
tions, renderability, and filterability. The component resolution
prefix indicates the internal data type: f is floating point, i is signed
integer, ui is unsigned integer, s is signed normalized fixed-point,
and no prefix is unsigned normalized fixed-point.

A GL implementation may vary its allocation of internal component resolution
based on any TexImage3D or TexImage2D (see below) parameter (except target),
but the allocation must not be a function of any other state and cannot be changed
once they are established. Allocations must be invariant; the same allocation must
be chosen each time a texture image is specified with the same parameter values.

The image itself (referred to by data) is a sequence of groups of values. The
first group is the lower left back corner of the texture image. Subsequent groups
fill out rows of width width from left to right; height rows are stacked from bottom
to top forming a single two-dimensional image slice; and depth slices are stacked
from back to front. When the final R, G, B, and A components have been computed
for a group, they are assigned to components of a texel as described by table 3.11.
Counting from zero, each resulting N th texel is assigned internal integer coordi-
nates (i, j, k), where

i = (N mod width)

j = (

⌊
N

width

⌋
mod height)

k = (

⌊
N

width× height

⌋
mod depth)

OpenGL ES 3.0.3 (December 18, 2013)

3.8. TEXTURING 132

Sized Base D S
Internal Format Internal Format bits bits
DEPTH_COMPONENT16 DEPTH_COMPONENT 16
DEPTH_COMPONENT24 DEPTH_COMPONENT 24
DEPTH_COMPONENT32F DEPTH_COMPONENT f32
DEPTH24_STENCIL8 DEPTH_STENCIL 24 ui8
DEPTH32F_STENCIL8 DEPTH_STENCIL f32 ui8

Table 3.14: Correspondence of sized internal depth and stencil formats to base
internal formats, internal data type, and minimum component resolutions for each
sized internal format. The component resolution prefix indicates the internal data
type: f is floating point, ui is unsigned integer, and no prefix is fixed-point.

Thus the last two-dimensional image slice of the three-dimensional image is in-
dexed with the highest value of k.

If the internal data type of the image array is signed or unsigned normalized
fixed-point, each color component is converted using equation 2.4 or 2.3, respec-
tively. If the internal type is floating-point or integer, components are clamped
to the representable range of the corresponding internal component, but are not
converted.

The level argument to TexImage3D is an integer level-of-detail number. Levels
of detail are discussed below, under Mipmapping. The main texture image has a
level of detail number of 0. If a level-of-detail less than zero is specified, the error
INVALID_VALUE is generated.

If width, height, or depth are less than zero, then the error INVALID_VALUE is
generated.

If border is not zero, then the error INVALID_VALUE is generated.
The maximum allowable width, height, or depth of a texel array for a three-

dimensional texture is an implementation-dependent function of the level-of-detail
and internal format of the resulting image array. It must be at least 2k−lod for
image arrays of level-of-detail 0 through k, where k is the log base 2 of MAX_3D_-
TEXTURE_SIZE, and lod is the level-of-detail of the image array. It may be zero
for image arrays of any level-of-detail greater than k. The error INVALID_VALUE
is generated if the specified image is too large to be stored under any conditions.

If width, height, or depth exceed the corresponding maximum size, an
INVALID_VALUE error is generated. As described in section 3.8.13, these
implementation-dependent limits may be configured to reject textures at level 1 or

OpenGL ES 3.0.3 (December 18, 2013)

3.8. TEXTURING 133

greater unless a mipmap complete set of image arrays consistent with the specified
sizes can be supported.

If a pixel unpack buffer object is bound and storing texture data would access
memory beyond the end of the pixel unpack buffer, an INVALID_OPERATION error
results.

In a similar fashion, the maximum allowable width of a texel array for a two-
dimensional texture, or two-dimensional array texture, and the maximum allowable
height of a two-dimensional texture or two-dimensional array texture, must be at
least 2k−lod for image arrays of level 0 through k, where k is the log base 2 of
MAX_TEXTURE_SIZE. The maximum allowable width and height of a cube map
texture must be the same, and must be at least 2k−lod for image arrays level 0
through k, where k is the log base 2 of MAX_CUBE_MAP_TEXTURE_SIZE. The
maximum number of layers for two-dimensional array textures (depth) must be at
least MAX_ARRAY_TEXTURE_LAYERS for all levels.

The command

void TexImage2D(enum target, int level, int internalformat,
sizei width, sizei height, int border, enum format,
enum type, const void *data);

is used to specify a two-dimensional texture image. target must be one of
TEXTURE_2D for a two-dimensional texture, or one of TEXTURE_CUBE_MAP_-
POSITIVE_X, TEXTURE_CUBE_MAP_NEGATIVE_X, TEXTURE_CUBE_MAP_-

POSITIVE_Y, TEXTURE_CUBE_MAP_NEGATIVE_Y, TEXTURE_CUBE_MAP_-

POSITIVE_Z, or TEXTURE_CUBE_MAP_NEGATIVE_Z for a cube map texture.
The other parameters match the corresponding parameters of TexImage3D.

For the purposes of decoding the texture image, TexImage2D is equivalent to
calling TexImage3D with corresponding arguments and depth of 1, except that
UNPACK_SKIP_IMAGES is ignored.

A two-dimensional texture consists of a single two-dimensional texture image.
A cube map texture is a set of six two-dimensional texture images. The six cube
map texture targets form a single cube map texture though each target names a
distinct face of the cube map. The TEXTURE_CUBE_MAP_* targets listed above
update their appropriate cube map face 2D texture image. Note that the six cube
map two-dimensional image tokens such as TEXTURE_CUBE_MAP_POSITIVE_X
are used when specifying, updating, or querying one of a cube map’s six two-
dimensional images, but when binding to a cube map texture object (that is when
the cube map is accessed as a whole as opposed to a particular two-dimensional
image), the TEXTURE_CUBE_MAP target is specified.

OpenGL ES 3.0.3 (December 18, 2013)

3.8. TEXTURING 134

Figure 3.7. A texture image and the coordinates used to access it. This is a two-
dimensional texture with wt = 8 and ht = 4. α and β, values used in blending
adjacent texels to obtain a texture value, are also shown.

When the target parameter to TexImage2D is one of the six cube map two-
dimensional image targets, the error INVALID_VALUE is generated if the width
and height parameters are not equal.

An INVALID_VALUE error is generated if border is non-zero.
The image indicated to the GL by the image pointer is decoded and copied into

the GL’s internal memory.
We shall refer to the decoded image as the texel array. A three-dimensional

texel array has width, height, and depth wt, ht, and dt. A two-dimensional texel
array has depth dt = 1, with height ht and width wt as above.

An element (i, j, k) of the texel array is called a texel (for a two-dimensional
texture, k is irrelevant). The texture value used in texturing a fragment is deter-
mined by sampling the texture in a shader, but may not correspond to any actual
texel. See figure 3.7.

If the data argument of TexImage2D or TexImage3D is a NULL pointer, and
the pixel unpack buffer object is zero, a two- or three-dimensional texel array is
created with the specified target, level, internalformat, border, width, height, and
depth, but with unspecified image contents. In this case no pixel values are ac-
cessed in client memory, and no pixel processing is performed. Errors are gener-

OpenGL ES 3.0.3 (December 18, 2013)

3.8. TEXTURING 135

ated, however, exactly as though the data pointer were valid. Otherwise if the pixel
unpack buffer object is non-zero, the data argument is treatedly normally to refer
to the beginning of the pixel unpack buffer object’s data.

3.8.4 Immutable-Format Texture Images

An alternative set of commands is provided for specifying the properties of all
levels of a texture at once. Once a texture is specified with such a command,
the format and dimensions of all levels become immutable. The contents of the
images and the parameters can still be modified. Such a texture is referred to as an
immutable-format texture. The immutability status of a texture can be determined
by calling GetTexParameter with pname TEXTURE_IMMUTABLE_FORMAT.

Each of the commands below is described by pseudo-code which indicates the
effect on the dimensions and format of the texture. For all of the commands, the
following apply in addition to the pseudo-code:

• If the default texture object is bound to target, an INVALID_OPERATION

error is generated.

• If executing the pseudo-code results in an OUT_OF_MEMORY error, the error
is generated and the results of executing the command are undefined.

• If executing the pseudo-code would result in any other error, the error is
generated and the command will have no effect.

• Any existing levels that are not replaced are reset to their initial state.

• If width, height, depth or levels is less than 1, the error INVALID_VALUE is
generated.

• The pixel unpack buffer should be considered to be zero; i.e., the image
contents are unspecified.

• Since no pixel data are provided, the format and type values used in the
pseudo-code are irrelevant; they can be considered to be any values that are
legal to use with internalformat.

• If the command is successful, TEXTURE_IMMUTABLE_FORMAT becomes
TRUE and TEXTURE_IMMUTABLE_LEVELS becomes levels.

• If internalformat is a compressed texture format, then references to TexIm-
age* should be replaced by CompressedTexImage*, with format, type and
data replaced by any valid imageSize and data. If there is no imageSize for

OpenGL ES 3.0.3 (December 18, 2013)

3.8. TEXTURING 136

which this command would have been valid, an INVALID_OPERATION error
is generated.

• If internalformat is one of the unsized base internal formats listed in ta-
ble 3.3, an INVALID_ENUM error is generated.

The command

void TexStorage2D(enum target, sizei levels,
enum internalformat, sizei width, sizei height);

specifies all the levels of a two-dimensional or cube-map texture at the same time.
The pseudo-code depends on the target:

TEXTURE_2D:

for (i = 0; i < levels; i++) {
TexImage2D(target, i, internalformat, width, height, 0,

format, type, NULL);
width = max(1,

⌊
width

2

⌋
);

height = max(1,
⌊
height

2

⌋
);

}

TEXTURE_CUBE_MAP:

for (i = 0; i < levels; i++) {
for face in (+X, -X, +Y, -Y, +Z, -Z) {

TexImage2D(face, i, internalformat, width, height, 0,
format, type, NULL);

}
width = max(1,

⌊
width

2

⌋
);

height = max(1,
⌊
height

2

⌋
);

}

If target is not one of those listed above, an INVALID_ENUM error is generated.
An INVALID_OPERATION error is generated if levels is greater than

blog2(max(width, height))c+ 1.
The command

void TexStorage3D(enum target, sizei levels,
enum internalformat, sizei width, sizei height,
sizei depth);

OpenGL ES 3.0.3 (December 18, 2013)

3.8. TEXTURING 137

specifies all the levels of a three-dimensional texture or two-dimensional array tex-
ture. The pseudocode depends on target:
TEXTURE_3D:

for (i = 0; i < levels; i++) {
TexImage3D(target, i, internalformat, width, height, depth, 0,

format, type, NULL);
width = max(1,

⌊
width

2

⌋
);

height = max(1,
⌊
height

2

⌋
);

depth = max(1,
⌊
depth

2

⌋
);

}

TEXTURE_2D_ARRAY:

for (i = 0; i < levels; i++) {
TexImage3D(target, i, internalformat, width, height, depth, 0,

format, type, NULL);
width = max(1,

⌊
width

2

⌋
);

height = max(1,
⌊
height

2

⌋
);

}

If target is not one of those listed above, an INVALID_ENUM error is generated.
An INVALID_OPERATION error is generated if any of the following conditions

hold:

• target is TEXTURE_3D and levels is greater than
blog2(max(width, height, depth)))c+ 1

• target is TEXTURE_2D_ARRAY and levels is greater than
blog2(max(width, height))c+ 1

After a successful call to any TexStorage* command, no further changes to
the dimensions or format of the texture object may be made. Other commands
may only alter the texel values and texture parameters. Using any of the following
commands with the same texture will result in an INVALID_OPERATION error
being generated, even if it does not affect the dimensions or format:

• TexImage*

• CompressedTexImage*

• CopyTexImage*

• TexStorage*

OpenGL ES 3.0.3 (December 18, 2013)

3.8. TEXTURING 138

3.8.5 Alternate Texture Image Specification Commands

Two-dimensional texture images may also be specified using image data taken di-
rectly from the framebuffer, and rectangular subregions of existing texture images
may be respecified.

The command

void CopyTexImage2D(enum target, int level,
enum internalformat, int x, int y, sizei width,
sizei height, int border);

defines a two-dimensional texel array in exactly the manner of Tex-
Image2D, except that the image data are taken from the framebuffer
rather than from client memory. target must be one of TEXTURE_-

2D, TEXTURE_CUBE_MAP_POSITIVE_X, TEXTURE_CUBE_MAP_NEGATIVE_X,
TEXTURE_CUBE_MAP_POSITIVE_Y, TEXTURE_CUBE_MAP_NEGATIVE_-

Y, TEXTURE_CUBE_MAP_POSITIVE_Z, or TEXTURE_CUBE_MAP_NEGATIVE_Z.
x, y, width, and height correspond precisely to the corresponding arguments to
ReadPixels (refer to section 4.3.2); they specify the image’s width and height, and
the lower left (x, y) coordinates of the framebuffer region to be copied. The image
is taken from the current color buffer exactly as if these arguments were passed to
ReadPixels with arguments format and type set according to table 3.15, stopping
after conversion of RGBA values. The error INVALID_OPERATION is generated
if floating-point RGBA data is required; if signed integer RGBA data is required
and the format of the current color buffer is not signed integer; if unsigned integer
RGBA data is required and the format of the current color buffer is not unsigned
integer; or if fixed-point RGBA data is required and the format of the current color
buffer is not fixed-point. The error INVALID_OPERATION is also generated if the
value of FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING for the framebuffer at-
tachment corresponding to the read buffer is LINEAR (see section 6.1.13) and in-
ternalformat is one of the sRGB formats described in section 3.8.16, or if the value
of FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING is SRGB and internalformat
is not one of the sRGB formats.

Subsequent processing is identical to that described for TexImage2D, begin-
ning with clamping of the R, G, B, and A values from the resulting pixel groups.
Parameters level, internalformat, and border are specified using the same values,
with the same meanings, as the equivalent arguments of TexImage2D. inter-
nalformat is further constrained such that color buffer components can be dropped
during the conversion to internalformat, but new components cannot be added. For
example, an RGB color buffer can be used to create LUMINANCE or RGB textures,
but not ALPHA, LUMINANCE_ALPHA, or RGBA textures. Table 3.16 summarizes the

OpenGL ES 3.0.3 (December 18, 2013)

3.8. TEXTURING 139

Read Buffer Format format type

Normalized Fixed-point RGBA UNSIGNED_BYTE

10-bit Normalized Fixed-point RGBA UNSIGNED_INT_2_10_10_10_REV

Signed Integer RGBA_INTEGER INT

Unsigned Integer RGBA_INTEGER UNSIGNED_INT

Table 3.15: ReadPixels format and type used during CopyTex*.

Texture Format
Framebuffer A L LA R RG RGB RGBA D DS
R – � – � – – – – –
RG – � – � � – – – –
RGB – � – � � � – – –
RGBA � � � � � � � – –
D – – – – – – – – –
DS – – – – – – – – –

Table 3.16: Valid CopyTexImage source framebuffer/destination texture base in-
ternal format combinations.

valid framebuffer and texture base internal format combinations. If the combina-
tion is not valid, an INVALID_OPERATION error is generated. The constraints on
width, height, and border are exactly those for the equivalent arguments of TexIm-
age2D.

If internalformat is sized, the internal format of the new texel array is inter-
nalformat, and this is also the new texel array’s effective internal format. If the
component sizes of internalformat do not exactly match the corresponding com-
ponent sizes of the source buffer’s effective internal format, described below, an
INVALID_OPERATION error is generated.

If internalformat is unsized, the internal format of the new texel array is the
effective internal format of the source buffer, and this is also the new texel array’s
effective internal format.

The effective internal format of the source buffer is determined with the fol-
lowing rules applied in order:

• If the source buffer is a texture or renderbuffer that was created with a sized
internal format then the effective internal format is the source buffer’s sized
internal format.

OpenGL ES 3.0.3 (December 18, 2013)

3.8. TEXTURING 140

• If the source buffer is a texture that was created with an unsized base internal
format, then the effective internal format is the source image array’s effective
internal format, as specified by table 3.12, which is determined from the
format and type that were used when the source image array was specified
by TexImage*.

• Otherwise the effective internal format is determined by the row in ta-
ble 3.17 or table 3.18 where Destination Internal Format matches inter-
nalformat and where the Source Red Size, Source Green Size, Source
Blue Size, and Source Alpha Size are consistent with the values of
the source buffer’s FRAMEBUFFER_RED_SIZE, FRAMEBUFFER_GREEN_-
SIZE, FRAMEBUFFER_BLUE_SIZE, and FRAMEBUFFER_ALPHA_SIZE, re-
spectively. Table 3.17 is used if the FRAMEBUFFER_ATTACHMENT_-

ENCODING is LINEAR and table 3.18 is used if the FRAMEBUFFER_-

ATTACHMENT_ENCODING is SRGB. ”any sized” matches any specified sized
internal format. ”N/A” means the source buffer’s component size is ignored.
If there are no rows in the appropriate table that match the internalformat
and source buffer component sizes, then the source buffer does not have an
effective internal format, and an INVALID_OPERATION error is generated.

When the target parameter to CopyTexImage2D is one of the six cube map
two-dimensional image targets, the error INVALID_VALUE is generated if the width
and height parameters are not equal.

Four additional commands,

void TexSubImage3D(enum target, int level, int xoffset,
int yoffset, int zoffset, sizei width, sizei height,
sizei depth, enum format, enum type, const
void *data);

void TexSubImage2D(enum target, int level, int xoffset,
int yoffset, sizei width, sizei height, enum format,
enum type, const void *data);

void CopyTexSubImage3D(enum target, int level,
int xoffset, int yoffset, int zoffset, int x, int y,
sizei width, sizei height);

void CopyTexSubImage2D(enum target, int level,
int xoffset, int yoffset, int x, int y, sizei width,
sizei height);

respecify only a rectangular subregion of an existing texel array. No change is made
to the internalformat, width, height, depth, or border parameters of the specified

OpenGL ES 3.0.3 (December 18, 2013)

3.8. TEXTURING 141

Destination Source Source Source Source Effective
Internal Format Red Size Green Size Blue Size Alpha Size Internal Format
any sized R = 0 G = 0 B = 0 1 <= A <= 8 Alpha8
any sized 1 <= R <= 8 G = 0 B = 0 A = 0 R8

any sized 1 <= R <= 8 1 <= G <= 8 B = 0 A = 0 RG8

any sized 1 <= R <= 5 1 <= G <= 6 1 <= B <= 5 A = 0 RGB565

any sized 5 < R <= 8 6 < G <= 8 5 < B <= 8 A = 0 RGB8

any sized 1 <= R <= 4 1 <= G <= 4 1 <= B <= 4 1 <= A <= 4 RGBA4

any sized 4 < R <= 5 4 < G <= 5 4 < B <= 5 A = 1 RGB5_A1

any sized 4 < R <= 8 4 < G <= 8 4 < B <= 8 1 < A <= 8 RGBA8

any sized 8 < R <= 10 8 < G <= 10 8 < B <= 10 1 < A <= 2 RGBA10_A2

ALPHA N/A N/A N/A 1 <= A <= 8 Alpha8
LUMINANCE 1 <= R <= 8 N/A N/A N/A Luminance8
LUMINANCE_ 1 <= R <= 8 N/A N/A 1 <= A <= 8 Luminance8-
ALPHA Alpha8
RGB 1 <= R <= 5 1 <= G <= 6 1 <= B <= 5 N/A RGB565

RGB 5 < R <= 8 6 < G <= 8 5 < B <= 8 N/A RGB8

RGBA 1 <= R <= 4 1 <= G <= 4 1 <= B <= 4 1 <= A <= 4 RGBA4

RGBA 4 < R <= 5 4 < G <= 5 4 < B <= 5 A = 1 RGB5_A1

RGBA 4 < R <= 8 4 < G <= 8 4 < B <= 8 1 < A <= 8 RGBA8

Table 3.17: Effective internal format corresponding to destination internalformat
and linear source buffer component sizes. Effective internal formats in italics do
not correspond to GL constants.

Destination Source Source Source Source Effective
Internal Format Red Size Green Size Blue Size Alpha Size Internal Format
any sized 1 <= R <= 8 1 <= G <= 8 1 <= B <= 8 1 <= A <= 8 SRGB_ALPHA8

Table 3.18: Effective internal format corresponding to destination internalformat
and sRGB source buffer component sizes.

OpenGL ES 3.0.3 (December 18, 2013)

3.8. TEXTURING 142

texel array, nor is any change made to texel values outside the specified subregion.
The target arguments of TexSubImage2D and CopyTexSubImage2D must be one
of TEXTURE_2D, TEXTURE_CUBE_MAP_POSITIVE_X, TEXTURE_CUBE_MAP_-
NEGATIVE_X, TEXTURE_CUBE_MAP_POSITIVE_Y, TEXTURE_CUBE_-

MAP_NEGATIVE_Y, TEXTURE_CUBE_MAP_POSITIVE_Z, or TEXTURE_CUBE_-

MAP_NEGATIVE_Z, and the target arguments of TexSubImage3D and CopyTex-
SubImage3D must be TEXTURE_3D or TEXTURE_2D_ARRAY. The level parameter
of each command specifies the level of the texel array that is modified. If level is
less than zero or greater than the base 2 logarithm of the maximum texture width,
height, or depth, the error INVALID_VALUE is generated. TexSubImage3D argu-
ments width, height, depth, format, and type match the corresponding arguments to
TexImage3D, meaning that they accept the same values, and have the same mean-
ings. Likewise, TexSubImage2D arguments width, height, format, and type match
the corresponding arguments to TexImage2D. TexSubImage3D and TexSubIm-
age2D argument data matches the corresponding argument to TexImage3D and
TexImage2D, respectively, except that a NULL pointer does not represent unspeci-
fied image contents.

CopyTexSubImage3D and CopyTexSubImage2D arguments x, y, width, and
height match the corresponding arguments to CopyTexImage2D1. Each of the
TexSubImage commands interprets and processes pixel groups in exactly the man-
ner of its TexImage counterpart, except that the assignment of R, G, B, A, depth,
and stencil pixel group values to the texture components is controlled by the in-
ternalformat of the texel array, not by an argument to the command. The same
constraints and errors apply to the TexSubImage commands’ argument format and
the internalformat of the texel array being respecified as apply to the format and
internalformat arguments of its TexImage counterparts.

Arguments xoffset, yoffset, and zoffset of TexSubImage3D and CopyTex-
SubImage3D specify the lower left texel coordinates of a width-wide by height-
high by depth-deep rectangular subregion of the texel array. The depth argument
associated with CopyTexSubImage3D is always 1, because framebuffer memory
is two-dimensional - only a portion of a single s, t slice of a three-dimensional
texture is replaced by CopyTexSubImage3D.

Taking wt, ht, and dt to be the specified width, height, and depth of the texel
array, and taking x, y, z, w, h, and d to be the xoffset, yoffset, zoffset, width, height,
and depth argument values, any of the following relationships generates the error
INVALID_VALUE:

1 Because the framebuffer is inherently two-dimensional, there is no CopyTexImage3D com-
mand.

OpenGL ES 3.0.3 (December 18, 2013)

3.8. TEXTURING 143

x < 0

x+ w > wt

y < 0

y + h > ht

z < 0

z + d > dt

Counting from zero, the nth pixel group is assigned to the texel with internal integer
coordinates [i, j, k], where

i = x+ (n mod w)

j = y + (
⌊ n
w

⌋
mod h)

k = z + (

⌊
n

width ∗ height

⌋
mod d)

Arguments xoffset and yoffset of TexSubImage2D and CopyTexSubImage2D
specify the lower left texel coordinates of a width-wide by height-high rectangular
subregion of the texel array. Taking wt and ht to be the specified width and
height of the texel array, and taking x, y, w, and h to be the xoffset, yoffset, width,
and height argument values, any of the following relationships generates the error
INVALID_VALUE:

x < 0

x+ w > wt

y < 0

y + h > ht

Counting from zero, the nth pixel group is assigned to the texel with internal integer
coordinates [i, j], where

i = x+ (n mod w)

j = y + (
⌊ n
w

⌋
mod h)

OpenGL ES 3.0.3 (December 18, 2013)

3.8. TEXTURING 144

Calling CopyTexSubImage3D, CopyTexImage2D, or CopyTexSubIm-
age2D will result in an INVALID_FRAMEBUFFER_OPERATION error if the ob-
ject bound to READ_FRAMEBUFFER_BINDING (see section 4.4) is not framebuffer
complete (see section 4.4.4).

Calling CopyTexSubImage3D, CopyTexImage2D, or CopyTexSubIm-
age2D will result in an INVALID_OPERATION error if any of the following condi-
tions is true:

• internalformat of the texel array being (re)specified is RGB9_E5, or

• READ_BUFFER is NONE, or

• the GL is using a framebuffer object (i.e. READ_FRAMEBUFFER_BINDING
is non-zero) and

– the read buffer selects an attachment that has no image attached or

– the value of SAMPLE_BUFFERS for the read framebuffer is one.

Texture Copying Feedback Loops

Calling CopyTexSubImage3D, CopyTexImage2D, or CopyTexSubImage2D
will result in undefined behavior if the destination texture image level is also bound
to the selected read buffer (see section 4.3.1) of the read framebuffer. This situation
is discussed in more detail in the description of feedback loops in section 4.4.3.

3.8.6 Compressed Texture Images

Texture images may also be specified or modified using image data already stored
in a known compressed image format, such as the ETC2/EAC formats defined in
appendix C, or additional formats defined by GL extensions.

The GL provides a mechanism to obtain token values for all compressed for-
mats supported by the implementation. The number of specific compressed in-
ternal formats supported by the renderer can be obtained by querying the value
of NUM_COMPRESSED_TEXTURE_FORMATS. The set of specific compressed inter-
nal formats supported by the renderer can be obtained by querying the value of
COMPRESSED_TEXTURE_FORMATS. All implementations support at least the for-
mats listed in table 3.19.

The commands

void CompressedTexImage2D(enum target, int level,
enum internalformat, sizei width, sizei height,
int border, sizei imageSize, const void *data);

OpenGL ES 3.0.3 (December 18, 2013)

3.8. TEXTURING 145

Compressed Internal Format Base Internal Format
COMPRESSED_R11_EAC RED

COMPRESSED_SIGNED_R11_EAC RED

COMPRESSED_RG11_EAC RG

COMPRESSED_SIGNED_RG11_EAC RG

COMPRESSED_RGB8_ETC2 RGB

COMPRESSED_SRGB8_ETC2 RGB

COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2 RGBA

COMPRESSED_SRGB8_PUNCHTHROUGH_ALPHA1_ETC2 RGBA

COMPRESSED_RGBA8_ETC2_EAC RGBA

COMPRESSED_SRGB8_ALPHA8_ETC2_EAC RGBA

Table 3.19: Compressed internal formats. The formats are described in appendix C.

void CompressedTexImage3D(enum target, int level,
enum internalformat, sizei width, sizei height,
sizei depth, int border, sizei imageSize, const
void *data);

define two- and three-dimensional texture images, respectively, with incoming data
stored in a compressed image format. The target, level, internalformat, width,
height, depth, and border parameters have the same meaning as in TexImage2D
and TexImage3D. data refers to compressed image data stored in the compressed
image format corresponding to internalformat. If a pixel unpack buffer is bound
(as indicated by a non-zero value of PIXEL_UNPACK_BUFFER_BINDING), data is
an offset into the pixel unpack buffer and the compressed data is read from the
buffer relative to this offset; otherwise, data is a pointer to client memory and the
compressed data is read from client memory relative to the pointer.

The compressed image will be decoded according to the specification defining
the internalformat token. Compressed texture images are treated as an array of
imageSize ubytes relative to data. If a pixel unpack buffer object is bound and
data + imageSize is greater than the size of the pixel buffer, an INVALID_-

OPERATION error results. All pixel storage modes are ignored when decoding a
compressed texture image. If the imageSize parameter is not consistent with the
format, dimensions, and contents of the compressed image, an INVALID_VALUE

error results. If the compressed image is not encoded according to the defined
image format, the results of the call are undefined.

Compressed internal formats may impose format-specific restrictions on the
use of the compressed image specification calls or parameters. For example, the

OpenGL ES 3.0.3 (December 18, 2013)

3.8. TEXTURING 146

compressed image format might be supported only for 2D textures. Any such
restrictions will be documented in the extension specification defining the com-
pressed internal format; violating these restrictions will result in an INVALID_-

OPERATION error.
Any restrictions imposed by specific compressed internal formats will be in-

variant with respect to image contents, meaning that if the GL accepts and stores
a texture image in compressed form, CompressedTexImage2D or Compressed-
TexImage3D will accept any properly encoded compressed texture image of the
same width, height, depth, compressed image size, and compressed internal format
for storage at the same texture level.

If internalformat is one of the ETC2/EAC formats described in table 3.19, the
compressed image data is stored using one of the ETC2/EAC compressed texture
image encodings (see appendix C). The ETC2/EAC texture compression algorithm
supports only two-dimensional images. If internalformat is an ETC2/EAC format,
CompressedTexImage3D will generate an INVALID_OPERATION error if target
is not TEXTURE_2D_ARRAY.

If the data argument of CompressedTexImage2D or CompressedTexIm-
age3D is a NULL pointer, and the pixel unpack buffer object is zero, a texel array
with unspecified image contents is created, just as when a NULL pointer is passed
to TexImage2D or TexImage3D.

The commands

void CompressedTexSubImage2D(enum target, int level,
int xoffset, int yoffset, sizei width, sizei height,
enum format, sizei imageSize, const void *data);

void CompressedTexSubImage3D(enum target, int level,
int xoffset, int yoffset, int zoffset, sizei width,
sizei height, sizei depth, enum format,
sizei imageSize, const void *data);

respecify only a rectangular region of an existing texel array, with incoming data
stored in a known compressed image format. The target, level, xoffset, yoffset,
zoffset, width, height, and depth parameters have the same meaning as in Tex-
SubImage2D and TexSubImage3D. data points to compressed image data stored
in the compressed image format corresponding to format.

The image pointed to by data and the imageSize parameter are interpreted as
though they were provided to CompressedTexImage2D and CompressedTex-
Image3D. These commands do not provide for image format conversion, so an
INVALID_OPERATION error results if format does not match the internal format
of the texture image being modified. If the imageSize parameter is not consistent

OpenGL ES 3.0.3 (December 18, 2013)

3.8. TEXTURING 147

with the format, dimensions, and contents of the compressed image (too little or
too much data), an INVALID_VALUE error results.

As with CompressedTexImage calls, compressed internal formats may have
additional restrictions on the use of the compressed image specification calls or
parameters. Any such restrictions will be documented in the specification defin-
ing the compressed internal format; violating these restrictions will result in an
INVALID_OPERATION error.

Any restrictions imposed by specific compressed internal formats will be in-
variant with respect to image contents, meaning that if GL accepts and stores a tex-
ture image in compressed form, CompressedTexSubImage2D or Compressed-
TexSubImage3D will accept any properly encoded compressed texture image of
the same width, height, compressed image size, and compressed internal format
for storage at the same texture level.

Calling CompressedTexSubImage3D or CompressedTexSubImage2D will
result in an INVALID_OPERATION error if xoffset, yoffset, or zoffset are not equal
to zero, or if width, height, and depth do not match the dimensions of the texture
level. These restrictions may be relaxed for specific compressed internal formats
whose images are easily modified.

If format is one of the ETC2/EAC formats described in table 3.19, the texture
is stored using one of the ETC2/EAC compressed texture image encodings (see
appendix C). If format is an ETC2/EAC format, CompressedTexSubImage3D
will generate an INVALID_OPERATION error if target is not TEXTURE_2D_ARRAY.
Since ETC2/EAC images are easily edited along 4×4 texel boundaries, the limita-
tions on subimage location and size are relaxed for CompressedTexSubImage2D
and CompressedTexSubImage3D. These commands will result in an INVALID_-
OPERATION error if one of the following conditions occurs:

• width is not a multiple of four, and width + xoffset is not equal to the width
of the texture level.

• height is not a multiple of four, and height +yoffset is not equal to the height
of the texture level.

• xoffset or yoffset is not a multiple of four.

The contents of any 4× 4 block of texels of an ETC2/EAC compressed texture
image that does not intersect the area being modified are preserved during valid
CompressedTexSubImage* calls.

OpenGL ES 3.0.3 (December 18, 2013)

3.8. TEXTURING 148

3.8.7 Texture Parameters

Various parameters control how the texel array is treated when specified or
changed, and when applied to a fragment. Each parameter is set by calling

void TexParameter{if}(enum target, enum pname, T param);
void TexParameter{if}v(enum target, enum pname, const

T *params);

target is the target, either TEXTURE_2D, TEXTURE_3D, TEXTURE_2D_ARRAY, or
TEXTURE_CUBE_MAP. pname is a symbolic constant indicating the parameter to
be set; the possible constants and corresponding parameters are summarized in
table 3.20. In the first form of the command, param is a value to which to set
a single-valued parameter; in the second form, params is an array of parameters
whose type depends on the parameter being set.

Data conversions are performed as specified in section 2.3.1.

Name Type Legal Values
TEXTURE_BASE_LEVEL int any non-negative integer
TEXTURE_COMPARE_MODE enum NONE, COMPARE_REF_TO_-

TEXTURE

TEXTURE_COMPARE_FUNC enum LEQUAL, GEQUAL, LESS,
GREATER, EQUAL, NOTEQUAL,
ALWAYS, NEVER

TEXTURE_MAG_FILTER enum NEAREST, LINEAR
TEXTURE_MAX_LEVEL int any non-negative integer
TEXTURE_MAX_LOD float any value
TEXTURE_MIN_FILTER enum NEAREST, LINEAR,

NEAREST_MIPMAP_NEAREST,
NEAREST_MIPMAP_LINEAR,
LINEAR_MIPMAP_NEAREST,
LINEAR_MIPMAP_LINEAR,

TEXTURE_MIN_LOD float any value
TEXTURE_SWIZZLE_R enum RED, GREEN, BLUE, ALPHA, ZERO,

ONE

TEXTURE_SWIZZLE_G enum RED, GREEN, BLUE, ALPHA, ZERO,
ONE

TEXTURE_SWIZZLE_B enum RED, GREEN, BLUE, ALPHA, ZERO,
ONE

Texture parameters continued on next page

OpenGL ES 3.0.3 (December 18, 2013)

3.8. TEXTURING 149

Texture parameters continued from previous page
Name Type Legal Values
TEXTURE_SWIZZLE_A enum RED, GREEN, BLUE, ALPHA, ZERO,

ONE

TEXTURE_WRAP_S enum CLAMP_TO_EDGE, REPEAT,
MIRRORED_REPEAT

TEXTURE_WRAP_T enum CLAMP_TO_EDGE, REPEAT,
MIRRORED_REPEAT

TEXTURE_WRAP_R enum CLAMP_TO_EDGE, REPEAT,
MIRRORED_REPEAT

Table 3.20: Texture parameters and their values.

In the remainder of section 3.8, denote by lodmin, lodmax, levelbase, and
levelmax the values of the texture parameters TEXTURE_MIN_LOD, TEXTURE_-
MAX_LOD, TEXTURE_BASE_LEVEL, and TEXTURE_MAX_LEVEL respectively.

Texture parameters for a cube map texture apply to the cube map as a whole;
the six distinct two-dimensional texture images use the texture parameters of the
cube map itself.

3.8.8 Depth Component Textures

Depth textures and the depth components of depth/stencil textures can be treated
as RED textures during texture filtering and application (see section 3.8.15).

3.8.9 Cube Map Texture Selection

When cube map texturing is enabled, the
(
s t r

)
texture coordinates are treated

as a direction vector
(
rx ry rz

)
emanating from the center of a cube. At tex-

ture application time, the interpolated per-fragment direction vector selects one of
the cube map face’s two-dimensional images based on the largest magnitude co-
ordinate direction (the major axis direction). If two or more coordinates have the
identical magnitude, the implementation may define a rule to disambiguate this
situation. The rule must be deterministic and depend only on

(
rx ry rz

)
. The

target column in table 3.21 explains how the major axis direction maps to the two-
dimensional image of a particular cube map target.

Using the sc, tc, and ma determined by the major axis direction as specified in
table 3.21, an updated

(
s t

)
is calculated as follows:

OpenGL ES 3.0.3 (December 18, 2013)

3.8. TEXTURING 150

Major Axis Direction Target sc tc ma

+rx TEXTURE_CUBE_MAP_POSITIVE_X −rz −ry rx
−rx TEXTURE_CUBE_MAP_NEGATIVE_X rz −ry rx
+ry TEXTURE_CUBE_MAP_POSITIVE_Y rx rz ry
−ry TEXTURE_CUBE_MAP_NEGATIVE_Y rx −rz ry
+rz TEXTURE_CUBE_MAP_POSITIVE_Z rx −ry rz
−rz TEXTURE_CUBE_MAP_NEGATIVE_Z −rx −ry rz

Table 3.21: Selection of cube map images based on major axis direction of texture
coordinates.

s =
1

2

(
sc
|ma|

+ 1

)
t =

1

2

(
tc
|ma|

+ 1

)
Seamless Cube Map Filtering

The rules for texel selection in sections 3.8.10 through 3.8.11 are modified for cube
maps so that texture wrap modes are ignored.2 Instead,

• If NEAREST filtering is done within a miplevel, always apply wrap mode
CLAMP_TO_EDGE.

• If LINEAR filtering is done within a miplevel, always apply border clamping.
Then,

– If a texture sample location would lie in the texture border in either u
or v, instead select the corresponding texel from the appropriate neigh-
boring face.

– If a texture sample location would lie in the texture border in both u
and v (in one of the corners of the cube), there is no unique neighbor-
ing face from which to extract one texel. The recommended method to
generate this texel is to average the values of the three available sam-
ples. However, implementations are free to construct this fourth texel
in another way, so long as, when the three available samples have the
same value, this texel also has that value.

2 This is a behavior change in OpenGL ES 3.0. In previous versions, texture wrap modes were
respected and neighboring cube map faces were not used for border texels.

OpenGL ES 3.0.3 (December 18, 2013)

3.8. TEXTURING 151

3.8.10 Texture Minification

Applying a texture to a primitive implies a mapping from texture image space to
framebuffer image space. In general, this mapping involves a reconstruction of
the sampled texture image, followed by a homogeneous warping implied by the
mapping to framebuffer space, then a filtering, followed finally by a resampling
of the filtered, warped, reconstructed image before applying it to a fragment. In
the GL this mapping is approximated by one of two simple filtering schemes. One
of these schemes is selected based on whether the mapping from texture space to
framebuffer space is deemed to magnify or minify the texture image.

Scale Factor and Level of Detail

The choice is governed by a scale factor ρ(x, y) and the level-of-detail parameter
λ(x, y), defined as

λbase(x, y) = log2[ρ(x, y)] (3.14)

λ′(x, y) = λbase(x, y) + clamp(biasshader) (3.15)

λ =


lodmax, λ′ > lodmax

λ′, lodmin ≤ λ′ ≤ lodmax

lodmin, λ′ < lodmin

undefined, lodmin > lodmax

(3.16)

biasshader is the value of the optional bias parameter in the texture lookup functions
available to fragment shaders. If the texture access is performed in a fragment
shader without a provided bias then biasshader is zero. This value is clamped to
the range [−biasmax, biasmax] where biasmax is the value of the implementation-
defined constant MAX_TEXTURE_LOD_BIAS.

If λ(x, y) is less than or equal to zero the texture is said to be magnified; if
it is greater, the texture is minified. Sampling of minified textures is described in
the remainder of this section, while sampling of magnified textures is described in
section 3.8.11.

The initial values of lodmin and lodmax are chosen so as to never clamp the
normal range of λ. They may be respecified for a specific texture by calling Tex-
Parameter[if] with pname set to TEXTURE_MIN_LOD or TEXTURE_MAX_LOD re-
spectively.

OpenGL ES 3.0.3 (December 18, 2013)

3.8. TEXTURING 152

Let s(x, y) be the function that associates an s texture coordinate with each set
of window coordinates (x, y) that lie within a primitive; define t(x, y) and r(x, y)
analogously. Let

u(x, y) = wt × s(x, y) + δu

v(x, y) = ht × t(x, y) + δv

w(x, y) = dt × r(x, y) + δw

(3.17)

wherewt, ht, and dt are the width, height, and depth of the image array whose level
is levelbase. For a two-dimensional, two-dimensional array, or cube map texture,
define w(x, y) = 0.

(δu, δv, δw) are the texel offsets specified in the OpenGL ES Shading Lan-
guage texture lookup functions that support offsets. If the texture function used
does not support offsets, all three shader offsets are taken to be zero. If any
of the offset values are outside the range of the implementation-defined values
MIN_PROGRAM_TEXEL_OFFSET and MAX_PROGRAM_TEXEL_OFFSET, results of
the texture lookup are undefined.

For a polygon or point, ρ is given at a fragment with window coordinates (x, y)
by

ρ = max


√(

∂u

∂x

)2

+

(
∂v

∂x

)2

+

(
∂w

∂x

)2

,

√(
∂u

∂y

)2

+

(
∂v

∂y

)2

+

(
∂w

∂y

)2


(3.18)
where ∂u/∂x indicates the derivative of u with respect to window x, and similarly
for the other derivatives.

For a line, the formula is

ρ =

√(
∂u

∂x
∆x+

∂u

∂y
∆y

)2

+

(
∂v

∂x
∆x+

∂v

∂y
∆y

)2

+

(
∂w

∂x
∆x+

∂w

∂y
∆y

)2/
l,

(3.19)
where ∆x = x2 − x1 and ∆y = y2 − y1 with (x1, y1) and (x2, y2) being the
segment’s window coordinate endpoints and l =

√
∆x2 + ∆y2.

While it is generally agreed that equations 3.18 and 3.19 give the best results
when texturing, they are often impractical to implement. Therefore, an imple-
mentation may approximate the ideal ρ with a function f(x, y) subject to these
conditions:

OpenGL ES 3.0.3 (December 18, 2013)

3.8. TEXTURING 153

1. f(x, y) is continuous and monotonically increasing in each of |∂u/∂x|,
|∂u/∂y|, |∂v/∂x|, |∂v/∂y|, |∂w/∂x|, and |∂w/∂y|

2. Let

mu = max

{∣∣∣∣∂u∂x
∣∣∣∣ , ∣∣∣∣∂u∂y

∣∣∣∣}

mv = max

{∣∣∣∣∂v∂x
∣∣∣∣ , ∣∣∣∣∂v∂y

∣∣∣∣}

mw = max

{∣∣∣∣∂w∂x
∣∣∣∣ , ∣∣∣∣∂w∂y

∣∣∣∣} .
Then max{mu,mv,mw} ≤ f(x, y) ≤ mu +mv +mw.

Coordinate Wrapping and Texel Selection

After generating u(x, y), v(x, y), and w(x, y), they may be clamped and wrapped
before sampling the texture, depending on the corresponding texture wrap modes.

Let u′(x, y) = u(x, y), v′(x, y) = v(x, y), and w′(x, y) = w(x, y).
The value assigned to TEXTURE_MIN_FILTER is used to determine how the

texture value for a fragment is selected.
When the value of TEXTURE_MIN_FILTER is NEAREST, the texel in the image

array of level levelbase that is nearest (in Manhattan distance) to (u′, v′, w′) is
obtained. Let (i, j, k) be integers such that

i = wrap(bu′(x, y)c)
j = wrap(bv′(x, y)c)
k = wrap(bw′(x, y)c)

and the value returned by wrap() is defined in table 3.22. For a three-dimensional
texture, the texel at location (i, j, k) becomes the texture value. For two-
dimensional, two-dimensional array, or cube map textures, k is irrelevant, and the
texel at location (i, j) becomes the texture value.

For two-dimensional array textures, the texel is obtained from image layer l,
where

l = clamp(br + 0.5c, 0, dt − 1)

OpenGL ES 3.0.3 (December 18, 2013)

3.8. TEXTURING 154

Wrap mode Result of wrap(coord)

CLAMP_TO_EDGE clamp(coord, 0, size− 1)

border clamping clamp(coord,−1, size)
(used only for cube maps
with LINEAR filtering)
REPEAT fmod(coord, size)

MIRRORED_REPEAT (size− 1)−mirror(fmod(coord, 2× size)− size)

Table 3.22: Texel location wrap mode application. fmod(a, b) returns a−b×bab c.
mirror(a) returns a if a ≥ 0, and −(1 + a) otherwise. The values of mode and
size are TEXTURE_WRAP_S and wt, TEXTURE_WRAP_T and ht, and TEXTURE_-

WRAP_R and dt when wrapping i, j, or k coordinates, respectively.

When the value of TEXTURE_MIN_FILTER is LINEAR, a 2 × 2 × 2 cube of
texels in the image array of level levelbase is selected. Let

i0 = wrap(bu′ − 0.5c)
j0 = wrap(bv′ − 0.5c)
k0 = wrap(bw′ − 0.5c)
i1 = wrap(bu′ − 0.5c+ 1)

j1 = wrap(bv′ − 0.5c+ 1)

k1 = wrap(bw′ − 0.5c+ 1)

α = frac(u′ − 0.5)

β = frac(v′ − 0.5)

γ = frac(w′ − 0.5)

where frac(x) denotes the fractional part of x.
For a three-dimensional texture, the texture value τ is found as

τ = (1− α)(1− β)(1− γ)τi0j0k0 + α(1− β)(1− γ)τi1j0k0

+ (1− α)β(1− γ)τi0j1k0 + αβ(1− γ)τi1j1k0

+ (1− α)(1− β)γτi0j0k1 + α(1− β)γτi1j0k1

+ (1− α)βγτi0j1k1 + αβγτi1j1k1

(3.20)

where τijk is the texel at location (i, j, k) in the three-dimensional texture image.

OpenGL ES 3.0.3 (December 18, 2013)

3.8. TEXTURING 155

For a two-dimensional, two-dimensional array, or cube map texture,

τ =(1− α)(1− β)τi0j0 + α(1− β)τi1j0

+ (1− α)βτi0j1 + αβτi1j1

where τij is the texel at location (i, j) in the two-dimensional texture image. For
two-dimensional array textures, all texels are obtained from layer l, where

l = clamp(br + 0.5c, 0, dt − 1).

Rendering Feedback Loops

If all of the following conditions are satisfied, then the value of the selected τijk,
τij , or τi in the above equations is undefined instead of referring to the value of the
texel at location (i, j, k), (i, j), or (i) respectively. This situation is discussed in
more detail in the description of feedback loops in section 4.4.3.

• The current DRAW_FRAMEBUFFER_BINDING names a framebuffer object F.

• The texture is attached to one of the attachment points, A, of framebuffer
object F.

• The value of TEXTURE_MIN_FILTER is NEAREST or LINEAR, and the value
of FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL for attachment point A
is equal to the value of levelbase

-or-

The value of TEXTURE_MIN_FILTER is NEAREST_MIPMAP_NEAREST,
NEAREST_MIPMAP_LINEAR, LINEAR_MIPMAP_NEAREST, or LINEAR_-

MIPMAP_LINEAR, and the value of FRAMEBUFFER_ATTACHMENT_-

TEXTURE_LEVEL for attachment point A is within the inclusive range from
levelbase to q (see below).

Mipmapping

TEXTURE_MIN_FILTER values NEAREST_MIPMAP_NEAREST, NEAREST_-

MIPMAP_LINEAR, LINEAR_MIPMAP_NEAREST, and LINEAR_MIPMAP_LINEAR

each require the use of a mipmap. A mipmap is an ordered set of arrays repre-
senting the same image; each array has a resolution lower than the previous one.

OpenGL ES 3.0.3 (December 18, 2013)

3.8. TEXTURING 156

If the image array of level levelbase has dimensions wt × ht × dt, then there are
blog2(maxsize)c+ 1 levels in the mipmap. where

maxsize =

{
max(wt, ht), for 2D, 2D array, and cube map textures
max(wt, ht, dt), for 3D textures

Numbering the levels such that level levelbase is the 0th level, the ith array has
dimensions

max(1,

⌊
wt

wd

⌋
)×max(1,

⌊
ht
hd

⌋
)×max(1,

⌊
dt
dd

⌋
)

where

wd = 2i

hd = 2i

dd =

{
2i, for 3D textures
1, otherwise

until the last array is reached with dimension 1× 1× 1.
Each array in a mipmap is defined using TexImage3D, TexImage2D, Copy-

TexImage2D, or by functions that are defined in terms of these functions. Level-
of-detail numbers proceed from levelbase for the original texel array through the
maximum level p, with each unit increase indicating an array of half the dimen-
sions of the previous one (rounded down to the next integer if fractional) as al-
ready described. For immutable-format textures, levelbase is clamped to the range
[0, levels− 1], levelmax is then clamped to the range [levelbase, levels− 1], and p
is one less than levels, where levels is the parameter passed to TexStorage* for the
texture object (see section 3.8.4). Otherwise p = blog2(maxsize)c + levelbase,
and all arrays from levelbase through q = min{p, levelmax} must be defined, as
discussed in section 3.8.13.

The values of levelbase and levelmax may be respecified for a specific tex-
ture by calling TexParameter[if] with pname set to TEXTURE_BASE_LEVEL or
TEXTURE_MAX_LEVEL respectively.

The error INVALID_VALUE is generated if either value is negative.
The mipmap is used in conjunction with the level of detail to approximate the

application of an appropriately filtered texture to a fragment. Since this discussion
pertains to minification, we are concerned only with values of λ where λ > 0.

OpenGL ES 3.0.3 (December 18, 2013)

3.8. TEXTURING 157

For mipmap filters NEAREST_MIPMAP_NEAREST and LINEAR_MIPMAP_-

NEAREST, the dth mipmap array is selected, where

d =


levelbase, λ ≤ 1

2

dlevelbase + λ+ 1
2e − 1, λ > 1

2 , levelbase + λ ≤ q + 1
2

3

q, λ > 1
2 , levelbase + λ > q + 1

2

(3.21)

The rules for NEAREST or LINEAR filtering are then applied to the selected
array. Specifically, the coordinate (u, v, w) is computed as in equation 3.17, with
wt, ht, and dt equal to the width, height, and depth of the image array whose level
is d.

For mipmap filters NEAREST_MIPMAP_LINEAR and LINEAR_MIPMAP_-

LINEAR, the level d1 and d2 mipmap arrays are selected, where

d1 =

{
q, levelbase + λ ≥ q
blevelbase + λc, otherwise

(3.22)

d2 =

{
q, levelbase + λ ≥ q
d1 + 1, otherwise

(3.23)

The rules for NEAREST or LINEAR filtering are then applied to each of the
selected arrays, yielding two corresponding texture values τ1 and τ2. Specifically,
for level d1, the coordinate (u, v, w) is computed as in equation 3.17, with wt, ht,
and dt equal to the width, height, and depth of the image array whose level is d1.
For level d2 the coordinate (u′, v′, w′) is computed as in equation 3.17, with wt,
ht, and dt equal to the width, height, and depth of the image array whose level is
d2.

The final texture value is then found as

τ = [1− frac(λ)]τ1 + frac(λ)τ2.

Manual Mipmap Generation

Mipmaps can be generated manually with the command

void GenerateMipmap(enum target);
3 Implementations may instead use the nearly equivalent computation d = blevelbase + λ+ 1

2
c

in this case.

OpenGL ES 3.0.3 (December 18, 2013)

3.8. TEXTURING 158

where target is one of TEXTURE_2D, TEXTURE_3D, TEXTURE_2D_ARRAY, or
TEXTURE_CUBE_MAP. Mipmap generation affects the texture image attached to
target. For cube map textures, an INVALID_OPERATION error is generated if the
texture bound to target is not cube complete, as defined in section 3.8.13.

Mipmap generation replaces texel array levels levelbase + 1 through q with
arrays derived from the levelbase array, regardless of their previous contents. All
other mipmap arrays, including the levelbase array, are left unchanged by this com-
putation.

The internal formats and effective internal formats of the derived mipmap ar-
rays all match those of the levelbase array, and the dimensions of the derived arrays
follow the requirements described in section 3.8.13.

The contents of the derived arrays are computed by repeated, filtered reduction
of the levelbase array. For two-dimensional array textures, each layer is filtered
independently. No particular filter algorithm is required, though a box filter is
recommended.

If the levelbase array was not specified with an unsized internal format from ta-
ble 3.3 or a sized internal format that is both color-renderable and texture-filterable
according to table 3.13, an INVALID_OPERATION error is generated.

3.8.11 Texture Magnification

When λ indicates magnification, the value assigned to TEXTURE_MAG_FILTER

determines how the texture value is obtained. There are two possible values
for TEXTURE_MAG_FILTER: NEAREST and LINEAR. NEAREST behaves exactly as
NEAREST for TEXTURE_MIN_FILTER and LINEAR behaves exactly as LINEAR for
TEXTURE_MIN_FILTER as described in section 3.8.10, including the texture coor-
dinate wrap modes specified in table 3.22. The level-of-detail levelbase texel array
is always used for magnification.

3.8.12 Combined Depth/Stencil Textures

If the texture image has a base internal format of DEPTH_STENCIL, then the sten-
cil texture component is ignored. The texture value τ does not include a stencil
component, but includes only the depth component.

3.8.13 Texture Completeness

A texture is said to be complete if all the image arrays and texture parameters
required to utilize the texture for texture application are consistently defined. The
definition of completeness varies depending on texture dimensionality and type.

OpenGL ES 3.0.3 (December 18, 2013)

3.8. TEXTURING 159

For two- and three-dimensional textures and two-dimensional array textures, a
texture is mipmap complete if all of the following conditions hold true:

• The set of mipmap arrays levelbase through q (where q is defined in the
Mipmapping discussion of section 3.8.10) were each specified with the
same effective internal format.

• The dimensions of the arrays follow the sequence described in the Mipmap-
ping discussion of section 3.8.10.

• levelbase ≤ levelmax

Array levels k where k < levelbase or k > q are insignificant to the definition of
completeness.

A cube map texture is mipmap complete if each of the six texture images,
considered individually, is mipmap complete. Additionally, a cube map texture is
cube complete if the following conditions all hold true:

• The levelbase arrays of each of the six texture images making up the cube
map have identical, positive, and square dimensions.

• The levelbase arrays were each specified with the same effective internal
format.

Using the preceding definitions, a texture is complete unless any of the follow-
ing conditions hold true:

• Any dimension of the levelbase array is not positive.

• The texture is a cube map texture, and is not cube complete.

• The minification filter requires a mipmap (is neither NEAREST nor LINEAR),
and the texture is not mipmap complete.

• The effective internal format specified for the texture arrays is a sized in-
ternal color format that is not texture-filterable (see table 3.13), and either
the magnification filter is not NEAREST or the minification filter is neither
NEAREST nor NEAREST_MIPMAP_NEAREST.

• The effective internal format specified for the texture arrays is a sized
internal depth or depth and stencil format (see table 3.14), the value of
TEXTURE_COMPARE_MODE is NONE, and either the magnification filter is
not NEAREST or the minification filter is neither NEAREST nor NEAREST_-
MIPMAP_NEAREST.

OpenGL ES 3.0.3 (December 18, 2013)

3.8. TEXTURING 160

Effects of Sampler Objects on Texture Completeness

If a sampler object and a texture object are simultaneously bound to the same tex-
ture unit, then the sampling state for that unit is taken from the sampler object (see
section 3.8.2). This can have an effect on the effective completeness of the texture.
In particular, if the texture is not mipmap complete and the sampler object speci-
fies a TEXTURE_MIN_FILTER requiring mipmaps, the texture will be considered
incomplete for the purposes of that texture unit. However, if the sampler object
does not require mipmaps, the texture object will be considered complete. This
means that a texture can be considered both complete and incomplete simultane-
ously if it is bound to two or more texture units along with sampler objects with
different states.

Effects of Completeness on Texture Application

Texture lookup and texture fetch operations performed in vertex and fragment
shaders are affected by completeness of the texture being sampled as described
in sections 2.11.9 and 3.9.2.

Effects of Completeness on Texture Image Specification

The implementation-dependent maximum sizes for texture image arrays depend
on the texture level. In particular, an implementation may allow a texture image
array of level 1 or greater to be created only if a mipmap complete set of image
arrays consistent with the requested array can be supported where the values of
TEXTURE_BASE_LEVEL and TEXTURE_MAX_LEVEL are 0 and 1000 respectively.
As a result, implementations may permit a texture image array at level zero that will
never be mipmap complete and can only be used with non-mipmapped minification
filters.

3.8.14 Texture State

The state necessary for texture can be divided into two categories. First, there
are the multiple sets of texel arrays (one set of mipmap arrays each for the two-
and three-dimensional texture and two-dimensional array texture targets; and six
sets of mipmap arrays for the cube map texture targets) and their number. Each
array has associated with it a width, height, and depth (three-dimensional and two-
dimensional array only), an integer describing the internal format of the image,
integer values describing the resolutions of each of the red, green, blue, alpha,
depth, and stencil components of the image, integer values describing the type
(unsigned normalized, integer, floating-point, etc.) of each of the components, a

OpenGL ES 3.0.3 (December 18, 2013)

3.8. TEXTURING 161

boolean describing whether the image is compressed or not, and an integer size
of a compressed image. Each initial texel array is null (zero width, height, and
depth, internal format RGBA, component sizes set to zero and component types set
to NONE, the compressed flag set to FALSE, and a zero compressed size).

Next, there are the four sets of texture properties, corresponding to the two-
dimensional, two-dimensional array, three-dimensional, and cube map texture tar-
gets. Each set consists of the selected minification and magnification filters, the
wrap modes for s, t, and r (three-dimensional only), two floating-point numbers
describing the minimum and maximum level of detail, two integers describing the
base and maximum mipmap array, a boolean flag indicating whether the format
and dimensions of the texture are immutable, two integers describing the compare
mode and compare function (see section 3.8.15), and four integers describing the
red, green, blue, and alpha swizzle modes (see section 3.9.2). In the initial state,
the value assigned to TEXTURE_MIN_FILTER is NEAREST_MIPMAP_LINEAR and
the value for TEXTURE_MAG_FILTER is LINEAR. s, t, and r wrap modes are all set
to REPEAT. The values of TEXTURE_MIN_LOD and TEXTURE_MAX_LOD are -1000
and 1000 respectively. The values of TEXTURE_BASE_LEVEL and TEXTURE_-

MAX_LEVEL are 0 and 1000 respectively. The value of TEXTURE_IMMUTABLE_-
FORMAT is FALSE. The value of TEXTURE_IMMUTABLE_LEVELS is 0. The val-
ues of TEXTURE_COMPARE_MODE and TEXTURE_COMPARE_FUNC are NONE and
LEQUAL respectively. The values of TEXTURE_SWIZZLE_R, TEXTURE_-
SWIZZLE_G, TEXTURE_SWIZZLE_B, and TEXTURE_SWIZZLE_A are RED, GREEN,
BLUE, and ALPHA, respectively.

3.8.15 Texture Comparison Modes

Texture values can also be computed according to a specified comparison function.
Texture parameter TEXTURE_COMPARE_MODE specifies the comparison operands,
and parameter TEXTURE_COMPARE_FUNC specifies the comparison function.

Depth Texture Comparison Mode

If the currently bound texture’s base internal format is DEPTH_COMPONENT or
DEPTH_STENCIL, then TEXTURE_COMPARE_MODE and TEXTURE_COMPARE_-

FUNC control the output of the texture unit as described below. Otherwise, the
texture unit operates in the normal manner and texture comparison is bypassed.

Let Dt be the depth texture value and Dref be the reference value, provided
by the shader’s texture lookup function.

If the texture’s internal format indicates a fixed-point depth texture, then Dt

and Dref are clamped to the range [0, 1]; otherwise no clamping is performed.

OpenGL ES 3.0.3 (December 18, 2013)

3.8. TEXTURING 162

Then the effective texture value is computed as follows:
If the value of TEXTURE_COMPARE_MODE is NONE, then

r = Dt

If the value of TEXTURE_COMPARE_MODE is COMPARE_REF_TO_TEXTURE,
then r depends on the texture comparison function as shown in table 3.23.

Texture Comparison Function Computed result r

LEQUAL r =

{
1.0, Dref ≤ Dt

0.0, Dref > Dt

GEQUAL r =

{
1.0, Dref ≥ Dt

0.0, Dref < Dt

LESS r =

{
1.0, Dref < Dt

0.0, Dref ≥ Dt

GREATER r =

{
1.0, Dref > Dt

0.0, Dref ≤ Dt

EQUAL r =

{
1.0, Dref = Dt

0.0, Dref 6= Dt

NOTEQUAL r =

{
1.0, Dref 6= Dt

0.0, Dref = Dt

ALWAYS r = 1.0

NEVER r = 0.0

Table 3.23: Depth texture comparison functions.

The resulting r is assigned to Rt.
If the value of TEXTURE_MAG_FILTER is not NEAREST, or the value of

TEXTURE_MIN_FILTER is not NEAREST or NEAREST_MIPMAP_NEAREST, then r
may be computed by comparing more than one depth texture value to the texture
reference value. The details of this are implementation-dependent, but r should
be a value in the range [0, 1] which is proportional to the number of comparison
passes or failures.

3.8.16 sRGB Texture Color Conversion

If the currently bound texture’s internal format is one of SRGB8, SRGB8_-

ALPHA8, COMPRESSED_SRGB8_ETC2, COMPRESSED_SRGB8_ALPHA8_ETC2_-

OpenGL ES 3.0.3 (December 18, 2013)

3.9. FRAGMENT SHADERS 163

EAC, or COMPRESSED_SRGB8_PUNCHTHROUGH_ALPHA1_ETC2, the red, green,
and blue components are converted from an sRGB color space to a linear color
space as part of filtering described in sections 3.8.10 and 3.8.11. Any alpha com-
ponent is left unchanged. Ideally, implementations should perform this color con-
version on each sample prior to filtering but implementations are allowed to per-
form this conversion after filtering (though this post-filtering approach is inferior
to converting from sRGB prior to filtering).

The conversion from an sRGB encoded component, cs, to a linear component,
cl, is as follows. Assume cs is the sRGB component in the range [0, 1].

cl =

{
cs

12.92 , cs ≤ 0.04045(
cs+0.055
1.055

)2.4
, cs > 0.04045

(3.24)

3.8.17 Shared Exponent Texture Color Conversion

If the currently bound texture’s internal format is RGB9_E5, the red, green, blue,
and shared bits are converted to color components (prior to filtering) using shared
exponent decoding. The component reds, greens, blues, and exps values (see
section 3.8.3) are treated as unsigned integers and are converted to floating-point
red, green, and blue as follows:

red = reds2
exps−B−N

green = greens2
exps−B−N

blue = blues2
exps−B−N

3.9 Fragment Shaders

The sequence of operations that are applied to fragments that result from rasterizing
a point, line segment, or polygon are described using a fragment shader.

A fragment shader is an array of strings containing source code for the op-
erations that are meant to occur on each fragment that results from rasterization.
The language used for fragment shaders is described in the OpenGL ES Shading
Language Specification.

Fragment shaders are created as described in section 2.11.1 using a type pa-
rameter of FRAGMENT_SHADER. They are attached to and used in program objects
as described in section 2.11.3.

OpenGL ES 3.0.3 (December 18, 2013)

3.9. FRAGMENT SHADERS 164

When a linked program object is used as the current program object, the ex-
ecutable code for the fragment shader it contains is used to process fragments. If
no program object is currently in use, the results of fragment shader execution are
undefined.

3.9.1 Shader Variables

Fragment shaders can access uniforms belonging to the current shader object. The
amount of storage available for fragment shader uniform variables in the default
uniform block is specified by the value of the implementation-dependent con-
stant MAX_FRAGMENT_UNIFORM_COMPONENTS. The implementation-dependent
constant MAX_FRAGMENT_UNIFORM_VECTORS has a value equal to the value of
MAX_FRAGMENT_UNIFORM_COMPONENTS divided by four. The total amount of
combined storage available for fragment shader uniform variables in all uni-
form blocks (including the default uniform block) is specified by the value of
the implementation-dependent constant MAX_COMBINED_FRAGMENT_UNIFORM_-
COMPONENTS. These values represent the numbers of individual floating-point, in-
teger, or boolean values that can be held in uniform variable storage for a fragment
shader. A uniform matrix will consume no more than 4 ×min(r, c) such values,
where r and c are the number of rows and columns in the matrix. A link error
will be generated if an attempt is made to utilize more than the space available for
fragment shader uniform variables.

Fragment shaders can read input variables or inputs that correspond to the
attributes of the fragments produced by rasterization. The OpenGL ES Shading
Language Specification defines a set of built-in inputs that can be be accessed by
a fragment shader. These built-in inputs include data associated with a fragment
such as the fragment’s position.

Additionally, when a vertex shader is active, it may define one or more output
variables (see section 2.11.8 and the OpenGL ES Shading Language Specification).
The values of these user-defined outputs are, if not flat shaded, interpolated across
the primitive being rendered. The results of these interpolations are available when
inputs of the same name are defined in the fragment shader.

When interpolating input variables, the default screen-space location at which
these variables are sampled is defined in previous rasterization sections. The
default location may be overriden by interpolation qualifiers. When interpolat-
ing variables declared using centroid in, the variable is sampled at a location
within the pixel covered by the primitive generating the fragment.

A fragment shader can also write to output variables. Values written to these
outputs are used in the subsequent per-fragment operations. Output variables can
be used to write floating-point, integer or unsigned integer values destined for

OpenGL ES 3.0.3 (December 18, 2013)

3.9. FRAGMENT SHADERS 165

buffers attached to a framebuffer object, or destined for color buffers attached to
the default framebuffer. The Shader Outputs subsection of section 3.9.2 describes
how to direct these values to buffers.

3.9.2 Shader Execution

The executable version of the fragment shader is used to process incoming frag-
ment values that are the result of rasterization.

Texture Access

The Shader Only Texturing subsection of section 2.11.9 describes texture lookup
functionality accessible to a vertex shader. The texel fetch and texture size query
functionality described there also applies to fragment shaders.

When a texture lookup is performed in a fragment shader, the GL computes
the filtered texture value τ in the manner described in sections 3.8.10 and 3.8.11,
and converts it to a texture base color Cb as shown in table 3.24, followed
by swizzling the components of Cb, controlled by the values of the texture pa-
rameters TEXTURE_SWIZZLE_R, TEXTURE_SWIZZLE_G, TEXTURE_SWIZZLE_B,
and TEXTURE_SWIZZLE_A. If the value of TEXTURE_SWIZZLE_R is denoted by
swizzler, swizzling computes the first component of Cs according to

if (swizzler == RED)
Cs[0] = Cb[0];

else if (swizzler == GREEN)
Cs[0] = Cb[1];

else if (swizzler == BLUE)
Cs[0] = Cb[2];

else if (swizzler == ALPHA)
Cs[0] = Ab;

else if (swizzler == ZERO)
Cs[0] = 0;

else if (swizzler == ONE)
Cs[0] = 1; // float or int depending on texture component type

Swizzling of Cs[1], Cs[2], and As are similarly controlled by the values of
TEXTURE_SWIZZLE_G, TEXTURE_SWIZZLE_B, and TEXTURE_SWIZZLE_A, re-
spectively.

The resulting four-component vector (Rs, Gs, Bs, As) is returned to the frag-
ment shader. For the purposes of level-of-detail calculations, the derivatives du

dx , du
dy ,

OpenGL ES 3.0.3 (December 18, 2013)

3.9. FRAGMENT SHADERS 166

Texture Base Texture base color
Internal Format Cb Ab

RED (Rt, 0, 0) 1
RG (Rt, Gt, 0) 1
RGB (Rt, Gt, Bt) 1
RGBA (Rt, Gt, Bt) At

LUMINANCE (Lt, Lt, Lt) 1
ALPHA (0, 0, 0) At

LUMINANCE_ALPHA (Lt, Lt, Lt) At

Table 3.24: Correspondence of filtered texture components to texture base com-
ponents. The values Rt, Gt, Bt, At, and Lt are respectively the red, green, blue,
alpha, and luminance components of the filtered texture value τ (see table 3.11).

dv
dx , dv

dy , dw
dx and dw

dy may be approximated by a differencing algorithm as detailed in
section 8.8 of the OpenGL ES Shading Language Specification.

Texture lookups involving textures with depth component data generate a tex-
ture base color Cb either using depth data directly or by performing a comparison
with the Dref value used to perform the lookup, as described in section 3.8.15.
The resulting value Rt is then expanded to a color Cb = (Rt, 0, 0, 1), and swiz-
zling is performed as described in section 3.9.2, but only the first component Cs[0]
is returned to the shader when a comparison has been performed. The compari-
son operation is requested in the shader by using any of the shadow sampler types
(sampler*Shadow), and in the texture using the TEXTURE_COMPARE_MODE pa-
rameter. These requests must be consistent; the results of a texture lookup are
undefined if:

• The sampler used in a texture lookup function is not one of the shadow
sampler types, the texture object’s internal format is DEPTH_COMPONENT

or DEPTH_STENCIL, and the TEXTURE_COMPARE_MODE is not NONE.

• The sampler used in a texture lookup function is one of the shadow sam-
pler types, the texture object’s internal format is DEPTH_COMPONENT or
DEPTH_STENCIL, and the TEXTURE_COMPARE_MODE is NONE.

• The sampler used in a texture lookup function is one of the shadow sampler
types, and the texture object’s internal format is not DEPTH_COMPONENT or
DEPTH_STENCIL.

OpenGL ES 3.0.3 (December 18, 2013)

3.9. FRAGMENT SHADERS 167

The stencil texture internal component is ignored if the base internal format is
DEPTH_STENCIL.

If a sampler is used in a fragment shader and the sampler’s associated texture
is not complete, as defined in section 3.8.13, (0, 0, 0, 1) will be returned for a non-
shadow sampler and 0 for a shadow sampler.

The number of separate texture units that can be accessed from within a
fragment shader during the rendering of a single primitive is specified by the
implementation-dependent constant MAX_TEXTURE_IMAGE_UNITS.

Shader Inputs

The OpenGL ES Shading Language Specification describes the values that are
available as inputs to the fragment shader.

The built-in variable gl_FragCoord holds the fragment coordinate(
xw yw zw

1
wc

)
for the fragment where

(
xw yw zw

)
is the fragment’s

window-space position and wc is the w component of the fragment’s clip-space
position (see section 2.12). The zw component of gl_FragCoord undergoes an
implied conversion to floating-point. This conversion must leave the values 0 and
1 invariant. Note that zw already has a polygon offset added in, if enabled (see
section 3.6.2).

The built-in variable gl_FrontFacing is set to TRUE if the fragment is gener-
ated from a front-facing primitive, and FALSE otherwise. For fragments generated
from triangle primitives, the determination is made by examining the sign of the
area computed by equation 3.6 of section 3.6.1 (including the possible reversal of
this sign controlled by FrontFace). If the sign is positive, fragments generated by
the primitive are front-facing; otherwise, they are back-facing. All other fragments
are considered front-facing.

There is a limit on the number of components of built-in and user-defined
input variables that can be read by the fragment shader, given by the value of
the implementation-dependent constant MAX_FRAGMENT_INPUT_COMPONENTS.
When a program is linked, all components of any input variables read by a fragment
shader will count against this limit. A program whose fragment shader exceeds this
limit may fail to link, unless device-dependent optimizations are able to make the
program fit within available hardware resources.

Component counting rules for different variable types and variable declarations
are the same as for MAX_VERTEX_OUTPUT_COMPONENTS. (see section 2.11.8).

OpenGL ES 3.0.3 (December 18, 2013)

3.9. FRAGMENT SHADERS 168

Shader Outputs

The OpenGL ES Shading Language Specification describes the values that may
be output by a fragment shader. These outputs are split into two categories,
user-defined outputs and the built-in outputs gl_FragColor, gl_FragData[n]
(both available only in OpenGL ES Shading Language version 1.00), and gl_-

FragDepth. For fixed-point depth buffers, the final fragment depth written by a
fragment shader is first clamped to [0, 1] and then converted to fixed-point as if it
were a window z value (see section 2.12.1). For floating-point depth buffers, con-
version is not performed but clamping is. Note that the depth range computation is
not applied here, only the conversion to fixed-point.

If there is only a single output variable, it does not need to be explicitly bound
to a fragment color within the shader text, in which case it is implicitly bound to
fragment color zero. If there is more than one output variable, all output variables
must be explicitly bound to fragment colors within the shader text. Missing or
conflicting binding assignments will cause CompileShader to fail. Color values
written by a fragment shader may be floating-point, signed integer, or unsigned
integer. If the color buffer has a signed or unsigned normalized fixed-point format,
color values are assumed to be floating-point and are converted to fixed-point as
described in equations 2.4 or 2.3, respectively; otherwise no type conversion is
applied. If the values written by the fragment shader do not match the format(s) of
the corresponding color buffer(s), the result is undefined.

Writing to gl_FragColor specifies the fragment color (color number zero)
that will be used by subsequent stages of the pipeline. Writing to gl_-

FragData[n] specifies the value of fragment color number n (see section 4.2.1).
Any colors, or color components, associated with a fragment that are not written
by the fragment shader are undefined. A fragment shader may not statically as-
sign values to both gl_FragColor and gl_FragData. In this case, a compile
or link error will result. A shader statically assigns a value to a variable if, after
pre-processing, it contains a statement that would write to the variable, whether or
not run-time flow of control will cause that statement to be executed.

Writing to gl_FragDepth specifies the depth value for the fragment being
processed. If the active fragment shader does not statically assign a value to gl_-

FragDepth, then the depth value generated during rasterization is used by sub-
sequent stages of the pipeline. Otherwise, the value assigned to gl_FragDepth

is used, and is undefined for any fragments where statements assigning a value to
gl_FragDepth are not executed. Thus, if a shader statically assigns a value to
gl_FragDepth, then it is responsible for always writing it.

After a program object has been linked successfully, the bindings of output
variable names to color numbers can be queried. The command

OpenGL ES 3.0.3 (December 18, 2013)

3.9. FRAGMENT SHADERS 169

int GetFragDataLocation(uint program, const
char *name);

returns the number of the fragment color to which the output variable name was
bound when the program object program was last linked. name must be a null-
terminated string. If program has not been linked, or was last linked unsuccessfully,
the error INVALID_OPERATION is generated. If name is not an output variable, or
if an error occurs, -1 will be returned.

OpenGL ES 3.0.3 (December 18, 2013)

Chapter 4

Per-Fragment Operations and the
Framebuffer

The framebuffer, whether it is the default framebuffer or a framebuffer object (see
section 2.1), consists of a set of pixels arranged as a two-dimensional array. For
purposes of this discussion, each pixel in the framebuffer is simply a set of some
number of bits. The number of bits per pixel may vary depending on the GL im-
plementation, the type of framebuffer selected, and parameters specified when the
framebuffer was created. Creation and management of the default framebuffer is
outside the scope of this specification, while creation and management of frame-
buffer objects is described in detail in section 4.4.

Corresponding bits from each pixel in the framebuffer are grouped together
into a bitplane; each bitplane contains a single bit from each pixel. These bitplanes
are grouped into several logical buffers. These are the color, depth, and stencil
buffers. The color buffer actually consists of a number of buffers, and these color
buffers serve related but slightly different purposes depending on whether the GL
is bound to the default framebuffer or a framebuffer object.

For the default framebuffer, the color buffers are the front and the back buffers.
Typically the contents of the front buffer are displayed on a color monitor while
the contents of the back buffer are invisible; the GL draws to and reads from the
back buffer. All color buffers must have the same number of bitplanes, although
an implementation or context may choose not to provide back buffers. Further, an
implementation or context may choose not to provide depth or stencil buffers. If
no default framebuffer is associated with the GL context, the framebuffer is incom-
plete except when a framebuffer object is bound (see sections 4.4.1 and 4.4.4).

Framebuffer objects are not visible, and do not have any of the color buffers
present in the default framebuffer. Instead, the buffers of a framebuffer object are

170

4.1. PER-FRAGMENT OPERATIONS 171

specified by attaching individual textures or renderbuffers (see section 4.4) to a set
of attachment points. A framebuffer object has an array of color buffer attachment
points, numbered zero through n, a depth buffer attachment point, and a stencil
buffer attachment point. In order to be used for rendering, a framebuffer object
must be complete, as described in section 4.4.4. Not all attachment points of a
framebuffer object need to be populated.

Each pixel in a color buffer consists of up to four color components. The
four color components are named R, G, B, and A, in that order; color buffers are
not required to have all four color components. R, G, B, and A components may
be represented as unsigned normalized fixed-point or signed or unsigned integer
values; all components must have the same representation. Each pixel in a depth
buffer consists of a single unsigned integer value in the format described in sec-
tion 2.12.1 or a floating-point value. Each pixel in a stencil buffer consists of a
single unsigned integer value.

The number of bitplanes in the color, depth, and stencil buffers is dependent
on the currently bound framebuffer. For the default framebuffer, the number of
bitplanes is fixed. For framebuffer objects, the number of bitplanes in a given
logical buffer may change if the image attached to the corresponding attachment
point changes.

The GL has two active framebuffers; the draw framebuffer is the destination
for rendering operations, and the read framebuffer is the source for readback op-
erations. The same framebuffer may be used for both drawing and reading. Sec-
tion 4.4.1 describes the mechanism for controlling framebuffer usage.

The default framebuffer is initially used as the draw and read framebuffer 1,
and the initial state of all provided bitplanes is undefined. The format and encod-
ing of buffers in the draw and read framebuffers can be queried as described in
section 6.1.13.

4.1 Per-Fragment Operations

A fragment produced by rasterization with window coordinates of (xw, yw) mod-
ifies the pixel in the framebuffer at that location based on a number of parameters
and conditions. We describe these modifications and tests, diagrammed in fig-
ure 4.1, in the order in which they are performed.

1The window system binding API may allow associating a GL context with two separate “default
framebuffers” provided by the window system as the draw and read framebuffers, but if so, both
default framebuffers are referred to by the name zero at their respective binding points.

OpenGL ES 3.0.3 (December 18, 2013)

4.1. PER-FRAGMENT OPERATIONS 172

Figure 4.1. Per-fragment operations.

4.1.1 Pixel Ownership Test

The first test is to determine if the pixel at location (xw, yw) in the framebuffer
is currently owned by the GL (more precisely, by this GL context). If it is not,
the window system decides the fate of the incoming fragment. Possible results are
that the fragment is discarded or that some subset of the subsequent per-fragment
operations are applied to the fragment. This test allows the window system to
control the GL’s behavior, for instance, when a GL window is obscured.

If the draw framebuffer is a framebuffer object (see section 4.2.1), the pixel
ownership test always passes, since the pixels of framebuffer objects are owned by
the GL, not the window system. If the draw framebuffer is the default framebuffer,
the window system controls pixel ownership.

4.1.2 Scissor Test

The scissor test determines if (xw, yw) lies within the scissor rectangle defined by
four values. These values are set with

void Scissor(int left, int bottom, sizei width,
sizei height);

OpenGL ES 3.0.3 (December 18, 2013)

4.1. PER-FRAGMENT OPERATIONS 173

If left ≤ xw < left + width and bottom ≤ yw < bottom + height , then the
scissor test passes. Otherwise, the test fails and the fragment is discarded. The
test is enabled or disabled using Enable or Disable with the constant SCISSOR_-
TEST. When disabled, it is as if the scissor test always passes. If either width or
height is less than zero, then the error INVALID_VALUE is generated. The state
required consists of four integer values and a bit indicating whether the test is
enabled or disabled. In the initial state, left = bottom = 0. width and height are
set to the width and height, respectively, of the window into which the GL is to
do its rendering. If the default framebuffer is bound but no default framebuffer is
associated with the GL context (see chapter 4), then width and height are initially
set to zero. Initially, the scissor test is disabled.

4.1.3 Multisample Fragment Operations

This step modifies fragment alpha and coverage values based on the values
of SAMPLE_ALPHA_TO_COVERAGE, SAMPLE_COVERAGE, SAMPLE_COVERAGE_-
VALUE, and SAMPLE_COVERAGE_INVERT. No changes to the fragment alpha or
coverage values are made at this step if the value of SAMPLE_BUFFERS is not one.

All alpha values in this section refer only to the alpha component of the frag-
ment shader output linked to color number zero (see section 3.9.2). If the fragment
shader does not write to this output, the alpha value is undefined.

SAMPLE_ALPHA_TO_COVERAGE and SAMPLE_COVERAGE are enabled and dis-
abled by calling Enable and Disable with the desired token value. If draw buffer
zero is not NONE and the buffer it references has an integer format, the SAMPLE_-
ALPHA_TO_COVERAGE operation is skipped.

If SAMPLE_ALPHA_TO_COVERAGE is enabled, a temporary coverage value is
generated where each bit is determined by the alpha value at the corresponding
sample location (see section 3.3). The temporary coverage value is then ANDed
with the fragment coverage value to generate a new fragment coverage value. If
the fragment shader outputs an integer to color number zero when not rendering to
an integer format, the coverage value is undefined.

No specific algorithm is required for converting the sample alpha values to a
temporary coverage value. It is intended that the number of 1’s in the temporary
coverage be proportional to the set of alpha values for the fragment, with all 1’s
corresponding to the maximum of all alpha values, and all 0’s corresponding to
all alpha values being 0. The alpha values used to generate a coverage value are
clamped to the range [0, 1]. It is also intended that the algorithm be pseudo-random
in nature, to avoid image artifacts due to regular coverage sample locations. The
algorithm can and probably should be different at different pixel locations. If it
does differ, it should be defined relative to window, not screen, coordinates, so that

OpenGL ES 3.0.3 (December 18, 2013)

4.1. PER-FRAGMENT OPERATIONS 174

rendering results are invariant with respect to window position.
Next, if SAMPLE_COVERAGE is enabled, the fragment coverage is ANDed with

another temporary coverage. This temporary coverage is generated in the same
manner as the one described above, but as a function of the value of SAMPLE_-
COVERAGE_VALUE. The function need not be identical, but it must have the same
properties of proportionality and invariance. If SAMPLE_COVERAGE_INVERT is
TRUE, the temporary coverage is inverted (all bit values are inverted) before it is
ANDed with the fragment coverage.

The values of SAMPLE_COVERAGE_VALUE and SAMPLE_COVERAGE_INVERT

are specified by calling

void SampleCoverage(float value, boolean invert);

with value set to the desired coverage value, and invert set to TRUE or FALSE.
value is clamped to [0,1] before being stored as SAMPLE_COVERAGE_VALUE.
SAMPLE_COVERAGE_VALUE is queried by calling GetFloatv with pname set to
SAMPLE_COVERAGE_VALUE. SAMPLE_COVERAGE_INVERT is queried by calling
GetBooleanv with pname set to SAMPLE_COVERAGE_INVERT.

4.1.4 Stencil Test

The stencil test conditionally discards a fragment based on the outcome of a com-
parison between the value in the stencil buffer at location (xw, yw) and a reference
value. The test is enabled or disabled with the Enable and Disable commands,
using the symbolic constant STENCIL_TEST. When disabled, the stencil test and
associated modifications are not made, and the fragment is always passed.

The stencil test is controlled with

void StencilFunc(enum func, int ref, uint mask);
void StencilFuncSeparate(enum face, enum func, int ref,

uint mask);
void StencilOp(enum sfail, enum dpfail, enum dppass);
void StencilOpSeparate(enum face, enum sfail, enum dpfail,

enum dppass);

There are two sets of stencil-related state, the front stencil state set and the
back stencil state set. Stencil tests and writes use the front set of stencil state when
processing fragments rasterized from non-polygon primitives (points and lines)
and front-facing polygon primitives while the back set of stencil state is used when
processing fragments rasterized from back-facing polygon primitives. Whether a

OpenGL ES 3.0.3 (December 18, 2013)

4.1. PER-FRAGMENT OPERATIONS 175

polygon is front- or back-facing is determined in the same manner used for face
culling (see section 3.6.1).

StencilFuncSeparate and StencilOpSeparate take a face argument which can
be FRONT, BACK, or FRONT_AND_BACK and indicates which set of state is affected.
StencilFunc and StencilOp set front and back stencil state to identical values.

StencilFunc and StencilFuncSeparate take three arguments that control
whether the stencil test passes or fails. ref is an integer reference value that is used
in the unsigned stencil comparison. Stencil comparison operations and queries of
ref clamp its value to the range [0, 2s − 1], where s is the number of bits in the
stencil buffer attached to the draw framebuffer. The s least significant bits of mask
are bitwise ANDed with both the reference and the stored stencil value, and the
resulting masked values are those that participate in the comparison controlled by
func. func is a symbolic constant that determines the stencil comparison function;
the eight symbolic constants are NEVER, ALWAYS, LESS, LEQUAL, EQUAL, GEQUAL,
GREATER, or NOTEQUAL. Accordingly, the stencil test passes never, always, and if
the masked reference value is less than, less than or equal to, equal to, greater than
or equal to, greater than, or not equal to the masked stored value in the stencil
buffer.

StencilOp and StencilOpSeparate take three arguments that indicate what
happens to the stored stencil value if this or certain subsequent tests fail or pass.
sfail indicates what action is taken if the stencil test fails. The symbolic constants
are KEEP, ZERO, REPLACE, INCR, DECR, INVERT, INCR_WRAP, and DECR_WRAP.
These correspond to keeping the current value, setting to zero, replacing with the
reference value, incrementing with saturation, decrementing with saturation, bit-
wise inverting it, incrementing without saturation, and decrementing without satu-
ration.

For purposes of increment and decrement, the stencil bits are considered as an
unsigned integer. Incrementing or decrementing with saturation clamps the stencil
value at 0 and the maximum representable value. Incrementing or decrementing
without saturation will wrap such that incrementing the maximum representable
value results in 0, and decrementing 0 results in the maximum representable value.

The same symbolic values are given to indicate the stencil action if the depth
test (see section 4.1.5) fails (dpfail), or if it passes (dppass).

If the stencil test fails, the incoming fragment is discarded. The state required
consists of the most recent values passed to StencilFunc or StencilFuncSeparate
and to StencilOp or StencilOpSeparate, and a bit indicating whether stencil test-
ing is enabled or disabled. In the initial state, stenciling is disabled, the front and
back stencil reference value are both zero, the front and back stencil comparison
functions are both ALWAYS, and the front and back stencil mask are both set to the
value 2s − 1, where s is greater than or equal to the number of bits in the deepest

OpenGL ES 3.0.3 (December 18, 2013)

4.1. PER-FRAGMENT OPERATIONS 176

stencil buffer supported by the GL implementation. Initially, all three front and
back stencil operations are KEEP.

If there is no stencil buffer, no stencil modification can occur, and it is as if the
stencil tests always pass, regardless of any calls to StencilFunc.

4.1.5 Depth Test

The depth test discards the incoming fragment if a depth comparison fails. The
comparison is enabled or disabled with the generic Enable and Disable commands
using the symbolic constant DEPTH_TEST. When disabled, the depth comparison
and subsequent possible updates to the depth buffer value are bypassed and the
fragment is passed to the next operation. The stencil value, however, is modified as
indicated below as if the depth test passed. If enabled, the comparison takes place
and the depth buffer and stencil value may subsequently be modified.

The comparison is specified with

void DepthFunc(enum func);

This command takes a single symbolic constant: one of NEVER, ALWAYS, LESS,
LEQUAL, EQUAL, GREATER, GEQUAL, NOTEQUAL. Accordingly, the depth test
passes never, always, if the incoming fragment’s zw value is less than, less than
or equal to, equal to, greater than, greater than or equal to, or not equal to the depth
value stored at the location given by the incoming fragment’s (xw, yw) coordinates.

If the depth test fails, the incoming fragment is discarded. The stencil value at
the fragment’s (xw, yw) coordinates is updated according to the function currently
in effect for depth test failure. Otherwise, the fragment continues to the next oper-
ation and the value of the depth buffer at the fragment’s (xw, yw) location is set to
the fragment’s zw value. In this case the stencil value is updated according to the
function currently in effect for depth test success.

The necessary state is an eight-valued integer and a single bit indicating
whether depth buffering is enabled or disabled. In the initial state the function
is LESS and the test is disabled.

If there is no depth buffer, it is as if the depth test always passes.

4.1.6 Occlusion Queries

Occlusion queries use query objects to track the number of fragments or samples
that pass the depth test. An occlusion query can be started and finished by call-
ing BeginQuery and EndQuery, respectively, with a target of ANY_SAMPLES_-
PASSED or ANY_SAMPLES_PASSED_CONSERVATIVE.

OpenGL ES 3.0.3 (December 18, 2013)

4.1. PER-FRAGMENT OPERATIONS 177

When an occlusion query is started with the target ANY_SAMPLES_PASSED,
the samples-boolean state maintained by the GL is set to FALSE. While that oc-
clusion query is active, the samples-boolean state is set to TRUE if any fragment
or sample passes the depth test. When the occlusion query finishes, the samples-
boolean state of FALSE or TRUE is written to the corresponding query object as the
query result value, and the query result for that object is marked as available. If the
target of the query is ANY_SAMPLES_PASSED_CONSERVATIVE, an implementa-
tion may choose to use a less precise version of the test which can additionally set
the samples-boolean state to TRUE in some other implementation-dependent cases.
This may offer better performance on some implementations at the expense of false
positives.

4.1.7 Blending

Blending combines the incoming source fragment’s R, G, B, and A values with
the destination R, G, B, and A values stored in the framebuffer at the fragment’s
(xw, yw) location.

Source and destination values are combined according to the blend equation,
quadruplets of source and destination weighting factors determined by the blend
functions, and a constant blend color to obtain a new set of R, G, B, and A values,
as described below.

The components of the source and destination values and blend factors are
clamped to [0, 1] prior to evaluating the blend equation. The resulting four values
are sent to the next operation.

Blending applies only if the color buffer has a fixed-point format. If the color
buffer has an integer format, proceed to the next operation.

Blending for all draw buffers can be enabled or disabled using Enable or Dis-
able with the symbolic constant BLEND. If blending is disabled, proceed to the next
operation.

If one or more fragment colors are being written to multiple buffers (see sec-
tion 4.2.1), blending is computed and applied separately for each fragment color
and the corresponding buffer.

Blend Equation

Blending is controlled by the blend equations, defined by the commands

void BlendEquation(enum mode);
void BlendEquationSeparate(enum modeRGB,

enum modeAlpha);

OpenGL ES 3.0.3 (December 18, 2013)

4.1. PER-FRAGMENT OPERATIONS 178

BlendEquationSeparate argument modeRGB determines the RGB blend func-
tion while modeAlpha determines the alpha blend equation. BlendEquation ar-
gument mode determines both the RGB and alpha blend equations. modeRGB and
modeAlpha must each be one of FUNC_ADD, FUNC_SUBTRACT, FUNC_REVERSE_-
SUBTRACT, MIN, or MAX.

Unsigned normalized fixed-point destination (framebuffer) components are
represented as described in section 2.1.6. Constant color components, floating-
point destination components, and source (fragment) components are taken to be
floating point values. If source components are represented internally by the GL as
fixed-point values, they are also interpreted according to section 2.1.6.

Prior to blending, unsigned normalized fixed-point color components undergo
an implied conversion to floating-point using equation 2.1. This conversion must
leave the values 0 and 1 invariant. Blending computations are treated as if carried
out in floating-point and will be performed with a precision and dynamic range no
lower than that used to represent destination components.

If the value of FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING for the
framebuffer attachment corresponding to the destination buffer is SRGB (see sec-
tion 6.1.13), the R, G, and B destination color values (after conversion from fixed-
point to floating-point) are considered to be encoded for the sRGB color space and
hence must be linearized prior to their use in blending. Each R, G, and B compo-
nent is converted in the same fashion described for sRGB texture components in
section 3.8.16.

If the value of FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING is not SRGB,
no linearization is performed.

The resulting linearized R, G, and B and unmodified A values are recombined
as the destination color used in blending computations.

Table 4.1 provides the corresponding per-component blend equations for each
mode, whether acting on RGB components for modeRGB or the alpha component
for modeAlpha.

In the table, the s subscript on a color component abbreviation (R, G, B, or
A) refers to the source color component for an incoming fragment, the d subscript
on a color component abbreviation refers to the destination color component at
the corresponding framebuffer location, and the c subscript on a color component
abbreviation refers to the constant blend color component. A color component ab-
breviation without a subscript refers to the new color component resulting from
blending. Additionally, Sr, Sg, Sb, and Sa are the red, green, blue, and alpha com-
ponents of the source weighting factors determined by the source blend function,
and Dr, Dg, Db, and Da are the red, green, blue, and alpha components of the
destination weighting factors determined by the destination blend function. Blend
functions are described below.

OpenGL ES 3.0.3 (December 18, 2013)

4.1. PER-FRAGMENT OPERATIONS 179

Mode RGB Components Alpha Component
FUNC_ADD R = Rs ∗ Sr +Rd ∗Dr A = As ∗ Sa +Ad ∗Da

G = Gs ∗ Sg +Gd ∗Dg

B = Bs ∗ Sb +Bd ∗Db

FUNC_SUBTRACT R = Rs ∗ Sr −Rd ∗Dr A = As ∗ Sa −Ad ∗Da

G = Gs ∗ Sg −Gd ∗Dg

B = Bs ∗ Sb −Bd ∗Db

FUNC_REVERSE_SUBTRACT R = Rd ∗Dr −Rs ∗ Sr A = Ad ∗Da −As ∗ Sa
G = Gd ∗Dg −Gs ∗ Sg
B = Bd ∗Db −Bs ∗ Sb

MIN R = min(Rs, Rd) A = min(As, Ad)
G = min(Gs, Gd)
B = min(Bs, Bd)

MAX R = max(Rs, Rd) A = max(As, Ad)
G = max(Gs, Gd)
B = max(Bs, Bd)

Table 4.1: RGB and alpha blend equations.

Blend Functions

The weighting factors used by the blend equation are determined by the blend
functions. There are four possible sources for weighting factors. These are
the constant color (Rc, Gc, Bc, Ac) set with BlendColor (see below), the source
color (Rs, Gs, Bs, As), and the destination color (the existing content of the draw
buffer). Additionally the special constants ZERO and ONE are available as weight-
ing factors. Blend functions are specified with the commands

void BlendFuncSeparate(enum srcRGB, enum dstRGB,
enum srcAlpha, enum dstAlpha);

void BlendFunc(enum src, enum dst);

BlendFuncSeparate arguments srcRGB and dstRGB determine the source and
destination RGB blend functions, respectively, while srcAlpha and dstAlpha deter-
mine the source and destination alpha blend functions. BlendFunc argument src
determines both RGB and alpha source functions, while dst determines both RGB
and alpha destination functions.

The possible source and destination blend functions and their corresponding
computed blend factors are summarized in table 4.2.

OpenGL ES 3.0.3 (December 18, 2013)

4.1. PER-FRAGMENT OPERATIONS 180

Function RGB Blend Factors Alpha Blend Factor
(Sr, Sg, Sb) or (Dr, Dg, Db) Sa or Da

ZERO (0, 0, 0) 0

ONE (1, 1, 1) 1

SRC_COLOR (Rs, Gs, Bs) As

ONE_MINUS_SRC_COLOR (1, 1, 1)− (Rs, Gs, Bs) 1−As

DST_COLOR (Rd, Gd, Bd) Ad

ONE_MINUS_DST_COLOR (1, 1, 1)− (Rd, Gd, Bd) 1−Ad

SRC_ALPHA (As, As, As) As

ONE_MINUS_SRC_ALPHA (1, 1, 1)− (As, As, As) 1−As

DST_ALPHA (Ad, Ad, Ad) Ad

ONE_MINUS_DST_ALPHA (1, 1, 1)− (Ad, Ad, Ad) 1−Ad

CONSTANT_COLOR (Rc, Gc, Bc) Ac

ONE_MINUS_CONSTANT_COLOR (1, 1, 1)− (Rc, Gc, Bc) 1−Ac

CONSTANT_ALPHA (Ac, Ac, Ac) Ac

ONE_MINUS_CONSTANT_ALPHA (1, 1, 1)− (Ac, Ac, Ac) 1−Ac

SRC_ALPHA_SATURATE (f, f, f)1 1

Table 4.2: RGB and ALPHA source and destination blending functions and the
corresponding blend factors. Addition and subtraction of triplets is performed
component-wise.
1 f = min(As, 1−Ad).

OpenGL ES 3.0.3 (December 18, 2013)

4.1. PER-FRAGMENT OPERATIONS 181

Blend Color

The constant color Cc to be used in blending is specified with the command

void BlendColor(float red, float green, float blue,
float alpha);

The constant color can be used in both the source and destination blending
functions. If destination framebuffer components use an unsigned normalized
fixed-point representation, the constant color components are clamped to the range
[0, 1] when computing the blend factors.

Blending State

The state required for blending is two integers for the RGB and alpha blend equa-
tions, four integers indicating the source and destination RGB and alpha blending
functions, four floating-point values to store the RGBA constant blend color, and a
bit indicating whether blending is enabled or disabled.

The initial blend equations for RGB and alpha are both FUNC_ADD. The initial
blending functions are ONE for the source RGB and alpha functions and ZERO

for the destination RGB and alpha functions. The initial constant blend color is
(R,G,B,A) = (0, 0, 0, 0). Initially, blending is disabled.

Blending occurs once for each color buffer currently enabled for writing (sec-
tion 4.2.1) using each buffer’s color for Cd. If a color buffer has no A value, then
Ad is taken to be 1.

4.1.8 sRGB Conversion

If the value of FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING for the frame-
buffer attachment corresponding to the destination buffer is SRGB (see sec-
tion 6.1.13), the R, G, and B values after blending are converted into the non-linear
sRGB color space by computing

cs =


0.0, cl ≤ 0

12.92cl, 0 < cl < 0.0031308

1.055c0.41666l − 0.055, 0.0031308 ≤ cl < 1

1.0, cl ≥ 1

(4.1)

where cl is the R, G, or B element and cs is the result (effectively converted into an
sRGB color space).

If FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING is not SRGB, then

OpenGL ES 3.0.3 (December 18, 2013)

4.1. PER-FRAGMENT OPERATIONS 182

cs = cl.

The resulting cs values for R, G, and B, and the unmodified A form a new
RGBA color value. If the color buffer is fixed-point, each component is clamped
to the range [0, 1] and then converted to a fixed-point value using equation 2.3. The
resulting four values are sent to the subsequent dithering operation.

4.1.9 Dithering

Dithering selects between two representable color values or indices. A repre-
sentable value is a value that has an exact representation in the color buffer. Dither-
ing selects, for each color component, either the largest representable color value
(for that particular color component) that is less than or equal to the incoming color
component value, c, or the smallest representable color value that is greater than or
equal to c. The selection may depend on the xw and yw coordinates of the pixel,
as well as on the exact value of c. If one of the two values does not exist, then the
selection defaults to the other value.

Many dithering selection algorithms are possible, but an individual selection
must depend only on the incoming component value and the fragment’s x and y
window coordinates. If dithering is disabled, then one of the two values above is
selected, in an implementation-dependent manner that must not depend on the xw
and yw coordinates of the pixel.

Dithering is enabled with Enable and disabled with Disable using the symbolic
constant DITHER. The state required is thus a single bit. Initially, dithering is
enabled.

4.1.10 Additional Multisample Fragment Operations

If the value of SAMPLE_BUFFERS is one, the stencil test, depth test, blending, and
dithering are performed for each pixel sample, rather than just once for each frag-
ment. Failure of the stencil or depth test results in termination of the processing of
that sample, rather than discarding of the fragment. All operations are performed
on the color, depth, and stencil values stored in the multisample renderbuffer at-
tachments if a framebuffer object is bound, or otherwise in the multisample buffer
of the default framebuffer.

Stencil test, depth test, blending, and dithering are performed for a pixel sample
only if that sample’s fragment coverage bit is a value of 1. If the corresponding
coverage bit is 0, no operations are performed for that sample.

If a framebuffer object is not bound, after all operations have been completed
on the multisample buffer, the sample values for each color in the multisample

OpenGL ES 3.0.3 (December 18, 2013)

4.2. WHOLE FRAMEBUFFER OPERATIONS 183

Symbolic Constant Meaning
NONE No buffer
COLOR_ATTACHMENTi (see caption) Output fragment color to image attached

at color attachment point i

Table 4.3: Arguments to DrawBuffers and ReadBuffer when the context is bound
to a framebuffer object, and the buffers they indicate. i in COLOR_ATTACHMENTi

may range from zero to the value of MAX_COLOR_ATTACHMENTS minus one.

buffer are combined to produce a single color value, and that value is written into
the corresponding color buffer selected by DrawBuffers. An implementation may
defer the writing of the color buffers until a later time, but the state of the frame-
buffer must behave as if the color buffers were updated as each fragment was pro-
cessed. The method of combination is not specified. If the framebuffer contains
sRGB values, then it is recommended that an average of sample values is com-
puted in a linearized space, as for blending (see section 4.1.7). Otherwise, a simple
average computed independently for each color component is recommended.

4.2 Whole Framebuffer Operations

The preceding sections described the operations that occur as individual fragments
are sent to the framebuffer. This section describes operations that control or affect
the whole framebuffer.

4.2.1 Selecting Buffers for Writing

The first such operation is controlling the color buffers into which each of the
fragment color values is written. This is accomplished with DrawBuffers.

The command

void DrawBuffers(sizei n, const enum *bufs);

defines the draw buffers to which all fragment colors are written. n specifies the
number of buffers in bufs. bufs is a pointer to an array of symbolic constants
specifying the buffer to which each fragment color is written.

Each buffer listed in bufs must be BACK, NONE, or one of the values from ta-
ble 4.3. Further, acceptable values for the constants in bufs depend on whether
the GL is using the default framebuffer (i.e., DRAW_FRAMEBUFFER_BINDING is

OpenGL ES 3.0.3 (December 18, 2013)

4.2. WHOLE FRAMEBUFFER OPERATIONS 184

zero), or a framebuffer object (i.e., DRAW_FRAMEBUFFER_BINDING is non-zero).
For more information about framebuffer objects, see section 4.4.

If the GL is bound to the default framebuffer, then n must be 1 and the constant
must be BACK or NONE. When draw buffer zero is BACK, color values are written
into the sole buffer for single-buffered contexts, or into the back buffer for double-
buffered contexts. If DrawBuffers is supplied with a constant other than BACK

and NONE, or with a value of n other than 1, the error INVALID_OPERATION is
generated.

If the GL is bound to a draw framebuffer object, then each of the constants
must be one of the values listed in table 4.3. Calling DrawBuffers with 0 as the
value of n is equivalent to setting all the draw buffers to NONE.

In both cases, the draw buffers being defined correspond in order to the re-
spective fragment colors. The draw buffer for fragment colors beyond n is set to
NONE.

The maximum number of draw buffers is implementation-dependent. The
number of draw buffers supported can be queried by calling GetIntegerv with the
symbolic constant MAX_DRAW_BUFFERS. An INVALID_VALUE error is generated
if n is greater than MAX_DRAW_BUFFERS.

If the GL is bound to a draw framebuffer object, the ith buffer listed in bufs
must be COLOR_ATTACHMENTi or NONE. Specifying a buffer out of order, BACK,
or COLOR_ATTACHMENTm where m is greater than or equal to the value of MAX_-
COLOR_ATTACHMENTS, will generate the error INVALID_OPERATION.

If an OpenGL ES Shading Language 1.00 fragment shader writes to gl_-

FragColor or gl_FragData, DrawBuffers specifies the draw buffer, if any, into
which the single fragment color defined by gl_FragColor or gl_FragData[0]
is written. If an OpenGL ES Shading Language 3.00 fragment shader writes a
user-defined varying out variable, DrawBuffers specifies a set of draw buffers into
which each of the multiple output colors defined by these variables are separately
written. If a fragment shader writes to none of gl_FragColor, gl_FragData,
nor any user-defined output variables, the values of the fragment colors following
shader execution are undefined, and may differ for each fragment color. If some,
but not all user-defined output variables are written, the values of fragment colors
corresponding to unwritten variables are similarly undefined.

The order of writes to user-defined output variables is undefined. If the same
image is attached to multiple attachment points of a framebuffer object and differ-
ent values are written to outputs bound to those attachments, the resulting value in
the attached image is undefined. Similarly undefined behavior results during any
other per-fragment operations where a multiply-attached image may be written to
by more than one output, such as during blending.

Indicating a buffer or buffers using DrawBuffers causes subsequent pixel color

OpenGL ES 3.0.3 (December 18, 2013)

4.2. WHOLE FRAMEBUFFER OPERATIONS 185

value writes to affect the indicated buffers. If the GL is bound to a draw framebuffer
object and a draw buffer selects an attachment that has no image attached, then that
fragment color is not written.

Specifying NONE as the draw buffer for a fragment color will inhibit that frag-
ment color from being written.

The state required to handle color buffer selection for each framebuffer is an
integer for each supported fragment color. For the default framebuffer, in the initial
state the draw buffer for fragment color zero is BACK if there is a default frame-
buffer associated with the context, otherwise NONE. For framebuffer objects, in
the initial state the draw buffer for fragment color zero is COLOR_ATTACHMENT0.
For both the default framebuffer and framebuffer objects, the initial state of draw
buffers for fragment colors other than zero is NONE.

The draw buffer of the currently bound draw framebuffer selected for fragment
color i can be queried by calling GetIntegerv with pname set to DRAW_BUFFERi.

4.2.2 Fine Control of Buffer Updates

Writing of bits to each of the logical framebuffers after all per-fragment operations
have been performed may be masked. The command

void ColorMask(boolean r, boolean g, boolean b,
boolean a);

controls writes to the active draw buffers.
ColorMask is used to mask the writing of R, G, B and A values to all active

draw buffers. r, g, b, and a indicate whether R, G, B, or A values, respectively, are
written or not (a value of TRUE means that the corresponding value is written). In
the initial state, all color values are enabled for writing for all draw buffers.

The depth buffer can be enabled or disabled for writing zw values using

void DepthMask(boolean mask);

If mask is non-zero, the depth buffer is enabled for writing; otherwise, it is disabled.
In the initial state, the depth buffer is enabled for writing.

The commands

void StencilMask(uint mask);
void StencilMaskSeparate(enum face, uint mask);

control the writing of particular bits into the stencil planes.

OpenGL ES 3.0.3 (December 18, 2013)

4.2. WHOLE FRAMEBUFFER OPERATIONS 186

The least significant s bits of mask, where s is the number of bits in the stencil
buffer, specify an integer mask. Where a 1 appears in this mask, the corresponding
bit in the stencil buffer is written; where a 0 appears, the bit is not written. The face
parameter of StencilMaskSeparate can be FRONT, BACK, or FRONT_AND_BACK
and indicates whether the front or back stencil mask state is affected. StencilMask
sets both front and back stencil mask state to identical values.

Fragments generated by front-facing primitives use the front mask and frag-
ments generated by back-facing primitives use the back mask (see section 4.1.4).
The clear operation always uses the front stencil write mask when clearing the
stencil buffer.

The state required for the various masking operations is two integers for the
front and back stencil values, and a bit for depth values. A set of four bits is also
required indicating which color components of an RGBA value should be written.
In the initial state, the integer masks are all ones, as are the bits controlling depth
value and RGBA component writing.

Fine Control of Multisample Buffer Updates

When a framebuffer object is not bound and the value of SAMPLE_BUFFERS is one,
ColorMask, DepthMask, and StencilMask or StencilMaskSeparate control the
modification of values in the multisample buffer. The color mask has no effect on
modifications to the color buffers. If the color mask is entirely disabled, the color
sample values must still be combined (as described above) and the result used to
replace the color values of the buffers enabled by DrawBuffers.

4.2.3 Clearing the Buffers

The GL provides a means for setting portions of every pixel in a particular buffer
to the same value. The argument to

void Clear(bitfield buf);

is zero or the bitwise OR of one or more values indicating which buffers are
to be cleared. The values are COLOR_BUFFER_BIT, DEPTH_BUFFER_BIT, and
STENCIL_BUFFER_BIT, indicating the buffers currently enabled for color writ-
ing, the depth buffer, and the stencil buffer (see below), respectively. The value to
which each buffer is cleared depends on the setting of the clear value for that buffer.
If buf is zero, no buffers are cleared. If buf contains any bits other than COLOR_-

BUFFER_BIT, DEPTH_BUFFER_BIT, or STENCIL_BUFFER_BIT, then the error
INVALID_VALUE is generated.

OpenGL ES 3.0.3 (December 18, 2013)

4.2. WHOLE FRAMEBUFFER OPERATIONS 187

void ClearColor(float r, float g, float b, float a);

sets the clear value for fixed-point color buffers. The specified components are
stored as floating-point values. Unsigned normalized fixed-point RGBA color
buffers are cleared to color values derived by clamping each component of the
clear color to the range [0, 1], then converting the (possibly sRGB converted and/or
dithered) color to fixed-point using equations 2.3 or 2.4, respectively. The result of
clearing integer color buffers with Clear is undefined.

The command

void ClearDepthf(float d);

sets the depth value used when clearing the depth buffer. d is clamped to the
range [0, 1]. When clearing a fixed-point depth buffer, d is converted to fixed-point
according to the rules for a window z value given in section 2.12.1. No conversion
is applied when clearing a floating-point depth buffer.

The command

void ClearStencil(int s);

takes a single integer argument that is the value to which to clear the stencil buffer.
When clearing a stencil buffer, s is masked to the number of bitplanes in the stencil
buffer.

When Clear is called, the only per-fragment operations that are applied (if
enabled) are the pixel ownership test, the scissor test, sRGB conversion (see sec-
tion 4.1.8), and dithering. The masking operations described in section 4.2.2 are
also applied. If a buffer is not present, then a Clear directed at that buffer has no
effect.

The state required for clearing is a clear value for each of the color buffer,
the depth buffer, and the stencil buffer. Initially, the RGBA color clear value is
(0.0, 0.0, 0.0, 0.0), the depth buffer clear value is 1.0, and the stencil buffer clear
index is 0.

Individual buffers of the currently bound draw framebuffer may be cleared with
the command

void ClearBuffer{if ui}v(enum buffer, int drawbuffer,
const T *value);

where buffer and drawbuffer identify a buffer to clear, and value specifies the value
or values to clear it to.

OpenGL ES 3.0.3 (December 18, 2013)

4.2. WHOLE FRAMEBUFFER OPERATIONS 188

If buffer is COLOR, a particular draw buffer DRAW_BUFFERi is specified by
passing i as the parameter drawbuffer, and value points to a four-element vec-
tor specifying the R, G, B, and A color to clear that draw buffer to. The Clear-
Bufferfv, ClearBufferiv, and ClearBufferuiv commands should be used to clear
fixed- and floating-point, signed integer, and unsigned integer color buffers respec-
tively. Clamping and conversion for fixed-point color buffers are performed in the
same fashion as Clear.

If buffer is DEPTH, drawbuffer must be zero, and value points to the single depth
value to clear the depth buffer to. Clamping and type conversion for fixed-point
depth buffers are performed in the same fashion as Clear. Only ClearBufferfv
should be used to clear depth buffers; neither ClearBufferiv nor ClearBufferuiv
accept a buffer of DEPTH.

If buffer is STENCIL, drawbuffer must be zero, and value points to the sin-
gle stencil value to clear the stencil buffer to. Masking and type conversion are
performed in the same fashion as Clear. Only ClearBufferiv should be used to
clear stencil buffers; neither ClearBufferfv nor ClearBufferuiv accept a buffer of
STENCIL.

The command

void ClearBufferfi(enum buffer, int drawbuffer,
float depth, int stencil);

clears both depth and stencil buffers of the currently bound draw framebuffer.
buffer must be DEPTH_STENCIL and drawbuffer must be zero. depth and sten-
cil are the values to clear the depth and stencil buffers to, respectively. Clamping
and type conversion of depth for fixed-point depth buffers is performed in the same
fashion as Clear. Masking of stencil for stencil buffers is performed in the same
fashion as Clear. ClearBufferfi is equivalent to clearing the depth and stencil
buffers separately, but may be faster when a buffer of internal format DEPTH_-
STENCIL is being cleared.

The result of ClearBuffer is undefined if no conversion between the type of
the specified value and the type of the buffer being cleared is defined (for example,
if ClearBufferiv is called for a fixed- or floating-point buffer, or if ClearBufferfv
is called for a signed or unsigned integer buffer). This is not an error.

When ClearBuffer is called, the same per-fragment and masking operations
defined for Clear are applied.

ClearBufferiv generates an INVALID_ENUM error if buffer is not COLOR or
STENCIL. ClearBufferuiv generates an INVALID_ENUM error if buffer is not
COLOR. ClearBufferfv generates an INVALID_ENUM error if buffer is not COLOR or
DEPTH. ClearBufferfi generates an INVALID_ENUM error if buffer is not DEPTH_-
STENCIL.

OpenGL ES 3.0.3 (December 18, 2013)

4.3. READING AND COPYING PIXELS 189

ClearBuffer generates an INVALID_VALUE error if buffer is COLOR and draw-
buffer is less than zero, or greater than the value of MAX_DRAW_BUFFERS minus
one; or if buffer is DEPTH, STENCIL, or DEPTH_STENCIL and drawbuffer is not
zero.

Clearing the Multisample Buffer

The color samples of the multisample buffer are cleared when one or more color
buffers are cleared, as specified by the Clear mask bit COLOR_BUFFER_BIT and
the DrawBuffers mode. If the DrawBuffers mode is NONE, the color samples of
the multisample buffer cannot be cleared using Clear.

If the Clear mask bits DEPTH_BUFFER_BIT or STENCIL_BUFFER_BIT are
set, then the corresponding depth or stencil samples, respectively, are cleared.

The ClearBuffer commands also clear color, depth, or stencil samples of mul-
tisample buffers corresponding to the specified buffer.

Masking and scissoring affect clearing the multisample buffer in the same way
as they affect clearing the corresponding color, depth, and stencil buffers.

4.3 Reading and Copying Pixels

Pixels may be read from the framebuffer using ReadPixels. BlitFramebuffer
can be used to copy a block of pixels from one portion of the framebuffer to an-
other. Pixels may also be copied from client memory or the framebuffer to texture
images in the GL using the texture image specification commands, as described in
sections 3.8.3 - 3.8.6.

4.3.1 Selecting Buffers for Reading

When reading pixels from a color buffer, the buffer selected for reading is termed
the read buffer, and is controlled with the command

void ReadBuffer(enum src);

If the GL is bound to the default framebuffer (see section 4.4), src must be BACK
or NONE. BACK refers to the back buffer of a double-buffered context or the sole
buffer of a single-buffered context. The initial value of the read framebuffer for
the default framebuffer is BACK if there is a default framebuffer associated with the
context, otherwise it is NONE. An INVALID_OPERATION error is generated if src
is one of the values from table 4.3 (other than NONE) or if src is BACK and there is
no default framebuffer associated with the context.

OpenGL ES 3.0.3 (December 18, 2013)

4.3. READING AND COPYING PIXELS 190

byte, short, int, float, or packed
pixel component data stream

Clamp to [0,1]

Pack

Convert to float

RGBA pixel data in

Pixel Storage
Operations

Figure 4.2. Operation of ReadPixels. Operations in dashed boxes are not performed
for all data formats.

If the GL is bound to a read framebuffer object, src must be one of the values
listed in table 4.3, including NONE. Specifying COLOR_ATTACHMENTi enables read-
ing from the image attached to the framebuffer at that attachment point. The initial
value of the read framebuffer for framebuffer objects is COLOR_ATTACHMENT0.
An INVALID_OPERATION error is generated if src is BACK or if src is COLOR_-
ATTACHMENTm where m is greater than or equal to the value of MAX_COLOR_-
ATTACHMENTS.

An INVALID_ENUM error is generated if src is not BACK or one of the values
from table 4.3.

The read buffer of the currently bound read framebuffer can be queried by
calling GetIntegerv with pname set to READ_BUFFER.

4.3.2 Reading Pixels

The method for reading pixels from the framebuffer and placing them in pixel pack
buffer or client memory is diagrammed in figure 4.2. We describe the stages of the
pixel reading process in the order in which they occur.

Initially, zero is bound for the PIXEL_PACK_BUFFER, indicating that image
read and query commands such as ReadPixels return pixel results into client mem-

OpenGL ES 3.0.3 (December 18, 2013)

4.3. READING AND COPYING PIXELS 191

Parameter Name Type Initial Value Valid Range
PACK_ROW_LENGTH integer 0 [0,∞)

PACK_SKIP_ROWS integer 0 [0,∞)

PACK_SKIP_PIXELS integer 0 [0,∞)

PACK_ALIGNMENT integer 4 1,2,4,8

Table 4.4: PixelStorei parameters pertaining to ReadPixels

ory pointer parameters. However, if a non-zero buffer object is bound as the current
pixel pack buffer, then the pointer parameter is treated as an offset into the desig-
nated buffer object.

Pixels are read using

void ReadPixels(int x, int y, sizei width, sizei height,
enum format, enum type, void *data);

The arguments after x and y to ReadPixels are described in section 3.7.2. The pixel
storage modes that apply to ReadPixels and other commands that query images
(see section 6.1) are summarized in table 4.4.

Only two combinations of format and type are accepted in most cases. The
first varies depending on the format of the currently bound rendering surface. For
normalized fixed-point rendering surfaces, the combination format RGBA and type
UNSIGNED_BYTE is accepted. For signed integer rendering surfaces, the combina-
tion format RGBA_INTEGER and type INT is accepted. For unsigned integer ren-
dering surfaces, the combination format RGBA_INTEGER and type UNSIGNED_INT
is accepted.

The second is an implementation-chosen format from among those defined
in table 3.2, excluding formats DEPTH_COMPONENT and DEPTH_STENCIL. The
values of format and type for this format may be determined by calling Get-
Integerv with the symbolic constants IMPLEMENTATION_COLOR_READ_FORMAT
and IMPLEMENTATION_COLOR_READ_TYPE, respectively. GetIntegerv gener-
ates an INVALID_OPERATION error in these cases if the object bound to READ_-

FRAMEBUFFER_BINDING is not framebuffer complete (as defined in section 4.4.4),
or if READ_BUFFER is NONE, or if the GL is using a framebuffer object (i.e. READ_-
FRAMEBUFFER_BINDING is non-zero) and the read buffer selects an attachment
that has no image attached. The implementation-chosen format may vary depend-
ing on the format of the selected read buffer of the currently bound read frame-
buffer.

OpenGL ES 3.0.3 (December 18, 2013)

4.3. READING AND COPYING PIXELS 192

Additionally, when the internal format of the rendering surface is RGB10_A2,
a third combination of format RGBA and type UNSIGNED_INT_2_10_10_10_REV
is accepted.

ReadPixels generates an INVALID_OPERATION error if the combination of
format and type is unsupported.

ReadPixels generates an INVALID_OPERATION error
if READ_FRAMEBUFFER_BINDING (see section 4.4) is non-zero, the read frame-
buffer is framebuffer complete, and the value of SAMPLE_BUFFERS for the read
framebuffer is one.

ReadPixels generates an INVALID_FRAMEBUFFER_OPERATION error if the
object bound to READ_FRAMEBUFFER_BINDING is not framebuffer complete.

Obtaining Pixels from the Framebuffer

Values are obtained from the color buffer selected by the read buffer (see sec-
tion 4.3.1). ReadPixels generates an INVALID_OPERATION error if READ_-

BUFFER is NONE or if the GL is using a framebuffer object (i.e. READ_-

FRAMEBUFFER_BINDING is non-zero) and the read buffer selects an attachment
that has no image attached.

ReadPixels obtains values from the selected buffer from each pixel with lower
left hand corner at (x + i, y + j) for 0 ≤ i < width and 0 ≤ j < height;
this pixel is said to be the ith pixel in the jth row. If any of these pixels lies
outside of the window allocated to the current GL context, or outside of the image
attached to the currently bound framebuffer object, then the values obtained for
those pixels are undefined. When READ_FRAMEBUFFER_BINDING is zero, values
are also undefined for individual pixels that are not owned by the current context.
Otherwise, ReadPixels obtains values from the selected buffer, regardless of how
those values were placed there.

If format is one of RED, RG, RGB, or RGBA, then red, green, blue, and alpha
values are obtained from the selected buffer at each pixel location.

If format is an integer format and the color buffer is not an integer format; if the
color buffer is an integer format and format is not an integer format; or if format
is an integer format and type is FLOAT, HALF_FLOAT, or UNSIGNED_INT_10F_-
11F_11F_REV, the error INVALID_OPERATION occurs.

When READ_FRAMEBUFFER_BINDING is non-zero, the red, green, blue, and
alpha values are obtained by first reading the internal component values of the
corresponding value in the image attached to the selected logical buffer. Internal
components are converted to an RGBA color by taking each R, G, B, and A com-
ponent present according to the base internal format of the buffer (as shown in
table 3.11). If G, B, or A values are not present in the internal format, they are

OpenGL ES 3.0.3 (December 18, 2013)

4.3. READING AND COPYING PIXELS 193

taken to be zero, zero, and one respectively.

Conversion of RGBA values

The R, G, B, and A values form a group of elements. For a normalized fixed-point
color buffer, each element is converted to floating-point using equation 2.1. For an
integer color buffer, the elements are unmodified.

Final Conversion

For a floating-point RGBA color, if type is not one of FLOAT, HALF_FLOAT, or
UNSIGNED_INT_10F_11F_11F_REV; each component is first clamped to [0, 1].
Then the appropriate conversion formula from table 4.5 is applied to the compo-
nent.

In the special case of calling ReadPixels with type of UNSIGNED_INT_10F_-
11F_11F_REV and format of RGB, conversion is performed as follows: the returned
data are packed into a series of uint values. The red, green, and blue components
are converted to unsigned 11-bit floating-point, unsigned 11-bit floating-point, and
unsigned 10-bit floating point as described in sections 2.1.3 and 2.1.4. The result-
ing red 11 bits, green 11 bits, and blue 10 bits are then packed as the 1st, 2nd, and
3rd components of the UNSIGNED_INT_10F_11F_11F_REV format as shown in
table 3.8.

For an integer RGBA color, each component is clamped to the representable
range of type.

Placement in Pixel Pack Buffer or Client Memory

If a pixel pack buffer is bound (as indicated by a non-zero value of PIXEL_PACK_-
BUFFER_BINDING), data is an offset into the pixel pack buffer and the pixels are
packed into the buffer relative to this offset; otherwise, data is a pointer to a block
of client memory and the pixels are packed into the client memory relative to the
pointer. If a pixel pack buffer object is bound and packing the pixel data according
to the pixel pack storage state would access memory beyond the size of the pixel
pack buffer’s memory size, an INVALID_OPERATION error results. If a pixel pack
buffer object is bound and data is not evenly divisible by the number of basic
machine units needed to store in memory the corresponding GL data type from
table 3.4 for the type parameter, an INVALID_OPERATION error results.

Groups of elements are placed in memory just as they are taken from mem-
ory when transferring pixel rectangles to the GL. That is, the ith group of the jth
row (corresponding to the ith pixel in the jth row) is placed in memory just where

OpenGL ES 3.0.3 (December 18, 2013)

4.3. READING AND COPYING PIXELS 194

type Parameter GL Data Type Component
Conversion Formula

UNSIGNED_BYTE ubyte Equation 2.3, b = 8

BYTE byte Equation 2.4, b = 8

UNSIGNED_SHORT ushort Equation 2.3, b = 16

SHORT short Equation 2.4, b = 16

UNSIGNED_INT uint Equation 2.3, b = 32

INT int Equation 2.4, b = 32

HALF_FLOAT half c = f

FLOAT float c = f

UNSIGNED_SHORT_5_6_5 ushort Equation 2.3, b = bitfield width
UNSIGNED_SHORT_4_4_4_4 ushort Equation 2.3, b = bitfield width
UNSIGNED_SHORT_5_5_5_1 ushort Equation 2.3, b = bitfield width
UNSIGNED_INT_2_10_10_10_REV uint Equation 2.3, b = bitfield width
UNSIGNED_INT_10F_11F_11F_REV uint Special

Table 4.5: Reversed component conversions, used when component data are be-
ing returned to client memory. Color components are converted from the internal
floating-point representation (f) to a datum of the specified GL data type (c) using
the specified equation. All arithmetic is done in the internal floating point format.
These conversions apply to component data returned by GL query commands and
to components of pixel data returned to client memory. The equations remain the
same even if the implemented ranges of the GL data types are greater than the
minimum required ranges. (See table 2.2.)

OpenGL ES 3.0.3 (December 18, 2013)

4.3. READING AND COPYING PIXELS 195

the ith group of the jth row would be taken from when transferring pixels. See
Unpacking under section 3.7.2. The only difference is that the storage mode pa-
rameters whose names begin with PACK_ are used instead of those whose names
begin with UNPACK_. If the format is RED, only the corresponding single element
is written. Likewise if the format is RG, or RGB, only the corresponding two or
three elements are written. Otherwise all the elements of each group are written.

4.3.3 Copying Pixels

The command

void BlitFramebuffer(int srcX0, int srcY0, int srcX1,
int srcY1, int dstX0, int dstY0, int dstX1, int dstY1,
bitfield mask, enum filter);

transfers a rectangle of pixel values from one region of the read framebuffer to
another in the draw framebuffer. mask is zero or the bitwise OR of one or more
values indicating which buffers are to be copied. The values are COLOR_BUFFER_-
BIT, DEPTH_BUFFER_BIT, and STENCIL_BUFFER_BIT, which are described in
section 4.2.3. The pixels corresponding to these buffers are copied from the
source rectangle bounded by the locations (srcX0, srcY 0) and (srcX1, srcY 1)
to the destination rectangle bounded by the locations (dstX0, dstY 0) and
(dstX1, dstY 1). Pixels have half-integer center coordinates. Only pixels whose
centers lie within the destination rectangle are written by BlitFramebuffer. Linear
filter sampling (see below) may result in pixels outside the source rectangle being
read.

If mask is zero, no buffers are copied. If mask contains any bits other than
COLOR_BUFFER_BIT, DEPTH_BUFFER_BIT, or STENCIL_BUFFER_BIT, then the
error INVALID_VALUE is generated.

When the color buffer is transferred, values are taken from the read buffer of the
read framebuffer and written to each of the draw buffers of the draw framebuffer.

The actual region taken from the read framebuffer is limited to the intersection
of the source buffers being transferred, which may include the color buffer selected
by the read buffer, the depth buffer, and/or the stencil buffer depending on mask.
The actual region written to the draw framebuffer is limited to the intersection of
the destination buffers being written, which may include multiple draw buffers,
the depth buffer, and/or the stencil buffer depending on mask. Whether or not the
source or destination regions are altered due to these limits, the scaling and offset
applied to pixels being transferred is performed as though no such limits were
present.

OpenGL ES 3.0.3 (December 18, 2013)

4.3. READING AND COPYING PIXELS 196

If the source and destination rectangle dimensions do not match, the source im-
age is stretched to fit the destination rectangle. filter must be LINEAR or NEAREST,
and specifies the method of interpolation to be applied if the image is stretched.
LINEAR filtering is allowed only for the color buffer; if mask includes DEPTH_-
BUFFER_BIT or STENCIL_BUFFER_BIT, and filter is not NEAREST, no copy is
performed and an INVALID_OPERATION error is generated. If the source and des-
tination dimensions are identical, no filtering is applied. If either the source or des-
tination rectangle specifies a negative width or height (X1 < X0 or Y 1 < Y 0), the
image is reversed in the corresponding direction. If both the source and destination
rectangles specify a negative width or height for the same direction, no reversal
is performed. If a linear filter is selected and the rules of LINEAR sampling (see
section 3.8.10) would require sampling outside the bounds of a source buffer, it is
as though CLAMP_TO_EDGE texture sampling were being performed. If a linear fil-
ter is selected and sampling would be required outside the bounds of the specified
source region, but within the bounds of a source buffer, the implementation may
choose to clamp while sampling or not.

If the source and destination buffers are identical, an INVALID_OPERATION

error is generated. Different mipmap levels of a texture, different layers of a three-
dimensional texture or two-dimensional array texture, and different faces of a cube
map texture do not constitute identical buffers.

When values are taken from the read buffer, if the value of FRAMEBUFFER_-
ATTACHMENT_COLOR_ENCODING for the framebuffer attachment corresponding to
the read buffer is SRGB (see section 6.1.13), the red, green, and blue components
are converted from the non-linear sRGB color space according to equation 3.24.

When values are written to the draw buffers, blit operations bypass the frag-
ment pipeline. The only fragment operations which affect a blit are the pixel own-
ership test, the scissor test, and sRGB conversion (see section 4.1.8). Color, depth,
and stencil masks (see section 4.2.2) are ignored.

If a buffer is specified in mask and does not exist in both the read and draw
framebuffers, the corresponding bit is silently ignored.

If the color formats of the read and draw buffers do not match, and mask in-
cludes COLOR_BUFFER_BIT, pixel groups are converted to match the destination
format. However, colors are clamped only if all draw color buffers have fixed-
point components. Format conversion is not supported for all data types, and an
INVALID_OPERATION error is generated under any of the following conditions:

• The read buffer contains fixed-point values and any draw buffer does not
contain fixed-point values.

• The read buffer contains unsigned integer values and any draw buffer does
not contain unsigned integer values.

OpenGL ES 3.0.3 (December 18, 2013)

4.4. FRAMEBUFFER OBJECTS 197

• The read buffer contains signed integer values and any draw buffer does not
contain signed integer values.

Calling BlitFramebuffer will result in an INVALID_FRAMEBUFFER_-

OPERATION error if the objects bound to DRAW_FRAMEBUFFER_BINDING and
READ_FRAMEBUFFER_BINDING are not framebuffer complete (section 4.4.4).

Calling BlitFramebuffer will result in an INVALID_OPERATION error if mask
includes DEPTH_BUFFER_BIT or STENCIL_BUFFER_BIT, and the source and
destination depth and stencil buffer formats do not match.

Calling BlitFramebuffer will result in an INVALID_OPERATION error if filter
is LINEAR and read buffer contains integer data.

If the value of SAMPLE_BUFFERS for the read framebuffer is one and the value
of SAMPLE_BUFFERS for the draw framebuffer is zero, the samples corresponding
to each pixel location in the source are converted to a single sample before being
written to the destination. The filter parameter is ignored. If the source formats
are integer types or stencil values, a single sample’s value is selected for each
pixel. If the source formats are floating-point or normalized types, the sample
values for each pixel are resolved in an implementation-dependent manner. If the
source formats are depth values, sample values are resolved in an implementation-
dependent manner where the result will be between the minimum and maximum
depth values in the pixel.

If SAMPLE_BUFFERS for the read framebuffer is one, no copy is performed
and an INVALID_OPERATION error is generated if the formats of the read and
draw framebuffers are not identical or if the source and destination rectangles are
not defined with the same (X0, Y 0) and (X1, Y 1) bounds.

If SAMPLE_BUFFERS for the draw framebuffer is greater than zero, an
INVALID_OPERATION error is generated.

4.3.4 Pixel Draw/Read State

The state required for pixel operations consists of the parameters that are set with
PixelStorei. This state has been summarized in table 3.1. Additional state
includes an integer indicating the current setting of ReadBuffer. State set with
PixelStorei is GL client state.

4.4 Framebuffer Objects

As described in chapter 1 and section 2.1, the GL renders into (and reads values
from) a framebuffer. The GL defines two classes of framebuffers: window system-
provided and application-created.

OpenGL ES 3.0.3 (December 18, 2013)

4.4. FRAMEBUFFER OBJECTS 198

Initially, the GL uses the default framebuffer. The storage, dimensions, allo-
cation, and format of the images attached to this framebuffer are managed entirely
by the window system. Consequently, the state of the default framebuffer, includ-
ing its images, can not be changed by the GL, nor can the default framebuffer be
deleted by the GL.

The routines described in the following sections, however, can be used to cre-
ate, destroy, and modify the state and attachments of framebuffer objects.

Framebuffer objects encapsulate the state of a framebuffer in a similar manner
to the way texture objects encapsulate the state of a texture. In particular, a frame-
buffer object encapsulates state necessary to describe a collection of color, depth,
and stencil logical buffers (other types of buffers are not allowed). For each logical
buffer, a framebuffer-attachable image can be attached to the framebuffer to store
the rendered output for that logical buffer. Examples of framebuffer-attachable im-
ages include texture images and renderbuffer images. Renderbuffers are described
further in section 4.4.2

By allowing the images of a renderbuffer to be attached to a framebuffer, the
GL provides a mechanism to support off-screen rendering. Further, by allowing the
images of a texture to be attached to a framebuffer, the GL provides a mechanism
to support render to texture.

4.4.1 Binding and Managing Framebuffer Objects

The default framebuffer for rendering and readback operations is provided by the
window system. In addition, named framebuffer objects can be created and oper-
ated upon. The name space for framebuffer objects is the unsigned integers, with
zero reserved by the GL for the default framebuffer.

The command

void GenFramebuffers(sizei n, uint *framebuffers);

returns n previously unused framebuffer object names in ids. These names are
marked as used, for the purposes of GenFramebuffers only, but they do not ac-
quire state and type until they are first bound.

A framebuffer object is created by binding an unused name to DRAW_-

FRAMEBUFFER or READ_FRAMEBUFFER. The binding is effected by calling

void BindFramebuffer(enum target, uint framebuffer);

with target set to the desired framebuffer target and framebuffer set to the frame-
buffer object name. The resulting framebuffer object is a new state vector, com-
prising all the state and with the same initial values listed in table 6.13, as well

OpenGL ES 3.0.3 (December 18, 2013)

4.4. FRAMEBUFFER OBJECTS 199

as one set of the state values listed in table 6.14 for each attachment point of the
framebuffer, with the same initial values. There are the values of MAX_COLOR_-
ATTACHMENTS color attachment points, plus one set each for the depth and stencil
attachment points.

BindFramebuffer may also be used to bind an existing framebuffer object
to DRAW_FRAMEBUFFER and/or READ_FRAMEBUFFER. If the bind is successful no
change is made to the state of the bound framebuffer object, and any previous
binding to target is broken.

If a framebuffer object is bound to DRAW_FRAMEBUFFER or READ_-

FRAMEBUFFER, it becomes the target for rendering or readback operations, respec-
tively, until it is deleted or another framebuffer is bound to the corresponding bind
point. Calling BindFramebuffer with target set to FRAMEBUFFER binds frame-
buffer to both the draw and read targets.

While a framebuffer object is bound, GL operations on the target to which it
is bound affect the images attached to the bound framebuffer object, and queries
of the target to which it is bound return state from the bound object. Queries of
the values specified in tables 6.35 and 6.13 are derived from the framebuffer object
bound to DRAW_FRAMEBUFFER, with the exception of those marked as properties
of the read framebuffer, which are derived from the framebuffer object bound to
READ_FRAMEBUFFER.

The initial state of DRAW_FRAMEBUFFER and READ_FRAMEBUFFER refers to
the default framebuffer. In order that access to the default framebuffer is not lost,
it is treated as a framebuffer object with the name of zero. The default framebuffer
is therefore rendered to and read from while zero is bound to the corresponding
targets. On some implementations, the properties of the default framebuffer can
change over time (e.g., in response to window system events such as attaching the
context to a new window system drawable.)

Framebuffer objects (those with a non-zero name) differ from the default
framebuffer in a few important ways. First and foremost, unlike the default frame-
buffer, framebuffer objects have modifiable attachment points for each logical
buffer in the framebuffer. Framebuffer-attachable images can be attached to and de-
tached from these attachment points, which are described further in section 4.4.2.
Also, the size and format of the images attached to framebuffer objects are con-
trolled entirely within the GL interface, and are not affected by window system
events, such as pixel format selection, window resizes, and display mode changes.

Additionally, when rendering to or reading from an application created-
framebuffer object,

• The pixel ownership test always succeeds. In other words, framebuffer ob-
jects own all of their pixels.

OpenGL ES 3.0.3 (December 18, 2013)

4.4. FRAMEBUFFER OBJECTS 200

• There are no visible color buffer bitplanes. This means there is no color
buffer corresponding to the back or front color bitplanes.

• The only color buffer bitplanes are the ones defined by the frame-
buffer attachment points named COLOR_ATTACHMENT0 through COLOR_-

ATTACHMENTn. Each COLOR_ATTACHMENTi adheres to COLOR_-

ATTACHMENTi = COLOR_ATTACHMENT0 + i.

• The only depth buffer bitplanes are the ones defined by the framebuffer at-
tachment point DEPTH_ATTACHMENT.

• The only stencil buffer bitplanes are the ones defined by the framebuffer
attachment point STENCIL_ATTACHMENT.

• If the attachment sizes are not all identical, rendering will be limited to the
largest area that can fit in all of the attachments (an intersection of rectangles
having a lower left of (0, 0) and an upper right of (width, height) for each
attachment).

• If the attachment sizes are not all identical, the values of pixels outside the
common intersection area after rendering are undefined.

Framebuffer objects are deleted by calling

void DeleteFramebuffers(sizei n, const
uint *framebuffers);

framebuffers contains n names of framebuffer objects to be deleted. After a frame-
buffer object is deleted, it has no attachments, and its name is again unused.
If a framebuffer that is currently bound to one or more of the targets DRAW_-

FRAMEBUFFER or READ_FRAMEBUFFER is deleted, it is as though BindFrame-
buffer had been executed with the corresponding target and framebuffer zero. Un-
used names in framebuffers that have been marked as used for the purposes of
GenFramebuffers are marked as unused again. Unused names in framebuffers are
silently ignored, as is the value zero.

The names bound to the draw and read framebuffer bindings can be queried by
calling GetIntegerv with the symbolic constants DRAW_FRAMEBUFFER_BINDING
and READ_FRAMEBUFFER_BINDING, respectively. FRAMEBUFFER_BINDING is
equivalent to DRAW_FRAMEBUFFER_BINDING.

OpenGL ES 3.0.3 (December 18, 2013)

4.4. FRAMEBUFFER OBJECTS 201

4.4.2 Attaching Images to Framebuffer Objects

Framebuffer-attachable images may be attached to, and detached from, framebuffer
objects. In contrast, the image attachments of the default framebuffer may not be
changed by the GL.

A single framebuffer-attachable image may be attached to multiple framebuffer
objects, potentially avoiding some data copies, and possibly decreasing memory
consumption.

For each logical buffer, a framebuffer object stores a set of state which defines
the logical buffer’s attachment point. The attachment point state contains enough
information to identify the single image attached to the attachment point, or to
indicate that no image is attached. The per-logical buffer attachment point state is
listed in table 6.14.

There are several types of framebuffer-attachable images:

• The image of a renderbuffer object, which is always two-dimensional.

• A single level of a two-dimensional texture.

• A single face of a cube map texture level, which is treated as a two-
dimensional image.

• A single layer of a two-dimensional array texture or three-dimensional tex-
ture, which is treated as a two-dimensional image.

Renderbuffer Objects

A renderbuffer is a data storage object containing a single image of a renderable
internal format. The GL provides the methods described below to allocate and
delete renderbuffers and renderbuffer images, and to attach a renderbuffer’s image
to a framebuffer object. The name space for renderbuffer objects is the unsigned
integers, with zero reserved for the GL.

The command

void GenRenderbuffers(sizei n, uint *renderbuffers);

returns n previously unused renderbuffer object names in renderbuffers. These
names are marked as used, for the purposes of GenRenderbuffers only, but they
do not acquire renderbuffer state until they are first bound.

A renderbuffer object is created by binding an unused name to
RENDERBUFFER. The binding is effected by calling

void BindRenderbuffer(enum target, uint renderbuffer);

OpenGL ES 3.0.3 (December 18, 2013)

4.4. FRAMEBUFFER OBJECTS 202

with target set to RENDERBUFFER and renderbuffer set to the renderbuffer object
name. If renderbuffer is not zero, then the resulting renderbuffer object is a new
state vector, initialized with a zero-sized memory buffer, and comprising all the
state and with the same initial values listed in table 6.15. Any previous binding to
target is broken.

BindRenderbuffer may also be used to bind an existing renderbuffer object.
If the bind is successful, no change is made to the state of the newly bound render-
buffer object, and any previous binding to target is broken.

While a renderbuffer object is bound, GL operations on the target to which it
is bound affect the bound renderbuffer object, and queries of the target to which a
renderbuffer object is bound return state from the bound object.

The name zero is reserved. A renderbuffer object cannot be created with the
name zero. If renderbuffer is zero, then any previous binding to target is broken
and the target binding is restored to the initial state.

In the initial state, the reserved name zero is bound to RENDERBUFFER. There is
no renderbuffer object corresponding to the name zero, so client attempts to modify
or query renderbuffer state for the target RENDERBUFFER while zero is bound will
generate GL errors, as described in section 6.1.14.

The current RENDERBUFFER binding can be determined by calling GetInte-
gerv with the symbolic constant RENDERBUFFER_BINDING.

Renderbuffer objects are deleted by calling

void DeleteRenderbuffers(sizei n, const
uint *renderbuffers);

where renderbuffers contains n names of renderbuffer objects to be deleted. After
a renderbuffer object is deleted, it has no contents, and its name is again unused. If
a renderbuffer that is currently bound to RENDERBUFFER is deleted, it is as though
BindRenderbuffer had been executed with the target RENDERBUFFER and name
of zero. Additionally, special care must be taken when deleting a renderbuffer if
the image of the renderbuffer is attached to a framebuffer object (see section 4.4.2).
Unused names in renderbuffers that have been marked as used for the purposes of
GenRenderbuffers are marked as unused again. Unused names in renderbuffers
are silently ignored, as is the value zero.

The command

void RenderbufferStorageMultisample(enum target,
sizei samples, enum internalformat, sizei width,
sizei height);

OpenGL ES 3.0.3 (December 18, 2013)

4.4. FRAMEBUFFER OBJECTS 203

establishes the data storage, format, dimensions, and number of samples of a ren-
derbuffer object’s image. target must be RENDERBUFFER. internalformat must
be a sized internal format that is color-renderable, depth-renderable, or stencil-
renderable (as defined in section 4.4.4). width and height are the dimensions in
pixels of the renderbuffer. If either width or height is greater than the value of
MAX_RENDERBUFFER_SIZE, then the error INVALID_VALUE is generated. If in-
ternalformat is a signed or unsigned integer format and samples is greater than
zero, then the error INVALID_OPERATION is generated. If samples is greater
than the maximum number of samples supported for internalformat, then the error
INVALID_OPERATION is generated (see GetInternalformativ in section 6.1.15).
If the GL is unable to create a data store of the requested size, the error OUT_OF_-
MEMORY is generated.

Upon success, RenderbufferStorageMultisample deletes any existing data
store for the renderbuffer image and the contents of the data store after call-
ing RenderbufferStorageMultisample are undefined. RENDERBUFFER_WIDTH

is set to width, RENDERBUFFER_HEIGHT is set to height, and RENDERBUFFER_-

INTERNAL_FORMAT is set to internalformat.
If samples is zero, then RENDERBUFFER_SAMPLES is set to zero. Otherwise

samples represents a request for a desired minimum number of samples. Since
different implementations may support different sample counts for multisample
rendering, the actual number of samples allocated for the renderbuffer image is
implementation-dependent. However, the resulting value for RENDERBUFFER_-
SAMPLES is guaranteed to be greater than or equal to samples and no more than the
next larger sample count supported by the implementation.

A GL implementation may vary its allocation of internal component resolution
based on any RenderbufferStorageMultisample parameter (except target), but
the allocation and chosen internal format must not be a function of any other state
and cannot be changed once they are established.

The command

void RenderbufferStorage(enum target, enum internalformat,
sizei width, sizei height);

is equivalent to calling RenderbufferStorageMultisample with samples equal to
zero.

Required Renderbuffer Formats

Implementations are required to support the same internal formats for renderbuffers
as the required formats for textures enumerated in section 3.8.3, with the excep-
tion of the color formats labelled “texture-only”. Requesting one of these internal

OpenGL ES 3.0.3 (December 18, 2013)

4.4. FRAMEBUFFER OBJECTS 204

formats for a renderbuffer will allocate at least the internal component sizes and
exactly the component types shown for that format in tables 3.13 - 3.14.

Implementations are also required to support STENCIL_INDEX8. Requesting
this internal format for a renderbuffer will allocate at least 8 stencil bit planes.

Implementations must support creation of renderbuffers in these required for-
mats with up to the value of MAX_SAMPLES multisamples, with the exception of
signed and unsigned integer formats.

Attaching Renderbuffer Images to a Framebuffer

A renderbuffer can be attached as one of the logical buffers of the currently bound
framebuffer object by calling

void FramebufferRenderbuffer(enum target,
enum attachment, enum renderbuffertarget,
uint renderbuffer);

target must be DRAW_FRAMEBUFFER, READ_FRAMEBUFFER, or FRAMEBUFFER.
FRAMEBUFFER is equivalent to DRAW_FRAMEBUFFER. An INVALID_OPERATION

error is generated if the value of the corresponding binding is zero. attachment
should be set to one of the attachment points of the framebuffer listed in table 4.6.

renderbuffertarget must be RENDERBUFFER and renderbuffer should be set to
the name of the renderbuffer object to be attached to the framebuffer. render-
buffer must be either zero or the name of an existing renderbuffer object of type
renderbuffertarget, otherwise an INVALID_OPERATION error is generated. If ren-
derbuffer is zero, then the value of renderbuffertarget is ignored.

If renderbuffer is not zero and if FramebufferRenderbuffer is successful,
then the renderbuffer named renderbuffer will be used as the logical buffer iden-
tified by attachment of the framebuffer currently bound to target. The value of
FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE for the specified attachment point is
set to RENDERBUFFER and the value of FRAMEBUFFER_ATTACHMENT_OBJECT_-
NAME is set to renderbuffer. All other state values of the attachment point specified
by attachment are set to their default values listed in table 6.14. No change is made
to the state of the renderbuffer object and any previous attachment to the attach-
ment logical buffer of the framebuffer object bound to framebuffer target is broken.
If the attachment is not successful, then no change is made to the state of either the
renderbuffer object or the framebuffer object.

Calling FramebufferRenderbuffer with the renderbuffer name zero will de-
tach the image, if any, identified by attachment, in the framebuffer currently bound
to target. All state values of the attachment point specified by attachment in the
object bound to target are set to their default values listed in table 6.14.

OpenGL ES 3.0.3 (December 18, 2013)

4.4. FRAMEBUFFER OBJECTS 205

Setting attachment to the value DEPTH_STENCIL_ATTACHMENT is a special
case causing both the depth and stencil attachments of the framebuffer object to be
set to renderbuffer, which should have base internal format DEPTH_STENCIL.

If a renderbuffer object is deleted while its image is attached to one or more
attachment points in a currently bound framebuffer, then it is as if Framebuffer-
Renderbuffer had been called, with a renderbuffer of 0, for each attachment point
to which this image was attached in that framebuffer. In other words, this ren-
derbuffer image is first detached from all attachment points in a currently bound
framebuffer. Note that the renderbuffer image is specifically not detached from any
non-bound framebuffers. Detaching the image from any non-bound framebuffers
is the responsibility of the application.

Name of attachment
COLOR_ATTACHMENTi (see caption)
DEPTH_ATTACHMENT

STENCIL_ATTACHMENT

DEPTH_STENCIL_ATTACHMENT

Table 4.6: Framebuffer attachment points. i in COLOR_ATTACHMENTi may range
from zero to the value of MAX_COLOR_ATTACHMENTS minus one.

Attaching Texture Images to a Framebuffer

The GL supports copying the rendered contents of the framebuffer into the images
of a texture object through the use of the routines CopyTexImage* and CopyTex-
SubImage*. Additionally, the GL supports rendering directly into the images of a
texture object.

To render directly into a texture image, a specified image from a two-
dimensional or cube map texture can be attached as one of the logical buffers of
the currently bound framebuffer object by calling:

void FramebufferTexture2D(enum target, enum attachment,
enum textarget, uint texture, int level);

target must be DRAW_FRAMEBUFFER, READ_FRAMEBUFFER, or
FRAMEBUFFER. FRAMEBUFFER is equivalent to DRAW_FRAMEBUFFER. An
INVALID_OPERATION error is generated if the value of the corresponding binding
is zero. attachment must be one of the attachment points of the framebuffer listed
in table 4.6.

OpenGL ES 3.0.3 (December 18, 2013)

4.4. FRAMEBUFFER OBJECTS 206

If texture is not zero, then texture must either name an existing two-
dimensional texture object and textarget must be TEXTURE_2D, or texture must
name an existing cube map texture and textarget must be one of TEXTURE_-

CUBE_MAP_POSITIVE_X, TEXTURE_CUBE_MAP_POSITIVE_Y, TEXTURE_-

CUBE_MAP_POSITIVE_Z, TEXTURE_CUBE_MAP_NEGATIVE_X, TEXTURE_-

CUBE_MAP_NEGATIVE_Y, or TEXTURE_CUBE_MAP_NEGATIVE_Z. Otherwise, an
INVALID_OPERATION error is generated.

level specifies the mipmap level of the texture image to be attached to the
framebuffer.

If textarget is one of TEXTURE_CUBE_MAP_POSITIVE_X, TEXTURE_CUBE_-
MAP_POSITIVE_Y, TEXTURE_CUBE_MAP_POSITIVE_Z, TEXTURE_-

CUBE_MAP_NEGATIVE_X, TEXTURE_CUBE_MAP_NEGATIVE_Y, or TEXTURE_-

CUBE_MAP_NEGATIVE_Z, then level must be greater than or equal to zero and
less than or equal to log2 of the value of MAX_CUBE_MAP_TEXTURE_SIZE. If tex-
target is TEXTURE_2D, level must be greater than or equal to zero and no larger
than log2 of the value of MAX_TEXTURE_SIZE. Otherwise, an INVALID_VALUE

error is generated.
The command

void FramebufferTextureLayer(enum target,
enum attachment, uint texture, int level, int layer);

operates similarly to FramebufferTexture2D, except that it attaches a single layer
of a three-dimensional texture or two-dimensional array texture level.

layer specifies the layer of a two-dimensional image within texture. An
INVALID_VALUE error is generated if layer is larger than the value of MAX_-
3D_TEXTURE_SIZE minus one (for three-dimensional textures) or larger than the
value of MAX_ARRAY_TEXTURE_LAYERS minus one (for two-dimensional array
textures). The error INVALID_VALUE is generated if texture is non-zero and layer
is negative.

If texture is a three-dimensional texture, then level must be greater than or equal
to zero and less than or equal to log2 of the value of MAX_3D_TEXTURE_SIZE. If
texture is a two-dimensional array texture, then level must be greater than or equal
to zero and no larger than log2 of the value of MAX_TEXTURE_SIZE. Otherwise,
an INVALID_VALUE error is generated.

The error INVALID_OPERATION is generated if texture is non-zero and is not
the name of a three-dimensional texture or two-dimensional array texture. Unlike
FramebufferTexture2D, no textarget parameter is accepted.

If texture is non-zero and the command does not result in an error, the frame-
buffer attachment state corresponding to attachment is updated as in Framebuffer-

OpenGL ES 3.0.3 (December 18, 2013)

4.4. FRAMEBUFFER OBJECTS 207

Texture2D, except that the value of FRAMEBUFFER_ATTACHMENT_TEXTURE_-
LAYER is set to layer.

Effects of Attaching a Texture Image

The remaining comments in this section apply to all forms of Framebuffer-
Texture*.

If texture is zero, any image or array of images attached to the attachment point
named by attachment is detached. Any additional parameters (level, textarget,
and/or layer) are ignored when texture is zero. All state values of the attachment
point specified by attachment are set to their default values listed in table 6.14.

If texture is not zero, and if FramebufferTexture* is successful, then the spec-
ified texture image will be used as the logical buffer identified by attachment of the
framebuffer currently bound to target. State values of the specified attachment
point are set as follows:

• The value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is set to
TEXTURE.

• The value of FRAMEBUFFER_ATTACHMENT_OBJECT_NAME is set to texture.

• The value of FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL is set to level.

• If FramebufferTexture2D is called and texture is a cube map texture, then
the value of FRAMEBUFFER_ATTACHMENT_TEXTURE_CUBE_MAP_FACE is
set to textarget; otherwise it is set to the default (NONE).

• If FramebufferTextureLayer is called, then the value of FRAMEBUFFER_-
ATTACHMENT_TEXTURE_LAYER is set to layer; otherwise it is set to zero.

All other state values of the attachment point specified by attachment are set
to their default values listed in table 6.14. No change is made to the state of the
texture object, and any previous attachment to the attachment logical buffer of the
framebuffer object bound to framebuffer target is broken. If the attachment is not
successful, then no change is made to the state of either the texture object or the
framebuffer object.

Setting attachment to the value DEPTH_STENCIL_ATTACHMENT is a special
case causing both the depth and stencil attachments of the framebuffer object to
be set to texture. texture must have base internal format DEPTH_STENCIL, or the
depth and stencil framebuffer attachments will be incomplete (see section 4.4.4).

If a texture object is deleted while its image is attached to one or more attach-
ment points in a currently bound framebuffer, then it is as if FramebufferTexture*

OpenGL ES 3.0.3 (December 18, 2013)

4.4. FRAMEBUFFER OBJECTS 208

had been called, with a texture of zero, for each attachment point to which this im-
age was attached in that framebuffer. In other words, this texture image is first
detached from all attachment points in a currently bound framebuffer. Note that
the texture image is specifically not detached from any other framebuffer objects.
Detaching the texture image from any other framebuffer objects is the responsibil-
ity of the application.

4.4.3 Feedback Loops Between Textures and the Framebuffer

A feedback loop may exist when a texture object is used as both the source and
destination of a GL operation. When a feedback loop exists, undefined behavior
results. This section describes rendering feedback loops (see section 3.8.10) and
texture copying feedback loops (see section 3.8.5) in more detail.

Rendering Feedback Loops

The mechanisms for attaching textures to a framebuffer object do not prevent a
two-dimensional texture level, a face of a cube map texture level, or a layer of
a two-dimensional array or three-dimensional texture from being attached to the
draw framebuffer while the same texture is bound to a texture unit. While this
condition holds, texturing operations accessing that image will produce undefined
results, as described at the end of section 3.8.10. Conditions resulting in such
undefined behavior are defined in more detail below. Such undefined texturing
operations are likely to leave the final results of fragment processing operations
undefined, and should be avoided.

Special precautions need to be taken to avoid attaching a texture image to the
currently bound framebuffer while the texture object is currently bound and en-
abled for texturing. Doing so could lead to the creation of a rendering feedback
loop between the writing of pixels by GL rendering operations and the simulta-
neous reading of those same pixels when used as texels in the currently bound
texture. In this scenario, the framebuffer will be considered framebuffer complete
(see section 4.4.4), but the values of fragments rendered while in this state will be
undefined. The values of texture samples may be undefined as well, as described
under “Rendering Feedback Loops” in section 3.8.10

Specifically, the values of rendered fragments are undefined if all of the fol-
lowing conditions are true:

• an image from texture object T is attached to the currently bound draw frame-
buffer at attachment point A

• the texture object T is currently bound to a texture unit U, and

OpenGL ES 3.0.3 (December 18, 2013)

4.4. FRAMEBUFFER OBJECTS 209

• the current programmable vertex and/or fragment processing state makes it
possible (see below) to sample from the texture object T bound to texture
unit U

while either of the following conditions are true:

• the value of TEXTURE_MIN_FILTER for texture object T is NEAREST or
LINEAR, and the value of FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL
for attachment point A is equal to the value of TEXTURE_BASE_LEVEL for
the texture object T

• the value of TEXTURE_MIN_FILTER for texture object T is one
of NEAREST_MIPMAP_NEAREST, NEAREST_MIPMAP_LINEAR, LINEAR_-
MIPMAP_NEAREST, or LINEAR_MIPMAP_LINEAR, and the value of
FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL for attachment point A is
within the range specified by the current values of TEXTURE_BASE_LEVEL
to q, inclusive, for the texture object T. (q is defined in the Mipmapping
discussion of section 3.8.10).

For the purpose of this discussion, it is possible to sample from the texture
object T bound to texture unit U if the active fragment or vertex shader contains
any instructions that might sample from the texture object T bound to U, even if
those instructions might only be executed conditionally.

Note that if TEXTURE_BASE_LEVEL and TEXTURE_MAX_LEVEL exclude any
levels containing image(s) attached to the currently bound framebuffer, then the
above conditions will not be met (i.e., the above rule will not cause the values of
rendered fragments to be undefined.)

Texture Copying Feedback Loops

Similarly to rendering feedback loops, it is possible for a texture image to be
attached to the read framebuffer while the same texture image is the destination
of a CopyTexImage* operation, as described under “Texture Copying Feedback
Loops” in section 3.8.5. While this condition holds, a texture copying feedback
loop between the writing of texels by the copying operation and the reading of
those same texels when used as pixels in the read framebuffer may exist. In this
scenario, the values of texels written by the copying operation will be undefined.

Specifically, the values of copied texels are undefined if all of the following
conditions are true:

• an image from texture object T is attached to the currently bound read frame-
buffer at attachment point A

OpenGL ES 3.0.3 (December 18, 2013)

4.4. FRAMEBUFFER OBJECTS 210

• the selected read buffer (see section 4.3.1) is attachment point A

• T is bound to the texture target of a CopyTexImage* operation

• the level argument of the copying operation selects the same image that is
attached to A

4.4.4 Framebuffer Completeness

A framebuffer must be framebuffer complete to effectively be used as the draw or
read framebuffer of the GL.

The default framebuffer is always complete if it exists; however, if no default
framebuffer exists (no window system-provided drawable is associated with the
GL context), it is deemed to be incomplete.

A framebuffer object is said to be framebuffer complete if all of its attached
images, and all framebuffer parameters required to utilize the framebuffer for ren-
dering and reading, are consistently defined and meet the requirements defined
below. The rules of framebuffer completeness are dependent on the properties of
the attached images, and on certain implementation-dependent restrictions.

The internal formats of the attached images can affect the completeness of
the framebuffer, so it is useful to first define the relationship between the internal
format of an image and the attachment points to which it can be attached.

• An internal format is color-renderable if it is one of the formats from ta-
ble 3.13 noted as color-renderable or if it is unsized format RGBA or RGB. No
other formats, including compressed internal formats, are color-renderable.

• An internal format is depth-renderable if it is one of the formats from ta-
ble 3.14. No other formats are depth-renderable.

• An internal format is stencil-renderable if it is STENCIL_INDEX8 or one of
the formats from table 3.14 whose base internal format is DEPTH_STENCIL.
No other formats are stencil-renderable.

Framebuffer Attachment Completeness

If the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE for the framebuffer
attachment point attachment is not NONE, then it is said that a framebuffer-
attachable image, named image, is attached to the framebuffer at the attachment
point. image is identified by the state in attachment as described in section 4.4.2.

The framebuffer attachment point attachment is said to be framebuffer attach-
ment complete if the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE for

OpenGL ES 3.0.3 (December 18, 2013)

4.4. FRAMEBUFFER OBJECTS 211

attachment is NONE (i.e., no image is attached), or if all of the following conditions
are true:

• image is a component of an existing object with the name specified by
the value of FRAMEBUFFER_ATTACHMENT_OBJECT_NAME, and of the type
specified by the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE.

• The width and height of image are non-zero.

• If the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is TEXTURE

and the value of FRAMEBUFFER_ATTACHMENT_OBJECT_NAME names
a three-dimensional texture, then the value of FRAMEBUFFER_-

ATTACHMENT_TEXTURE_LAYER must be smaller than the depth of the
texture.

• If the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is TEXTURE

and the value of FRAMEBUFFER_ATTACHMENT_OBJECT_NAME names
a two-dimensional array texture, then the value of FRAMEBUFFER_-

ATTACHMENT_TEXTURE_LAYER must be smaller than the number of layers
in the texture.

• If the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is TEXTURE

and the value of FRAMEBUFFER_ATTACHMENT_OBJECT_NAME does not
name an immutable-format texture, then the value of FRAMEBUFFER_-

ATTACHMENT_TEXTURE_LEVEL must be in the range [levelbase, q], where
levelbase is the value of TEXTURE_BASE_LEVEL and q is the effective max-
imum texture level defined in the Mipmapping discussion of section 3.8.10.

• If the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is TEXTURE

and the value of FRAMEBUFFER_ATTACHMENT_OBJECT_NAME does not
name an immutable-format texture and the value of FRAMEBUFFER_-

ATTACHMENT_TEXTURE_LEVEL is not levelbase, then the texture must
be mipmap complete, and if FRAMEBUFFER_ATTACHMENT_OBJECT_NAME
names a cubemap texture, the texture must also be cube complete.

• If attachment is COLOR_ATTACHMENTi, then image must have a color-
renderable internal format.

• If attachment is DEPTH_ATTACHMENT, then image must have a depth-
renderable internal format.

• If attachment is STENCIL_ATTACHMENT, then image must have a stencil-
renderable internal format.

OpenGL ES 3.0.3 (December 18, 2013)

4.4. FRAMEBUFFER OBJECTS 212

Whole Framebuffer Completeness

Each rule below is followed by an error token enclosed in { brackets }. The mean-
ing of these errors is explained below and under “Effects of Framebuffer Complete-
ness on Framebuffer Operations” later in section 4.4.4. Note that the error token
FRAMEBUFFER_INCOMPLETE_DIMENSIONS is included in the API for OpenGL
ES 2.0 compatibility, but cannot be generated by an OpenGL ES 3.0 implementa-
tion.

The framebuffer object target is said to be framebuffer complete if all the fol-
lowing conditions are true:

• if target is the default framebuffer, the default framebuffer exists.

{ FRAMEBUFFER_UNDEFINED }

• All framebuffer attachment points are framebuffer attachment complete.

{ FRAMEBUFFER_INCOMPLETE_ATTACHMENT }

• There is at least one image attached to the framebuffer.

{ FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT }

• Depth and stencil attachments, if present, are the same image.

{ FRAMEBUFFER_UNSUPPORTED }

• The value of RENDERBUFFER_SAMPLES is the same for all attached render-
buffers and, if the attached images are a mix of renderbuffers and textures,
the value of RENDERBUFFER_SAMPLES is zero.

{ FRAMEBUFFER_INCOMPLETE_MULTISAMPLE }

The token in brackets after each clause of the framebuffer completeness rules
specifies the return value of CheckFramebufferStatus (see below) that is gen-
erated when that clause is violated. If more than one clause is violated, it is
implementation-dependent which value will be returned by CheckFramebuffer-
Status.

Performing any of the following actions may change whether the framebuffer
is considered complete or incomplete:

• Binding to a different framebuffer with BindFramebuffer.

OpenGL ES 3.0.3 (December 18, 2013)

4.4. FRAMEBUFFER OBJECTS 213

• Attaching an image to the framebuffer with FramebufferTexture* or
FramebufferRenderbuffer.

• Detaching an image from the framebuffer with FramebufferTexture* or
FramebufferRenderbuffer.

• Changing the internal format of a texture image that is attached to the frame-
buffer by calling TexImage*, TexStorage*, CopyTexImage* or Com-
pressedTexImage*.

• Changing the internal format of a renderbuffer that is attached to the frame-
buffer by calling RenderbufferStorage*.

• Deleting, with DeleteTextures or DeleteRenderbuffers, an object contain-
ing an image that is attached to a currently bound framebuffer object.

• Associating a different window system-provided drawable, or no drawable,
with the default framebuffer using a window system binding API such as
those described in section 1.5.2.

Although the GL defines a wide variety of internal formats for framebuffer-
attachable images, such as texture images and renderbuffer images, some imple-
mentations may not support rendering to particular combinations of internal for-
mats. If the combination of formats of the images attached to a framebuffer object
are not supported by the implementation, then the framebuffer is not complete un-
der the clause labeled FRAMEBUFFER_UNSUPPORTED.

Implementations are required to support certain combinations of framebuffer
internal formats as described under “Required Framebuffer Formats” in sec-
tion 4.4.4.

Because of the implementation-dependent clause of the framebuffer complete-
ness test in particular, and because framebuffer completeness can change when the
set of attached images is modified, it is strongly advised, though not required, that
an application check to see if the framebuffer is complete prior to rendering. The
status of the framebuffer object currently bound to target can be queried by calling

enum CheckFramebufferStatus(enum target);

target must be DRAW_FRAMEBUFFER, READ_FRAMEBUFFER, or
FRAMEBUFFER. FRAMEBUFFER is equivalent to DRAW_FRAMEBUFFER. If
CheckFramebufferStatus generates an error, zero is returned.

Otherwise, a value is returned that identifies whether or not the framebuffer
bound to target is complete, and if not complete the value identifies one of the

OpenGL ES 3.0.3 (December 18, 2013)

4.4. FRAMEBUFFER OBJECTS 214

rules of framebuffer completeness that is violated. If the framebuffer is complete,
then FRAMEBUFFER_COMPLETE is returned.

The values of SAMPLE_BUFFERS and SAMPLES are derived from the at-
tachments of the currently bound framebuffer object. If the current DRAW_-

FRAMEBUFFER_BINDING is not framebuffer complete, then both SAMPLE_-

BUFFERS and SAMPLES are undefined. Otherwise, SAMPLES is equal to the value
of RENDERBUFFER_SAMPLES for the attached images (which all must have the
same value for RENDERBUFFER_SAMPLES). Further, SAMPLE_BUFFERS is one if
SAMPLES is non-zero. Otherwise, SAMPLE_BUFFERS is zero.

Required Framebuffer Formats

Implementations must support framebuffer objects with up to MAX_COLOR_-

ATTACHMENTS color attachments, a depth attachment, and a stencil attachment.
Each color attachment may be in any of the required color formats for textures and
renderbuffers described in sections 3.8.3 and 4.4.2. The depth attachment may be
in any of the required depth or combined depth+stencil formats described in those
sections, and the stencil attachment may be in any of the required stencil or com-
bined depth+stencil formats. However, when both depth and stencil attachments
are present, implementations must not support framebuffer objects where depth
and stencil attachments refer to separate images.

Effects of Framebuffer Completeness on Framebuffer Operations

Attempting to render to or read from a framebuffer which is not framebuffer com-
plete will generate an INVALID_FRAMEBUFFER_OPERATION error. This means
that rendering commands such as DrawArrays or one of the other drawing com-
mands defined in section 2.8.3, as well as commands that read the framebuffer
such as ReadPixels, CopyTexImage, and CopyTexSubImage, will generate the
error INVALID_FRAMEBUFFER_OPERATION if called while the framebuffer is not
framebuffer complete. This error is generated regardless of whether fragments are
actually read from or written to the framebuffer. For example, it will be generated
when a rendering command is called and the framebuffer is incomplete even if
RASTERIZER_DISCARD is enabled.

4.4.5 Effects of Framebuffer State on Framebuffer Dependent Values

The values of the state variables listed in table 6.35 may change when a
change is made to the current framebuffer binding, to the state of the cur-
rently bound framebuffer object, or to an image attached to the currently bound

OpenGL ES 3.0.3 (December 18, 2013)

4.4. FRAMEBUFFER OBJECTS 215

framebuffer object. Most such state is dependent on the draw framebuffer
(DRAW_FRAMEBUFFER_BINDING), but IMPLEMENTATION_COLOR_READ_TYPE

and IMPLEMENTATION_COLOR_READ_FORMAT are dependent on the read frame-
buffer (READ_FRAMEBUFFER_BINDING).

When the relevant framebuffer binding is zero, the values of the state variables
listed in table 6.35 are implementation defined.

When the relevant framebuffer binding is non-zero, if the currently bound
framebuffer object is not framebuffer complete, then the values of the state vari-
ables listed in table 6.35 are undefined.

When the relevant framebuffer binding is non-zero and the currently bound
framebuffer object is framebuffer complete, then the values of the state variables
listed in table 6.35 are completely determined by the relevant framebuffer bind-
ing, the state of the currently bound framebuffer object, and the state of the im-
ages attached to the currently bound framebuffer object. The values of RED_-
BITS, GREEN_BITS, BLUE_BITS, and ALPHA_BITS are defined only if all color
attachments of the draw framebuffer have identical formats, in which case the color
component depths of color attachment zero are returned. The values returned for
DEPTH_BITS and STENCIL_BITS are the depth or stencil component depth of
the corresponding attachment of the draw framebuffer, respectively. The ac-
tual sizes of the color, depth, or stencil bit planes can be obtained by querying
an attachment point using GetFramebufferAttachmentParameteriv, or, if the
value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE at that attachment point is
RENDERBUFFER, by calling GetRenderbufferParameteriv as described in sec-
tion 6.1.14.

4.4.6 Mapping between Pixel and Element in Attached Image

When DRAW_FRAMEBUFFER_BINDING is non-zero, an operation that writes to the
framebuffer modifies the image attached to the selected logical buffer, and an oper-
ation that reads from the framebuffer reads from the image attached to the selected
logical buffer.

If the attached image is a renderbuffer image, then the window coordinates
(xw, yw) corresponds to the value in the renderbuffer image at the same coordi-
nates.

If the attached image is a texture image, then the window coordinates (xw, yw)
correspond to the texel (i, j, k) from figure 3.7 as follows:

i = xw

j = yw

OpenGL ES 3.0.3 (December 18, 2013)

4.5. INVALIDATING FRAMEBUFFER CONTENTS 216

k = layer

where layer is the value of FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER for
the selected logical buffer. For a two-dimensional texture, k and layer are irrele-
vant.

Conversion to Framebuffer-Attachable Image Components

When an enabled color value is written to the framebuffer while the draw frame-
buffer binding is non-zero, for each draw buffer the R, G, B, and A values are
converted to internal components as described in table 3.11, according to the ta-
ble row corresponding to the internal format of the framebuffer-attachable image
attached to the selected logical buffer, and the resulting internal components are
written to the image attached to logical buffer. The masking operations described
in section 4.2.2 are also effective.

Conversion to RGBA Values

When a color value is read while the read framebuffer binding is non-zero, or is
used as the source of blending while the draw framebuffer binding is non-zero,
components of that color taken from the framebuffer-attachable image attached to
the selected logical buffer are first converted to R, G, B, and A values according to
table 3.24 and the internal format of the attached image.

4.5 Invalidating Framebuffer Contents

The GL provides a means for invalidating portions of every pixel or a subregion of
pixels in a particular buffer, effectively leaving its contents undefined. The com-
mand

void InvalidateSubFramebuffer(enum target,
sizei numAttachments, const enum *attachments, int x,
int y, sizei width, sizei height);

effectively signals to the GL that it need not preserve all contents of a bound
framebuffer object. target must be DRAW_FRAMEBUFFER, READ_FRAMEBUFFER,
or FRAMEBUFFER. FRAMEBUFFER is equivalent to DRAW_FRAMEBUFFER. numAt-
tachments indicates how many attachments are supplied in the attachments list. If
an attachment is specified that does not exist in the framebuffer bound to target, it
is ignored. x and y are the origin (with lower left hand corner at (0,0)) and width

OpenGL ES 3.0.3 (December 18, 2013)

4.5. INVALIDATING FRAMEBUFFER CONTENTS 217

and height are the width and height, respectively, of the pixel rectangle to be inval-
idated. Any of these pixels lying outside of the window allocated to the current GL
context, or outside of the image attached to the currently bound framebuffer object,
are ignored.

If a framebuffer object is bound to target, then attachments may contain any
of the attachment points of the framebuffer listed in table 4.6. Including DEPTH_-

STENCIL_ATTACHMENT in the attachments list is a special case causing both the
depth and stencil attachments of the framebuffer object to be invalidated. If the
framebuffer object is not complete, InvalidateSubFramebuffer may be ignored.
If attachments contains COLOR_ATTACHMENTm and m is greater than or equal to
the value of MAX_COLOR_ATTACHMENTS, then the error INVALID_OPERATION re-
sults. Note that if a specified attachment has base internal format DEPTH_STENCIL
but the attachments list does not include DEPTH_STENCIL_ATTACHMENT or both
DEPTH_ATTACHMENT and STENCIL_ATTACHMENT, then only the specified por-
tion of every pixel in the subregion of pixels of the DEPTH_STENCIL buffer may
be invalidated, and the other portion must be preserved.

If the default framebuffer is bound to target, then attachment may contain
COLOR, identifying the color buffer; DEPTH, identifying the depth buffer; and/or
STENCIL, identifying the stencil buffer.

The GL also provides a means for invalidating portions of every pixel in a
particular buffer. The command

void InvalidateFramebuffer(enum target,
sizei numAttachments, const enum *attachments);

is equivalent to calling InvalidateSubFramebuffer with arguments target, numAt-
tachments, and attachments, and also supplying 0 as x and y, and the largest frame-
buffer object’s attachments’ width and height as width and height, respectively.

OpenGL ES 3.0.3 (December 18, 2013)

Chapter 5

Special Functions

This chapter describes additional GL functionality that does not fit easily into any
of the preceding chapters. This functionality consists of flushing, finishing, sync
objects, and fences (all used for synchronization), and hints.

5.1 Flush and Finish

The command

void Flush(void);

indicates that all commands that have previously been sent to the GL must complete
in finite time.

The command

void Finish(void);

forces all previous GL commands to complete. Finish does not return until all
effects from previously issued commands on GL client and server state and the
framebuffer are fully realized.

5.2 Sync Objects and Fences

Sync objects act as a synchronization primitive - a representation of events whose
completion status can be tested or waited upon. Sync objects may be used for syn-
chronization with operations occuring in the GL state machine or in the graphics
pipeline, and for synchronizing between multiple graphics contexts, among other
purposes.

218

5.2. SYNC OBJECTS AND FENCES 219

Sync objects have a status value with two possible states: signaled and
unsignaled. Events are associated with a sync object. When a sync object is cre-
ated, its status is set to unsignaled. When the associated event occurs, the sync
object is signaled (its status is set to signaled). The GL may be asked to wait for a
sync object to become signaled.

Initially, only one specific type of sync object is defined: the fence sync object,
whose associated event is triggered by a fence command placed in the GL com-
mand stream. Fence sync objects are used to wait for partial completion of the GL
command stream, as a more flexible form of Finish.

The command

sync FenceSync(enum condition, bitfield flags);

creates a new fence sync object, inserts a fence command in the GL command
stream and associates it with that sync object, and returns a non-zero name corre-
sponding to the sync object.

When the specified condition of the sync object is satisfied by the fence com-
mand, the sync object is signaled by the GL, causing any ClientWaitSync or Wait-
Sync commands (see below) blocking on sync to unblock. No other state is affected
by FenceSync or by execution of the associated fence command.

condition must be SYNC_GPU_COMMANDS_COMPLETE. This condition is satis-
fied by completion of the fence command corresponding to the sync object and all
preceding commands in the same command stream. The sync object will not be
signaled until all effects from these commands on GL client and server state and the
framebuffer are fully realized. Note that completion of the fence command occurs
once the state of the corresponding sync object has been changed, but commands
waiting on that sync object may not be unblocked until some time after the fence
command completes.

flags must be 01.
Each sync object contains a number of properties which determine the state of

the object and the behavior of any commands associated with it. Each property has
a property name and property value. The initial property values for a sync object
created by FenceSync are shown in table 5.1.

Properties of a sync object may be queried with GetSynciv (see section 6.1.8).
The SYNC_STATUS property will be changed to SIGNALED when condition is sat-
isfied.

If FenceSync fails to create a sync object, zero will be returned and a GL error
will be generated as described. An INVALID_ENUM error is generated if condition

1 flags is a placeholder for anticipated future extensions of fence sync object capabilities.

OpenGL ES 3.0.3 (December 18, 2013)

5.2. SYNC OBJECTS AND FENCES 220

Property Name Property Value
OBJECT_TYPE SYNC_FENCE

SYNC_CONDITION condition
SYNC_STATUS UNSIGNALED

SYNC_FLAGS flags

Table 5.1: Initial properties of a sync object created with FenceSync.

is not SYNC_GPU_COMMANDS_COMPLETE. If flags is not zero, an INVALID_VALUE
error is generated.

A sync object can be deleted by passing its name to the command

void DeleteSync(sync sync);

If the fence command corresponding to the specified sync object has com-
pleted, or if no ClientWaitSync or WaitSync commands are blocking on sync, the
object is deleted immediately. Otherwise, sync is flagged for deletion and will be
deleted when it is no longer associated with any fence command and is no longer
blocking any ClientWaitSync or WaitSync command. In either case, after return-
ing from DeleteSync the sync name is invalid and can no longer be used to refer to
the sync object.

DeleteSync will silently ignore a sync value of zero. An INVALID_VALUE

error is generated if sync is neither zero nor the name of a sync object.

5.2.1 Waiting for Sync Objects

The command

enum ClientWaitSync(sync sync, bitfield flags,
uint64 timeout);

causes the GL to block, and will not return until the sync object sync is signaled,
or until the specified timeout period expires. timeout is in units of nanoseconds.
timeout is adjusted to the closest value allowed by the implementation-dependent
timeout accuracy, which may be substantially longer than one nanosecond, and
may be longer than the requested period.

If sync is signaled at the time ClientWaitSync is called, then ClientWait-
Sync returns immediately. If sync is unsignaled at the time ClientWaitSync is
called, then ClientWaitSync will block and will wait up to timeout nanoseconds

OpenGL ES 3.0.3 (December 18, 2013)

5.2. SYNC OBJECTS AND FENCES 221

for sync to become signaled. flags controls command flushing behavior, and may
be SYNC_FLUSH_COMMANDS_BIT, as discussed in section 5.2.2.

ClientWaitSync returns one of four status values. A return value of
ALREADY_SIGNALED indicates that sync was signaled at the time ClientWait-
Sync was called. ALREADY_SIGNALED will always be returned if sync was sig-
naled, even if the value of timeout is zero. A return value of TIMEOUT_EXPIRED
indicates that the specified timeout period expired before sync was signaled. A re-
turn value of CONDITION_SATISFIED indicates that sync was signaled before the
timeout expired. Finally, if an error occurs, in addition to generating a GL error
as specified below, ClientWaitSync immediately returns WAIT_FAILED without
blocking.

If the value of timeout is zero, then ClientWaitSync does not block, but simply
tests the current state of sync. TIMEOUT_EXPIRED will be returned in this case if
sync is not signaled, even though no actual wait was performed.

If sync is not the name of a sync object, an INVALID_VALUE error is gen-
erated. If flags contains any bits other than SYNC_FLUSH_COMMANDS_BIT, an
INVALID_VALUE error is generated.

The command

void WaitSync(sync sync, bitfield flags,
uint64 timeout);

is similar to ClientWaitSync, but instead of blocking and not returning to the ap-
plication until sync is signaled, WaitSync returns immediately, instead causing the
GL server to block 2 until sync is signaled 3.

sync has the same meaning as for ClientWaitSync.
timeout must currently be the special value TIMEOUT_IGNORED, and is not

used. Instead, WaitSync will always wait no longer than an implementation-
dependent timeout. The duration of this timeout in nanoseconds may be queried
by calling GetInteger64v with the symbolic constant MAX_SERVER_WAIT_-

TIMEOUT. There is currently no way to determine whether WaitSync unblocked
because the timeout expired or because the sync object being waited on was sig-
naled.

flags must be 0.
If an error occurs, WaitSync generates a GL error as specified below, and does

not cause the GL server to block.
2The GL server may choose to wait either in the CPU executing server-side code, or in the GPU

hardware if it supports this operation.
3WaitSync allows applications to continue to queue commands from the client in anticipation of

the sync being signalled, increasing client-server parallelism.

OpenGL ES 3.0.3 (December 18, 2013)

5.2. SYNC OBJECTS AND FENCES 222

If sync is not the name of a sync object, an INVALID_VALUE error is generated.
If timeout is not TIMEOUT_IGNORED or flags is not zero, an INVALID_VALUE error
is generated4.

Multiple Waiters

It is possible for both the GL client to be blocked on a sync object in a ClientWait-
Sync command, the GL server to be blocked as the result of a previous WaitSync
command, and for additional WaitSync commands to be queued in the GL server,
all for a single sync object. When such a sync object is signaled in this situation,
the client will be unblocked, the server will be unblocked, and all such queued
WaitSync commands will continue immediately when they are reached.

See appendix D.2 for more information about blocking on a sync object in
multiple GL contexts.

5.2.2 Signalling

A fence sync object enters the signaled state only once the corresponding fence
command has completed and signaled the sync object.

If the sync object being blocked upon will not be signaled in finite time (for
example, by an associated fence command issued previously, but not yet flushed
to the graphics pipeline), then ClientWaitSync may hang forever. To help prevent
this behavior 5, if the SYNC_FLUSH_COMMANDS_BIT bit is set in flags, and sync
is unsignaled when ClientWaitSync is called, then the equivalent of Flush will be
performed before blocking on sync.

If a sync object is marked for deletion while a client is blocking on that object
in a ClientWaitSync command, or a GL server is blocking on that object as a result
of a prior WaitSync command, deletion is deferred until the sync object is signaled
and all blocked GL clients and servers are unblocked.

Additional constraints on the use of sync objects are discussed in appendix D.
State must be maintained to indicate which sync object names are currently in

use. The state require for each sync object in use is an integer for the specific type,
an integer for the condition, and a bit indicating whether the object is signaled

4 flags and timeout are placeholders for anticipated future extensions of sync object capabilities.
They must have these reserved values in order that existing code calling WaitSync operate properly
in the presence of such extensions.

5The simple flushing behavior defined by SYNC_FLUSH_COMMANDS_BIT will not help
when waiting for a fence command issued in another context’s command stream to complete. Ap-
plications which block on a fence sync object must take additional steps to assure that the context
from which the corresponding fence command was issued has flushed that command to the graphics
pipeline.

OpenGL ES 3.0.3 (December 18, 2013)

5.3. HINTS 223

Target Hint description
GENERATE_MIPMAP_HINT Quality and performance of

automatic mipmap level generation
FRAGMENT_SHADER_DERIVATIVE_HINT Derivative accuracy for fragment

processing built-in functions
dFdx, dFdy and fwidth

Table 5.2: Hint targets and descriptions.

or unsignaled. The initial values of sync object state are defined as specified by
FenceSync.

5.3 Hints

Certain aspects of GL behavior, when there is room for variation, may be controlled
with hints. A hint is specified using

void Hint(enum target, enum hint);

target is a symbolic constant indicating the behavior to be controlled, and hint is a
symbolic constant indicating what type of behavior is desired. The possible targets
are described in table 5.2; for each target, hint must be one of FASTEST, indicating
that the most efficient option should be chosen; NICEST, indicating that the highest
quality option should be chosen; and DONT_CARE, indicating no preference in the
matter.

The interpretation of hints is implementation-dependent. An implementation
may ignore them entirely.

The initial value of all hints is DONT_CARE.

OpenGL ES 3.0.3 (December 18, 2013)

Chapter 6

State and State Requests

The state required to describe the GL machine is enumerated in section 6.2. Most
state is set through the calls described in previous chapters, and can be queried
using the calls described in section 6.1.

6.1 Querying GL State

6.1.1 Simple Queries

Much of the GL state is completely identified by symbolic constants. The values
of these state variables can be obtained using a set of Get commands. There are
four commands for obtaining simple state variables:

void GetBooleanv(enum pname, boolean *data);
void GetIntegerv(enum pname, int *data);
void GetInteger64v(enum pname, int64 *data);
void GetFloatv(enum pname, float *data);

The commands obtain boolean, integer, 64-bit integer, or floating-point state vari-
ables. pname is a symbolic constant indicating the state variable to return. data is
a pointer to a scalar or array of the indicated type in which to place the returned
data.

Indexed simple state variables are queried with the commands

void GetIntegeri v(enum target, uint index, int *data);
void GetInteger64i v(enum target, uint index,

int64 *data);

224

6.1. QUERYING GL STATE 225

target is the name of the indexed state and index is the index of the particular
element being queried. data is a pointer to a scalar or array of the indicated type in
which to place the returned data. An INVALID_VALUE error is generated if index
is outside the valid range for the indexed state target.

Finally,

boolean IsEnabled(enum cap);

can be used to determine if cap is currently enabled (as with Enable) or disabled.

6.1.2 Data Conversions

If a Get command is issued that returns value types different from the type of the
value being obtained, a type conversion is performed. If GetBooleanv is called, a
floating-point or integer value converts to FALSE if and only if it is zero (otherwise
it converts to TRUE). If any of the other simple queries are called, a boolean value
of TRUE or FALSE is interpreted as 1 or 0, respectively. If GetIntegerv or GetInte-
ger64v are called, a floating-point value is rounded to the nearest integer, unless
the value is an RGBA color component, a DepthRangef value, or a depth buffer
clear value. In these cases, the Get command converts the floating-point value to
an integer according to the INT entry of table 4.5; a value not in [−1, 1] converts
to an undefined value. If GetFloatv is called, a boolean value of TRUE or FALSE
is interpreted as 1.0 or 0.0, respectively, and an integer is coerced to floating-point.
If a value is so large in magnitude that it cannot be represented with the requested
type, then the nearest value representable using the requested type is returned.

Unless otherwise indicated, multi-valued state variables return their multiple
values in the same order as they are given as arguments to the commands that set
them. For instance, the two DepthRangef parameters are returned in the order n
followed by f.

Most texture state variables are qualified by the value of ACTIVE_TEXTURE to
determine which server texture state vector is queried. Table 6.8 indicates those
state variables which are qualified by ACTIVE_TEXTURE during state queries.

Vertex array state variables are qualified by the value of VERTEX_ARRAY_-
BINDING to determine which vertex array object is queried. Table 6.2 defines the
set of state stored in a vertex array object.

6.1.3 Enumerated Queries

Other commands exist to obtain state variables that are identified by a category as
well as a symbolic constant.

The commands

OpenGL ES 3.0.3 (December 18, 2013)

6.1. QUERYING GL STATE 226

void GetTexParameter{if}v(enum target, enum value,
T data);

place information about texture parameter value for the specified target into data.
value must be TEXTURE_IMMUTABLE_FORMAT, TEXTURE_IMMUTABLE_LEVELS,
or one of the symbolic values in table 3.20.

target may be one of TEXTURE_2D, TEXTURE_3D, TEXTURE_2D_ARRAY,
or TEXTURE_CUBE_MAP, indicating the currently bound two-dimensional, three-
dimensional, two-dimensional array, or cube map texture object.

6.1.4 Texture Queries

The command

boolean IsTexture(uint texture);

returns TRUE if texture is the name of a texture object. If texture is zero, or is a non-
zero value that is not the name of a texture object, or if an error condition occurs,
IsTexture returns FALSE.

6.1.5 Sampler Queries

The command

boolean IsSampler(uint sampler);

may be called to determine whether sampler is the name of a sampler object. Is-
Sampler will return TRUE if sampler is the name of a sampler object previously
returned from a call to GenSamplers and FALSE otherwise. Zero is not the name
of a sampler object.

The current values of the parameters of a sampler object may be queried by
calling

void GetSamplerParameter{if}v(uint sampler,
enum pname, T *params);

sampler is the name of the sampler object from which to retrieve parameters.
pname is the name of the parameter to be queried. params is the address of an
array into which the current value of the parameter will be placed. GetSampler-
Parameter* accepts the same values for pname as SamplerParameter* (see sec-
tion 3.8.2). An INVALID_OPERATION error is generated if sampler is not the
name of a sampler object previously returned from a call to GenSamplers. An
INVALID_ENUM error is generated if pname is not the name of a parameter ac-
cepted by GetSamplerParameter*.

OpenGL ES 3.0.3 (December 18, 2013)

6.1. QUERYING GL STATE 227

6.1.6 String Queries

String queries return pointers to UTF-8 encoded, null-terminated static strings
describing properties of the current GL context1. The command

ubyte *GetString(enum name);

accepts name values of RENDERER, VENDOR, EXTENSIONS, VERSION, and
SHADING_LANGUAGE_VERSION. The format of the RENDERER and VENDOR

strings is implementation-dependent. The EXTENSIONS string contains a space
separated list of extension names (the extension names themselves do not contain
any spaces). The VERSION string is laid out as follows:

"OpenGL ES N.M vendor-specific information"

The SHADING_LANGUAGE_VERSION string is laid out as follows:

"OpenGL ES GLSL ES N.M vendor-specific
information"

The version number is either of the form major number.minor number or major -
number.minor number.release number, where the numbers all have one or more
digits. The minor number for SHADING_LANGUAGE_VERSION is always two dig-
its, matching the OpenGL ES Shading Language Specification release number.
For example, this query might return the string"3.00" while the corresponding
VERSION query returns "3.0". The release number and vendor specific infor-
mation are optional. However, if present, then they pertain to the server and their
format and contents are implementation-dependent.

GetString returns the version number (in the VERSION string) and the exten-
sion names (in the EXTENSIONS string) that can be supported by the current GL
context. Thus, if the client and server support different versions and/or extensions,
a compatible version and list of extensions is returned.

The version of the context may also be queried by calling GetIntegerv with
values MAJOR_VERSION and MINOR_VERSION, which respectively return the
same values as major number and minor number in the VERSION string.

Indexed strings are queried with the command

ubyte *GetStringi(enum name, uint index);
1Applications making copies of these static strings should never use a fixed-length buffer, because

the strings may grow unpredictably between releases, resulting in buffer overflow when copying.
This is particularly true of the EXTENSIONS string, which has become extremely long in some
GL implementations.

OpenGL ES 3.0.3 (December 18, 2013)

6.1. QUERYING GL STATE 228

name is the name of the indexed state and index is the index of the particular ele-
ment being queried. name may only be EXTENSIONS, indicating that the extension
name corresponding to the indexth supported extension should be returned. index
may range from zero to the value of NUM_EXTENSIONS minus one. All extension
names, and only the extension names returned in GetString(EXTENSIONS) will
be returned as individual names, but there is no defined relationship between the
order in which names appear in the non-indexed string and the order in which the
appear in the indexed query. There is no defined relationship between any partic-
ular extension name and the index values; an extension name may correspond to a
different index in different GL contexts and/or implementations.

An INVALID_VALUE error is generated if index is outside the valid range for
the indexed state name.

6.1.7 Asynchronous Queries

The command

boolean IsQuery(uint id);

returns TRUE if id is the name of a query object. If id is zero, or if id is a non-zero
value that is not the name of a query object, IsQuery returns FALSE.

Information about a query target can be queried with the command

void GetQueryiv(enum target, enum pname, int *params);

target identifies the query target, and must be one of ANY_SAMPLES_-

PASSED or ANY_SAMPLES_PASSED_CONSERVATIVE for occlusion queries, or
TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN for primitive queries.

pname must be CURRENT_QUERY. The name of the currently active query for
target, or zero if no query is active, will be placed in params.

The state of a query object can be queried with the command

void GetQueryObjectuiv(uint id, enum pname,
uint *params);

If id is not the name of a query object, or if the query object named by id is currently
active, then an INVALID_OPERATION error is generated. pname must be QUERY_-
RESULT or QUERY_RESULT_AVAILABLE.

There may be an indeterminate delay before a query object’s result value is
available. If pname is QUERY_RESULT_AVAILABLE, FALSE is returned if such a
delay would be required; otherwise TRUE is returned. It must always be true that

OpenGL ES 3.0.3 (December 18, 2013)

6.1. QUERYING GL STATE 229

if any query object returns a result available of TRUE, all queries of the same type
issued prior to that query must also return TRUE.

If pname is QUERY_RESULT, then the query object’s result value is returned as
a single integer in params. If the value is so large in magnitude that it cannot be
represented with the requested type, then the nearest value representable using the
requested type is returned. Querying QUERY_RESULT for any given query object
forces that query to complete within a finite amount of time.

Repeatedly querying the QUERY_RESULT_AVAILABLE state for any given
query object is guaranteed to return true eventually. Note that multiple queries
to the same occlusion object may result in a significant performance loss. For bet-
ter performance it is recommended to wait N frames before querying this state. N
is implementation-dependent but is generally between one and three.

If multiple queries are issued using the same object name prior to calling Get-
QueryObjectuiv, the result and availability information returned will always be
from the last query issued. The results from any queries before the last one will be
lost if they are not retrieved before starting a new query on the same target and id.

6.1.8 Sync Object Queries

Properties of sync objects may be queried using the command

void GetSynciv(sync sync, enum pname, sizei bufSize,
sizei *length, int *values);

The value or values being queried are returned in the parameters length and
values.

On success, GetSynciv replaces up to bufSize integers in values with the cor-
responding property values of the object being queried. The actual number of
integers replaced is returned in *length. If length is NULL, no length is returned.

If pname is OBJECT_TYPE, a single value representing the specific type of the
sync object is placed in values. The only type supported is SYNC_FENCE.

If pname is SYNC_STATUS, a single value representing the status of the sync
object (SIGNALED or UNSIGNALED) is placed in values.

If pname is SYNC_CONDITION, a single value representing the condition of
the sync object is placed in values. The only condition supported is SYNC_GPU_-
COMMANDS_COMPLETE.

If pname is SYNC_FLAGS, a single value representing the flags with which the
sync object was created is placed in values. No flags are currently supported.

If sync is not the name of a sync object, an INVALID_VALUE error is generated.
If pname is not one of the values described above, an INVALID_ENUM error is
generated. If an error occurs, nothing will be written to values or length.

OpenGL ES 3.0.3 (December 18, 2013)

6.1. QUERYING GL STATE 230

The command

boolean IsSync(sync sync);

returns TRUE if sync is the name of a sync object. If sync is not the name of a sync
object, or if an error condition occurs, IsSync returns FALSE (note that zero is not
the name of a sync object).

Sync object names immediately become invalid after calling DeleteSync, as
discussed in sections 5.2 and D.2, but the underlying sync object will not be deleted
until it is no longer associated with any fence command and no longer blocking any
*WaitSync command.

6.1.9 Buffer Object Queries

The command

boolean IsBuffer(uint buffer);

returns TRUE if buffer is the name of a buffer object. If buffer is zero, or if buffer is
a non-zero value that is not the name of an buffer object, IsBuffer returns FALSE.

The commands

void GetBufferParameteriv(enum target, enum pname,
int *data);

void GetBufferParameteri64v(enum target, enum pname,
int64 *data);

return information about a bound buffer object. target must be one of the targets
listed in table 2.6, and pname must be one of the buffer object parameters in ta-
ble 2.7, other than BUFFER_MAP_POINTER. The value of the specified parameter
of the buffer object bound to target is returned in data.

While the data store of a buffer object is mapped, the pointer to the data store
can be queried by calling

void GetBufferPointerv(enum target, enum pname,
void **params);

with target set to one of the targets listed in table 2.6 and pname set to BUFFER_-

MAP_POINTER. The single buffer map pointer is returned in params. GetBuffer-
Pointerv returns the NULL pointer value if the buffer’s data store is not currently
mapped, or if the requesting client did not map the buffer object’s data store, and
the implementation is unable to support mappings on multiple clients.

OpenGL ES 3.0.3 (December 18, 2013)

6.1. QUERYING GL STATE 231

To query which buffer objects are bound to the array of uniform buffer binding
points and will be used as the storage for active uniform blocks, call GetIntegeri v
with param set to UNIFORM_BUFFER_BINDING. index must be in the range zero
to the value of MAX_UNIFORM_BUFFER_BINDINGS minus one. The name of the
buffer object bound to index is returned in values. If no buffer object is bound for
index, zero is returned in values.

To query the starting offset or size of the range of each buffer object bind-
ing used for uniform buffers, call GetInteger64i v with param set to UNIFORM_-

BUFFER_START or UNIFORM_BUFFER_SIZE respectively. index must be in the
range zero to the value of MAX_UNIFORM_BUFFER_BINDINGS minus one. If the
parameter (starting offset or size) was not specified when the buffer object was
bound (e.g. if bound with BindBufferBase), or if no buffer object is bound to
index, zero is returned2.

To query which buffer objects are bound to the array of transform feedback
binding points and will be used when transform feedback is active, call GetInte-
geri v with param set to TRANSFORM_FEEDBACK_BUFFER_BINDING. index must
be in the range zero to the value of MAX_TRANSFORM_FEEDBACK_SEPARATE_-
ATTRIBS minus one. The name of the buffer object bound to index is returned in
values. If no buffer object is bound for index, zero is returned in values.

To query the starting offset or size of the range of each buffer ob-
ject binding used for transform feedback, call GetInteger64i v with param
set to TRANSFORM_FEEDBACK_BUFFER_START or TRANSFORM_FEEDBACK_-

BUFFER_SIZE respectively. index must be in the range 0 to the value of MAX_-
TRANSFORM_FEEDBACK_SEPARATE_ATTRIBSminus one. If the parameter (start-
ing offset or size) was not specified when the buffer object was bound (e.g. if bound
with BindBufferBase), or if no buffer object is bound to index, zero is returned2.

6.1.10 Vertex Array Object Queries

The command

boolean IsVertexArray(uint array);

returns TRUE if array is the name of a vertex array object. If array is zero, or a
non-zero value that is not the name of a vertex array object, IsVertexArray returns
FALSE. No error is generated if array is not a valid vertex array object name.

2A zero size is a sentinel value indicating that the actual binding range size is determined by the
size of the bound buffer at the time the binding is used.

OpenGL ES 3.0.3 (December 18, 2013)

6.1. QUERYING GL STATE 232

6.1.11 Transform Feedback Queries

The command

boolean IsTransformFeedback(uint id);

returns TRUE if id is the name of a transform feedback object. If id is zero, or
a non-zero value that is not the name of a transform feedback object, IsTrans-
formFeedback returns FALSE. No error is generated if id is not a valid transform
feedback object name.

6.1.12 Shader and Program Queries

State stored in shader or program objects can be queried by commands that ac-
cept shader or program object names. These commands will generate the error
INVALID_VALUE if the provided name is not the name of either a shader or pro-
gram object, and INVALID_OPERATION if the provided name identifies an object
of the other type. If an error is generated, variables used to hold return values are
not modified.

The command

boolean IsShader(uint shader);

returns TRUE if shader is the name of a shader object. If shader is zero, or a non-
zero value that is not the name of a shader object, IsShader returns FALSE. No
error is generated if shader is not a valid shader object name.

The command

void GetShaderiv(uint shader, enum pname, int *params);

returns properties of the shader object named shader in params. The parameter
value to return is specified by pname.

If pname is SHADER_TYPE, VERTEX_SHADER or FRAGMENT_SHADER is re-
turned if shader is a vertex or fragment shader object respectively. If pname is
DELETE_STATUS, TRUE is returned if the shader has been flagged for deletion and
FALSE is returned otherwise. If pname is COMPILE_STATUS, TRUE is returned
if the shader was last compiled successfully, and FALSE is returned otherwise. If
pname is INFO_LOG_LENGTH, the length of the info log, including a null termi-
nator, is returned. If there is no info log, zero is returned. If pname is SHADER_-
SOURCE_LENGTH, the length of the concatenation of the source strings making up
the shader source, including a null terminator, is returned. If no source has been
defined, zero is returned.

The command

OpenGL ES 3.0.3 (December 18, 2013)

6.1. QUERYING GL STATE 233

boolean IsProgram(uint program);

returns TRUE if program is the name of a program object. If program is zero, or a
non-zero value that is not the name of a program object, IsProgram returns FALSE.
No error is generated if program is not a valid program object name.

The command

void GetProgramiv(uint program, enum pname,
int *params);

returns properties of the program object named program in params. The parameter
value to return is specified by pname.

Most properties set within program objects are specified not to take effect until
the next call to LinkProgram or ProgramBinary. Some properties further require
a successful call to either of these commands before taking effect. GetProgramiv
returns the properties currently in effect for program, which may differ from the
properties set within program since the most recent call to LinkProgram or Pro-
gramBinary, which have not yet taken effect. If there has been no such call putting
changes to pname into effect, initial values are returned.

If pname is DELETE_STATUS, TRUE is returned if the program has been flagged
for deletion, and FALSE is returned otherwise. If pname is LINK_STATUS, TRUE
is returned if the program was last linked successfully, and FALSE is returned
otherwise. If pname is VALIDATE_STATUS, TRUE is returned if the last call to
ValidateProgram with program was successful, and FALSE is returned other-
wise. If pname is INFO_LOG_LENGTH, the length of the info log, including a
null terminator, is returned. If there is no info log, zero is returned. If pname
is ATTACHED_SHADERS, the number of objects attached is returned. If pname is
ACTIVE_ATTRIBUTES, the number of active attributes in program is returned. If
no active attributes exist, zero is returned. If pname is ACTIVE_ATTRIBUTE_-
MAX_LENGTH, the length of the longest active attribute name, including a null
terminator, is returned. If no active attributes exist, zero is returned. If pname
is ACTIVE_UNIFORMS, the number of active uniforms is returned. If no active
uniforms exist, zero is returned. If pname is ACTIVE_UNIFORM_MAX_LENGTH,
the length of the longest active uniform name, including a null terminator, is re-
turned. If no active uniforms exist, zero is returned. If pname is TRANSFORM_-
FEEDBACK_BUFFER_MODE, the buffer mode used when transform feedback is
active is returned. It can be one of SEPARATE_ATTRIBS or INTERLEAVED_-
ATTRIBS. If pname is TRANSFORM_FEEDBACK_VARYINGS, the number of out-
put variables to capture in transform feedback mode for the program is returned.
If pname is TRANSFORM_FEEDBACK_VARYING_MAX_LENGTH, the length of the

OpenGL ES 3.0.3 (December 18, 2013)

6.1. QUERYING GL STATE 234

longest output variable name specified to be used for transform feedback, includ-
ing a null terminator, is returned. If no outputs are used for transform feedback,
zero is returned. If pname is ACTIVE_UNIFORM_BLOCKS, the number of uniform
blocks for program containing active uniforms is returned. If pname is ACTIVE_-
UNIFORM_BLOCK_MAX_NAME_LENGTH, the length of the longest active uniform
block name, including the null terminator, is returned. If pname is PROGRAM_-
BINARY_RETRIEVABLE_HINT, the value of whether the binary retrieval hint is
enabled for program is returned.

The command

void GetAttachedShaders(uint program, sizei maxCount,
sizei *count, uint *shaders);

returns the names of shader objects attached to program in shaders. The actual
number of shader names written into shaders is returned in count. If no shaders are
attached, count is set to zero. If count is NULL then it is ignored. The maximum
number of shader names that may be written into shaders is specified by maxCount.
The number of objects attached to program is given by can be queried by calling
GetProgramiv with ATTACHED_SHADERS.

A string that contains information about the last compilation attempt on a
shader object or last link or validation attempt on a program object, called the
info log, can be obtained with the commands

void GetShaderInfoLog(uint shader, sizei bufSize,
sizei *length, char *infoLog);

void GetProgramInfoLog(uint program, sizei bufSize,
sizei *length, char *infoLog);

These commands return the info log string in infoLog. This string will be null-
terminated. The actual number of characters written into infoLog, excluding the
null terminator, is returned in length. If length is NULL, then no length is returned.
The maximum number of characters that may be written into infoLog, including
the null terminator, is specified by bufSize. The number of characters in the info
log can be queried with GetShaderiv or GetProgramiv with INFO_LOG_LENGTH.
If shader is a shader object, the returned info log will either be an empty string or
it will contain information about the last compilation attempt for that object. If
program is a program object, the returned info log will either be an empty string or
it will contain information about the last link attempt or last validation attempt for
that object.

OpenGL ES 3.0.3 (December 18, 2013)

6.1. QUERYING GL STATE 235

The info log is typically only useful during application development and an
application should not expect different GL implementations to produce identical
info logs.

The command

void GetShaderSource(uint shader, sizei bufSize,
sizei *length, char *source);

returns in source the string making up the source code for the shader object shader.
The string source will be null-terminated. The actual number of characters written
into source, excluding the null terminator, is returned in length. If length is NULL,
no length is returned. The maximum number of characters that may be written into
source, including the null terminator, is specified by bufSize. The string source is
a concatenation of the strings passed to the GL using ShaderSource. The length
of this concatenation is given by SHADER_SOURCE_LENGTH, which can be queried
with GetShaderiv.

The command

void GetShaderPrecisionFormat(enum shadertype,
enum precisiontype, int *range, int *precision);

returns the range and precision for different numeric formats supported by the
shader compiler. shadertype must be VERTEX_SHADER or FRAGMENT_SHADER.
precisiontype must be one of LOW_FLOAT, MEDIUM_FLOAT, HIGH_FLOAT, LOW_-
INT, MEDIUM_INT or HIGH_INT. range points to an array of two integers in which
encodings of the format’s numeric range are returned. If min and max are the
smallest and largest values representable in the format, then the values returned are
defined to be

range[0] = blog2(|min|)c

range[1] = blog2(|max|)c

precision points to an integer in which the log2 value of the number of bits of
precision of the format is returned. If the smallest representable value greater than
1 is 1 + ε, then *precision will contain b−log2(ε)c, and every value in the range

[−2range[0], 2range[1]]

can be represented to at least one part in 2∗precision. For example, an IEEE single-
precision floating-point format would return range[0] = 127, range[1] = 127,

OpenGL ES 3.0.3 (December 18, 2013)

6.1. QUERYING GL STATE 236

and ∗precision = 23, while a 32-bit two’s-complement integer format would re-
turn range[0] = 31, range[1] = 30, and ∗precision = 0.

The minimum required precision and range for formats corresponding to the
different values of precisiontype are described in section 4.5 of the OpenGL ES
Shading Language specification.

The commands

void GetVertexAttribfv(uint index, enum pname,
float *params);

void GetVertexAttribiv(uint index, enum pname,
int *params);

void GetVertexAttribIiv(uint index, enum pname,
int *params);

void GetVertexAttribIuiv(uint index, enum pname,
uint *params);

obtain the vertex attribute state named by pname for the generic vertex attribute
numbered index and places the information in the array params. pname must
be one of VERTEX_ATTRIB_ARRAY_BUFFER_BINDING, VERTEX_ATTRIB_-

ARRAY_ENABLED, VERTEX_ATTRIB_ARRAY_SIZE, VERTEX_-

ATTRIB_ARRAY_STRIDE, VERTEX_ATTRIB_ARRAY_TYPE, VERTEX_ATTRIB_-
ARRAY_NORMALIZED, VERTEX_ATTRIB_ARRAY_INTEGER, VERTEX_ATTRIB_-
ARRAY_DIVISOR, or CURRENT_VERTEX_ATTRIB. Note that all the queries except
CURRENT_VERTEX_ATTRIB return values stored in the currently bound vertex ar-
ray object (the value of VERTEX_ARRAY_BINDING). If the zero object is bound,
these values are client state. The error INVALID_VALUE is generated if index is
greater than or equal to MAX_VERTEX_ATTRIBS.

All but CURRENT_VERTEX_ATTRIB return information about generic vertex
attribute arrays. The enable state of a generic vertex attribute array is set by the
command EnableVertexAttribArray and cleared by DisableVertexAttribArray.
The size, stride, type, normalized flag, and unconverted integer flag are set by the
commands VertexAttribPointer and VertexAttribIPointer. The normalized flag
is always set to FALSE by VertexAttribIPointer. The unconverted integer flag is
always set to FALSE by VertexAttribPointer and TRUE by VertexAttribIPointer.

The query CURRENT_VERTEX_ATTRIB returns the current value for the
generic attribute index. GetVertexAttribfv reads and returns the current attribute
values as floating-point values; GetVertexAttribiv reads them as floating-point
values and converts them to integer values; GetVertexAttribIiv reads and returns
them as integers; GetVertexAttribIuiv reads and returns them as unsigned inte-
gers. The results of the query are undefined if the current attribute values are read
using one data type but were specified using a different one.

OpenGL ES 3.0.3 (December 18, 2013)

6.1. QUERYING GL STATE 237

The command

void GetVertexAttribPointerv(uint index, enum pname,
void **pointer);

obtains the pointer named pname for the vertex attribute numbered index and places
the information in the array pointer. pname must be VERTEX_ATTRIB_ARRAY_-
POINTER. The value returned is queried from the currently bound vertex array
object. If the zero object is bound, the value is queried from client state. An
INVALID_VALUE error is generated if index is greater than or equal to the value of
MAX_VERTEX_ATTRIBS.

The commands

void GetUniformfv(uint program, int location,
float *params);

void GetUniformiv(uint program, int location,
int *params);

void GetUniformuiv(uint program, int location,
uint *params);

return the value or values of the uniform at location location of the default uni-
form block for program object program in the array params. The type of the uni-
form at location determines the number of values returned. The error INVALID_-
OPERATION is generated if program has not been linked successfully, or if location
is not a valid location for program. In order to query the values of an array of uni-
forms, a GetUniform* command needs to be issued for each array element. If the
uniform queried is a matrix, the values of the matrix are returned in column major
order. If an error occurred, params will not be modified.

6.1.13 Framebuffer Object Queries

The command

boolean IsFramebuffer(uint framebuffer);

returns TRUE if framebuffer is the name of a framebuffer object. If framebuffer is
zero, or if framebuffer is a non-zero value that is not the name of an framebuffer
object, IsFramebuffer returns FALSE.

The command

void GetFramebufferAttachmentParameteriv(enum target,
enum attachment, enum pname, int *params);

OpenGL ES 3.0.3 (December 18, 2013)

6.1. QUERYING GL STATE 238

returns information about attachments of a bound framebuffer object. tar-
get must be DRAW_FRAMEBUFFER, READ_FRAMEBUFFER, or FRAMEBUFFER.
FRAMEBUFFER is equivalent to DRAW_FRAMEBUFFER.

If the default framebuffer is bound to target, then attachment must be BACK,
identifying the color buffer; DEPTH, identifying the depth buffer; or STENCIL,
identifying the stencil buffer.

If a framebuffer object is bound to target, then attachment must be one of the
attachment points of the framebuffer listed in table 4.6.

If attachment is DEPTH_STENCIL_ATTACHMENT, and different objects are
bound to the depth and stencil attachment points of target, the query will fail and
generate an INVALID_OPERATION error. If the same object is bound to both at-
tachment points, information about that object will be returned.

Upon successful return from GetFramebufferAttachmentParameteriv, if
pname is FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE, then params will contain
one of NONE, FRAMEBUFFER_DEFAULT, TEXTURE, or RENDERBUFFER, identify-
ing the type of object which contains the attached image. Other values accepted
for pname depend on the type of object, as described below.

If the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is NONE, no
framebuffer is bound to target. In this case querying pname FRAMEBUFFER_-

ATTACHMENT_OBJECT_NAME will return zero, and all other queries will generate
an INVALID_OPERATION error.

If the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is not NONE,
these queries apply to all other framebuffer types:

• If pname is FRAMEBUFFER_ATTACHMENT_RED_SIZE, FRAMEBUFFER_-

ATTACHMENT_GREEN_SIZE, FRAMEBUFFER_ATTACHMENT_BLUE_-

SIZE, FRAMEBUFFER_ATTACHMENT_ALPHA_SIZE, FRAMEBUFFER_-

ATTACHMENT_DEPTH_SIZE, or FRAMEBUFFER_ATTACHMENT_-

STENCIL_SIZE, then params will contain the number of bits in the
corresponding red, green, blue, alpha, depth, or stencil component of the
specified attachment. Zero is returned if the requested component is not
present in attachment.

• If pname is FRAMEBUFFER_ATTACHMENT_COMPONENT_TYPE, params will
contain the format of components of the specified attachment, one of FLOAT,
INT, UNSIGNED_INT, SIGNED_NORMALIZED, or UNSIGNED_NORMALIZED
for floating-point, signed integer, unsigned integer, signed normalized fixed-
point, or unsigned normalized fixed-point components respectively. If no
data storage or texture image has been specified for the attachment, params
will contain NONE. If attachment is DEPTH_STENCIL_ATTACHMENT the
query will fail and generate an INVALID_OPERATION error.

OpenGL ES 3.0.3 (December 18, 2013)

6.1. QUERYING GL STATE 239

• If pname is FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING, params will
contain the encoding of components of the specified attachment, one of
LINEAR or SRGB for linear or sRGB-encoded components, respectively.
Only color buffer components may be sRGB-encoded; such components
are treated as described in sections 4.1.7 and 4.1.8. For the default frame-
buffer, color encoding is determined by the implementation. For framebuffer
objects, components are sRGB-encoded if the internal format of a color
attachment is one of the color-renderable sRGB formats described in sec-
tion 3.8.16. If the specified attachment is not a color attachment, or no data
storage or texture image has been specified for the attachment, params will
contain the value LINEAR.

If the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is
RENDERBUFFER, then

• If pname is FRAMEBUFFER_ATTACHMENT_OBJECT_NAME, params will con-
tain the name of the renderbuffer object which contains the attached image.

If the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is TEXTURE, then

• If pname is FRAMEBUFFER_ATTACHMENT_OBJECT_NAME, then params will
contain the name of the texture object which contains the attached image.

• If pname is FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL, then params
will contain the mipmap level of the texture object which contains the at-
tached image.

• If pname is FRAMEBUFFER_ATTACHMENT_TEXTURE_CUBE_MAP_FACE and
the texture object named FRAMEBUFFER_ATTACHMENT_OBJECT_NAME is a
cube map texture, then params will contain the cube map face of the cube-
map texture object which contains the attached image. Otherwise params
will contain the value zero.

• If pname is FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER and the value
of FRAMEBUFFER_ATTACHMENT_OBJECT_NAME is the name of a three-
dimensional texture or a two-dimensional array texture, then params will
contain the texture layer which contains the attached image. Otherwise
params will contain the value zero.

Any combinations of framebuffer type and pname not described above will
generate an INVALID_ENUM error.

OpenGL ES 3.0.3 (December 18, 2013)

6.1. QUERYING GL STATE 240

6.1.14 Renderbuffer Object Queries

The command

boolean IsRenderbuffer(uint renderbuffer);

returns TRUE if renderbuffer is the name of a renderbuffer object. If renderbuffer
is zero, or if renderbuffer is a non-zero value that is not the name of a renderbuffer
object, IsRenderbuffer returns FALSE.

The command

void GetRenderbufferParameteriv(enum target, enum pname,
int* params);

returns information about a bound renderbuffer object. target must be
RENDERBUFFER and pname must be one of the symbolic values in table 6.15. If
the renderbuffer currently bound to target is zero, then an INVALID_OPERATION

error is generated.
Upon successful return from GetRenderbufferParameteriv, if pname

is RENDERBUFFER_WIDTH, RENDERBUFFER_HEIGHT, RENDERBUFFER_-

INTERNAL_FORMAT, or RENDERBUFFER_SAMPLES, then params will contain
the width in pixels, height in pixels, internal format, or number of samples,
respectively, of the image of the renderbuffer currently bound to target.

If pname is RENDERBUFFER_RED_SIZE, RENDERBUFFER_GREEN_-

SIZE, RENDERBUFFER_BLUE_SIZE, RENDERBUFFER_ALPHA_SIZE,
RENDERBUFFER_DEPTH_SIZE, or RENDERBUFFER_STENCIL_SIZE, then
params will contain the actual resolutions (not the resolutions specified when
the image array was defined) for the red, green, blue, alpha depth, or stencil
components, respectively, of the image of the renderbuffer currently bound to
target.

Otherwise, an INVALID_ENUM error is generated.

6.1.15 Internal Format Queries

Information about implementation-dependent support for internal formats can be
queried with the command

void GetInternalformativ(enum target, enum internalformat,
enum pname, sizei bufSize, int *params);

OpenGL ES 3.0.3 (December 18, 2013)

6.2. STATE TABLES 241

internalformat must be color-renderable, depth-renderable or stencil-
renderable (as defined in section 4.4.4).

target indicates the usage of the internalformat, and must be RENDERBUFFER.
No more than bufSize integers will be written into params. If more data are

available, they will be ignored and no error will be generated.
pname indicates the information to query, and is one of the following:
If pname is NUM_SAMPLE_COUNTS, the number of sample counts that would

be returned by querying SAMPLES is returned in params.
If pname is SAMPLES, the sample counts supported for internalformat and tar-

get are written into params, in descending numeric order. Only positive values are
returned.

Querying SAMPLES with a bufSize of one will return just the maximum sup-
ported number of samples for this format.

Since multisampling is not supported for signed and unsigned integer internal
formats, the value of NUM_SAMPLE_COUNTS will be zero for such formats.

For every other accepted internalformat, the value of NUM_SAMPLE_COUNTS
is guaranteed to be at least one, and the maximum value in SAMPLES is guaranteed
to be at least the value of MAX_SAMPLES.

An INVALID_ENUM error is generated if internalformat is not color-, depth- or
stencil-renderable; if target is not RENDERBUFFER; or if pname is not SAMPLES or
NUM_SAMPLE_COUNTS.

An INVALID_VALUE error is generated if bufSize is negative.

6.2 State Tables

The tables on the following pages indicate which state variables are obtained with
what commands. State variables that can be obtained using any of GetBooleanv,
GetIntegerv, GetInteger64v, or GetFloatv are listed with just one of these com-
mands – the one that is most appropriate given the type of the data to be returned.
These state variables cannot be obtained using IsEnabled. However, state vari-
ables for which IsEnabled is listed as the query command can also be obtained
using GetBooleanv, GetIntegerv, GetInteger64v, and GetFloatv. State variables
for which any other command is listed as the query command can be obtained by
using that command or any of its typed variants, although information may be lost
when not using the listed command. Unless otherwise specified, when floating-
point state is returned as integer values or integer state is returned as floating-point
values it is converted in the fashion described in section 6.1.2.

State table entries indicate a type is indicated for each variable. Table 6.1
explains these types. The type actually identifies all state associated with the indi-

OpenGL ES 3.0.3 (December 18, 2013)

6.2. STATE TABLES 242

Type code Explanation
B Boolean
C Color (floating-point R, G, B, and A values)
Z Integer
Z+ Non-negative integer or enumerated token value

Zk, Zk∗ k-valued integer (k∗ indicates k is minimum)
R Floating-point number
R+ Non-negative floating-point number
Rk k-tuple of floating-point numbers
S null-terminated string
I Image
Y Pointer (data type unspecified)

n× type n copies of type type (n∗ indicates n is minimum)

Table 6.1: State Variable Types

cated description; in certain cases only a portion of this state is returned. This is the
case with textures, where only the selected texture or texture parameter is returned.

OpenGL ES 3.0.3 (December 18, 2013)

6.2. STATE TABLES 243

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

V
E
R
T
E
X
_
A
T
T
R
I
B
_
A
R
R
A
Y
_
E
N
A
B
L
E
D

16
∗
×
B

G
et

Ve
rt

ex
A

tt
ri

bi
v

F
A
L
S
E

V
er

te
x

at
tr

ib
ar

ra
y

en
ab

le
2.

8

V
E
R
T
E
X
_
A
T
T
R
I
B
_
A
R
R
A
Y
_
S
I
Z
E

16
∗
×
Z
5

G
et

Ve
rt

ex
A

tt
ri

bi
v

4
V

er
te

x
at

tr
ib

ar
ra

y
si

ze
2.

8

V
E
R
T
E
X
_
A
T
T
R
I
B
_
A
R
R
A
Y
_
S
T
R
I
D
E

16
∗
×
Z

+
G

et
Ve

rt
ex

A
tt

ri
bi

v
0

V
er

te
x

at
tr

ib
ar

ra
y

st
ri

de
2.

8

V
E
R
T
E
X
_
A
T
T
R
I
B
_
A
R
R
A
Y
_
T
Y
P
E

16
∗
×
Z
9

G
et

Ve
rt

ex
A

tt
ri

bi
v

F
L
O
A
T

V
er

te
x

at
tr

ib
ar

ra
y

ty
pe

2.
8

V
E
R
T
E
X
_
A
T
T
R
I
B
_
A
R
R
A
Y
_
N
O
R
M
A
L
I
Z
E
D

16
∗
×
B

G
et

Ve
rt

ex
A

tt
ri

bi
v

F
A
L
S
E

V
er

te
x

at
tr

ib
ar

ra
y

no
r-

m
al

iz
ed

2.
8

V
E
R
T
E
X
_
A
T
T
R
I
B
_
A
R
R
A
Y
_
I
N
T
E
G
E
R

16
∗
×
B

G
et

Ve
rt

ex
A

tt
ri

bi
v

F
A
L
S
E

V
er

te
x

at
tr

ib
ar

ra
y

ha
s

un
co

nv
er

te
d

in
te

ge
rs

2.
8

V
E
R
T
E
X
_
A
T
T
R
I
B
_
A
R
R
A
Y
_
D
I
V
I
S
O
R

16
∗
×
Z

+
G

et
Ve

rt
ex

A
tt

ri
bi

v
0

V
er

te
x

at
tr

ib
ar

ra
y

in
-

st
an

ce
di

vi
so

r
2.

8.
3

V
E
R
T
E
X
_
A
T
T
R
I
B
_
A
R
R
A
Y
_
P
O
I
N
T
E
R

16
∗
×
Y

G
et

Ve
rt

ex
-

A
tt

ri
bP

oi
nt

er
v

N
U
L
L

V
er

te
x

at
tr

ib
ar

ra
y

po
in

te
r

2.
8

E
L
E
M
E
N
T
_
A
R
R
A
Y
_
B
U
F
F
E
R
_
B
I
N
D
I
N
G

Z
+

G
et

In
te

ge
rv

0
E

le
m

en
t

ar
ra

y
bu

ff
er

bi
nd

in
g

2.
9.

7

V
E
R
T
E
X
_
A
T
T
R
I
B
_
A
R
R
A
Y
_
B
U
F
F
E
R
_
B
I
N
D
I
N
G

16
∗
×
Z

+
G

et
Ve

rt
ex

A
tt

ri
bi

v
0

A
ttr

ib
ut

e
ar

ra
y

bu
ff

er
bi

nd
in

g
2.

9

Table 6.2: Vertex Array Object State

OpenGL ES 3.0.3 (December 18, 2013)

6.2. STATE TABLES 244

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
R
R
A
Y
_
B
U
F
F
E
R
_
B
I
N
D
I
N
G

Z
+

G
et

In
te

ge
rv

0
C

ur
re

nt
bu

ff
er

bi
nd

in
g

2.
9

V
E
R
T
E
X
_
A
R
R
A
Y
_
B
I
N
D
I
N
G

Z
+

G
et

In
te

ge
rv

0
C

ur
re

nt
ve

rt
ex

ar
ra

y
ob

-
je

ct
bi

nd
in

g
2.

10

P
R
I
M
I
T
I
V
E
_
R
E
S
T
A
R
T
_
F
I
X
E
D
_
I
N
D
E
X

B
Is

E
na

bl
ed

F
A
L
S
E

Pr
im

iti
ve

re
st

ar
t

w
ith

fix
ed

in
de

x
en

ab
le

2.
8

Table 6.3: Vertex Array Data (not in vertex array objects)

OpenGL ES 3.0.3 (December 18, 2013)

6.2. STATE TABLES 245

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

B
U
F
F
E
R
_
S
I
Z
E
†

n
×
Z

+
G

et
B

uf
fe

rP
ar

am
et

er
i6

4v
0

B
uf

fe
rd

at
a

si
ze

2.
9

B
U
F
F
E
R
_
U
S
A
G
E

n
×
Z
9

G
et

B
uf

fe
rP

ar
am

et
er

iv
S
T
A
T
I
C
_
D
R
A
W

B
uf

fe
ru

sa
ge

pa
tte

rn
2.

9
B
U
F
F
E
R
_
A
C
C
E
S
S
_
F
L
A
G
S

n
×
Z

+
G

et
B

uf
fe

rP
ar

am
et

er
iv

0
E

xt
en

de
d

bu
ff

er
ac

ce
ss

fla
g

2.
9

B
U
F
F
E
R
_
M
A
P
P
E
D

n
×
B

G
et

B
uf

fe
rP

ar
am

et
er

iv
F
A
L
S
E

B
uf

fe
rm

ap
fla

g
2.

9
B
U
F
F
E
R
_
M
A
P
_
P
O
I
N
T
E
R

n
×
Y

G
et

B
uf

fe
rP

oi
nt

er
v

N
U
L
L

M
ap

pe
d

bu
ff

er
po

in
te

r
2.

9
B
U
F
F
E
R
_
M
A
P
_
O
F
F
S
E
T

n
×
Z

+
G

et
B

uf
fe

rP
ar

am
et

er
i6

4v
0

St
ar

to
fm

ap
pe

d
bu

ff
er

ra
ng

e
2.

9
B
U
F
F
E
R
_
M
A
P
_
L
E
N
G
T
H

n
×
Z

+
G

et
B

uf
fe

rP
ar

am
et

er
i6

4v
0

Si
ze

of
m

ap
pe

d
bu

ff
er

ra
ng

e
2.

9

Table 6.4: Buffer Object State
† This state may be queried with GetBufferParameteriv, in which case values greater

than or equal to 231 will be clamped to 231 − 1.

OpenGL ES 3.0.3 (December 18, 2013)

6.2. STATE TABLES 246

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

V
I
E
W
P
O
R
T

4
×
Z

G
et

In
te

ge
rv

se
e

2.
12

.1
V

ie
w

po
rt

or
ig

in
&

ex
te

nt
2.

12
.1

D
E
P
T
H
_
R
A
N
G
E

2
×
R

+
G

et
Fl

oa
tv

0,
1

D
ep

th
ra

ng
e

ne
ar

&
fa

r
2.

12
.1

T
R
A
N
S
F
O
R
M
_
F
E
E
D
B
A
C
K
_
-

B
I
N
D
I
N
G

Z
+

G
et

In
te

ge
rv

0
O

bj
ec

t
bo

un
d

fo
r

tr
an

s-
fo

rm
fe

ed
ba

ck
op

er
at

io
ns

2.
14

Table 6.5: Transformation State

OpenGL ES 3.0.3 (December 18, 2013)

6.2. STATE TABLES 247

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

R
A
S
T
E
R
I
Z
E
R
_
D
I
S
C
A
R
D

B
Is

E
na

bl
ed

F
A
L
S
E

D
is

ca
rd

pr
im

iti
ve

s
be

fo
re

ra
st

er
iz

a-
tio

n
3.

1

L
I
N
E
_
W
I
D
T
H

R
+

G
et

Fl
oa

tv
1.

0
L

in
e

w
id

th
3.

5
C
U
L
L
_
F
A
C
E

B
Is

E
na

bl
ed

F
A
L
S
E

Po
ly

go
n

cu
lli

ng
en

ab
le

d
3.

6.
1

C
U
L
L
_
F
A
C
E
_
M
O
D
E

Z
3

G
et

In
te

ge
rv

B
A
C
K

C
ul

lf
ro

nt
-/

ba
ck

-f
ac

in
g

po
ly

go
ns

3.
6.

1

F
R
O
N
T
_
F
A
C
E

Z
2

G
et

In
te

ge
rv

C
C
W

Po
ly

go
n

fr
on

tfa
ce

C
W

/C
C

W
in

di
ca

-
to

r
3.

6.
1

P
O
L
Y
G
O
N
_
O
F
F
S
E
T
_
F
A
C
T
O
R

R
G

et
Fl

oa
tv

0
Po

ly
go

n
of

fs
et

fa
ct

or
3.

6.
2

P
O
L
Y
G
O
N
_
O
F
F
S
E
T
_
U
N
I
T
S

R
G

et
Fl

oa
tv

0
Po

ly
go

n
of

fs
et

un
its

3.
6.

2
P
O
L
Y
G
O
N
_
O
F
F
S
E
T
_
F
I
L
L

B
Is

E
na

bl
ed

F
A
L
S
E

Po
ly

go
n

of
fs

et
en

ab
le

3.
6.

2

Table 6.6: Rasterization

OpenGL ES 3.0.3 (December 18, 2013)

6.2. STATE TABLES 248

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

S
A
M
P
L
E
_
A
L
P
H
A
_
T
O
_
C
O
V
E
R
A
G
E

B
Is

E
na

bl
ed

F
A
L
S
E

M
od

if
y

co
ve

ra
ge

fr
om

al
ph

a
4.

1.
3

S
A
M
P
L
E
_
C
O
V
E
R
A
G
E

B
Is

E
na

bl
ed

F
A
L
S
E

M
as

k
to

m
od

if
y

co
ve

ra
ge

4.
1.

3
S
A
M
P
L
E
_
C
O
V
E
R
A
G
E
_
V
A
L
U
E

R
+

G
et

Fl
oa

tv
1

C
ov

er
ag

e
m

as
k

va
lu

e
4.

1.
3

S
A
M
P
L
E
_
C
O
V
E
R
A
G
E
_
I
N
V
E
R
T

B
G

et
B

oo
le

an
v

F
A
L
S
E

In
ve

rt
co

ve
ra

ge
m

as
k

va
lu

e
4.

1.
3

Table 6.7: Multisampling

OpenGL ES 3.0.3 (December 18, 2013)

6.2. STATE TABLES 249

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
C
T
I
V
E
_
T
E
X
T
U
R
E

Z
3
2
∗

G
et

In
te

ge
rv

T
E
X
T
U
R
E
0

A
ct

iv
e

te
xt

ur
e

un
it

se
le

c-
to

r
2.

7

T
E
X
T
U
R
E
_
B
I
N
D
I
N
G
_
x
D

32
∗
×

2
×
Z

+
G

et
In

te
ge

rv
0

Te
xt

ur
e

ob
je

ct
bo

un
d

to
T
E
X
T
U
R
E
_
x
D

3.
8.

1

T
E
X
T
U
R
E
_
B
I
N
D
I
N
G
_
2
D
_
A
R
R
A
Y

32
∗
×
Z

+
G

et
In

te
ge

rv
0

Te
xt

ur
e

ob
je

ct
bo

un
d

to
T
E
X
T
U
R
E
_
2
D
_
A
R
R
A
Y

3.
8.

1

T
E
X
T
U
R
E
_
B
I
N
D
I
N
G
_
C
U
B
E
_
M
A
P

32
∗
×
Z

+
G

et
In

te
ge

rv
0

Te
xt

ur
e

ob
je

ct
bo

un
d

to
T
E
X
T
U
R
E
_
C
U
B
E
_
M
A
P

3.
8.

1

S
A
M
P
L
E
R
_
B
I
N
D
I
N
G

32
∗
×
Z

+
G

et
In

te
ge

rv
0

Sa
m

pl
er

ob
je

ct
bo

un
d

to
ac

tiv
e

te
xt

ur
e

un
it

3.
8.

2

Table 6.8: Textures (selector, state per texture unit)

OpenGL ES 3.0.3 (December 18, 2013)

6.2. STATE TABLES 250

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

T
E
X
T
U
R
E
_
S
W
I
Z
Z
L
E
_
R

Z
6

G
et

Te
xP

ar
am

et
er

R
E
D

R
ed

co
m

po
ne

nt
sw

iz
zl

e
3.

8.
7

T
E
X
T
U
R
E
_
S
W
I
Z
Z
L
E
_
G

Z
6

G
et

Te
xP

ar
am

et
er

G
R
E
E
N

G
re

en
co

m
po

ne
nt

sw
iz

-
zl

e
3.

8.
7

T
E
X
T
U
R
E
_
S
W
I
Z
Z
L
E
_
B

Z
6

G
et

Te
xP

ar
am

et
er

B
L
U
E

B
lu

e
co

m
po

ne
nt

sw
iz

zl
e

3.
8.

7

T
E
X
T
U
R
E
_
S
W
I
Z
Z
L
E
_
A

Z
6

G
et

Te
xP

ar
am

et
er

A
L
P
H
A

A
lp

ha
co

m
po

ne
nt

sw
iz

-
zl

e
3.

8.
7

T
E
X
T
U
R
E
_
M
I
N
_
F
I
L
T
E
R

Z
6

G
et

Te
xP

ar
am

et
er

se
e

se
c.

3.
8.

14
M

in
ifi

ca
tio

n
fu

nc
tio

n
3.

8.
10

T
E
X
T
U
R
E
_
M
A
G
_
F
I
L
T
E
R

Z
2

G
et

Te
xP

ar
am

et
er

L
I
N
E
A
R

M
ag

ni
fic

at
io

n
fu

nc
tio

n
3.

8.
11

T
E
X
T
U
R
E
_
W
R
A
P
_
S

Z
4

G
et

Te
xP

ar
am

et
er

se
e

se
c.

3.
8.

14
Te

xc
oo

rd
s

w
ra

p
m

od
e

3.
8.

10

T
E
X
T
U
R
E
_
W
R
A
P
_
T

Z
4

G
et

Te
xP

ar
am

et
er

se
e

se
c.

3.
8.

14
Te

xc
oo

rd
t

w
ra

p
m

od
e

(2
D

,
3D

,
cu

be
m

ap
te

x-
tu

re
s

on
ly

)
3.

8.
10

T
E
X
T
U
R
E
_
W
R
A
P
_
R

Z
4

G
et

Te
xP

ar
am

et
er

se
e

se
c.

3.
8.

14
Te

xc
oo

rd
r

w
ra

p
m

od
e

(3
D

te
xt

ur
es

on
ly

)
3.

8.
10

T
E
X
T
U
R
E
_
M
I
N
_
L
O
D

R
G

et
Te

xP
ar

am
et

er
fv

-1
00

0
M

in
im

um
le

ve
lo

fd
et

ai
l

3.
8

T
E
X
T
U
R
E
_
M
A
X
_
L
O
D

R
G

et
Te

xP
ar

am
et

er
fv

10
00

M
ax

im
um

le
ve

lo
fd

et
ai

l
3.

8
T
E
X
T
U
R
E
_
B
A
S
E
_
L
E
V
E
L

Z
+

G
et

Te
xP

ar
am

et
er

fv
0

B
as

e
te

xt
ur

e
ar

ra
y

3.
8

T
E
X
T
U
R
E
_
M
A
X
_
L
E
V
E
L

Z
+

G
et

Te
xP

ar
am

et
er

fv
10

00
M

ax
.t

ex
tu

re
ar

ra
y

le
ve

l
3.

8
T
E
X
T
U
R
E
_
C
O
M
P
A
R
E
_
M
O
D
E

Z
2

G
et

Te
xP

ar
am

et
er

iv
N
O
N
E

C
om

pa
ri

so
n

m
od

e
3.

8.
15

T
E
X
T
U
R
E
_
C
O
M
P
A
R
E
_
F
U
N
C

Z
8

G
et

Te
xP

ar
am

et
er

iv
L
E
Q
U
A
L

C
om

pa
ri

so
n

fu
nc

tio
n

3.
8.

15

T
E
X
T
U
R
E
_
I
M
M
U
T
A
B
L
E
_
F
O
R
M
A
T

B
G

et
Te

xP
ar

am
et

er
F
A
L
S
E

Si
ze

an
d

fo
rm

at
im

-
m

ut
ab

le
3.

8.
4

T
E
X
T
U
R
E
_
I
M
M
U
T
A
B
L
E
_
L
E
V
E
L
S

Z
+

G
et

Te
xP

ar
am

et
er

0
N

um
be

r
of

le
ve

ls
in

im
-

m
ut

ab
le

te
xt

ur
es

3.
8.

4

Table 6.9: Textures (state per texture object)

OpenGL ES 3.0.3 (December 18, 2013)

6.2. STATE TABLES 251

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

T
E
X
T
U
R
E
_
M
I
N
_
F
I
L
T
E
R

Z
6

G
et

Sa
m

pl
er

Pa
ra

m
et

er
se

e
se

c.
3.

8.
14

M
in

ifi
ca

tio
n

fu
nc

tio
n

3.
8.

10
T
E
X
T
U
R
E
_
M
A
G
_
F
I
L
T
E
R

Z
2

G
et

Sa
m

pl
er

Pa
ra

m
et

er
L
I
N
E
A
R

M
ag

ni
fic

at
io

n
fu

nc
tio

n
3.

8.
11

T
E
X
T
U
R
E
_
W
R
A
P
_
S

Z
4

G
et

Sa
m

pl
er

Pa
ra

m
et

er
se

e
se

c.
3.

8.
14

Te
xc

oo
rd
s

w
ra

p
m

od
e

3.
8.

10

T
E
X
T
U
R
E
_
W
R
A
P
_
T

Z
4

G
et

Sa
m

pl
er

Pa
ra

m
et

er
se

e
se

c.
3.

8.
14

Te
xc

oo
rd

t
w

ra
p

m
od

e
(2

D
,

3D
,

cu
be

m
ap

te
x-

tu
re

s
on

ly
)

3.
8.

10

T
E
X
T
U
R
E
_
W
R
A
P
_
R

Z
4

G
et

Sa
m

pl
er

Pa
ra

m
et

er
se

e
se

c.
3.

8.
14

Te
xc

oo
rd

r
w

ra
p

m
od

e
(3

D
te

xt
ur

es
on

ly
)

3.
8.

10

T
E
X
T
U
R
E
_
M
I
N
_
L
O
D

R
G

et
Sa

m
pl

er
Pa

ra
m

et
er

fv
-1

00
0

M
in

im
um

le
ve

lo
fd

et
ai

l
3.

8
T
E
X
T
U
R
E
_
M
A
X
_
L
O
D

R
G

et
Sa

m
pl

er
Pa

ra
m

et
er

fv
10

00
M

ax
im

um
le

ve
lo

fd
et

ai
l

3.
8

T
E
X
T
U
R
E
_
C
O
M
P
A
R
E
_
M
O
D
E

Z
2

G
et

Sa
m

pl
er

Pa
ra

m
et

er
iv

N
O
N
E

C
om

pa
ri

so
n

m
od

e
3.

8.
15

T
E
X
T
U
R
E
_
C
O
M
P
A
R
E
_
F
U
N
C

Z
8

G
et

Sa
m

pl
er

Pa
ra

m
et

er
iv

L
E
Q
U
A
L

C
om

pa
ri

so
n

fu
nc

tio
n

3.
8.

15

Table 6.10: Textures (state per sampler object)

OpenGL ES 3.0.3 (December 18, 2013)

6.2. STATE TABLES 252

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

S
C
I
S
S
O
R
_
T
E
S
T

B
Is

E
na

bl
ed

F
A
L
S
E

Sc
is

so
ri

ng
en

ab
le

d
4.

1.
2

S
C
I
S
S
O
R
_
B
O
X

4
×
Z

G
et

In
te

ge
rv

se
e

4.
1.

2
Sc

is
so

rb
ox

4.
1.

2
S
T
E
N
C
I
L
_
T
E
S
T

B
Is

E
na

bl
ed

F
A
L
S
E

St
en

ci
lin

g
en

ab
le

d
4.

1.
4

S
T
E
N
C
I
L
_
F
U
N
C

Z
8

G
et

In
te

ge
rv

A
L
W
A
Y
S

Fr
on

ts
te

nc
il

fu
nc

tio
n

4.
1.

4
S
T
E
N
C
I
L
_
V
A
L
U
E
_
M
A
S
K

Z
+

G
et

In
te

ge
rv

se
e

4.
1.

4
Fr

on
ts

te
nc

il
m

as
k

4.
1.

4
S
T
E
N
C
I
L
_
R
E
F

Z
+

G
et

In
te

ge
rv

0
Fr

on
ts

te
nc

il
re

fe
re

nc
e

va
lu

e
4.

1.
4

S
T
E
N
C
I
L
_
F
A
I
L

Z
8

G
et

In
te

ge
rv

K
E
E
P

Fr
on

ts
te

nc
il

fa
il

ac
tio

n
4.

1.
4

S
T
E
N
C
I
L
_
P
A
S
S
_
D
E
P
T
H
_
F
A
I
L

Z
8

G
et

In
te

ge
rv

K
E
E
P

Fr
on

ts
te

nc
il

de
pt

h
bu

ff
er

fa
il

ac
tio

n
4.

1.
4

S
T
E
N
C
I
L
_
P
A
S
S
_
D
E
P
T
H
_
P
A
S
S

Z
8

G
et

In
te

ge
rv

K
E
E
P

Fr
on

t
st

en
ci

l
de

pt
h

bu
ff

er
pa

ss
ac

-
tio

n
4.

1.
4

S
T
E
N
C
I
L
_
B
A
C
K
_
F
U
N
C

Z
8

G
et

In
te

ge
rv

A
L
W
A
Y
S

B
ac

k
st

en
ci

lf
un

ct
io

n
4.

1.
4

S
T
E
N
C
I
L
_
B
A
C
K
_
V
A
L
U
E
_
M
A
S
K

Z
+

G
et

In
te

ge
rv

se
e

4.
1.

4
B

ac
k

st
en

ci
lm

as
k

4.
1.

4
S
T
E
N
C
I
L
_
B
A
C
K
_
R
E
F

Z
+

G
et

In
te

ge
rv

0
B

ac
k

st
en

ci
lr

ef
er

en
ce

va
lu

e
4.

1.
4

S
T
E
N
C
I
L
_
B
A
C
K
_
F
A
I
L

Z
8

G
et

In
te

ge
rv

K
E
E
P

B
ac

k
st

en
ci

lf
ai

la
ct

io
n

4.
1.

4
S
T
E
N
C
I
L
_
B
A
C
K
_
P
A
S
S
_
D
E
P
T
H
_
F
A
I
L

Z
8

G
et

In
te

ge
rv

K
E
E
P

B
ac

k
st

en
ci

ld
ep

th
bu

ff
er

fa
il

ac
tio

n
4.

1.
4

S
T
E
N
C
I
L
_
B
A
C
K
_
P
A
S
S
_
D
E
P
T
H
_
P
A
S
S

Z
8

G
et

In
te

ge
rv

K
E
E
P

B
ac

k
st

en
ci

ld
ep

th
bu

ff
er

pa
ss

ac
tio

n
4.

1.
4

D
E
P
T
H
_
T
E
S
T

B
Is

E
na

bl
ed

F
A
L
S
E

D
ep

th
te

st
en

ab
le

d
4.

1.
5

D
E
P
T
H
_
F
U
N
C

Z
8

G
et

In
te

ge
rv

L
E
S
S

D
ep

th
te

st
fu

nc
tio

n
4.

1.
5

B
L
E
N
D

B
Is

E
na

bl
ed

F
A
L
S
E

B
le

nd
in

g
en

ab
le

d
4.

1.
7

B
L
E
N
D
_
S
R
C
_
R
G
B

Z
1
9

G
et

In
te

ge
rv

O
N
E

B
le

nd
in

g
so

ur
ce

R
G

B
fu

nc
tio

n
4.

1.
7

B
L
E
N
D
_
S
R
C
_
A
L
P
H
A

Z
1
9

G
et

In
te

ge
rv

O
N
E

B
le

nd
in

g
so

ur
ce

A
fu

nc
tio

n
4.

1.
7

B
L
E
N
D
_
D
S
T
_
R
G
B

Z
1
9

G
et

In
te

ge
rv

Z
E
R
O

B
le

nd
in

g
de

st
.R

G
B

fu
nc

tio
n

4.
1.

7
B
L
E
N
D
_
D
S
T
_
A
L
P
H
A

Z
1
9

G
et

In
te

ge
rv

Z
E
R
O

B
le

nd
in

g
de

st
.A

fu
nc

tio
n

4.
1.

7
B
L
E
N
D
_
E
Q
U
A
T
I
O
N
_
R
G
B

Z
5

G
et

In
te

ge
rv

F
U
N
C
_
A
D
D

R
G

B
bl

en
di

ng
eq

ua
tio

n
4.

1.
7

B
L
E
N
D
_
E
Q
U
A
T
I
O
N
_
A
L
P
H
A

Z
5

G
et

In
te

ge
rv

F
U
N
C
_
A
D
D

A
lp

ha
bl

en
di

ng
eq

ua
tio

n
4.

1.
7

B
L
E
N
D
_
C
O
L
O
R

C
G

et
Fl

oa
tv

0.
0,

0.
0,

0.
0,

0.
0

C
on

st
an

tb
le

nd
co

lo
r

4.
1.

7
D
I
T
H
E
R

B
Is

E
na

bl
ed

T
R
U
E

D
ith

er
in

g
en

ab
le

d
4.

1.
9

Table 6.11: Pixel Operations

OpenGL ES 3.0.3 (December 18, 2013)

6.2. STATE TABLES 253

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

C
O
L
O
R
_
W
R
I
T
E
M
A
S
K

4
×
B

G
et

B
oo

le
an

v
(T
R
U
E

,T
R
U
E

,T
R
U
E

,T
R
U
E

)
C

ol
or

w
ri

te
en

-
ab

le
s

(R
,G

,B
,A

)
4.

2.
2

D
E
P
T
H
_
W
R
I
T
E
M
A
S
K

B
G

et
B

oo
le

an
v

T
R
U
E

D
ep

th
bu

ff
er

en
-

ab
le

d
fo

rw
ri

tin
g

4.
2.

2

S
T
E
N
C
I
L
_
W
R
I
T
E
M
A
S
K

Z
+

G
et

In
te

ge
rv

1’
s

Fr
on

t
st

en
ci

l
bu

ff
er

w
ri

te
m

as
k

4.
2.

2

S
T
E
N
C
I
L
_
B
A
C
K
_
W
R
I
T
E
M
A
S
K

Z
+

G
et

In
te

ge
rv

1’
s

B
ac

k
st

en
ci

l
bu

ff
er

w
ri

te
m

as
k

4.
2.

2

C
O
L
O
R
_
C
L
E
A
R
_
V
A
L
U
E

C
G

et
Fl

oa
tv

0.
0,

0.
0,

0.
0,

0.
0

C
ol

or
bu

ff
er

cl
ea

r
va

lu
e

4.
2.

3

D
E
P
T
H
_
C
L
E
A
R
_
V
A
L
U
E

R
+

G
et

In
te

ge
rv

1
D

ep
th

bu
ff

er
cl

ea
r

va
lu

e
4.

2.
3

S
T
E
N
C
I
L
_
C
L
E
A
R
_
V
A
L
U
E

Z
+

G
et

In
te

ge
rv

0
St

en
ci

l
cl

ea
r

va
lu

e
4.

2.
3

D
R
A
W
_
F
R
A
M
E
B
U
F
F
E
R
_
B
I
N
D
I
N
G

Z
+

G
et

In
te

ge
rv

0

Fr
am

eb
uf

fe
r

ob
je

ct
bo

un
d

to
D
R
A
W
_
-

F
R
A
M
E
B
U
F
F
E
R

4.
4.

1

R
E
A
D
_
F
R
A
M
E
B
U
F
F
E
R
_
B
I
N
D
I
N
G

Z
+

G
et

In
te

ge
rv

0

Fr
am

eb
uf

fe
r

ob
je

ct
bo

un
d

to
R
E
A
D
_
-

F
R
A
M
E
B
U
F
F
E
R

4.
4.

1

R
E
N
D
E
R
B
U
F
F
E
R
_
B
I
N
D
I
N
G

Z
G

et
In

te
ge

rv
0

R
en

de
rb

uf
fe

r
ob

je
ct

bo
un

d
to

R
E
N
D
E
R
B
U
F
F
E
R

4.
4.

2

Table 6.12: Framebuffer Control

OpenGL ES 3.0.3 (December 18, 2013)

6.2. STATE TABLES 254

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

D
R
A
W
_
B
U
F
F
E
R
i

4
∗
×
Z
1
1
∗

G
et

In
te

ge
rv

se
e

4.
2.

1
D

ra
w

bu
ff

er
se

le
ct

ed
fo

r
co

lo
r

ou
t-

pu
ti

4.
2.

1

R
E
A
D
_
B
U
F
F
E
R
†

Z
1
1
∗

G
et

In
te

ge
rv

se
e

4.
3.

1
R

ea
d

so
ur

ce
bu

ff
er

4.
3.

1

Table 6.13: Framebuffer (state per framebuffer object)
† This state is queried from the currently bound read framebuffer.

OpenGL ES 3.0.3 (December 18, 2013)

6.2. STATE TABLES 255

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

F
R
A
M
E
B
U
F
F
E
R
_
A
T
T
A
C
H
M
E
N
T
_
O
B
J
E
C
T
_
T
Y
P
E

Z
4

G
et

Fr
am

eb
uf

fe
r-

A
tt

ac
hm

en
t-

Pa
ra

m
et

er
iv

N
O
N
E

Ty
pe

of
im

ag
e

at
ta

ch
ed

to
fr

am
eb

uf
fe

r
at

ta
ch

-
m

en
tp

oi
nt

4.
4.

2

F
R
A
M
E
B
U
F
F
E
R
_
A
T
T
A
C
H
M
E
N
T
_
O
B
J
E
C
T
_
N
A
M
E

Z
+

G
et

Fr
am

eb
uf

fe
r-

A
tt

ac
hm

en
t-

Pa
ra

m
et

er
iv

0
N

am
e

of
ob

je
ct

at
-

ta
ch

ed
to

fr
am

eb
uf

fe
r

at
ta

ch
m

en
tp

oi
nt

4.
4.

2

F
R
A
M
E
B
U
F
F
E
R
_
A
T
T
A
C
H
M
E
N
T
_
T
E
X
T
U
R
E
_
L
E
V
E
L

Z
+

G
et

Fr
am

eb
uf

fe
r-

A
tt

ac
hm

en
t-

Pa
ra

m
et

er
iv

0
M

ip
m

ap
le

ve
l

of
te

xt
ur

e
im

ag
e

at
ta

ch
ed

,
if

ob
je

ct
at

ta
ch

ed
is

te
xt

ur
e

4.
4.

2

F
R
A
M
E
B
U
F
F
E
R
_
A
T
T
A
C
H
M
E
N
T
_
T
E
X
T
U
R
E
_
C
U
B
E
_
M
A
P
_
F
A
C
E

Z
+

G
et

Fr
am

eb
uf

fe
r-

A
tt

ac
hm

en
t-

Pa
ra

m
et

er
iv

N
O
N
E

C
ub

em
ap

fa
ce

of
te

xt
ur

e
im

ag
e

at
ta

ch
ed

,
if

ob
je

ct
at

ta
ch

ed
is

cu
be

m
ap

te
x-

tu
re

4.
4.

2

F
R
A
M
E
B
U
F
F
E
R
_
A
T
T
A
C
H
M
E
N
T
_
T
E
X
T
U
R
E
_
L
A
Y
E
R

Z
G

et
Fr

am
eb

uf
fe

r-
A

tt
ac

hm
en

t-
Pa

ra
m

et
er

iv
0

L
ay

er
of

te
xt

ur
e

im
ag

e
at

ta
ch

ed
,

if
ob

je
ct

at
-

ta
ch

ed
is

3D
te

xt
ur

e
4.

4.
2

F
R
A
M
E
B
U
F
F
E
R
_
A
T
T
A
C
H
M
E
N
T
_
C
O
L
O
R
_
E
N
C
O
D
I
N
G

Z
2

G
et

Fr
am

eb
uf

fe
r-

A
tt

ac
hm

en
t-

Pa
ra

m
et

er
iv

-
E

nc
od

in
g

of
co

m
po

ne
nt

s
in

th
e

at
ta

ch
ed

im
ag

e
6.

1.
13

F
R
A
M
E
B
U
F
F
E
R
_
A
T
T
A
C
H
M
E
N
T
_
C
O
M
P
O
N
E
N
T
_
T
Y
P
E

Z
4

G
et

Fr
am

eb
uf

fe
r-

A
tt

ac
hm

en
t-

Pa
ra

m
et

er
iv

-
D

at
a

ty
pe

of
co

m
po

ne
nt

s
in

th
e

at
ta

ch
ed

im
ag

e
6.

1.
13

F
R
A
M
E
B
U
F
F
E
R
_
A
T
T
A
C
H
M
E
N
T
_
x
_
S
I
Z
E

Z
+

G
et

Fr
am

eb
uf

fe
r-

A
tt

ac
hm

en
t-

Pa
ra

m
et

er
iv

-

Si
ze

in
bi

ts
of

at
ta

ch
ed

im
ag

e’
s
x

co
m

po
ne

nt
;
x

is
R
E
D

,
G
R
E
E
N

,
B
L
U
E

,
A
L
P
H
A

,
D
E
P
T
H

,
or

S
T
E
N
C
I
L

6.
1.

13

Table 6.14: Framebuffer (state per attachment point)

OpenGL ES 3.0.3 (December 18, 2013)

6.2. STATE TABLES 256

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

R
E
N
D
E
R
B
U
F
F
E
R
_
W
I
D
T
H

Z
+

G
et

R
en

de
rb

uf
fe

rP
ar

am
et

er
iv

0
W

id
th

of
re

nd
er

bu
ff

er
4.

4.
2

R
E
N
D
E
R
B
U
F
F
E
R
_
H
E
I
G
H
T

Z
+

G
et

R
en

de
rb

uf
fe

rP
ar

am
et

er
iv

0
H

ei
gh

to
fr

en
de

rb
uf

fe
r

4.
4.

2
R
E
N
D
E
R
B
U
F
F
E
R
_
I
N
T
E
R
N
A
L
_
F
O
R
M
A
T

Z
4
3

G
et

R
en

de
rb

uf
fe

rP
ar

am
et

er
iv

R
G
B
A
4

In
te

rn
al

fo
rm

at
of

re
nd

er
bu

ff
er

4.
4.

2

R
E
N
D
E
R
B
U
F
F
E
R
_
R
E
D
_
S
I
Z
E

Z
+

G
et

R
en

de
rb

uf
fe

rP
ar

am
et

er
iv

0
Si

ze
in

bi
ts

of
re

nd
er

bu
ff

er
im

ag
e’

s
re

d
co

m
po

ne
nt

4.
4.

2

R
E
N
D
E
R
B
U
F
F
E
R
_
G
R
E
E
N
_
S
I
Z
E

Z
+

G
et

R
en

de
rb

uf
fe

rP
ar

am
et

er
iv

0
Si

ze
in

bi
ts

of
re

nd
er

bu
ff

er
im

ag
e’

s
gr

ee
n

co
m

po
ne

nt
4.

4.
2

R
E
N
D
E
R
B
U
F
F
E
R
_
B
L
U
E
_
S
I
Z
E

Z
+

G
et

R
en

de
rb

uf
fe

rP
ar

am
et

er
iv

0
Si

ze
in

bi
ts

of
re

nd
er

bu
ff

er
im

ag
e’

s
bl

ue
co

m
po

ne
nt

4.
4.

2

R
E
N
D
E
R
B
U
F
F
E
R
_
A
L
P
H
A
_
S
I
Z
E

Z
+

G
et

R
en

de
rb

uf
fe

rP
ar

am
et

er
iv

0
Si

ze
in

bi
ts

of
re

nd
er

bu
ff

er
im

ag
e’

s
al

ph
a

co
m

po
ne

nt
4.

4.
2

R
E
N
D
E
R
B
U
F
F
E
R
_
D
E
P
T
H
_
S
I
Z
E

Z
+

G
et

R
en

de
rb

uf
fe

rP
ar

am
et

er
iv

0
Si

ze
in

bi
ts

of
re

nd
er

bu
ff

er
im

ag
e’

s
de

pt
h

co
m

po
ne

nt
4.

4.
2

R
E
N
D
E
R
B
U
F
F
E
R
_
S
T
E
N
C
I
L
_
S
I
Z
E

Z
+

G
et

R
en

de
rb

uf
fe

rP
ar

am
et

er
iv

0
Si

ze
in

bi
ts

of
re

nd
er

bu
ff

er
im

ag
e’

s
st

en
ci

lc
om

po
ne

nt
4.

4.
2

R
E
N
D
E
R
B
U
F
F
E
R
_
S
A
M
P
L
E
S

Z
+

G
et

R
en

de
rb

uf
fe

rP
ar

am
et

er
iv

0
N

um
be

ro
fs

am
pl

es
4.

4.
2

Table 6.15: Renderbuffer (state per renderbuffer object)

OpenGL ES 3.0.3 (December 18, 2013)

6.2. STATE TABLES 257

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

U
N
P
A
C
K
_
I
M
A
G
E
_
H
E
I
G
H
T

Z
+

G
et

In
te

ge
rv

0
V

al
ue

of
U
N
P
A
C
K
_
I
M
A
G
E
_
-

H
E
I
G
H
T

3.
7.

1

U
N
P
A
C
K
_
S
K
I
P
_
I
M
A
G
E
S

Z
+

G
et

In
te

ge
rv

0
V

al
ue

of
U
N
P
A
C
K
_
S
K
I
P
_
I
M
A
G
E
S

3.
7.

1
U
N
P
A
C
K
_
R
O
W
_
L
E
N
G
T
H

Z
+

G
et

In
te

ge
rv

0
V

al
ue

of
U
N
P
A
C
K
_
R
O
W
_
L
E
N
G
T
H

3.
7.

1
U
N
P
A
C
K
_
S
K
I
P
_
R
O
W
S

Z
+

G
et

In
te

ge
rv

0
V

al
ue

of
U
N
P
A
C
K
_
S
K
I
P
_
R
O
W
S

3.
7.

1
U
N
P
A
C
K
_
S
K
I
P
_
P
I
X
E
L
S

Z
+

G
et

In
te

ge
rv

0
V

al
ue

of
U
N
P
A
C
K
_
S
K
I
P
_
P
I
X
E
L
S

3.
7.

1
U
N
P
A
C
K
_
A
L
I
G
N
M
E
N
T

Z
+

G
et

In
te

ge
rv

4
V

al
ue

of
U
N
P
A
C
K
_
A
L
I
G
N
M
E
N
T

3.
7.

1
P
A
C
K
_
R
O
W
_
L
E
N
G
T
H

Z
+

G
et

In
te

ge
rv

0
V

al
ue

of
P
A
C
K
_
R
O
W
_
L
E
N
G
T
H

4.
3.

2
P
A
C
K
_
S
K
I
P
_
R
O
W
S

Z
+

G
et

In
te

ge
rv

0
V

al
ue

of
P
A
C
K
_
S
K
I
P
_
R
O
W
S

4.
3.

2
P
A
C
K
_
S
K
I
P
_
P
I
X
E
L
S

Z
+

G
et

In
te

ge
rv

0
V

al
ue

of
P
A
C
K
_
S
K
I
P
_
P
I
X
E
L
S

4.
3.

2
P
A
C
K
_
A
L
I
G
N
M
E
N
T

Z
+

G
et

In
te

ge
rv

4
V

al
ue

of
P
A
C
K
_
A
L
I
G
N
M
E
N
T

4.
3.

2
P
I
X
E
L
_
P
A
C
K
_
B
U
F
F
E
R
_
B
I
N
D
I
N
G

Z
+

G
et

In
te

ge
rv

0
Pi

xe
lp

ac
k

bu
ff

er
bi

nd
in

g
4.

3.
2

P
I
X
E
L
_
U
N
P
A
C
K
_
B
U
F
F
E
R
_
B
I
N
D
I
N
G

Z
+

G
et

In
te

ge
rv

0
Pi

xe
lu

np
ac

k
bu

ff
er

bi
nd

in
g

6.
1.

9

Table 6.16: Pixels

OpenGL ES 3.0.3 (December 18, 2013)

6.2. STATE TABLES 258

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

S
H
A
D
E
R
_
T
Y
P
E

Z
3

G
et

Sh
ad

er
iv

–
Ty

pe
of

sh
ad

er
(v

er
te

x
or

fr
ag

m
en

t)
2.

11
.1

D
E
L
E
T
E
_
S
T
A
T
U
S

B
G

et
Sh

ad
er

iv
F
A
L
S
E

Sh
ad

er
fla

gg
ed

fo
rd

el
et

io
n

2.
11

.1
C
O
M
P
I
L
E
_
S
T
A
T
U
S

B
G

et
Sh

ad
er

iv
F
A
L
S
E

L
as

tc
om

pi
le

su
cc

ee
de

d
2.

11
.1

–
S

G
et

Sh
ad

er
In

fo
L

og
em

pt
y

st
ri

ng
In

fo
lo

g
fo

rs
ha

de
ro

bj
ec

ts
6.

1.
12

I
N
F
O
_
L
O
G
_
L
E
N
G
T
H

Z
+

G
et

Sh
ad

er
iv

0
L

en
gt

h
of

in
fo

lo
g

6.
1.

12
–

S
G

et
Sh

ad
er

So
ur

ce
em

pt
y

st
ri

ng
So

ur
ce

co
de

fo
ra

sh
ad

er
2.

11
.1

S
H
A
D
E
R
_
S
O
U
R
C
E
_
L
E
N
G
T
H

Z
+

G
et

Sh
ad

er
iv

0
L

en
gt

h
of

so
ur

ce
co

de
6.

1.
12

Table 6.17: Shader Object State

OpenGL ES 3.0.3 (December 18, 2013)

6.2. STATE TABLES 259

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

C
U
R
R
E
N
T
_
P
R
O
G
R
A
M

Z
+

G
et

In
te

ge
rv

0
N

am
e

of
cu

rr
en

tp
ro

gr
am

ob
je

ct
2.

11
.3

D
E
L
E
T
E
_
S
T
A
T
U
S

B
G

et
Pr

og
ra

m
iv

F
A
L
S
E

Pr
og

ra
m

ob
je

ct
de

le
te

d
2.

11
.3

L
I
N
K
_
S
T
A
T
U
S

B
G

et
Pr

og
ra

m
iv

F
A
L
S
E

L
as

t
lin

k
at

te
m

pt
su

c-
ce

ed
ed

2.
11

.3

V
A
L
I
D
A
T
E
_
S
T
A
T
U
S

B
G

et
Pr

og
ra

m
iv

F
A
L
S
E

L
as

tv
al

id
at

e
at

te
m

pt
su

c-
ce

ed
ed

2.
11

.3

A
T
T
A
C
H
E
D
_
S
H
A
D
E
R
S

Z
+

G
et

Pr
og

ra
m

iv
0

N
um

be
r

of
at

ta
ch

ed
sh

ad
er

ob
je

ct
s

6.
1.

12

–
0
∗
×
Z

+
G

et
A

tt
ac

he
dS

ha
de

rs
em

pt
y

Sh
ad

er
ob

je
ct

s
at

ta
ch

ed
6.

1.
12

–
S

G
et

Pr
og

ra
m

In
fo

L
og

em
pt

y
In

fo
lo

g
fo

r
pr

og
ra

m
ob

-
je

ct
6.

1.
12

I
N
F
O
_
L
O
G
_
L
E
N
G
T
H

Z
+

G
et

Pr
og

ra
m

iv
0

L
en

gt
h

of
in

fo
lo

g
2.

11
.6

A
C
T
I
V
E
_
U
N
I
F
O
R
M
S

Z
+

G
et

Pr
og

ra
m

iv
0

N
um

be
r

of
ac

tiv
e

un
i-

fo
rm

s
2.

11
.6

–
0
∗
×
Z

G
et

U
ni

fo
rm

L
oc

at
io

n
–

L
oc

at
io

n
of

ac
tiv

e
un

i-
fo

rm
s

6.
1.

12

–
0
∗
×
Z

+
G

et
A

ct
iv

eU
ni

fo
rm

–
Si

ze
of

ac
tiv

e
un

if
or

m
2.

11
.6

–
0
∗
×
Z

+
G

et
A

ct
iv

eU
ni

fo
rm

–
Ty

pe
of

ac
tiv

e
un

if
or

m
2.

11
.6

–
0
∗
×
c
h
a
r

G
et

A
ct

iv
eU

ni
fo

rm
em

pt
y

N
am

e
of

ac
tiv

e
un

if
or

m
2.

11
.6

A
C
T
I
V
E
_
U
N
I
F
O
R
M
_
M
A
X
_
-

L
E
N
G
T
H

Z
+

G
et

Pr
og

ra
m

iv
0

M
ax

im
um

ac
tiv

e
un

if
or

m
na

m
e

le
ng

th
6.

1.
12

–
−

G
et

U
ni

fo
rm

0
U

ni
fo

rm
va

lu
e

2.
11

.6

A
C
T
I
V
E
_
A
T
T
R
I
B
U
T
E
S

Z
+

G
et

Pr
og

ra
m

iv
0

N
um

be
r

of
ac

tiv
e

at
-

tr
ib

ut
es

2.
11

.5

P
R
O
G
R
A
M
_
B
I
N
A
R
Y
_
L
E
N
G
T
H

Z
+

G
et

Pr
og

ra
m

iv
0

L
en

gt
h

of
pr

og
ra

m
bi

-
na

ry
2.

11
.4

P
R
O
G
R
A
M
_
B
I
N
A
R
Y
_
-

R
E
T
R
I
E
V
A
B
L
E
_
H
I
N
T

B
G

et
Pr

og
ra

m
iv

F
A
L
S
E

R
et

ri
ev

ab
le

bi
na

ry
hi

nt
en

ab
le

d
2.

11
.4

–
0
∗
×
B
M
U

G
et

Pr
og

ra
m

B
in

ar
y

–
B

in
ar

y
re

pr
es

en
ta

tio
n

of
pr

og
ra

m
2.

11
.4

Table 6.18: Program Object State

OpenGL ES 3.0.3 (December 18, 2013)

6.2. STATE TABLES 260

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

–
0
∗
×
Z

G
et

A
tt

ri
bL

oc
at

io
n

–
L

oc
at

io
n

of
ac

tiv
e

ge
ne

ri
c

at
tr

ib
ut

e
2.

11
.5

–
0
∗
×
Z

+
G

et
A

ct
iv

eA
tt

ri
b

–
Si

ze
of

ac
tiv

e
at

tr
ib

ut
e

2.
11

.5
–

0
∗
×
Z

+
G

et
A

ct
iv

eA
tt

ri
b

–
Ty

pe
of

ac
tiv

e
at

tr
ib

ut
e

2.
11

.5
–

0
∗
×
c
h
a
r

G
et

A
ct

iv
eA

tt
ri

b
em

pt
y

N
am

e
of

ac
tiv

e
at

tr
ib

ut
e

2.
11

.5
A
C
T
I
V
E
_
A
T
T
R
I
B
U
T
E
_
-

M
A
X
_
L
E
N
G
T
H

Z
+

G
et

Pr
og

ra
m

iv
0

M
ax

im
um

ac
tiv

e
at

tr
ib

ut
e

na
m

e
le

ng
th

6.
1.

12

T
R
A
N
S
F
O
R
M
_
F
E
E
D
B
A
C
K
_
-

B
U
F
F
E
R
_
M
O
D
E

Z
2

G
et

Pr
og

ra
m

iv
I
N
T
E
R
L
E
A
V
E
D
_
-

A
T
T
R
I
B
S

Tr
an

sf
or

m
fe

ed
ba

ck
m

od
e

fo
rt

he
pr

og
ra

m
6.

1.
12

T
R
A
N
S
F
O
R
M
_
F
E
E
D
B
A
C
K
_
-

V
A
R
Y
I
N
G
S

Z
+

G
et

Pr
og

ra
m

iv
0

N
um

be
r

of
ou

tp
ut

s
to

st
re

am
to

bu
ff

er
ob

je
ct

(s
)

6.
1.

12

T
R
A
N
S
F
O
R
M
_
F
E
E
D
B
A
C
K
_
-

V
A
R
Y
I
N
G
_
M
A
X
_
L
E
N
G
T
H

Z
+

G
et

Pr
og

ra
m

iv
0

M
ax

im
um

tr
an

sf
or

m
fe

ed
-

ba
ck

ou
tp

ut
va

ri
ab

le
na

m
e

le
ng

th
6.

1.
12

–
Z

+
G

et
Tr

an
sf

or
m

-
Fe

ed
ba

ck
Va

ry
in

g
–

Si
ze

of
ea

ch
tr

an
sf

or
m

fe
ed

ba
ck

ou
tp

ut
va

ri
ab

le
2.

11
.8

–
Z

+
G

et
Tr

an
sf

or
m

-
Fe

ed
ba

ck
Va

ry
in

g
–

Ty
pe

of
ea

ch
tr

an
sf

or
m

fe
ed

ba
ck

ou
tp

ut
va

ri
ab

le
2.

11
.8

–
0+
×
c
h
a
r

G
et

Tr
an

sf
or

m
-

Fe
ed

ba
ck

Va
ry

in
g

–
N

am
e

of
ea

ch
tr

an
sf

or
m

fe
ed

ba
ck

ou
tp

ut
va

ri
ab

le
2.

11
.8

Table 6.19: Program Object State (cont.)

OpenGL ES 3.0.3 (December 18, 2013)

6.2. STATE TABLES 261

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
C
T
I
V
E
_
U
N
I
F
O
R
M
_
B
L
O
C
K
S

Z
+

G
et

Pr
og

ra
m

iv
0

N
um

be
r

of
ac

tiv
e

un
i-

fo
rm

bl
oc

ks
in

a
pr

og
ra

m
2.

11
.6

A
C
T
I
V
E
_
U
N
I
F
O
R
M
_
-

B
L
O
C
K
_
M
A
X
_
N
A
M
E
_
L
E
N
G
T
H

Z
+

G
et

Pr
og

ra
m

iv
0

L
en

gt
h

of
lo

ng
es

t
ac

tiv
e

un
if

or
m

bl
oc

k
na

m
e

2.
11

.6

U
N
I
F
O
R
M
_
T
Y
P
E

0
∗
×
Z
2
7

G
et

A
ct

iv
eU

ni
fo

rm
si

v
–

Ty
pe

of
ac

tiv
e

un
if

or
m

2.
11

.6

U
N
I
F
O
R
M
_
S
I
Z
E

0
∗
×
Z

+
G

et
A

ct
iv

eU
ni

fo
rm

si
v

–
Si

ze
of

ac
tiv

e
un

if
or

m
2.

11
.6

U
N
I
F
O
R
M
_
N
A
M
E
_
L
E
N
G
T
H

0
∗
×
Z

+
G

et
A

ct
iv

eU
ni

fo
rm

si
v

–
U

ni
fo

rm
na

m
e

le
ng

th
2.

11
.6

U
N
I
F
O
R
M
_
B
L
O
C
K
_
I
N
D
E
X

0
∗
×
Z

G
et

A
ct

iv
eU

ni
fo

rm
si

v
–

U
ni

fo
rm

bl
oc

k
in

de
x

2.
11

.6

U
N
I
F
O
R
M
_
O
F
F
S
E
T

0
∗
×
Z

G
et

A
ct

iv
eU

ni
fo

rm
si

v
–

U
ni

fo
rm

bu
ff

er
of

fs
et

2.
11

.6

Table 6.20: Program Object State (cont.)

OpenGL ES 3.0.3 (December 18, 2013)

6.2. STATE TABLES 262

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

U
N
I
F
O
R
M
_
A
R
R
A
Y
_
S
T
R
I
D
E

0
∗
×
Z

G
et

A
ct

iv
eU

ni
fo

rm
si

v
–

U
ni

fo
rm

bu
ff

er
ar

ra
y

st
ri

de
2.

11
.6

U
N
I
F
O
R
M
_
M
A
T
R
I
X
_
S
T
R
I
D
E

0
∗
×
Z

G
et

A
ct

iv
eU

ni
fo

rm
si

v
–

U
ni

fo
rm

bu
ff

er
in

tr
a-

m
at

ri
x

st
ri

de
2.

11
.6

U
N
I
F
O
R
M
_
I
S
_
R
O
W
_
M
A
J
O
R

0
∗
×
B

G
et

A
ct

iv
eU

ni
fo

rm
si

v
–

W
he

th
er

un
if

or
m

is
a

ro
w

-m
aj

or
m

at
ri

x
2.

11
.6

U
N
I
F
O
R
M
_
B
L
O
C
K
_
B
I
N
D
I
N
G

Z
+

G
et

A
ct

iv
e-

U
ni

fo
rm

B
lo

ck
iv

0

U
ni

fo
rm

bu
ff

er
bi

nd
in

g
po

in
ts

as
so

ci
at

ed
w

ith
th

e
sp

ec
ifi

ed
un

if
or

m
bl

oc
k

2.
11

.6

U
N
I
F
O
R
M
_
B
L
O
C
K
_
D
A
T
A
_
-

S
I
Z
E

Z
+

G
et

A
ct

iv
e-

U
ni

fo
rm

B
lo

ck
iv

–
Si

ze
of

th
e

st
or

ag
e

ne
ed

ed
to

ho
ld

th
is

un
if

or
m

bl
oc

k’
s

da
ta

2.
11

.6

U
N
I
F
O
R
M
_
B
L
O
C
K
_
N
A
M
E
_
-

L
E
N
G
T
H

Z
+

G
et

A
ct

iv
e-

U
ni

fo
rm

B
lo

ck
iv

–
U

ni
fo

rm
bl

oc
k

na
m

e
le

ng
th

2.
11

.6

U
N
I
F
O
R
M
_
B
L
O
C
K
_
-

A
C
T
I
V
E
_
U
N
I
F
O
R
M
S

Z
+

G
et

A
ct

iv
e-

U
ni

fo
rm

B
lo

ck
iv

–
C

ou
nt

of
ac

tiv
e

un
if

or
m

s
in

th
e

sp
ec

ifi
ed

un
if

or
m

bl
oc

k
2.

11
.6

U
N
I
F
O
R
M
_
B
L
O
C
K
_
-

A
C
T
I
V
E
_
U
N
I
F
O
R
M
_
-

I
N
D
I
C
E
S

n
×
Z

+
G

et
A

ct
iv

e-
U

ni
fo

rm
B

lo
ck

iv
–

A
rr

ay
of

ac
tiv

e
un

if
or

m
in

di
ce

s
of

th
e

sp
ec

ifi
ed

un
if

or
m

bl
oc

k
2.

11
.6

U
N
I
F
O
R
M
_
B
L
O
C
K
_
-

R
E
F
E
R
E
N
C
E
D
_
B
Y
_
-

V
E
R
T
E
X
_
S
H
A
D
E
R

B
G

et
A

ct
iv

e-
U

ni
fo

rm
B

lo
ck

iv
0

Tr
ue

if
un

if
or

m
bl

oc
k

is
ac

tiv
el

y
re

fe
re

nc
ed

by
th

e
ve

rt
ex

st
ag

e
2.

11
.6

U
N
I
F
O
R
M
_
B
L
O
C
K
_
-

R
E
F
E
R
E
N
C
E
D
_
B
Y
_
-

F
R
A
G
M
E
N
T
_
S
H
A
D
E
R

B
G

et
A

ct
iv

e-
U

ni
fo

rm
B

lo
ck

iv
0

Tr
ue

if
un

if
or

m
bl

oc
k

is
ac

tiv
el

y
re

fe
re

nc
ed

by
th

e
fr

ag
m

en
ts

ta
ge

2.
11

.6

Table 6.21: Program Object State (cont.)

OpenGL ES 3.0.3 (December 18, 2013)

6.2. STATE TABLES 263

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

C
U
R
R
E
N
T
_
V
E
R
T
E
X
_
A
T
T
R
I
B

16
∗
×
R

4
G

et
Ve

rt
ex

A
tt

ri
bf

v
0.

0,
0.

0,
0.

0,
1.

0
C

ur
re

nt
ge

ne
ri

c
ve

rt
ex

at
tr

ib
ut

e
va

l-
ue

s
2.

7

Table 6.22: Vertex Shader State (not part of program objects)

OpenGL ES 3.0.3 (December 18, 2013)

6.2. STATE TABLES 264

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

Q
U
E
R
Y
_
R
E
S
U
L
T

Z
+

G
et

Q
ue

ry
O

bj
ec

tu
iv

0
or
F
A
L
S
E

Q
ue

ry
ob

je
ct

re
su

lt
6.

1.
7

Q
U
E
R
Y
_
R
E
S
U
L
T
_
A
V
A
I
L
A
B
L
E

B
G

et
Q

ue
ry

O
bj

ec
tu

iv
F
A
L
S
E

Is
th

e
qu

er
y

ob
je

ct
re

su
lt

av
ai

la
bl

e?
6.

1.
7

Table 6.23: Query Object State

OpenGL ES 3.0.3 (December 18, 2013)

6.2. STATE TABLES 265

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

T
R
A
N
S
F
O
R
M
_
F
E
E
D
B
A
C
K
_
B
U
F
F
E
R
_
B
I
N
D
I
N
G

Z
+

G
et

In
te

ge
rv

0
B

uf
fe

r
ob

je
ct

bo
un

d
to

ge
ne

ri
c

bi
nd

po
in

t
fo

r
tr

an
sf

or
m

fe
ed

ba
ck

6.
1.

9

T
R
A
N
S
F
O
R
M
_
F
E
E
D
B
A
C
K
_
B
U
F
F
E
R
_
B
I
N
D
I
N
G

n
×
Z

+
G

et
In

te
ge

ri
v

0
B

uf
fe

r
ob

je
ct

bo
un

d
to

ea
ch

tr
an

sf
or

m
fe

ed
ba

ck
at

tr
ib

ut
e

st
re

am
6.

1.
9

T
R
A
N
S
F
O
R
M
_
F
E
E
D
B
A
C
K
_
B
U
F
F
E
R
_
S
T
A
R
T

n
×
Z

+
G

et
In

te
ge

r6
4i

v
0

St
ar

t
of

fs
et

of
bi

nd
in

g
ra

ng
e

fo
r

ea
ch

tr
an

sf
or

m
fe

ed
ba

ck
at

tr
ib

.s
tr

ea
m

6.
1.

9

T
R
A
N
S
F
O
R
M
_
F
E
E
D
B
A
C
K
_
B
U
F
F
E
R
_
S
I
Z
E

n
×
Z

+
G

et
In

te
ge

r6
4i

v
0

Si
ze

of
bi

nd
in

g
ra

ng
e

fo
r

ea
ch

tr
an

sf
or

m
fe

ed
ba

ck
at

tr
ib

.s
tr

ea
m

6.
1.

9

T
R
A
N
S
F
O
R
M
_
F
E
E
D
B
A
C
K
_
P
A
U
S
E
D

B
G

et
B

oo
le

an
v

F
A
L
S
E

Is
tr

an
sf

or
m

fe
ed

ba
ck

pa
us

ed
on

th
is

ob
je

ct
?

6.
1.

9

T
R
A
N
S
F
O
R
M
_
F
E
E
D
B
A
C
K
_
A
C
T
I
V
E

B
G

et
B

oo
le

an
v

F
A
L
S
E

Is
tr

an
sf

or
m

fe
ed

ba
ck

ac
-

tiv
e

on
th

is
ob

je
ct

?
6.

1.
9

Table 6.24: Transform Feedback State

OpenGL ES 3.0.3 (December 18, 2013)

6.2. STATE TABLES 266

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

U
N
I
F
O
R
M
_
B
U
F
F
E
R
_
-

B
I
N
D
I
N
G

Z
+

G
et

In
te

ge
rv

0

U
ni

fo
rm

bu
ff

er
ob

je
ct

bo
un

d
to

th
e

co
nt

ex
t

fo
r

bu
ff

er
ob

je
ct

m
an

ip
ul

a-
tio

n

2.
11

.6

U
N
I
F
O
R
M
_
B
U
F
F
E
R
_
-

B
I
N
D
I
N
G

n
×
Z

+
G

et
In

te
ge

ri
v

0
U

ni
fo

rm
bu

ff
er

ob
je

ct
bo

un
d

to
th

e
sp

ec
ifi

ed
co

nt
ex

tb
in

di
ng

po
in

t
2.

11
.6

U
N
I
F
O
R
M
_
B
U
F
F
E
R
_
S
T
A
R
T

n
×
Z

+
G

et
In

te
ge

r6
4i

v
0

St
ar

t
of

bo
un

d
un

if
or

m
bu

ff
er

re
gi

on
6.

1.
9

U
N
I
F
O
R
M
_
B
U
F
F
E
R
_
S
I
Z
E

n
×
Z

+
G

et
In

te
ge

r6
4i

v
0

Si
ze

of
bo

un
d

un
if

or
m

bu
ff

er
re

gi
on

6.
1.

9

Table 6.25: Uniform Buffer Binding State

OpenGL ES 3.0.3 (December 18, 2013)

6.2. STATE TABLES 267

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

O
B
J
E
C
T
_
T
Y
P
E

Z
1

G
et

Sy
nc

iv
S
Y
N
C
_
F
E
N
C
E

Ty
pe

of
sy

nc
ob

je
ct

5.
2

S
Y
N
C
_
S
T
A
T
U
S

Z
2

G
et

Sy
nc

iv
U
N
S
I
G
N
A
L
E
D

Sy
nc

ob
je

ct
st

at
us

5.
2

S
Y
N
C
_
C
O
N
D
I
T
I
O
N

Z
1

G
et

Sy
nc

iv
S
Y
N
C
_
G
P
U
_
C
O
M
M
A
N
D
S
_
C
O
M
P
L
E
T
E

Sy
nc

ob
je

ct
co

nd
iti

on
5.

2
S
Y
N
C
_
F
L
A
G
S

Z
G

et
Sy

nc
iv

0
Sy

nc
ob

je
ct

fla
gs

5.
2

Table 6.26: Sync (state per sync object)

OpenGL ES 3.0.3 (December 18, 2013)

6.2. STATE TABLES 268

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

G
E
N
E
R
A
T
E
_
M
I
P
M
A
P
_
H
I
N
T

Z
3

G
et

In
te

ge
rv

D
O
N
T
_
C
A
R
E

M
ip

m
ap

ge
ne

ra
tio

n
hi

nt
5.

3

F
R
A
G
M
E
N
T
_
S
H
A
D
E
R
_
D
E
R
I
V
A
T
I
V
E
_
H
I
N
T

Z
3

G
et

In
te

ge
rv

D
O
N
T
_
C
A
R
E

Fr
ag

m
en

t
sh

ad
er

de
riv

at
iv

e
ac

cu
-

ra
cy

hi
nt

5.
3

Table 6.27: Hints

OpenGL ES 3.0.3 (December 18, 2013)

6.2. STATE TABLES 269

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

M
in

im
um

V
al

ue
D

es
cr

ip
tio

n
Se

c.
M
A
X
_
E
L
E
M
E
N
T
_
I
N
D
E
X

Z
+

G
et

In
te

ge
r6

4v
22

4
−

1
M

ax
im

um
el

em
en

ti
nd

ex
2.

8.
3

S
U
B
P
I
X
E
L
_
B
I
T
S

Z
+

G
et

In
te

ge
rv

4
N

um
be

ro
fb

its
of

su
bp

ix
el

pr
ec

is
io

n
in

sc
re

en
x
w

an
d
y w

3

M
A
X
_
3
D
_
T
E
X
T
U
R
E
_
S
I
Z
E

Z
+

G
et

In
te

ge
rv

25
6

M
ax

im
um

3D
te

xt
ur

e
im

ag
e

di
m

en
-

si
on

3.
8.

3

M
A
X
_
T
E
X
T
U
R
E
_
S
I
Z
E

Z
+

G
et

In
te

ge
rv

20
48

M
ax

im
um

2D
te

xt
ur

e
im

ag
e

di
m

en
-

si
on

3.
8.

3

M
A
X
_
A
R
R
A
Y
_
T
E
X
T
U
R
E
_
L
A
Y
E
R
S

Z
+

G
et

In
te

ge
rv

25
6

M
ax

im
um

nu
m

be
ro

fl
ay

er
s

fo
rt

ex
-

tu
re

ar
ra

ys
3.

8.
3

M
A
X
_
T
E
X
T
U
R
E
_
L
O
D
_
B
I
A
S

R
+

G
et

Fl
oa

tv
2.

0
M

ax
im

um
ab

so
lu

te
te

xt
ur

e
le

ve
l

of
de

ta
il

bi
as

3.
8.

10

M
A
X
_
C
U
B
E
_
M
A
P
_
T
E
X
T
U
R
E
_
S
I
Z
E

Z
+

G
et

In
te

ge
rv

20
48

M
ax

im
um

cu
be

m
ap

te
xt

ur
e

im
ag

e
di

m
en

si
on

3.
8.

3

M
A
X
_
R
E
N
D
E
R
B
U
F
F
E
R
_
S
I
Z
E

Z
+

G
et

In
te

ge
rv

20
48

M
ax

im
um

w
id

th
an

d
he

ig
ht

of
re

n-
de

rb
uf

fe
rs

4.
4.

2

M
A
X
_
D
R
A
W
_
B
U
F
F
E
R
S

Z
+

G
et

In
te

ge
rv

4
M

ax
im

um
nu

m
be

r
of

ac
tiv

e
dr

aw
bu

ff
er

s
4.

2.
1

M
A
X
_
C
O
L
O
R
_
A
T
T
A
C
H
M
E
N
T
S

Z
+

G
et

In
te

ge
rv

4
M

ax
im

um
nu

m
be

r
of

FB
O

at
ta

ch
-

m
en

tp
oi

nt
s

fo
rc

ol
or

bu
ff

er
s

4.
4.

2

M
A
X
_
V
I
E
W
P
O
R
T
_
D
I
M
S

2
×
Z

+
G

et
In

te
ge

rv
se

e
2.

12
.1

M
ax

im
um

vi
ew

po
rt

di
m

en
si

on
s

2.
12

.1
A
L
I
A
S
E
D
_
P
O
I
N
T
_
S
I
Z
E
_
R
A
N
G
E

2
×
R

+
G

et
Fl

oa
tv

1,
1

R
an

ge
(l

o
to

hi
)o

fp
oi

nt
si

ze
s

3.
4

A
L
I
A
S
E
D
_
L
I
N
E
_
W
I
D
T
H
_
R
A
N
G
E

2
×
R

+
G

et
Fl

oa
tv

1,
1

R
an

ge
(l

o
to

hi
)o

fl
in

e
w

id
th

s
3.

5

Table 6.28: Implementation Dependent Values

OpenGL ES 3.0.3 (December 18, 2013)

6.2. STATE TABLES 270

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

M
in

im
um

V
al

ue
D

es
cr

ip
tio

n
Se

c.

M
A
X
_
E
L
E
M
E
N
T
S
_
I
N
D
I
C
E
S

Z
+

G
et

In
te

ge
rv

–

R
ec

om
m

en
de

d
m

ax
.

nu
m

be
r

of
D

ra
w

R
an

ge
E

le
m

en
ts

in
di

ce
s

2.
8

M
A
X
_
E
L
E
M
E
N
T
S
_
V
E
R
T
I
C
E
S

Z
+

G
et

In
te

ge
rv

–

R
ec

om
m

en
de

d
m

ax
.

nu
m

be
r

of
D

ra
w

R
an

ge
E

le
m

en
ts

ve
rt

ic
es

2.
8

C
O
M
P
R
E
S
S
E
D
_
T
E
X
T
U
R
E
_
F
O
R
M
A
T
S

1
0
∗
×
Z

+
G

et
In

te
ge

rv
–

E
nu

m
er

at
ed

co
m

pr
es

se
d

te
xt

ur
e

fo
rm

at
s

3.
8.

6

N
U
M
_
C
O
M
P
R
E
S
S
E
D
_
T
E
X
T
U
R
E
_
F
O
R
M
A
T
S

Z
+

G
et

In
te

ge
rv

10
N

um
be

r
of

co
m

pr
es

se
d

te
xt

ur
e

fo
rm

at
s

3.
8.

6

P
R
O
G
R
A
M
_
B
I
N
A
R
Y
_
F
O
R
M
A
T
S

0
∗
×
Z

+
G

et
In

te
ge

rv
–

E
nu

m
er

at
ed

pr
og

ra
m

bi
-

na
ry

fo
rm

at
s

2.
11

.4

N
U
M
_
P
R
O
G
R
A
M
_
B
I
N
A
R
Y
_
F
O
R
M
A
T
S

Z
+

G
et

In
te

ge
rv

0
N

um
be

r
of

pr
og

ra
m

bi
-

na
ry

fo
rm

at
s

2.
11

.4

S
H
A
D
E
R
_
B
I
N
A
R
Y
_
F
O
R
M
A
T
S

0
∗
×
Z

+
G

et
In

te
ge

rv
–

E
nu

m
er

at
ed

sh
ad

er
bi

-
na

ry
fo

rm
at

s
2.

11
.2

N
U
M
_
S
H
A
D
E
R
_
B
I
N
A
R
Y
_
F
O
R
M
A
T
S

Z
+

G
et

In
te

ge
rv

0
N

um
be

r
of

sh
ad

er
bi

na
ry

fo
rm

at
s

2.
11

.2

S
H
A
D
E
R
_
C
O
M
P
I
L
E
R

B
G

et
B

oo
le

an
v

–
Sh

ad
er

co
m

pi
le

r
su

p-
po

rt
ed

,a
lw

ay
s
T
R
U
E

2.
11

–
2
×

6
×

2
×
Z

+
G

et
Sh

ad
er

-
Pr

ec
is

io
nF

or
m

at
–

Sh
ad

er
da

ta
ty

pe
ra

ng
es

6.
1.

12

–
2
×

6
×
Z

+
G

et
Sh

ad
er

-
Pr

ec
is

io
nF

or
m

at
–

Sh
ad

er
da

ta
ty

pe
pr

ec
i-

si
on

s
6.

1.
12

M
A
X
_
S
E
R
V
E
R
_
W
A
I
T
_
T
I
M
E
O
U
T

Z
+

G
et

In
te

ge
r6

4v
0

M
ax

im
um

W
ai

tS
yn

c
tim

eo
ut

in
te

rv
al

5.
2.

1

Table 6.29: Implementation Dependent Values (cont.)

OpenGL ES 3.0.3 (December 18, 2013)

6.2. STATE TABLES 271

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

M
in

im
um

V
al

ue
D

es
cr

ip
tio

n
Se

c.

E
X
T
E
N
S
I
O
N
S

0
∗
×
S

G
et

St
ri

ng
i

–
Su

pp
or

te
d

in
di

vi
du

al
ex

-
te

ns
io

n
na

m
es

6.
1.

5

N
U
M
_
E
X
T
E
N
S
I
O
N
S

Z
+

G
et

In
te

ge
rv

–
N

um
be

ro
fi

nd
iv

id
ua

le
x-

te
ns

io
n

na
m

es
6.

1.
5

M
A
J
O
R
_
V
E
R
S
I
O
N

Z
+

G
et

In
te

ge
rv

3
M

aj
or

ve
rs

io
n

nu
m

be
r

su
pp

or
te

d
6.

1.
5

M
I
N
O
R
_
V
E
R
S
I
O
N

Z
+

G
et

In
te

ge
rv

–
M

in
or

ve
rs

io
n

nu
m

be
r

su
pp

or
te

d
6.

1.
5

R
E
N
D
E
R
E
R

S
G

et
St

ri
ng

–
R

en
de

re
rs

tr
in

g
6.

1.
5

S
H
A
D
I
N
G
_
L
A
N
G
U
A
G
E
_
V
E
R
S
I
O
N

S
G

et
St

ri
ng

–
Sh

ad
in

g
L

an
gu

ag
e

ve
r-

si
on

su
pp

or
te

d
6.

1.
5

V
E
N
D
O
R

S
G

et
St

ri
ng

–
V

en
do

rs
tr

in
g

6.
1.

5

V
E
R
S
I
O
N

S
G

et
St

ri
ng

–
O

pe
nG

L
E

S
ve

rs
io

n
su

p-
po

rt
ed

6.
1.

5

Table 6.30: Implementation Dependent Version and Extension Support

OpenGL ES 3.0.3 (December 18, 2013)

6.2. STATE TABLES 272

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

M
in

im
um

V
al

ue
D

es
cr

ip
tio

n
Se

c.

M
A
X
_
V
E
R
T
E
X
_
A
T
T
R
I
B
S

Z
+

G
et

In
te

ge
rv

16
N

um
be

r
of

ac
tiv

e
ve

rt
ex

at
tr

ib
ut

es
2.

7

M
A
X
_
V
E
R
T
E
X
_
U
N
I
F
O
R
M
_
C
O
M
P
O
N
E
N
T
S

Z
+

G
et

In
te

ge
rv

10
24

N
um

be
r

of
co

m
po

ne
nt

s
fo

rv
er

te
x

sh
ad

er
un

if
or

m
va

ri
ab

le
s

2.
11

.6

M
A
X
_
V
E
R
T
E
X
_
U
N
I
F
O
R
M
_
V
E
C
T
O
R
S

Z
+

G
et

In
te

ge
rv

25
6

N
um

be
r

of
ve

ct
or

s
fo

r
ve

rt
ex

sh
ad

er
un

if
or

m
va

ri
ab

le
s

2.
11

.6

M
A
X
_
V
E
R
T
E
X
_
U
N
I
F
O
R
M
_
B
L
O
C
K
S

Z
+

G
et

In
te

ge
rv

12
M

ax
nu

m
be

r
of

ve
rt

ex
un

if
or

m
bu

ff
er

s
pe

r
pr

o-
gr

am
2.

11
.6

M
A
X
_
V
E
R
T
E
X
_
O
U
T
P
U
T
_
C
O
M
P
O
N
E
N
T
S

Z
+

G
et

In
te

ge
rv

64
M

ax
nu

m
be

r
of

co
m

po
-

ne
nt

s
of

ou
tp

ut
s

w
ri

tte
n

by
a

ve
rt

ex
sh

ad
er

2.
11

.8

M
A
X
_
V
E
R
T
E
X
_
T
E
X
T
U
R
E
_
I
M
A
G
E
_
U
N
I
T
S

Z
+

G
et

In
te

ge
rv

16
N

um
be

ro
ft

ex
tu

re
im

ag
e

un
its

ac
ce

ss
ib

le
by

a
ve

r-
te

x
sh

ad
er

2.
11

.9

Table 6.31: Implementation Dependent Vertex Shader Limits

OpenGL ES 3.0.3 (December 18, 2013)

6.2. STATE TABLES 273

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

M
in

im
um

V
al

ue
D

es
cr

ip
tio

n
Se

c.

M
A
X
_
F
R
A
G
M
E
N
T
_
U
N
I
F
O
R
M
_
-

C
O
M
P
O
N
E
N
T
S

Z
+

G
et

In
te

ge
rv

89
6

N
um

be
r

of
co

m
po

ne
nt

s
fo

r
fr

ag
m

en
t

sh
ad

er
un

i-
fo

rm
va

ri
ab

le
s

3.
9.

1

M
A
X
_
F
R
A
G
M
E
N
T
_
U
N
I
F
O
R
M
_
V
E
C
T
O
R
S

Z
+

G
et

In
te

ge
rv

22
4

N
um

be
r

of
ve

ct
or

s
fo

r
fr

ag
m

en
t

sh
ad

er
un

if
or

m
va

ri
ab

le
s

3.
9.

1

M
A
X
_
F
R
A
G
M
E
N
T
_
U
N
I
F
O
R
M
_
B
L
O
C
K
S

Z
+

G
et

In
te

ge
rv

12
M

ax
nu

m
be

ro
ff

ra
gm

en
t

un
if

or
m

bu
ff

er
s

pe
r

pr
o-

gr
am

2.
11

.6

M
A
X
_
F
R
A
G
M
E
N
T
_
I
N
P
U
T
_
C
O
M
P
O
N
E
N
T
S

Z
+

G
et

In
te

ge
rv

60
M

ax
nu

m
be

r
of

co
m

po
-

ne
nt

s
of

in
pu

ts
re

ad
by

a
fr

ag
m

en
ts

ha
de

r
3.

9.
2

M
A
X
_
T
E
X
T
U
R
E
_
I
M
A
G
E
_
U
N
I
T
S

Z
+

G
et

In
te

ge
rv

16
N

um
be

r
of

te
xt

ur
e

im
-

ag
e

un
its

ac
ce

ss
ib

le
by

a
fr

ag
m

en
ts

ha
de

r
2.

11
.9

M
I
N
_
P
R
O
G
R
A
M
_
T
E
X
E
L
_
O
F
F
S
E
T

Z
G

et
In

te
ge

rv
-8

M
in

im
um

te
xe

lo
ff

se
ta

l-
lo

w
ed

in
lo

ok
up

2.
11

.9

M
A
X
_
P
R
O
G
R
A
M
_
T
E
X
E
L
_
O
F
F
S
E
T

Z
G

et
In

te
ge

rv
7

M
ax

im
um

te
xe

lo
ff

se
ta

l-
lo

w
ed

in
lo

ok
up

2.
11

.9

Table 6.32: Implementation Dependent Fragment Shader Limits

OpenGL ES 3.0.3 (December 18, 2013)

6.2. STATE TABLES 274

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

M
in

im
um

V
al

ue
D

es
cr

ip
tio

n
Se

c.

M
A
X
_
U
N
I
F
O
R
M
_
B
U
F
F
E
R
_
B
I
N
D
I
N
G
S

Z
+

G
et

In
te

ge
rv

24
M

ax
nu

m
be

r
of

un
if

or
m

bu
ff

er
bi

nd
in

g
po

in
ts

on
th

e
co

nt
ex

t
2.

11
.6

M
A
X
_
U
N
I
F
O
R
M
_
B
L
O
C
K
_
S
I
Z
E

Z
+

G
et

In
te

ge
r6

4v
16

38
4

M
ax

si
ze

in
ba

si
c

m
a-

ch
in

e
un

its
of

a
un

if
or

m
bl

oc
k

2.
11

.6

U
N
I
F
O
R
M
_
B
U
F
F
E
R
_
O
F
F
S
E
T
_
-

A
L
I
G
N
M
E
N
T

Z
+

G
et

In
te

ge
rv

1
M

in
im

um
re

qu
ir

ed
al

ig
n-

m
en

t
fo

r
un

if
or

m
bu

ff
er

si
ze

s
an

d
of

fs
et

s
2.

11
.6

M
A
X
_
C
O
M
B
I
N
E
D
_
U
N
I
F
O
R
M
_
B
L
O
C
K
S

Z
+

G
et

In
te

ge
rv

24
M

ax
nu

m
be

r
of

un
if

or
m

bu
ff

er
s

pe
rp

ro
gr

am
2.

11
.6

M
A
X
_
C
O
M
B
I
N
E
D
_
V
E
R
T
E
X
_
U
N
I
F
O
R
M
_
-

C
O
M
P
O
N
E
N
T
S

Z
+

G
et

In
te

ge
r6

4v
†

N
um

be
r

of
w

or
ds

fo
r

ve
rt

ex
sh

ad
er

un
if

or
m

va
ri

ab
le

s
in

al
l

un
i-

fo
rm

bl
oc

ks
(i

nc
lu

di
ng

de
fa

ul
t)

2.
11

.6

M
A
X
_
C
O
M
B
I
N
E
D
_
F
R
A
G
M
E
N
T
_
-

U
N
I
F
O
R
M
_
C
O
M
P
O
N
E
N
T
S

Z
+

G
et

In
te

ge
r6

4v
†

N
um

be
r

of
w

or
ds

fo
r

fr
ag

m
en

t
sh

ad
er

un
if

or
m

va
ri

ab
le

s
in

al
l

un
i-

fo
rm

bl
oc

ks
(i

nc
lu

di
ng

de
fa

ul
t)

2.
11

.6

M
A
X
_
V
A
R
Y
I
N
G
_
C
O
M
P
O
N
E
N
T
S

Z
+

G
et

In
te

ge
rv

60
N

um
be

r
of

co
m

po
ne

nt
s

fo
ro

ut
pu

tv
ar

ia
bl

es
2.

11
.8

M
A
X
_
V
A
R
Y
I
N
G
_
V
E
C
T
O
R
S

Z
+

G
et

In
te

ge
rv

15
N

um
be

r
of

ve
ct

or
s

fo
r

ou
tp

ut
va

ri
ab

le
s

2.
11

.8

M
A
X
_
C
O
M
B
I
N
E
D
_
T
E
X
T
U
R
E
_
I
M
A
G
E
_
-

U
N
I
T
S

Z
+

G
et

In
te

ge
rv

32
To

ta
l

nu
m

be
r

of
te

xt
ur

e
un

its
ac

ce
ss

ib
le

by
th

e
G

L
2.

11
.9

Table 6.33: Implementation Dependent Aggregate Shader Limits
† The minimum value for each stage is MAX_stage_UNIFORM_BLOCKS ×

MAX_UNIFORM_BLOCK_SIZE / 4 + MAX_stage_UNIFORM_COMPONENTS

OpenGL ES 3.0.3 (December 18, 2013)

6.2. STATE TABLES 275

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

M
in

im
um

V
al

ue
D

es
cr

ip
tio

n
Se

c.

M
A
X
_
T
R
A
N
S
F
O
R
M
_
F
E
E
D
B
A
C
K
_
-

I
N
T
E
R
L
E
A
V
E
D
_
C
O
M
P
O
N
E
N
T
S

Z
+

G
et

In
te

ge
rv

64

M
ax

nu
m

be
r

of
co

m
po

-
ne

nt
s

to
w

ri
te

to
a

si
n-

gl
e

bu
ff

er
in

in
te

rl
ea

ve
d

m
od

e

2.
14

M
A
X
_
T
R
A
N
S
F
O
R
M
_
F
E
E
D
B
A
C
K
_
-

S
E
P
A
R
A
T
E
_
A
T
T
R
I
B
S

Z
+

G
et

In
te

ge
rv

4

M
ax

nu
m

be
r

of
se

pa
ra

te
at

tr
ib

ut
es

or
ou

tp
ut

s
th

at
ca

n
be

ca
pt

ur
ed

in
tr

an
s-

fo
rm

fe
ed

ba
ck

2.
14

M
A
X
_
T
R
A
N
S
F
O
R
M
_
F
E
E
D
B
A
C
K
_
-

S
E
P
A
R
A
T
E
_
C
O
M
P
O
N
E
N
T
S

Z
+

G
et

In
te

ge
rv

4
M

ax
nu

m
be

r
of

co
m

po
-

ne
nt

s
pe

ra
ttr

ib
ut

e
or

ou
t-

pu
ti

n
se

pa
ra

te
m

od
e

2.
14

Table 6.34: Implementation Dependent Transform Feedback Limits

OpenGL ES 3.0.3 (December 18, 2013)

6.2. STATE TABLES 276

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

M
in

im
um

V
al

ue
D

es
cr

ip
tio

n
Se

c.
S
A
M
P
L
E
_
B
U
F
F
E
R
S

Z
2

G
et

In
te

ge
rv

0
N

um
be

ro
fm

ul
tis

am
pl

e
bu

ff
er

s
3.

3
S
A
M
P
L
E
S

Z
+

G
et

In
te

ge
rv

0
C

ov
er

ag
e

m
as

k
si

ze
3.

3

M
A
X
_
S
A
M
P
L
E
S

Z
+

G
et

In
te

ge
rv

4
M

ax
im

um
nu

m
be

r
of

sa
m

pl
es

su
p-

po
rt

ed
fo

rm
ul

tis
am

pl
in

g
4.

4.
2

x
_
B
I
T
S

Z
+

G
et

In
te

ge
rv

–
N

um
be

r
of

bi
ts

in
x

co
lo

r
bu

ff
er

co
m

po
ne

nt
.

x
is

on
e

of
R
E
D

,
G
R
E
E
N

,B
L
U
E

,A
L
P
H
A

4

D
E
P
T
H
_
B
I
T
S

Z
+

G
et

In
te

ge
rv

–
N

um
be

ro
fd

ep
th

bu
ff

er
pl

an
es

4
S
T
E
N
C
I
L
_
B
I
T
S

Z
+

G
et

In
te

ge
rv

–
N

um
be

ro
fs

te
nc

il
pl

an
es

4
I
M
P
L
E
M
E
N
T
A
T
I
O
N
_
C
O
L
O
R
_
R
E
A
D
_
T
Y
P
E
†

Z
1
4

G
et

In
te

ge
rv

–
Im

pl
em

en
ta

tio
n

pr
ef

er
re

d
pi

xe
lt

yp
e

4.
3.

2

I
M
P
L
E
M
E
N
T
A
T
I
O
N
_
C
O
L
O
R
_
R
E
A
D
_
F
O
R
M
A
T
†

Z
8

G
et

In
te

ge
rv

–
Im

pl
em

en
ta

tio
n

pr
ef

er
re

d
pi

xe
l

fo
r-

m
at

4.
3.

2

Table 6.35: Framebuffer Dependent Values
† Unlike most framebuffer-dependent state which is queried from the currently bound

draw framebuffer, this state is queried from the currently bound read framebuffer.

OpenGL ES 3.0.3 (December 18, 2013)

6.2. STATE TABLES 277

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

–
n
×
Z
5

G
et

E
rr

or
0

C
ur

re
nt

er
ro

rc
od

e(
s)

2.
5

–
n
×
B

–
F
A
L
S
E

Tr
ue

if
th

er
e

is
a

co
rr

es
po

nd
in

g
er

ro
r

2.
5

C
U
R
R
E
N
T
_
Q
U
E
R
Y

3
×
Z

+
G

et
Q

ue
ry

iv
0

A
ct

iv
e

qu
er

y
ob

je
ct

na
m

es
6.

1.
7

C
O
P
Y
_
R
E
A
D
_
B
U
F
F
E
R
_
B
I
N
D
I
N
G

Z
+

G
et

In
te

ge
rv

0
B

uf
fe

r
ob

je
ct

bo
un

d
to

co
py

bu
ff

er
“r

ea
d”

bi
nd

po
in

t
2.

9.
5

C
O
P
Y
_
W
R
I
T
E
_
B
U
F
F
E
R
_
B
I
N
D
I
N
G

Z
+

G
et

In
te

ge
rv

0
B

uf
fe

r
ob

je
ct

bo
un

d
to

co
py

bu
ff

er
“w

ri
te

”
bi

nd
po

in
t

2.
9.

5

Table 6.36: Miscellaneous

OpenGL ES 3.0.3 (December 18, 2013)

Appendix A

Invariance

The OpenGL ES specification is not pixel exact. It therefore does not guarantee an
exact match between images produced by different GL implementations. However,
the specification does specify exact matches, in some cases, for images produced
by the same implementation. The purpose of this appendix is to identify and pro-
vide justification for those cases that require exact matches.

A.1 Repeatability

The obvious and most fundamental case is repeated issuance of a series of GL com-
mands. For any given GL and framebuffer state vector, and for any GL command,
the resulting GL and framebuffer state must be identical whenever the command is
executed on that initial GL and framebuffer state.

One purpose of repeatability is avoidance of visual artifacts when a double-
buffered scene is redrawn. If rendering is not repeatable, swapping between two
buffers rendered with the same command sequence may result in visible changes
in the image. Such false motion is distracting to the viewer. Another reason for
repeatability is testability.

Repeatability, while important, is a weak requirement. Given only repeata-
bility as a requirement, two scenes rendered with one (small) polygon changed
in position might differ at every pixel. Such a difference, while within the law
of repeatability, is certainly not within its spirit. Additional invariance rules are
desirable to ensure useful operation.

278

A.2. MULTI-PASS ALGORITHMS 279

A.2 Multi-pass Algorithms

Invariance is necessary for a whole set of useful multi-pass algorithms. Such al-
gorithms render multiple times, each time with a different GL mode vector, to
eventually produce a result in the framebuffer. Examples of these algorithms in-
clude:

• “Erasing” a primitive from the framebuffer by redrawing it in a different
color.

• Using stencil operations to compute capping planes for stencil shadow vol-
umes.

On the other hand, invariance rules can greatly increase the complexity of high-
performance implementations of the GL. Even the weak repeatability requirement
significantly constrains a parallel implementation of the GL. Because GL imple-
mentations are required to implement ALL GL capabilities, not just a convenient
subset, those that utilize hardware acceleration are expected to alternate between
hardware and software modules based on the current GL mode vector. A strong
invariance requirement forces the behavior of the hardware and software modules
to be identical, something that may be very difficult to achieve (for example, if the
hardware does floating-point operations with different precision than the software).

What is desired is a compromise that results in many compliant, high-
performance implementations, and in many software vendors choosing to port to
OpenGL ES.

A.3 Invariance Rules

For a given instantiation of an OpenGL ES rendering context:

Rule 1 For any given GL and framebuffer state vector, and for any given GL com-
mand, the resulting GL and framebuffer state must be identical each time the com-
mand is executed on that initial GL and framebuffer state.

Rule 2 Changes to the following state values have no side effects (the use of any
other state value is not affected by the change):

Required:

• Framebuffer contents (all bitplanes)

• The color buffers enabled for writing

OpenGL ES 3.0.3 (December 18, 2013)

A.4. WHAT ALL THIS MEANS 280

• Scissor parameters (other than enable)

• Writemasks (color, depth, stencil)

• Clear values (color, depth, stencil)

Strongly suggested:

• Stencil parameters (other than enable)

• Depth test parameters (other than enable)

• Blend parameters (other than enable)

• Pixel storage state

• Polygon offset parameters (other than enables, and except as they affect
the depth values of fragments)

Corollary 1 Fragment generation is invariant with respect to the state values
marked with • in Rule 2.

Rule 3 The arithmetic of each per-fragment operation is invariant except with re-
spect to parameters that directly control it.

Corollary 2 Images rendered into different color buffers sharing the same frame-
buffer, either simultaneously or separately using the same command sequence, are
pixel identical.

Rule 4 The same vertex or fragment shader will produce the same result when
run multiple times with the same input. The wording ‘the same shader’ means a
program object that is populated with the same source strings, which are compiled
and then linked, possibly multiple times, and which program object is then executed
using the same GL state vector.

Rule 5 All fragment shaders that either conditionally or unconditionally assign
gl_FragCoord.z to gl_FragDepth are depth-invariant with respect to each
other, for those fragments where the assignment to gl_FragDepth actually is
done.

A.4 What All This Means

Hardware accelerated GL implementations are expected to default to software op-
eration when some GL state vectors are encountered. Even the weak repeatability
requirement means, for example, that OpenGL ES implementations cannot apply

OpenGL ES 3.0.3 (December 18, 2013)

A.4. WHAT ALL THIS MEANS 281

hysteresis to this swap, but must instead guarantee that a given mode vector im-
plies that a subsequent command always is executed in either the hardware or the
software machine.

The stronger invariance rules constrain when the switch from hardware to soft-
ware rendering can occur, given that the software and hardware renderers are not
pixel identical. For example, the switch can be made when blending is enabled or
disabled, but it should not be made when a change is made to the blending param-
eters.

Because floating point values may be represented using different formats in
different renderers (hardware and software), many OpenGL ES state values may
change subtly when renderers are swapped. This is the type of state value change
that Rule 1 seeks to avoid.

OpenGL ES 3.0.3 (December 18, 2013)

Appendix B

Corollaries

The following observations are derived from the body and the other appendixes of
the specification. Absence of an observation from this list in no way impugns its
veracity.

1. The error semantics of upward compatible OpenGL ES revisions may
change. Otherwise, only additions can be made to upward compatible re-
visions.

2. GL query commands are not required to satisfy the semantics of the Flush
or the Finish commands. All that is required is that the queried state be con-
sistent with complete execution of all previously executed GL commands.

3. Application specified line width must be returned as specified when queried.
Implementation-dependent clamping affects the values only while they are
in use.

4. The mask specified as the third argument to StencilFunc affects the operands
of the stencil comparison function, but has no direct effect on the update of
the stencil buffer. The mask specified by StencilMask has no effect on the
stencil comparison function; it limits the effect of the update of the stencil
buffer.

5. There is no atomicity requirement for OpenGL ES rendering commands,
even at the fragment level.

6. Because rasterization of polygons is point sampled, polygons that have no
area generate no fragments when they are rasterized, and the fragments gen-
erated by the rasterization of “narrow” polygons may not form a continuous
array.

282

283

7. OpenGL ES does not force left- or right-handedness on any of its coordinates
systems.

8. (No pixel dropouts or duplicates.) Let two polygons share an identical edge.
That is, there exist vertices A and B of an edge of one polygon, and vertices
C and D of an edge of the other polygon; the positions of vertex A and C
are identical; and the positions of vertex B and D are identical. Vertex po-
sitions are identical if the gl_Position values output by the vertex shader
are identical. Then, when the fragments produced by rasterization of both
polygons are taken together, each fragment intersecting the interior of the
shared edge is produced exactly once.

9. Dithering algorithms may be different for different components. In particu-
lar, alpha may be dithered differently from red, green, or blue, and an imple-
mentation may choose to not dither alpha at all.

OpenGL ES 3.0.3 (December 18, 2013)

Appendix C

Compressed Texture Image
Formats

C.1 ETC Compressed Texture Image Formats

The ETC formats form a family of related compressed texture image formats. They
are designed to do different tasks, but also to be similar enough that hardware can
be reused between them. Each one is described in detail below, but we will first
give an overview of each format and describe how it is similar to others and the
main differences.

COMPRESSED_RGB8_ETC2 is a format for compressing RGB8 data. It is a su-
perset of the older OES_compressed_ETC1_RGB8_texture format. This means
that an older ETC1 texture can be decoded using by a COMPRESSED_RGB8_ETC2-
compliant decoder, using the enum-value for COMPRESSED_RGB8_ETC2. The
main difference is that the newer version contains three new modes; the ‘T-mode’
and the ‘H-mode’ which are good for sharp chrominance blocks and the ‘Planar’
mode which is good for smooth blocks.

COMPRESSED_SRGB8_ETC2 is the same as COMPRESSED_RGB8_ETC2 with
the difference that the values should be interpeted as sRGB-values instead of RGB-
values.

COMPRESSED_RGBA8_ETC2_EAC encodes RGBA8 data. The RGB part is en-
coded exactly the same way as COMPRESSED_RGB8_ETC2. The alpha part is en-
coded separately.

COMPRESSED_SRGB8_ALPHA8_ETC2_EAC is the same as COMPRESSED_-

RGBA8_ETC2_EAC but here the RGB-values (but not the alpha value) should be
interpreted as sRGB-values.

284

C.1. ETC COMPRESSED TEXTURE IMAGE FORMATS 285

COMPRESSED_R11_EAC is a one-channel unsigned format. It is similar to the
alpha part of COMPRESSED_SRGB8_ALPHA8_ETC2_EAC but not exactly the same;
it delivers higher precision. It is possible to make hardware that can decode both
formats with minimal overhead.

COMPRESSED_RG11_EAC is a two-channel unsigned format. Each channel is
decoded exactly as COMPRESSED_R11_EAC.

COMPRESSED_SIGNED_R11_EAC is a one-channel signed format. This is good
in situations when it is important to be able to preserve zero exactly, and still
use both positive and negative values. It is designed to be similar enough to
COMPRESSED_R11_EAC so that hardware can decode both with minimal overhead,
but it is not exactly the same. For example; the signed version does not add 0.5 to
the base codeword, and the extension from 11 bits differ. For all details, see the
corresponding sections.

COMPRESSED_SIGNED_RG11_EAC is a two-channel signed format. Each
channel is decoded exactly as COMPRESSED_SIGNED_R11_EAC.

COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2 is very similar to
COMPRESSED_RGB8_ETC2, but has the ability to represent “punchthrough”-alpha
(completely opaque or transparent). Each block can select to be completely opaque
using one bit. To fit this bit, there is no individual mode in COMPRESSED_RGB8_-

PUNCHTHROUGH_ALPHA1_ETC2. In other respects, the opaque blocks are decoded
as in COMPRESSED_RGB8_ETC2. For the transparent blocks, one index is reserved
to represent transparency, and the decoding of the RGB channels are also affected.
For details, see the corresponding sections.

COMPRESSED_SRGB8_PUNCHTHROUGH_ALPHA1_ETC2 is
the same as COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2 but should be
interpreted as sRGB.

A texture compressed using any of the ETC texture image formats is described
as a number of 4× 4 pixel blocks.

Pixel a1 (see Table C.1) of the first block in memory will represent the texture
coordinate (u = 0, v = 0). Pixel a2 in the second block in memory will be adjacent
to pixel m1 in the first block, etc. until the width of the texture. Then pixel a3 in
the following block (third block in memory for a 8× 8 texture) will be adjacent to
pixel d1 in the first block, etc. until the height of the texture. Calling Compressed-
TexImage2D to get an 8× 8 texture using the first, second, third and fourth block
shown in Table C.1 would have the same effect as calling TexImage2D where the
bytes describing the pixels would come in the following memory order: a1 e1 i1
m1 a2 e2 i2 m2 b1 f1 j1 n1 b2 f2 j2 n2 c1 g1 k1 o1 c2 g2 k2 o2 d1 h1 l1 p1 d2 h2 l2
p2 a3 e3 i3 m3 a4 e4 i4 m4 b3 f3 j3 n3 b4 f4 j4 n4 c3 g3 k3 o3 c4 g4 k4 o4 d3 h3 l3
p3 d4 h4 l4 p4.

If the width or height of the texture (or a particular mip-level) is not a multiple

OpenGL ES 3.0.3 (December 18, 2013)

C.1. ETC COMPRESSED TEXTURE IMAGE FORMATS 286

First block in mem

a1 e1 i1 m1

b1 f1 j1 n1

c1 g1 k1 o1

d1 h1 l1 p1

Second block in mem

a2 e2 i2 m2

b2 f2 j2 n2

c2 g2 k2 o2

d2 h2 l2 p2

→ u direction

a3 e3 i3 m3

b3 f3 j3 n3

c3 g3 k3 o3

d3 h3 l3 p3

↓ Third block in mem

a4 e4 i4 m4

b4 f4 j4 n4

c4 g4 k4 o4

d4 h4 l4 p4

Fourth block in mem

v direction

Table C.1: Pixel layout for a 8 × 8 texture using four COMPRESSED_RGB8_ETC2
compressed blocks. Note how pixel a3 in the third block is adjacent to pixel d1 in
the first block.

of four, then padding is added to ensure that the texture contains a whole number
of 4 × 4 blocks in each dimension. The padding does not affect the texel coor-
dinates. For example, the texel shown as a1 in Table C.1 always has coordinates
i = 0, j = 0. The values of padding texels are irrelevant, e.g., in a 3 × 3 texture,
the texels marked as m1, n1, o1, d1, h1, l1 and p1 form padding and have no effect
on the final texture image.

It is possible to update part of a compressed texture using CompressedTex-
SubImage2D: Since ETC images are easily edited along 4 × 4 texel boundaries,
the limitations on CompressedTexSubImage2D are relaxed. CompressedTex-
SubImage2D will result in an INVALID_OPERATION error only if one of the fol-
lowing conditions occurs:

OpenGL ES 3.0.3 (December 18, 2013)

C.1. ETC COMPRESSED TEXTURE IMAGE FORMATS 287

• width is not a multiple of four, and width plus xoffset is not equal to the
texture width;

• height is not a multiple of four, and height plus yoffset is not equal to the
texture height; or

• xoffset or yoffset is not a multiple of four.

The number of bits that represent a 4 × 4 texel block is 64 bits if in-
ternalformat is given by COMPRESSED_RGB8_ETC2, COMPRESSED_SRGB8_-

ETC2, COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2 or COMPRESSED_-
SRGB8_PUNCHTHROUGH_ALPHA1_ETC2.

In those cases the data for a block is stored as a number of bytes,
{q0, q1, q2, q3, q4, q5, q6, q7}, where byte q0 is located at the lowest memory ad-
dress and q7 at the highest. The 64 bits specifying the block are then represented
by the following 64 bit integer:

int64bit = 256×(256×(256×(256×(256×(256×(256×q0+q1)+q2)+q3)+q4)+q5)+q6)+q7

The number of bits that represent a 4 × 4 texel block is 128 bits if internal-
format is given by COMPRESSED_RGBA8_ETC2_EAC or COMPRESSED_SRGB8_-
ALPHA8_ETC2_EAC. In those cases the data for a block is stored as a number of
bytes: {q0, q1, q2, q3, q4, q5, q6, q7, q8, q9, q10, q11, q12, q13, q14, q15}, where byte q0
is located at the lowest memory address and q15 at the highest. This is split into
two 64-bit integers, one used for color channel decompression and one for alpha
channel decompression:

int64bitAlpha =
256× (256× (256× (256× (256× (256× (256× q0 + q1) + q2) + q3) + q4) + q5) + q6) + q7

int64bitColor =
256× (256× (256× (256× (256× (256× (256× q8 + q9) + q10) + q11) + q12) + q13) + q14) + q15

C.1.1 Format COMPRESSED_RGB8_ETC2

For COMPRESSED_RGB8_ETC2, each 64-bit word contains information about a
three-channel 4× 4 pixel block as shown in Table C.2.

The blocks are compressed using one of five different ‘modes’. Table C.3a
shows the bits used for determining the mode used in a given block. First, if the
bit marked ‘D’ is set to 0, the ‘individual’ mode is used. Otherwise, the three 5-bit
values R, G and B, and the three 3-bit values dR, dG and dB are examined. R,

OpenGL ES 3.0.3 (December 18, 2013)

C.1. ETC COMPRESSED TEXTURE IMAGE FORMATS 288

a e i m

b f j n

c g k o

d h l p

↓
v direction

→ u direction

Table C.2: Pixel layout for an COMPRESSED_RGB8_ETC2 compressed block.

G and B are treated as integers between 0 and 31 and dR, dG and dB as two’s-
complement integers between −4 and +3. First, R and dR are added, and if the
sum is not within the interval [0,31], the ‘T’ mode is selected. Otherwise, if the sum
of G and dG is outside the interval [0,31], the ‘H’ mode is selected. Otherwise, if
the sum of B and dB is outside of the interval [0,31], the ‘planar’ mode is selected.
Finally, if the ‘D’ bit is set to 1 and all of the aforementioned sums lie between 0
and 31, the ‘differential’ mode is selected.

The layout of the bits used to decode the ‘individual’ and ‘differential’ modes
are shown in Table C.3b and Table C.3c, respectively. Both of these modes share
several characteristics. In both modes, the 4 × 4 block is split into two subblocks
of either size 2 × 4 or 4 × 2. This is controlled by bit 32, which we dub the ‘flip
bit’. If the ‘flip bit’ is 0, the block is divided into two 2×4 subblocks side-by-side,
as shown in Table C.4. If the ‘flip bit’ is 1, the block is divided into two 4 × 2
subblocks on top of each other, as shown in Table C.5. In both modes, a ‘base
color’ for each subblock is stored, but the way they are stored is different in the
two modes:

In the ‘individual’ mode, following the layout shown in Table C.3b, the base
color for subblock 1 is derived from the codewords R1 (bit 63–60), G1 (bit 55–52)
and B1 (bit 47–44). These four bit values are extended to RGB888 by replicating
the four higher order bits in the four lower order bits. For instance, if R1 = 14 =
1110 binary (1110b for short), G1 = 3 = 0011b and B1 = 8 = 1000b, then the red
component of the base color of subblock 1 becomes 11101110b = 238, and the
green and blue components become 00110011b = 51 and 10001000b = 136. The
base color for subblock 2 is decoded the same way, but using the 4-bit codewords

OpenGL ES 3.0.3 (December 18, 2013)

C.1. ETC COMPRESSED TEXTURE IMAGE FORMATS 289

a) location of bits for mode selection:
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R dR G dG B dB - - - - - - D -

b) bit layout for bits 63 through 32 for ’individual’ mode:
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R1 R2 G1 G2 B1 B2 table1 table2 0 FB

c) bit layout for bits 63 through 32 for ’differential’ mode:
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R dR G dG B dB table1 table2 1 FB

d) bit layout for bits 63 through 32 for ’T’ mode:
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

- - - R1a - R1b G1 B1 R2 G2 B2 da 1 db

e) bit layout for bits 63 through 32 for ’H’ mode:
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

- R1 G1a - - - G1b B1a - B1b R2 G2 B2 da 1 db

f) bit layout for bits 31 through 0 for ’individual’, ’diff’, ’T’ and ’H’ modes:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

p0 o0 n0 m0 l0 k0 j0 i0 h0 g0 f0 e0 d0 c0 b0 a0 p1 o1 n1 m1 l1 k1 j1 i1 h1 g1 f1 e1 d1 c1 b1 a1

g) bit layout for bits 63 through 0 for ’planar’ mode:
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

- RO GO1 - GO2 BO1 - - - BO2 - BO3 RH1 1 RH2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GH BH RV GV BV

Table C.3: Texel Data format for RGB8_ETC2 compressed textures formats

R2 (bit 59–56), G2 (bit 51–48)and B2 (bit 43–40) instead. In summary, the base
colors for the subblocks in the individual mode are:

base col subblock1 = extend 4to8bits(R1, G1, B1)
base col subblock2 = extend 4to8bits(R2, G2, B2)

In the ‘differential’ mode, following the layout shown in Table C.3c, the base color
for subblock 1 is derived from the five-bit codewords R, G and B. These five-bit
codewords are extended to eight bits by replicating the top three highest order bits
to the three lowest order bits. For instance, if R = 28 = 11100b, the resulting eight-
bit red color component becomes 11100111b = 231. Likewise, if G = 4 = 00100b
and B = 3 = 00011b, the green and blue components become 00100001b = 33 and
00011000b = 24 respectively. Thus, in this example, the base color for subblock
1 is (231, 33, 24). The five-bit representation for the base color of subblock 2 is

OpenGL ES 3.0.3 (December 18, 2013)

C.1. ETC COMPRESSED TEXTURE IMAGE FORMATS 290

subblock1 subblock2

a e i m

b f j n

c g k o

d h l p

Table C.4: Two 2× 4-pixel subblocks side-by-side.

a e i m

b f j n

c g k o

d h l p

subblock 1

subblock 2

Table C.5: Two 4× 2-pixel subblocks on top of each other.

obtained by modifying the five-bit codewords R G and B by the codewords dR, dG
and dB. Each of dR, dG and dB is a 3-bit two’s-complement number that can hold
values between −4 and +3. For instance, if R = 28 as above, and dR = 100b = −4,
then the five bit representation for the red color component is 28 + (−4) = 24 =
11000b, which is then extended to eight bits to 11000110b = 198. Likewise, if G =
4, dG = 2, B = 3 and dB = 0, the base color of subblock 2 will be RGB = (198, 49,
24). In summary, the base colors for the subblocks in the differential mode are:

base col subblock1 = extend 5to8bits(R,G,B)
base col subblock2 = extend 5to8bits(R+ dR,G+ dG,B + dG)

Note that these additions will not under- or overflow, or one of the alternative de-
compression modes would have been chosen instead of the ‘differential’ mode.

After obtaining the base color, the operations are the same for the two modes

OpenGL ES 3.0.3 (December 18, 2013)

C.1. ETC COMPRESSED TEXTURE IMAGE FORMATS 291

‘individual’ and ‘differential’. First a table is chosen using the table codewords:
For subblock 1, table codeword 1 is used (bits 39–37), and for subblock 2, table
codeword 2 is used (bits 36–34), see Table C.3b or C.3c. The table codeword is
used to select one of eight modifier tables, see Table C.6. For instance, if the table
code word is 010 binary = 2, then the modifier table [−29, −9, 9, 29] is selected
for the corresponding sub-block. Note that the values in Table C.6 are valid for
all textures and can therefore be hardcoded into the decompression unit. Next, we

table codeword modifier table
0 -8 -2 2 8
1 -17 -5 5 17
2 -29 -9 9 29
3 -42 -13 13 42
4 -60 -18 18 60
5 -80 -24 24 80
6 -106 -33 33 106
7 -183 -47 47 183

Table C.6: Intensity modifier sets for ‘individual’ and ‘differential’ modes:

identify which modifier value to use from the modifier table using the two ‘pixel
index’ bits. The pixel index bits are unique for each pixel. For instance, the pixel
index for pixel d (see Table C.2) can be found in bits 19 (most significant bit,
MSB), and 3 (least significant bit, LSB), see Table C.3f. Note that the pixel index
for a particular texel is always stored in the same bit position, irrespectively of bits
‘diffbit’ and ‘flipbit’. The pixel index bits are decoded using Table C.7. If, for
instance, the pixel index bits are 01 binary = 1, and the modifier table [−29, −9,
9, 29] is used, then the modifier value selected for that pixel is 29 (see Table C.7).

pixel index value resulting modifier value
msb lsb

1 1 -b (large negative value)
1 0 -a (small negative value)
0 0 a (small positive value)
0 1 b (large positive value)

Table C.7: Mapping from pixel index values to modifier values for COMPRESSED_-
RGB8_ETC2 compressed textures

OpenGL ES 3.0.3 (December 18, 2013)

C.1. ETC COMPRESSED TEXTURE IMAGE FORMATS 292

This modifier value is now used to additively modify the base color. For example,
if we have the base color (231, 8, 16), we should add the modifier value 29 to all
three components: (231 + 29, 8 + 29, 16 + 29) resulting in (260, 37, 45). These
values are then clamped to [0, 255], resulting in the color (255, 37, 45), and we are
finished decoding the texel.

The ‘T’ and ‘H’ compression modes also share some characteristics: both use
two base colors stored using 4 bits per channel decoded as in the individual mode.
Unlike the ‘individual’ mode however, these bits are not stored sequentially, but in
the layout shown in C.3d and C.3e. To clarify, in the ‘T’ mode, the two colors are
constructed as follows:

base col 1 = extend 4to8bits((R1a� 2) |R1b, G1, B1)
base col 2 = extend 4to8bits(R2, G2, B2)

where � denotes bit-wise left shift and | denotes bit-wise OR. In the ‘H’ mode,
the two colors are constructed as follows:

base col 1 = extend 4to8bits(R1, (G1a� 1) |G1b, (B1a� 3) |B1b)
base col 2 = extend 4to8bits(R2, G2, B2)

Both the ‘T’ and ‘H’ modes have four ‘paint colors’ which are the colors that will
be used in the decompressed block, but they are assigned in a different manner.
In the ‘T’ mode, ‘paint color 0’ is simply the first base color, and ‘paint color 2’
is the second base color. To obtain the other ‘paint colors’, a ‘distance’ is first
determined, which will be used to modify the luminance of one of the base colors.
This is done by combining the values ‘da’ and ‘db’ shown in Table C.3d by (da�
1)|db, and then using this value as an index into the small look-up table shown in
Table C.8. For example, if ‘da’ is 10 binary and ‘db’ is 1 binary, the index is 101

distance index distance
0 3
1 6
2 11
3 16
4 23
5 32
6 41
7 64

Table C.8: Distance table for ‘T’ and ‘H’ modes.

binary and the selected distance will be 32. ‘Paint color 1’ is then equal to the

OpenGL ES 3.0.3 (December 18, 2013)

C.1. ETC COMPRESSED TEXTURE IMAGE FORMATS 293

second base color with the ‘distance’ added to each channel, and ‘paint color 3’ is
the second base color with the ‘distance’ subtracted. In summary, to determine the
four ‘paint colors’ for a ‘T’ block:

paint color 0 = base col 1
paint color 1 = base col 2 + (d, d, d)
paint color 2 = base col 2
paint color 3 = base col 2 − (d, d, d)

In both cases, the value of each channel is clamped to within [0,255].
A ‘distance’ value is computed for the ‘H’ mode as well, but doing so is slightly

more complex. In order to construct the three-bit index into the distance table
shown in Table C.8, ‘da’ and ‘db’ shown in Table C.3e are used as the most sig-
nificant bit and middle bit, respectively, but the least significant bit is computed as
(base col 1 value ≥ base col 2 value), the ‘value’ of a color for the comparison be-
ing equal to (R� 16)+(G� 8)+B. Once the ‘distance’ d has been determined
for an ‘H’ block, the four ‘paint colors’ will be:

paint color 0 = base col 1 + (d, d, d)
paint color 1 = base col 1 − (d, d, d)
paint color 2 = base col 2 + (d, d, d)
paint color 3 = base col 2 − (d, d, d)

Again, all color components are clamped to within [0,255]. Finally, in both the ‘T’
and ‘H’ modes, every pixel is assigned one of the four ‘paint colors’ in the same
way the four modifier values are distributed in ‘individual’ or ‘differential’ blocks.
For example, to choose a paint color for pixel d, an index is constructed using bit
19 as most significant bit and bit 3 as least significant bit. Then, if a pixel has index
2, for example, it will be assigned paint color 2.

The final mode possible in an COMPRESSED_RGB8_ETC2-compressed block is
the ‘planar’ mode. Here, three base colors are supplied and used to form a color
plane used to determine the color of the individual pixels in the block.

All three base colors are stored in RGB 676 format, and stored in the manner
shown in Table C.3g. The three colors are there labelled ‘O’, ‘H’ and ‘V’, so that
the three components of color ‘V’ are RV, GV and BV, for example. Some color
channels are split into non-consecutive bit-ranges, for example BO is reconstructed
using BO1 as the most significant bit, BO2 as the two following bits, and BO3 as
the three least significant bits.

Once the bits for the base colors have been extracted, they must be extended
to 8 bits per channel in a manner analogous to the method used for the base colors
in other modes. For example, the 6-bit blue and red channels are extended by

OpenGL ES 3.0.3 (December 18, 2013)

C.1. ETC COMPRESSED TEXTURE IMAGE FORMATS 294

replicating the two most significant of the six bits to the two least significant of the
final 8 bits.

With three base colors in RGB888 format, the color of each pixel can then be
determined as:

R(x, y) = x× (RH −RO)/4.0 + y × (RV −RO)/4.0 +RO
G(x, y) = x× (GH −GO)/4.0 + y × (GV −GO)/4.0 +GO
B(x, y) = x× (BH −BO)/4.0 + y × (BV −BO)/4.0 +BO

where x and y are values from 0 to 3 corresponding to the pixels coordinates within
the block, x being in the u direction and y in the v direction. For example, the pixel
g in Table C.2 would have x = 1 and y = 2.

These values are then rounded to the nearest integer (to the larger integer if
there is a tie) and then clamped to a value between 0 and 255. Note that this is
equivalent to

R(x, y) = clamp255((x× (RH −RO) + y × (RV −RO) + 4×RO + 2)� 2)
G(x, y) = clamp255((x× (GH −GO) + y × (GV −GO) + 4×GO + 2)� 2)
B(x, y) = clamp255((x× (BH −BO) + y × (BV −BO) + 4×BO + 2)� 2)

where clamp255 clamps the value to a number in the range [0, 255] and where�
performs bit-wise right shift.

This specification gives the output for each compression mode in 8-bit integer
colors between 0 and 255, and these values all need to be divided by 255 for the
final floating point representation.

C.1.2 Format COMPRESSED_SRGB8_ETC2

Decompression of floating point sRGB values in COMPRESSED_SRGB8_ETC2 fol-
lows that of floating point RGB values of COMPRESSED_RGB8_ETC2. The result is
sRGB values between 0.0 and 1.0. The further conversion from an sRGB encoded
component, cs, to a linear component, cl, is done according to Equation 3.24. As-
sume cs is the sRGB component in the range [0,1].

C.1.3 Format COMPRESSED_RGBA8_ETC2_EAC

If internalformat is COMPRESSED_RGBA8_ETC2_EAC, each 4 × 4 block of
RGBA8888 information is compressed to 128 bits. To decode a block, the
two 64-bit integers int64bitAlpha and int64bitColor are calculated as described
in Section C.1. The RGB component is then decoded the same way as for

OpenGL ES 3.0.3 (December 18, 2013)

C.1. ETC COMPRESSED TEXTURE IMAGE FORMATS 295

a) bit layout in bits 63 through 48
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

base codeword multiplier table index

b) bit layout in bits 47 through 0, with pixels named as in Table C.2, bits labelled from 0 being the

LSB to 47 being the MSB.
47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

a0 a1 a2 b0 b1 b2 c0 c1 c2 d0 d1 d2 e0 e1 e2 f0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

f1 f2 g0 g1 g2 h0 h1 h2 i0 i1 i2 j0 j1 j2 k0 k1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

k2 l0 l1 l2 m0 m1 m2 n0 n1 n2 o0 o1 o2 p0 p1 p2

Table C.9: Texel Data format for alpha part of COMPRESSED_RGBA8_ETC2_EAC
compressed textures.

COMPRESSED_RGB8_ETC2 (see Section C.1.1), using int64bitColor as the int64bit
codeword.

The 64-bits in int64bitAlpha used to decompress the alpha channel are laid
out as shown in Table C.9. The information is split into two parts. The first 16
bits comprise a base codeword, a table codeword and a multiplier, which are used
together to compute 8 pixel values to be used in the block. The remaining 48 bits
are divided into 16 3-bit indices, which are used to select one of these 8 possible
values for each pixel in the block.

The decoded value of a pixel is a value between 0 and 255 and is calculated the
following way:

clamp255((base codeword) +modifier ×multiplier), (C.1)

where clamp255(·) maps values outside the range [0, 255] to 0.0 or 255.0.
The base codeword is stored in the first 8 bits (bits 63–56) as shown in Ta-

ble C.9a. This is the first term in Equation C.1.
Next, we want to obtain the modifier. Bits 51–48 in Table C.9a form a 4-bit in-

dex used to select one of 16 pre-determined ‘modifier tables’, shown in Table C.10.
For example, a table index of 13 (1101 binary) means that we should use table [−1,
−2,−3,−10, 0, 1, 2, 9]. To select which of these values we should use, we consult
the pixel index of the pixel we want to decode. As shown in Table C.9b, bits 47–0
are used to store a 3-bit index for each pixel in the block, selecting one of the 8
possible values. Assume we are interested in pixel b. Its pixel indices are stored
in bit 44–42, with the most significant bit stored in 44 and the least significant bit

OpenGL ES 3.0.3 (December 18, 2013)

C.1. ETC COMPRESSED TEXTURE IMAGE FORMATS 296

table index modifier table
0 -3 -6 -9 -15 2 5 8 14
1 -3 -7 -10 -13 2 6 9 12
2 -2 -5 -8 -13 1 4 7 12
3 -2 -4 -6 -13 1 3 5 12
4 -3 -6 -8 -12 2 5 7 11
5 -3 -7 -9 -11 2 6 8 10
6 -4 -7 -8 -11 3 6 7 10
7 -3 -5 -8 -11 2 4 7 10
8 -2 -6 -8 -10 1 5 7 9
9 -2 -5 -8 -10 1 4 7 9
10 -2 -4 -8 -10 1 3 7 9
11 -2 -5 -7 -10 1 4 6 9
12 -3 -4 -7 -10 2 3 6 9
13 -1 -2 -3 -10 0 1 2 9
14 -4 -6 -8 -9 3 5 7 8
15 -3 -5 -7 -9 2 4 6 8

Table C.10: Intensity modifier sets for alpha component.

stored in 42. If the pixel index is 011 binary = 3, this means we should take the
value 3 from the left in the table, which is −10. This is now our modifier, which is
the starting point of our second term in the addition.

In the next step we obtain the multiplier value; bits 55–52 form a four-bit ‘mul-
tiplier’ between 0 and 15. This value should be multiplied with the modifier. An
encoder is not allowed to produce a multiplier of zero, but the decoder should still
be able to handle also this case (and produce 0× modifier = 0 in that case).

The modifier times the multiplier now provides the third and final term in the
sum in Equation C.1. The sum is calculated and the value is clamped to the interval
[0, 255]. The resulting value is the 8-bit output value.

For example, assume a base codeword of 103, a ‘table index’ of 13, a pixel
index of 3 and a multiplier of 2. We will then start with the base codeword 103
(01100111 binary). Next, a ‘table index’ of 13 selects table [−1, −2, −3, −10,
0, 1, 2, 9], and using a pixel index of 3 will result in a modifier of −10. The
multiplier is 2, forming −10 × 2 = −20. We now add this to the base value and
get 103− 20 = 83. After clamping we still get 83 = 01010011 binary. This is our
8-bit output value.

This specification gives the output for each channel in 8-bit integer values be-

OpenGL ES 3.0.3 (December 18, 2013)

C.1. ETC COMPRESSED TEXTURE IMAGE FORMATS 297

tween 0 and 255, and these values all need to be divided by 255 to obtain the final
floating point representation.

Note that hardware can be effectively shared between the alpha decoding part
of this format and that of COMPRESSED_R11_EAC texture. For details on how to
reuse hardware, see Section C.1.5.

C.1.4 Format COMPRESSED_SRGB8_ALPHA8_ETC2_EAC

Decompression of floating point sRGB values in COMPRESSED_SRGB8_-

ALPHA8_ETC2_EAC follows that of floating point RGB values of RGBA8_ETC2_-
EAC. The result is sRGB values between 0.0 and 1.0. The further conversion from
an sRGB encoded component, cs, to a linear component, cl, is according to Equa-
tion 3.24. Assume cs is the sRGB component in the range [0,1].

The alpha component of COMPRESSED_SRGB8_ALPHA8_ETC2_EAC is done
in the same way as for COMPRESSED_RGBA8_ETC2_EAC.

C.1.5 Format COMPRESSED_R11_EAC

The number of bits to represent a 4 × 4 texel block is 64 bits if internalformat
is given by COMPRESSED_R11_EAC. In that case the data for a block is stored as
a number of bytes, {q0, q1, q2, q3, q4, q5, q6, q7}, where byte q0 is located at the
lowest memory address and q7 at the highest. The red component of the 4 × 4
block is then represented by the following 64 bit integer:

int64bit = 256×(256×(256×(256×(256×(256×(256×q0+q1)+q2)+q3)+q4)+q5)+q6)+q7

This 64-bit word contains information about a single-channel 4×4 pixel block
as shown in Table C.2. The 64-bit word is split into two parts. The first 16 bits
comprise a base codeword, a table codeword and a multiplier. The remaining 48
bits are divided into 16 3-bit indices, which are used to select one of the 8 possible
values for each pixel in the block, as shown in Table C.9.

The decoded value is calculated as

clamp1((base codeword+0.5)× 1

255.875
+modifier×multiplier× 1

255.875
),

(C.2)
where clamp1(·) maps values outside the range [0.0, 1.0] to 0.0 or 1.0.

We will now go into detail how the decoding is done. The result will be an
11-bit fixed point number where 0 represents 0.0 and 2047 represents 1.0. This is
the exact representation for the decoded value. However, some implementations
may use, e.g., 16-bits of accuracy for filtering. In such a case the 11-bit value will
be extended to 16 bits in a predefined way, which we will describe later.

OpenGL ES 3.0.3 (December 18, 2013)

C.1. ETC COMPRESSED TEXTURE IMAGE FORMATS 298

To get a value between 0 and 2047 we must multiply Equation C.2 by 2047.0:

clamp2((base codeword+0.5)× 2047.0

255.875
+modifier×multiplier× 2047.0

255.875
),

(C.3)
where clamp2(·) clamps to the range [0.0, 2047.0]. Since 2047.0/255.875 is ex-
actly 8.0, the above equation can be written as

clamp2(base codeword× 8 + 4 +modifier ×multiplier × 8) (C.4)

The base codeword is stored in the first 8 bits as shown in Table C.9a. Bits 63–56
in each block represent an eight-bit integer (base codeword) which is multiplied
by 8 by shifting three steps to the left. We can add 4 to this value without ad-
dition logic by just inserting 100 binary in the last three bits after the shift. For
example, if base codeword is 129 = 10000001 binary (or 10000001b for short),
the shifted value is 10000001000b and the shifted value including the +4 term is
10000001100b = 1036 = 129× 8 + 4. Hence we have summed together the first
two terms of the sum in Equation C.4.

Next, we want to obtain the modifier. Bits 51–48 form a 4-bit index used
to select one of 16 pre-determined ‘modifier tables’, shown in Table C.10. For
example, a table index of 13 (1101 binary) means that we should use table [−1,
−2, −3, −10, 0, 1, 2, 9]. To select which of these values we should use, we
consult the pixel index of the pixel we want to decode. Bits 47–0 are used to store
a 3-bit index for each pixel in the block, selecting one of the 8 possible values.
Assume we are interested in pixel b. Its pixel indices are stored in bit 44–42, with
the most significant bit stored in 44 and the least significant bit stored in 42. If the
pixel index is 011 binary = 3, this means we should take the value 3 from the left
in the table, which is −10. This is now our modifier, which is the starting point of
our second term in the sum.

In the next step we obtain the multiplier value; bits 55–52 form a four-bit ‘mul-
tiplier’ between 0 and 15. We will later treat what happens if the multiplier value
is zero, but if it is nonzero, it should be multiplied width the modifier. This product
should then be shifted three steps to the left to implement the ×8 multiplication.
The result now provides the third and final term in the sum in C.4. The sum is cal-
culated and the result is clamped to a value in the interval [0, 2047]. The resulting
value is the 11-bit output value.

For example, assume a base codeword of 103, a ‘table index’ of 13, a pixel
index of 3 and a multiplier of 2 . We will then first multiply the base codeword
103 (01100111b) by 8 by left-shifting it (0110111000b) and then add 4 resulting
in 0110111100b = 828 = 103 × 8 + 4. Next, a ‘table index’ of 13 selects table
[−1, −2, −3, −10, 0, 1, 2, 9], and using a pixel index of 3 will result in a modifier

OpenGL ES 3.0.3 (December 18, 2013)

C.1. ETC COMPRESSED TEXTURE IMAGE FORMATS 299

of −10. The multiplier is nonzero, which means that we should multiply it with
the modifier, forming −10 × 2 = −20 = 111111101100b. This value should in
turn be multiplied by 8 by left-shifting it three steps: 111101100000b = −160.
We now add this to the base value and get 828 − 160 = 668. After clamping we
still get 668 = 01010011100b. This is our 11-bit output value, which represents
the value 668/2047 = 0.32633121 . . .

If the multiplier value is zero (i.e., the multiplier bits 55–52 are all zero), we
should set the multiplier to 1.0/8.0. Equation C.4 can then be simplified to

clamp2(base codeword× 8 + 4 +modifier) (C.5)

As an example, assume a base codeword of 103, a ‘table index’ of 13, a pixel
index of 3 and a multiplier value of 0. We treat the base codeword the same way,
getting 828 = 103 × 8 + 4. The modifier is still -10. But the multiplier should
now be 1/8, which means that third term becomes −10 × (1/8) × 8 = −10. The
sum therefore becomes 828 − 10 = 818. After clamping we still get 818 =
01100110010b, and this is our 11-bit output value, and it represents 818/2047 =
0.39960918 . . .

Some OpenGL ES implementations may find it convenient to use 16-bit val-
ues for further processing. In this case, the 11-bit value should be extended
using bit replication. An 11-bit value x is extended to 16 bits through (x �
5) + (x � 6). For example, the value 668 = 01010011100b should be extended
to 0101001110001010b = 21386.

In general, the implementation may extend the value to any number of bits that
is convenient for further processing, e.g., 32 bits. In these cases, bit replication
should be used. On the other hand, an implementation is not allowed to truncate
the 11-bit value to less than 11 bits.

Note that the method does not have the same reconstruction levels as the
alpha part in the COMPRESSED_RGBA8_ETC2_EAC-format. For instance, for a
base value of 255 and a table value of 0, the alpha part of the COMPRESSED_-

RGBA8_ETC2_EAC-format will represent a value of (255 + 0)/255.0 = 1.0 ex-
actly. In COMPRESSED_R11_EAC the same base value and table value will in-
stead represent (255.5 + 0)/255.875 = 0.99853444 . . . That said, it is still possi-
ble to decode the alpha part of the COMPRESSED_RGBA8_ETC2_EAC-format using
COMPRESSED_R11_EAC-hardware. This is done by truncating the 11-bit number
to 8 bits. As an example, if base value = 255 and table value = 0, we get the 11-bit
value (255 × 8 + 4 + 0) = 2044 = 1111111100b, which after truncation becomes
the 8-bit value 11111111b = 255 which is exactly the correct value according to the
COMPRESSED_RGBA8_ETC2_EAC. Clamping has to be done to [0, 255] after trun-
cation for COMPRESSED_RGBA8_ETC2_EAC-decoding. Care must also be taken to

OpenGL ES 3.0.3 (December 18, 2013)

C.1. ETC COMPRESSED TEXTURE IMAGE FORMATS 300

handle the case when the multiplier value is zero. In the 11-bit version, this means
multiplying by 1/8, but in the 8-bit version, it really means multiplication by 0.
Thus, the decoder will have to know if it is a COMPRESSED_RGBA8_ETC2_EAC

texture or a COMPRESSED_R11_EAC texture to decode correctly, but the hardware
can be 100% shared.

As stated above, a base value of 255 and a table value of 0 will represent a
value of (255.5 + 0)/255.875 = 0.99853444 . . ., and this does not reach 1.0 even
though 255 is the highest possible base codeword. However, it is still possible to
reach a pixel value of 1.0 since a modifier other than 0 can be used. Indeed, half of
the modifiers will often produce a value of 1.0. As an example, assume we choose
the base value 255, a multiplier of 1 and the modifier table [−3 −5 −7 −9 2 4 6 8
]. Starting with C.4,

clamp1((base codeword+0.5)× 1

255.875
+table value×multiplier× 1

255.875
)

we get

clamp1((255+0.5)× 1

255.875
+
[
−3 −5 −7 −9 2 4 6 8

]
× 1

255.875
)

which equals

clamp1(
[

0.987 0.979 0.971 0.963 1.00 1.01 1.02 1.03
]
)

or after clamping[
0.987 0.979 0.971 0.963 1.00 1.00 1.00 1.00

]
which shows that several values can be 1.0, even though the base value does not
reach 1.0. The same reasoning goes for 0.0.

C.1.6 Format COMPRESSED_RG11_EAC

The number of bits to represent a 4 × 4 texel block is 128 bits if internalformat
is given by COMPRESSED_RG11_EAC. In that case the data for a block is stored as
a number of bytes, {q0, q1, q2, q3, q4, q5, q6, q7, p0, p1, p2, p3, p4, p5, p6, p7} where
byte q0 is located at the lowest memory address and p7 at the highest. The 128 bits
specifying the block are then represented by the following two 64 bit integers:

int64bit0 = 256×(256×(256×(256×(256×(256×(256×q0+q1)+q2)+q3)+q4)+q5)+q6)+q7
int64bit1 = 256×(256×(256×(256×(256×(256×(256×p0+p1)+p2)+p3)+p4)+p5)+p6)+p7
The 64-bit word int64bit0 contains information about the red component of a two-
channel 4x4 pixel block as shown in Table C.2, and the word int64bit1 contains
information about the green component. Both 64-bit integers are decoded in the
same way as COMPRESSED_R11_EAC described in Section C.1.5.

OpenGL ES 3.0.3 (December 18, 2013)

C.1. ETC COMPRESSED TEXTURE IMAGE FORMATS 301

C.1.7 Format COMPRESSED_SIGNED_R11_EAC

The number of bits to represent a 4 × 4 texel block is 64 bits if internalformat
is given by COMPRESSED_SIGNED_R11_EAC. In that case the data for a block is
stored as a number of bytes, {q0, q1, q2, q3, q4, q5, q6, q7}, where byte q0 is located
at the lowest memory address and q7 at the highest. The red component of the 4×4
block is then represented by the following 64 bit integer:

int64bit = 256×(256×(256×(256×(256×(256×(256×q0+q1)+q2)+q3)+q4)+q5)+q6)+q7

This 64-bit word contains information about a single-channel 4×4 pixel block
as shown in Table C.2. The 64-bit word is split into two parts. The first 16 bits
comprise a base codeword, a table codeword and a multiplier. The remaining 48
bits are divided into 16 3-bit indices, which are used to select one of the 8 possible
values for each pixel in the block, as shown in Table C.9.

The decoded value is calculated as

clamp1(base codeword× 1

127.875
+modifier×multiplier× 1

127.875
) (C.6)

where clamp1(·) maps values outside the range [−1.0, 1.0] to −1.0 or 1.0. We
will now go into detail how the decoding is done. The result will be an 11-bit
two’s-complement fixed point number where −1023 represents −1.0 and 1023
represents 1.0. This is the exact representation for the decoded value. However,
some implementations may use, e.g., 16-bits of accuracy for filtering. In such a
case the 11-bit value will be extended to 16 bits in a predefined way, which we will
describe later.

To get a value between −1023 and 1023 we must multiply Equation C.6 by
1023.0:

clamp2(base codeword× 1023.0

127.875
+modifier×multiplier× 1023.0

127.875
), (C.7)

where clamp2(.) clamps to the range [−1023.0, 1023.0]. Since 1023.0/127.875 is
exactly 8, the above formula can be written as

clamp2(base codeword× 8 +modifier ×multiplier × 8). (C.8)

The base codeword is stored in the first 8 bits as shown in Table C.9a. It is a
two’s-complement value in the range [−127, 127], and where the value−128 is not
allowed; however, if it should occur anyway it must be treated as−127. The base -
codeword is then multiplied by 8 by shifting it left three steps. For example the
value 65 = 01000001 binary (or 01000001b for short) is shifted to 01000001000b
= 520 = 65× 8.

OpenGL ES 3.0.3 (December 18, 2013)

C.1. ETC COMPRESSED TEXTURE IMAGE FORMATS 302

Next, we want to obtain the modifier. Bits 51–48 form a 4-bit index used
to select one of 16 pre-determined ‘modifier tables’, shown in Table C.10. For
example, a table index of 13 (1101 binary) means that we should use table [−1,
−2, −3, −10, 0, 1, 2, 9]. To select which of these values we should use, we
consult the pixel index of the pixel we want to decode. Bits 47–0 are used to store
a 3-bit index for each pixel in the block, selecting one of the 8 possible values.
Assume we are interested in pixel b. Its pixel indices are stored in bit 44–42, with
the most significant bit stored in 44 and the least significant bit stored in 42. If the
pixel index is 011 binary = 3, this means we should take the value 3 from the left
in the table, which is −10. This is now our modifier, which is the starting point of
our second term in the sum.

In the next step we obtain the multiplier value; bits 55–52 form a four-bit ‘mul-
tiplier’ between 0 and 15. We will later treat what happens if the multiplier value
is zero, but if it is nonzero, it should be multiplied with the modifier. This product
should then be shifted three steps to the left to implement the ×8 multiplication.
The result now provides the third and final term in the sum in Equation C.8. The
sum is calculated and the result is clamped to a value in the interval [−1023, 1023].
The resulting value is the 11-bit output value.

For example, assume a a base codeword of 60, a ‘table index’ of 13, a pixel
index of 3 and a multiplier of 2. We start by multiplying the base codeword
(00111100b) by 8 using bit shift, resulting in (00111100000b) = 480 = 60 × 8.
Next, a ‘table index’ of 13 selects table [−1, −2, −3, −10, 0, 1, 2, 9], and using a
pixel index of 3 will result in a modifier of −10. The multiplier is nonzero, which
means that we should multiply it with the modifier, forming −10 × 2 = −20 =
111111101100b. This value should in turn be multiplied by 8 by left-shifting it
three steps: 111101100000b = −160. We now add this to the base value and get
480 − 160 = 320. After clamping we still get 320 = 00101000000b. This is our
11-bit output value, which represents the value 320/1023 = 0.31280547 . . .

If the multiplier value is zero (i.e., the multiplier bits 55–52 are all zero), we
should set the multiplier to 1.0/8.0. Equation C.8 can then be simplified to

clamp2(base codeword× 8 +modifier) (C.9)

As an example, assume a base codeword of 65, a ‘table index’ of 13, a pixel in-
dex of 3 and a multiplier value of 0. We treat the base codeword the same way,
getting 480 = 60 × 8. The modifier is still −10. But the multiplier should now
be 1/8, which means that third term becomes −10 ∗ (1/8) × 8 = −10. The sum
therefore becomes 480− 10 = 470. Clamping does not affect the value since it is
already in the range [−1023, 1023], and the 11-bit output value is therefore 470 =
00111010110b. This represents 470/1023 = 0.45943304 . . .

OpenGL ES 3.0.3 (December 18, 2013)

C.1. ETC COMPRESSED TEXTURE IMAGE FORMATS 303

Some OpenGL ES implementations may find it convenient to use two’s-
complement 16-bit values for further processing. In this case, a positive 11-bit
value should be extended using bit replication on all the bits except the sign bit.
An 11-bit value x is extended to 16 bits through (x � 5) + (x � 5). Since the
sign bit is zero for a positive value, no addition logic is needed for the bit replica-
tion in this case. For example, the value 470 = 00111010110b in the above example
should be expanded to 0011101011001110b = 15054. A negative 11-bit value must
first be made positive before bit replication, and then made negative again:

if(result11bit >= 0)
result16bit = (result11bit << 5) + (result11bit >> 5);

else
result11bit = -result11bit;
result16bit = (result11bit << 5) + (result11bit >> 5);
result16bit = -result16bit;

end

Simply bit replicating a negative number without first making it positive will not
give a correct result.

In general, the implementation may extend the value to any number of bits that
is convenient for further processing, e.g., 32 bits. In these cases, bit replication
according to the above should be used. On the other hand, an implementation is
not allowed to truncate the 11-bit value to less than 11 bits.

Note that it is not possible to specify a base value of 1.0 or −1.0. The largest
possible base codeword is +127, which represents 127/127.875 = 0.993 . . .How-
ever, it is still possible to reach a pixel value of 1.0 or −1.0, since the base value is
modified by the table before the pixel value is calculated. Indeed, half of the mod-
ifiers will often produce a value of 1.0. As an example, assume the base codeword
is +127, the modifier table is [−3 −5 −7 −9 2 4 6 8] and the multiplier is one.
Starting with Equation C.6,

base codeword× 1

127.875
+modifier ×multiplier × 1

127.875

we get

127

127.875
+
[
−3 −5 −7 −9 2 4 6 8

]
× 1

127.875

which equals[
0.970 0.954 0.938 0.923 1.01 1.02 1.04 1.06

]

OpenGL ES 3.0.3 (December 18, 2013)

C.1. ETC COMPRESSED TEXTURE IMAGE FORMATS 304

or after clamping[
0.970 0.954 0.938 0.923 1.00 1.00 1.00 1.00

]
This shows that it is indeed possible to arrive at the value 1.0. The same reasoning
goes for −1.0.

Note also that Equations C.8/C.9 are very similar to Equations C.4/C.5 in the
unsigned version EAC R11. Apart from the +4, the clamping and the extension to
bitsizes other than 11, the same decoding hardware can be shared between the two
codecs.

C.1.8 Format COMPRESSED_SIGNED_RG11_EAC

The number of bits to represent a 4 × 4 texel block is 128 bits if internalformat
is given by
COMPRESSED_SIGNED_RG11_EAC. In that case the data for a block is stored as
a number of bytes, {q0, q1, q2, q3, q4, q5, q6, q7, p0, p1, p2, p3, p4, p5, p6, p7} where
byte q0 is located at the lowest memory address and p7 at the highest. The 128 bits
specifying the block are then represented by the following two 64 bit integers:

int64bit0 = 256×(256×(256×(256×(256×(256×(256×q0+q1)+q2)+q3)+q4)+q5)+q6)+q7

int64bit1 = 256×(256×(256×(256×(256×(256×(256×p0+p1)+p2)+p3)+p4)+p5)+p6)+p7
The 64-bit word int64bit0 contains information about the red component of a two-
channel 4 × 4 pixel block as shown in Table C.2, and the word int64bit1 contains
information about the green component. Both 64-bit integers are decoded in the
same way as COMPRESSED_SIGNED_R11_EAC described in Section C.1.7.

C.1.9 Format COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2

For COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2, each 64-bit word con-
tains information about a four-channel 4× 4 pixel block as shown in Table C.2.

The blocks are compressed using one of four different ‘modes’. Table C.11a
shows the bits used for determining the mode used in a given block.

To determine the mode, the three 5-bit values R, G and B, and the three 3-bit
values dR, dG and dB are examined. R, G and B are treated as integers between
0 and 31 and dR, dG and dB as two’s-complement integers between −4 and +3.
First, R and dR are added, and if the sum is not within the interval [0,31], the ‘T’
mode is selected. Otherwise, if the sum of G and dG is outside the interval [0,31],
the ‘H’ mode is selected. Otherwise, if the sum of B and dB is outside of the

OpenGL ES 3.0.3 (December 18, 2013)

C.1. ETC COMPRESSED TEXTURE IMAGE FORMATS 305

a) location of bits for mode selection:
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R dR G dG B dB - - - - - - Op -

b) bit layout for bits 63 through 32 for ’differential’ mode:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

R dR G dG B dB table1 table2 Op FB

c) bit layout for bits 63 through 32 for ’T’ mode:
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

- - - R1a - R1b G1 B1 R2 G2 B2 da Op db

d) bit layout for bits 63 through 32 for ’H’ mode:
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

- R1 G1a - - - G1b B1a - B1b R2 G2 B2 da Op db

e) bit layout for bits 31 through 0 for ’individual’, ’diff’, ’T’ and ’H’ modes:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

p0 o0 n0 m0 l0 k0 j0 i0 h0 g0 f0 e0 d0 c0 b0 a0 p1 o1 n1 m1 l1 k1 j1 i1 h1 g1 f1 e1 d1 c1 b1 a1

f) bit layout for bits 63 through 0 for ’planar’ mode:
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

- RO GO1 - GO2 BO1 - - - BO2 - BO3 RH1 1 RH2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GH BH RV GV BV

Table C.11: Texel Data format for RGB8_PUNCHTHROUGH_ALPHA1_ETC2 com-
pressed textures formats

interval [0,31], the ‘planar’ mode is selected. Finally, if all of the aforementioned
sums lie between 0 and 31, the ‘differential’ mode is selected.

The layout of the bits used to decode the ‘differential’ mode is shown in Ta-
ble C.11b. In this mode, the 4 × 4 block is split into two subblocks of either size
2× 4 or 4× 2. This is controlled by bit 32, which we dub the ‘flip bit’. If the ‘flip
bit’ is 0, the block is divided into two 2 × 4 subblocks side-by-side, as shown in
Table C.4. If the ‘flip bit’ is 1, the block is divided into two 4× 2 subblocks on top
of each other, as shown in Table C.5. For each subblock, a ‘base color’ is stored.

In the ‘differential’ mode, following the layout shown in Table C.11b, the base
color for subblock 1 is derived from the five-bit codewords R, G and B. These five-
bit codewords are extended to eight bits by replicating the top three highest order
bits to the three lowest order bits. For instance, if R = 28 = 11100 binary (11100b
for short), the resulting eight-bit red color component becomes 11100111b = 231.
Likewise, if G = 4 = 00100b and B = 3 = 00011b, the green and blue components

OpenGL ES 3.0.3 (December 18, 2013)

C.1. ETC COMPRESSED TEXTURE IMAGE FORMATS 306

become 00100001b = 33 and 00011000b = 24 respectively. Thus, in this example,
the base color for subblock 1 is (231, 33, 24). The five bit representation for the
base color of subblock 2 is obtained by modifying the 5-bit codewords R, G and
B by the codewords dR, dG and dB. Each of dR, dG and dB is a 3-bit two’s-
complement number that can hold values between −4 and +3. For instance, if R
= 28 as above, and dR = 100b = −4, then the five bit representation for the red
color component is 28 + (−4) = 24 = 11000b, which is then extended to eight
bits to 11000110b = 198. Likewise, if G = 4, dG = 2, B = 3 and dB = 0, the base
color of subblock 2 will be RGB = (198, 49, 24). In summary, the base colors for
the subblocks in the differential mode are:

base col subblock1 = extend 5to8bits(R,G,B)
base col subblock2 = extend 5to8bits(R+ dR,G+ dG,B + dG)

Note that these additions will not under- or overflow, or one of the alternative de-
compression modes would have been chosen instead of the ‘differential’ mode.

After obtaining the base color, a table is chosen using the table codewords: For
subblock 1, table codeword 1 is used (bits 39–37), and for subblock 2, table code-
word 2 is used (bits 36–34), see Table C.11b. The table codeword is used to select
one of eight modifier tables. If the ‘opaque’-bit (bit 33) is set, Table C.12a is used.
If it is unset, Table C.12b is used. For instance, if the ‘opaque’-bit is 1 and the table
code word is 010 binary = 2, then the modifier table [−29, −9, 9, 29] is selected
for the corresponding sub-block. Note that the values in Tables C.12a and C.12b
are valid for all textures and can therefore be hardcoded into the decompression
unit.

Next, we identify which modifier value to use from the modifier table using the
two ‘pixel index’ bits. The pixel index bits are unique for each pixel. For instance,
the pixel index for pixel d (see Table C.2) can be found in bits 19 (most significant
bit, MSB), and 3 (least significant bit, LSB), see Table C.11e. Note that the pixel
index for a particular texel is always stored in the same bit position, irrespectively
of the ‘flipbit’.

If the ‘opaque’-bit (bit 33) is set, the pixel index bits are decoded using Ta-
ble C.13a. If the ‘opaque’-bit is unset, Table C.13b will be used instead. If, for
instance, the ‘opaque’-bit is 1, and the pixel index bits are 01 binary = 1, and the
modifier table [−29, −9, 9, 29] is used, then the modifier value selected for that
pixel is 29 (see Table C.13a). This modifier value is now used to additively modify
the base color. For example, if we have the base color (231, 8, 16), we should add
the modifier value 29 to all three components: (231+29, 8+29, 16+29) resulting
in (260, 37, 45). These values are then clamped to [0, 255], resulting in the color
(255, 37, 45).

OpenGL ES 3.0.3 (December 18, 2013)

C.1. ETC COMPRESSED TEXTURE IMAGE FORMATS 307

a) Intensity modifier sets for the ‘differential’ if ‘opaque’ is set:
table codeword modifier table

0 -8 -2 2 8
1 -17 -5 5 17
2 -29 -9 9 29
3 -42 -13 13 42
4 -60 -18 18 60
5 -80 -24 24 80
6 -106 -33 33 106
7 -183 -47 47 183

b) Intensity modifier sets for the ‘differential’ if ‘opaque’ is unset:
table codeword modifier table

0 -8 0 0 8
1 -17 0 0 17
2 -29 0 0 29
3 -42 0 0 42
4 -60 0 0 60
5 -80 0 0 80
6 -106 0 0 106
7 -183 0 0 183

Table C.12: Intensity modifier sets if ‘opaque’ is set and if ‘opaque’ is unset.

The alpha component is decoded using the ‘opaque’-bit, which is positioned in
bit 33 (see Table C.11b). If the ‘opaque’-bit is set, alpha is always 255. However, if
the ‘opaque’-bit is zero, the alpha-value depends on the pixel indices; if MSB==1
and LSB==0, the alpha value will be zero, otherwise it will be 255. Finally, if the
alpha value equals 0, the red-, green- and blue components will also be zero.

if(opaque == 0 && MSB == 1 && LSB == 0)
red = 0;
green = 0;
blue = 0;
alpha = 0;

else
alpha = 255;

end

Hence paint color 2 will equal RGBA = (0,0,0,0) if opaque == 0.

OpenGL ES 3.0.3 (December 18, 2013)

C.1. ETC COMPRESSED TEXTURE IMAGE FORMATS 308

a) Mapping from pixel index values to modifier values when ‘opaque’-bit is set.
pixel index value resulting modifier value
msb lsb

1 1 -b (large negative value)
1 0 -a (small negative value)
0 0 a (small positive value)
0 1 b (large positive value)

b) Mapping from pixel index values to modifier values when ‘opaque’-bit is unset.
pixel index value resulting modifier value
msb lsb

1 1 -b (large negative value)
1 0 0 (zero)
0 0 0 (zero)
0 1 b (large positive value)

Table C.13: Mapping from pixel index values to modifier values for
COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2 compressed textures

In the example above, assume that the ‘opaque’-bit was instead 0. Then, since
the MSB = 0 and LSB 1, alpha will be 255, and the final decoded RGBA-tuple will
be (255, 37, 45, 255).

The ‘T’ and ‘H’ compression modes share some characteristics: both use two
base colors stored using 4 bits per channel. These bits are not stored sequentially,
but in the layout shown in Tables C.11c and C.11d. To clarify, in the ‘T’ mode,
the two colors are constructed as follows:

base col 1 = extend 4to8bits((R1a� 2) |R1b, G1, B1)
base col 2 = extend 4to8bits(R2, G2, B2)

In the ‘H’ mode, the two colors are constructed as follows:

base col 1 = extend 4to8bits(R1, (G1a� 1) |G1b, (B1a� 3) |B1b)
base col 2 = extend 4to8bits(R2, G2, B2)

The function extend 4to8bits() just replicates the four bits twice. This is equivalent
to multiplying by 17. As an example, extend 4to8bits(1101b) equals 11011101b =
221.

Both the ‘T’ and ‘H’ modes have four ‘paint colors’ which are the colors that
will be used in the decompressed block, but they are assigned in a different manner.

OpenGL ES 3.0.3 (December 18, 2013)

C.1. ETC COMPRESSED TEXTURE IMAGE FORMATS 309

In the ‘T’ mode, ‘paint color 0’ is simply the first base color, and ‘paint color 2’
is the second base color. To obtain the other ‘paint colors’, a ‘distance’ is first
determined, which will be used to modify the luminance of one of the base colors.
This is done by combining the values ‘da’ and ‘db’ shown in Table C.11c by (da�
1)|db, and then using this value as an index into the small look-up table shown in
Table C.8. For example, if ‘da’ is 10 binary and ‘db’ is 1 binary, the index is 101
binary and the selected distance will be 32. ‘Paint color 1’ is then equal to the
second base color with the ‘distance’ added to each channel, and ‘paint color 3’ is
the second base color with the ‘distance’ subtracted. In summary, to determine the
four ‘paint colors’ for a ‘T’ block:

paint color 0 = base col 1
paint color 1 = base col 2 + (d, d, d)
paint color 2 = base col 2
paint color 3 = base col 2 − (d, d, d)

In both cases, the value of each channel is clamped to within [0,255].
Just as for the differential mode, the RGB channels are set to zero if alpha is

zero, and the alpha component is caluclated the same way:

if(opaque == 0 && MSB == 1 && LSB == 0)
red = 0;
green = 0;
blue = 0;
alpha = 0;

else
alpha = 255;

end

A ‘distance’ value is computed for the ‘H’ mode as well, but doing so is slightly
more complex. In order to construct the three-bit index into the distance table
shown in Table C.8, ‘da’ and ‘db’ shown in Table C.11d are used as the most
significant bit and middle bit, respectively, but the least significant bit is computed
as (base col 1 value ≥ base col 2 value), the ‘value’ of a color for the comparison
being equal to (R � 16) + (G � 8) + B. Once the ‘distance’ d has been
determined for an ‘H’ block, the four ‘paint colors’ will be:

paint color 0 = base col 1 + (d, d, d)
paint color 1 = base col 1 − (d, d, d)
paint color 2 = base col 2 + (d, d, d)
paint color 3 = base col 2 − (d, d, d)

OpenGL ES 3.0.3 (December 18, 2013)

C.1. ETC COMPRESSED TEXTURE IMAGE FORMATS 310

Yet again, RGB is zeroed if alpha is 0 and the alpha component is determined the
same way:

if(opaque == 0 && MSB == 1 && LSB == 0)
red = 0;
green = 0;
blue = 0;
alpha = 0;

else
alpha = 255;

end

Hence paint color 2 will have R=G=B=alpha=0 if opaque == 0.
Again, all color components are clamped to within [0,255]. Finally, in both

the ‘T’ and ‘H’ modes, every pixel is assigned one of the four ‘paint colors’ in the
same way the four modifier values are distributed in ‘individual’ or ‘differential’
blocks. For example, to choose a paint color for pixel d, an index is constructed
using bit 19 as most significant bit and bit 3 as least significant bit. Then, if a pixel
has index 2, for example, it will be assigned paint color 2.

The final mode possible in an COMPRESSED_RGB8_PUNCHTHROUGH_-

ALPHA1_ETC2- compressed block is the ‘planar’ mode. In this mode, the
‘opaque’-bit must be 1 (a valid encoder should not produce an ‘opaque’-bit equal to
0 in the planar mode), but should the ‘opaque’-bit anyway be 0 the decoder should
treat it as if it were 1. In the ‘planar’ mode, three base colors are supplied and used
to form a color plane used to determine the color of the individual pixels in the
block.

All three base colors are stored in RGB 676 format, and stored in the manner
shown in Table C.11f. The three colors are there labelled ‘O’, ‘H’ and ‘V’, so that
the three components of color ‘V’ are RV, GV and BV, for example. Some color
channels are split into non-consecutive bit-ranges, for example BO is reconstructed
using BO1 as the most significant bit, BO2 as the two following bits, and BO3 as
the three least significant bits.

Once the bits for the base colors have been extracted, they must be extended
to 8 bits per channel in a manner analogous to the method used for the base colors
in other modes. For example, the 6-bit blue and red channels are extended by
replicating the two most significant of the six bits to the two least significant of the
final 8 bits.

With three base colors in RGB888 format, the color of each pixel can then be
determined as:

OpenGL ES 3.0.3 (December 18, 2013)

C.1. ETC COMPRESSED TEXTURE IMAGE FORMATS 311

R(x, y) = x× (RH −RO)/4.0 + y × (RV −RO)/4.0 +RO
G(x, y) = x× (GH −GO)/4.0 + y × (GV −GO)/4.0 +GO
B(x, y) = x× (BH −BO)/4.0 + y × (BV −BO)/4.0 +BO
A(x, y) = 255,

where x and y are values from 0 to 3 corresponding to the pixels coordinates within
the block, x being in the u direction and y in the v direction. For example, the pixel
g in Table C.2 would have x = 1 and y = 2.

These values are then rounded to the nearest integer (to the larger integer if
there is a tie) and then clamped to a value between 0 and 255. Note that this is
equivalent to

R(x, y) = clamp255((x× (RH −RO) + y × (RV −RO) + 4×RO + 2)� 2)
G(x, y) = clamp255((x× (GH −GO) + y × (GV −GO) + 4×GO + 2)� 2)
B(x, y) = clamp255((x× (BH −BO) + y × (BV −BO) + 4×BO + 2)� 2)
A(x, y) = 255,

where clamp255 clamps the value to a number in the range [0, 255].
Note that the alpha component is always 255 in the planar mode.
This specification gives the output for each compression mode in 8-bit integer

colors between 0 and 255, and these values all need to be divided by 255 for the
final floating point representation.

C.1.10 Format COMPRESSED_SRGB8_PUNCHTHROUGH_ALPHA1_ETC2

Decompression of floating point sRGB values in COMPRESSED_SRGB8_-

PUNCHTHROUGH_ALPHA1_ETC2 follows that of floating point RGB values of
COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2. The result is sRGB values
between 0.0 and 1.0. The further conversion from an sRGB encoded component,
cs, to a linear component, cl, is according to Equation 3.24. Assume cs is the
sRGB component in the range [0,1]. Note that the alpha component is not gamma
corrected, and hence does not use the above formula.

OpenGL ES 3.0.3 (December 18, 2013)

Appendix D

Shared Objects and Multiple
Contexts

This appendix describes special considerations for objects shared between multi-
ple OpenGL ES contexts, including deletion behavior and how changes to shared
objects are propagated between contexts.

Objects that can be shared between contexts include buffer objects, program
and shader objects, renderbuffer objects, sync objects, sampler objects, and texture
objects (except for the texture objects named zero).

Framebuffer, query, transform feedback, and vertex array objects are not
shared.

Implementations may allow sharing between contexts implementing different
OpenGL ES versions. However, implementation-dependent behavior may result
when aspects and/or behaviors of such shared objects do not apply to, and/or are
not described by more than one version or profile.

D.1 Object Deletion Behavior

D.1.1 Side Effects of Shared Context Destruction

The share list is the group of all contexts which share objects. If a shared object
is not explicitly deleted, then destruction of any individual context has no effect
on that object unless it is the only remaining context in the share list. Once the
last context on the share list is destroyed, all shared objects, and all other resources
allocated for that context or share list, will be deleted and reclaimed by the imple-
mentation as soon as possible.

312

D.1. OBJECT DELETION BEHAVIOR 313

D.1.2 Automatic Unbinding of Deleted Objects

When a buffer, texture, or renderbuffer object is deleted, it is unbound from any
bind points it is bound to in the current context, as described for DeleteBuffers,
DeleteTextures, and DeleteRenderbuffers. Bind points in other contexts are not
affected. Attachments to unbound container objects, such as deletion of a buffer
attached to a vertex array object which is not bound to the context, are not affected
and continue to act as references on the deleted object, as described in the following
section.

D.1.3 Deleted Object and Object Name Lifetimes

When a buffer, texture, sampler, renderbuffer, query, or sync object is deleted, its
name immediately becomes invalid (e.g. is marked unused), but the underlying
object will not be deleted until it is no longer in use. A buffer, texture, sampler, or
renderbuffer object is in use while it is attached to any container object (such as a
buffer object attached to a vertex array object, or a renderbuffer or texture attached
to a framebuffer object) or bound to a context bind point in any context. A sync
object is in use while there is a corresponding fence command which has not yet
completed and signaled the sync object, or while there are any GL clients and/or
servers blocked on the sync object as a result of ClientWaitSync or WaitSync
commands. Query objects are in use so long as they are active, as described in
section 2.13.

When a shader object or program object is deleted, it is flagged for deletion,
but its name remains valid until the underlying object can be deleted because it
is no longer in use. A shader object is in use while it is attached to any program
object. A program object is in use while it is the current program in any context.

Caution should be taken when deleting an object attached to a container object,
or a shared object bound in multiple contexts. Following its deletion, the object’s
name may be returned by Gen* commands, even though the underlying object
state and data may still be referred to by container objects, or in use by contexts
other than the one in which the object was deleted. Such a container or other
context may continue using the object, and may still contain state identifying its
name as being currently bound, until such time as the container object is deleted,
the attachment point of the container object is changed to refer to another object, or
another attempt to bind or attach the name is made in that context. Since the name
is marked unused, binding the name will create a new object with the same name,
and attaching the name will generate an error. The underlying storage backing a
deleted object will not be reclaimed by the GL until all references to the object
from container object attachment points or context binding points are removed.

OpenGL ES 3.0.3 (December 18, 2013)

D.2. SYNC OBJECTS AND MULTIPLE CONTEXTS 314

D.2 Sync Objects and Multiple Contexts

When multiple GL clients and/or servers are blocked on a single sync object and
that sync object is signalled, all such blocks are released. The order in which blocks
are released is implementation-dependent.

D.3 Propagating Changes to Objects

GL objects contain two types of information, data and state. Collectively these
are referred to below as the contents of an object. For the purposes of propagating
changes to object contents as described below, data and state are treated consis-
tently.

Data is information the GL implementation does not have to inspect, and does
not have an operational effect. Currently, data consists of:

• Pixels in the framebuffer.

• The contents of textures and renderbuffers.

• The contents of buffer objects.

State determines the configuration of the rendering pipeline and the driver does
have to inspect.

In hardware-accelerated GL implementations, state typically lives in GPU reg-
isters, while data typically lives in GPU memory.

When the contents of an object T are changed, such changes are not always
immediately visible, and do not always immediately affect GL operations involving
that object. Changes may occur via any of the following means:

• State-setting commands, such as TexParameter.

• Data-setting commands, such as TexSubImage* or BufferSubData.

• Data-setting through rendering to attached renderbuffers or transform feed-
back operations.

• Commands that affect both state and data, such as TexImage* and Buffer-
Data.

• Changes to mapped buffer data followed by a command such as Unmap-
Buffer or FlushMappedBufferRange.

OpenGL ES 3.0.3 (December 18, 2013)

D.3. PROPAGATING CHANGES TO OBJECTS 315

D.3.1 Determining Completion of Changes to an object

The contents of an object T are considered to have been changed once a command
such as described in section D.3 has completed. Completion of a command 1 may
be determined either by calling Finish, or by calling FenceSync and executing a
WaitSync command on the associated sync object. The second method does not
require a round trip to the GL server and may be more efficient, particularly when
changes to T in one context must be known to have completed before executing
commands dependent on those changes in another context.

D.3.2 Definitions

In the remainder of this section, the following terminology is used:

• An object T is directly attached to the current context if it has been bound to
one of the context binding points. Examples include but are not limited to
bound textures, bound framebuffers, bound vertex arrays, and current pro-
grams.

• T is indirectly attached to the current context if it is attached to another ob-
ject C, referred to as a container object, and C is itself directly or indirectly
attached. Examples include but are not limited to renderbuffers or textures
attached to framebuffers; buffers attached to vertex arrays; and shaders at-
tached to programs.

• An object T which is directly attached to the current context may be re-
attached by re-binding T at the same bind point. An object T which is indi-
rectly attached to the current context may be re-attached by re-attaching the
container object C to which T is attached.

Corollary: re-binding C to the current context re-attaches C and its hierarchy
of contained objects.

D.3.3 Rules

The following rules must be obeyed by all GL implementations:

Rule 1 If the contents of an object T are changed in the current context while T is
directly or indirectly attached, then all operations on T will use the new contents
in the current context.

1The GL already specifies that a single context processes commands in the order they are received.
This means that a change to an object in a context at time t must be completed by the time a command
issued in the same context at time t+ 1 uses the result of that change.

OpenGL ES 3.0.3 (December 18, 2013)

D.3. PROPAGATING CHANGES TO OBJECTS 316

Note: The intent of this rule is to address changes in a single context only. The
multi-context case is handled by the other rules.

Note: “Updates” via rendering or transform feedback are treated consistently
with update via GL commands. Once EndTransformFeedback has been issued,
any command in the same context that uses the results of the transform feedback
operation will see the results. If a feedback loop is setup between rendering and
transform feedback (see above), results will be undefined.

Rule 2 While a container object C is bound, any changes made to the contents of
C’s attachments in the current context are guaranteed to be seen. To guarantee
seeing changes made in another context to objects attached to C, such changes
must be completed in that other context (see section D.3.1) prior to C being bound.
Changes made in another context but not determined to have completed as de-
scribed in section D.3.1, or after C is bound in the current context, are not guar-
anteed to be seen.

Rule 3 Changes to the contents of shared objects are not automatically propa-
gated between contexts. If the contents of a shared object T are changed in a
context other than the current context, and T is already directly or indirectly at-
tached to the current context, any operations on the current context involving T via
those attachments are not guaranteed to use its new contents.

Rule 4 If the contents of an object T are changed in a context other than the cur-
rent context, T must be attached or re-attached to at least one binding point in the
current context, or at least one attachment point of a currently bound container
object C, in order to guarantee that the new contents of T are visible in the current
context.

Note: “Attached or re-attached” means either attaching an object to a binding
point it wasn’t already attached to, or attaching an object again to a binding point
it was already attached to.

Note: To be sure that a data update resulting from a transform-feedback opera-
tion in another context is visible in the current context, the app needs to make sure
that the command EndTransformFeedback has completed (see section D.3.1).

Example: If a texture image is bound to multiple texture bind points and the
texture is changed in another context, re-binding the texture at any one of the tex-
ture bind points is sufficient to cause the changes to be visible at all texture bind
points.

OpenGL ES 3.0.3 (December 18, 2013)

Appendix E

Version 3.0 and Before

OpenGL ES version 3.0, released on August 6, 2012, is the third revision since
the original version 1.0. OpenGL ES 3.0 is upward compatible with OpenGL ES
version 2.0, meaning that any program that runs with an OpenGL ES 2.0 imple-
mentation will also run unchanged with an OpenGL ES 3.0 implementation. Note
the subtle changes in runtime behavior between versions 2.0 and 3.0, documented
in Appendix F.2.

Following are brief descriptions of changes and additions to OpenGL ES 3.0.

E.1 New Features

New features in OpenGL ES 3.0 include:

• OpenGL Shading Language ES 3.00

• transform feedback 1 and 2 (with restrictions)

• uniform buffer objects including block arrays

• vertex array objects

• sampler objects

• sync objects and fences

• pixel buffer objects

• buffer subrange mapping

• buffer object to buffer object copies

317

E.1. NEW FEATURES 318

• boolean occlusion queries, including conservative mode

• instanced rendering, via shader variable and/or vertex attribute divisor

• multiple render targets

• 2D array and 3D textures

• simplified texture storage specification

• R and RG textures

• texture swizzles

• seamless cube maps

• non-power-of-two textures with full wrap mode support and mipmapping

• texture LOD clamps and mipmap level base offset and max clamp

• at least 32 textures, at least 16 each for fragment and vertex shaders

• 16-bit (with filtering) and 32-bit (without filtering) floating-point textures

• 32-bit, 16-bit, and 8-bit signed and unsigned integer renderbuffers, textures,
and vertex attributes

• 8-bit sRGB textures and framebuffers (without mixed RGB/sRGB render-
ing)

• 11/11/10 floating-point RGB textures

• shared exponent RGB 9/9/9/5 textures

• 10/10/10/2 unsigned normalized and unnormalized integer textures

• 10/10/10/2 signed and unsigned normalized vertex attributes

• 16-bit floating-point vertex attributes

• 8-bit-per-component signed normalized textures

• ETC2/EAC texture compression formats

• sized internal texture formats with minimum precision guarantees

• multisample renderbuffers

OpenGL ES 3.0.3 (December 18, 2013)

E.2. CHANGE LOG FOR 3.0.3 319

• 8-bit unsigned normalized renderbuffers

• depth textures and shadow comparison

• 24-bit depth renderbuffers and textures

• 24/8 depth/stencil renderbuffers and textures

• 32-bit depth and 32F/8 depth/stencil renderbuffers and textures

• stretch blits (with restrictions)

• framebuffer invalidation hints

• primitive restart with fixed index

• unsigned integer element indices with at least 24 usable bits

• draw command allowing specification of range of accessed elements

• ability to attach any mipmap level to a framebuffer object

• minimum/maximum blend equations

• program binaries, including querying binaries from linked GLSL programs

• mandatory online compiler

• non-square and transposable uniform matrices

• additional pixel store state

• indexed extension string queries

E.2 Change Log for 3.0.3

Changes since the 3.0.2 specification:

• Remove ”non-64-bit” from first sentence of section 6.1.2 (Bug 7895).

• Remove redundant reference to setting TEXTURE_IMMUTABLE_FORMAT and
TEXTURE_IMMUTABLE_LEVELS from the end of section 3.8.4 (Bug 9342).

• Clarify framebuffer attachment completeness rules with respect to the
FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL and mipmap complete-
ness (Bug 9689).

OpenGL ES 3.0.3 (December 18, 2013)

E.2. CHANGE LOG FOR 3.0.3 320

• Clarify active uniform enumeration rules (Bug 9797).

• Clarify behavior of mipmap completeness with unsized base internal formats
(Bug 9807).

• Introduce INVALID_VALUE error when BindBufferRange is called with a
negative offset (Bug 9873).

• Clarify that when DrawBuffers is called with 0 as the value of n, in the de-
fault framebuffer case INVALID_OPERATION is generated, and in the frame-
buffer object case, NONE is assigned to all draw buffers (Bug 10059).

• Allow alternate formulation of equation 3.21’s mipmap array selection (Bug
10119).

• Untangle ReadBuffer from ReadPixels and put it into its own section, while
clarifying the error conditions (Bug 10172).

• Specify that std140 and shared layout uniform blocks and their members
are always active (Bug 10182).

• Introduce missing INVALID_OPERATION error when BindAttribLocation
is called with a name that starts with the reserved "gl_" prefix (Bug 10271).

• Clarify return values from GetFramebufferAttachmentParameteriv of
NONE and LINEAR for FRAMEBUFFER_ATTACHMENT_COMPONENT_TYPE

and FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING, respectively, when
the attachment has not been initialized (Bug 10357).

• Fix description of fragment shader outputs to only require explicit output
variable bindings to fragment colors when there are more than one output
variable (Bug 10363).

• Clarify that ValidateProgram is only required to check for the errors de-
scribed in the Validation section, not all INVALID_OPERATION errors that
can be generated by rendering commands (Bug 10650).

• Clarify behavior of commands that don’t specify whether an error is gener-
ated when accessing a mapped buffer object (Bug 10684).

• Clarify that SAMPLE_BUFFERS and SAMPLES are framebuffer-dependent
state, and that SAMPLE_BUFFERS can only assume the values zero or one
(Bug 10689).

OpenGL ES 3.0.3 (December 18, 2013)

E.3. CHANGE LOG FOR 3.0.2 321

• Simplify description of multisample rasterization to specify it is in effect
when SAMPLE_BUFFERS is one, eliminating extraneous language about GL
contexts, EGL, etc. (Bug 10690).

• Clarify the type of stencil bits in Table 3.14 (Bug 10748).

• Clarify that writing different color values to the same image attached multi-
ple times is undefined (Bug 10983).

• Clean up description of FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER

query (Bug 11199).

• Clarify that samplers behave the same as textures, renderbuffers, and buffers
with respective to object name lifetimes (Bug 11374).

E.3 Change Log for 3.0.2

Changes since the 3.0.1 specification:

• Clarify BlitFramebuffer downsampling behavior for different types of sam-
ples (Bug 9690).

• Clarify that program object state queries return the state presently in effect,
which may be different than most recently set state (Bug 9702).

• Clarify that current vertex attributes are not program object state (Bug 9781).

• Clarify that integer state is undefined when set with out-of-range floating-
point values (Bug 9846).

• Clarify that Draw* commands are silently ignored when there is no current
program object, rather than it being an error condition (Bug 9879).

• Clarify that texel fetches are undefined when texel coordinates fall outside
the computed level of detail, not the specified level of detail (Bug 9891).

• Clarify which pixels are read and written by BlitFramebuffer (Bug 9946).

• Clarify that either truncation or rounding are acceptable when converting
from floating-point to normalized fixed-point (Bug 9976).

• Make the minification vs. magnification switch-over point always zero (Bug
9997).

OpenGL ES 3.0.3 (December 18, 2013)

E.4. CHANGE LOG FOR 3.0.1 322

• Clarify that DrawArrays transfers no elements when count is zero (Bug
10015).

• Tweak the language covering the conditions that can affect framebuffer com-
pleteness (Bug 10047).

• Remove language in Appendix D that preserves binding-related state after
an object is deleted and automatically unbound (Bug 10076).

• Remove language in Appendix D that implies that active transform feedback
objects can be deleted (Bug 10079).

E.4 Change Log for 3.0.1

Changes since the 3.0.0 specification:

• Remove the clamp on reference value for shadow maps with floating-point
depth formats (Bug 7975).

• Clarify GetFramebufferAttachmentParameteriv behavior for a few dif-
ferent cases (Bug 9170).

• Move description of level base and level max clamping for immutable tex-
tures to Mipmapping section (Bug 9342).

• Remove references to floating-point formats when describing BlitFrame-
buffer (Bug 9388).

• Remove PACK_IMAGE_HEIGHT and PACK_SKIP_IMAGES which have no
effect (Bug 9414).

• Require that Invalidate[Sub]Framebuffer accept DRAW_FRAMEBUFFER

and READ_FRAMEBUFFER (Bug 9421).

• Fix initial value of read buffer to be NONE if there is no default framebuffer
associated with the context (Bug 9473).

• Require that Invalidate[Sub]Framebuffer accept DEPTH_STENCIL_-

ATTACHMENT (Bug 9480).

• Require that GenerateMipmap throw INVALID_OPERATION for depth tex-
tures (Bug 9481).

OpenGL ES 3.0.3 (December 18, 2013)

E.4. CHANGE LOG FOR 3.0.1 323

• Clarify that a texture is incomplete if it has a depth component, no shadow
comparison, and linear filtering (also Bug 9481).

• Minor tweaks to description of RGB9_E5 (Bug 9486).

• Clarify behavior when drawing to an FBO with both NULL and non-NULL
attachments (Bug 9494).

• Clarify behavior of BindBufferBase (Bug 9513).

• Return to a clamp-on-specification behavior for ClearDepth and
DepthRange (Bug 9517).

• Eliminate references to programs without fragment shaders (Bug 9543).

• Move some uniform buffer state out of program object state tables (Bug
9566).

• Clarify that gl_VertexID is undefined if any client-side vertex arrays are
enabled (Bug 9603).

• Clarify that vertex attribute aliasing is not permitted in conjunction with
GLSL-ES 3.00 shaders (Bug 9609).

• Fix description of LINK_STATUS which was incorrectly specified to return
the compilation status (Bug 9698).

• Clarifications and clean up in query object language (Bug 9766).

• Clarify that mask may be zero for BlitFramebuffer indicating no action be
taken (Bug 9748).

• Clarify that arguments to TexSubImage* need not exactly match the values
passed to TexImage* (Bug 9750).

• Clarify that BindBufferRange only performs error checking of size and off-
set if buffer is not zero (Bug 9765).

• Fix minor typos and other minor tweaks to transform feedback description
(Bug 9842).

• Clarify that primitives collected with transform feedback must match (not
merely be compatible with) the transform feedback primitiveMode.

OpenGL ES 3.0.3 (December 18, 2013)

E.5. CREDITS AND ACKNOWLEDGEMENTS 324

• Clarify that only the
specified portion(s) (depth and/or stencil) of depth/stencil attachment may
be invalidated by Invalidate[Sub]Framebuffer.

• Remove references to FLOAT in table 3.14.

• Cleaned up index entries for state tables 6.13 and 6.35 which were overly
verbose.

• Added individual bookmarks to each state table in the PDF.

E.5 Credits and Acknowledgements

OpenGL ES 3.0 is the result of the contributions of many people and companies.
Members of the Khronos OpenGL ES Working Group during the development of
OpenGL ES 3.0, including the company that they represented at the time of their
contributions, follow. In addition, many people participated in developing desktop
OpenGL specifications and extensions on which the OpenGL ES 3.0 functionality
is based in large part; those individuals are listed in the respective specifications in
the OpenGL Registry.

Acorn Pooley, NVIDIA
Alberto Moreira, Qualcomm
Aleksandra Krstic, Qualcomm
Alex Eddy, Apple
Alon Or-Bach, Nokia
Andrzej Kacprowski, Intel
Arzhange Safdarzadeh, Intel
Aske Simon Christensen, ARM
Avi Shapira, Graphic Remedy
Barthold Lichtenbelt, NVIDIA
Ben Bowman, Imagination Technologies
Ben Brierton, Broadcom
Benj Lipchak, Apple
Benson Tao, Vivante
Bill Licea-Kane, AMD
Brent Insko, Intel
Brian Murray, Freescale
Bruce Merry, ARM
Carlos Santa, TI
Cass Everitt, Epic Games & NVIDIA
Cemil Azizoglu, TI
Chang-Hyo Yu, Samsung
Chris Dodd, NVIDIA
Chris Knox, NVIDIA

Chris Tserng, TI
Clay Montgomery, TI
Cliff Gibson, Imagination Technologies
Daniel Kartch, NVIDIA
Daniel Koch, Transgaming
Daoxiang Gong, Imagination Technologies
Dave Shreiner, ARM
David Garcia, AMD
David Jarmon, Vivante
Derek Cornish, Epic Games
Dominik Witczak, ARM & Mobica
Eben Upton, Broadcom
Ed Plowman, Intel & ARM
Eisaku Ohbuchi, DMP
Elan Lennard, ARM
Erik Faye-Lund, ARM
Georg Kolling, Imagination Technologies
Graeme Leese, Broadcom
Graham Connor, Imagination Technologies
Graham Sellers, AMD
Greg Roth, NVIDIA
Guillaume Portier, Hi
Guofang Jiao, Qualcomm
Hans-Martin Will, Vincent

OpenGL ES 3.0.3 (December 18, 2013)

E.5. CREDITS AND ACKNOWLEDGEMENTS 325

Hwanyong Lee, Huone
I-Gene Leong, NVIDIA
Ian Romanick, Intel
Ian South-Dickinson, NVIDIA
Ilan Aelion-Exch, Samsung
Inkyun Lee, Huone
Jacob Ström, Ericsson
James Adams, Broadcom
James Jones, Imagination Technologies
James McCombe, Imagination Technologies
Jamie Gennis, Google
Jan-Harald Fredriksen, ARM
Jani Vaisanen, Nokia
Jarkko Kemppainen, Symbio
Jauko Kylmaoja, Symbio
Jeff Bolz, NVIDIA
Jeff Leger, Qualcomm
Jeff Vigil, Qualcomm
Jeremy Sandmel, Apple
Jeremy Thorne, Broadcom
Jim Hauxwell, Broadcom
Jinsung Kim, Huone
Jiyoung Yoon, Huone
Jon Kennedy, 3DLabs
Jon Leech, Khronos
Jonathan Putsman, Imagination Technologies
Jørn Nystad, ARM
Jussi Rasanen, NVIDIA
Kalle Raita, drawElements
Kari Pulli, Nokia
Keith Whitwell, VMware
Kent Miller, Netlogic Microsystems
Kimmo Nikkanen, Nokia
Konsta Karsisto, Nokia
Krzysztof Kaminski, Intel
Kyle Haughey, Apple
Larry Seiler, Intel
Lars Remes, Symbio
Lee Thomason, Adobe
Lefan Zhong, Vivante
Luc Semeria, Apple
Marcus Lorentzon, Ericsson
Mark Butler, Imagination Technologies
Mark Callow, Hi
Mark Cresswell, Broadcom
Mark Snyder, Alt Software
Mark Young, AMD
Mathieu Robart, STM
Matt Russo, Matrox

Matthew Netsch, Qualcomm
Maurice Ribble, AMD & Qualcomm
Max Kazakov, DMP
Mika Pesonen, Nokia
Mike Cai, Vivante
Mike Weiblen, Zebra Imaging
Mila Smith, AMD
Nakhoon Baek, Kyungpook Univeristy
Nate Huang, NVIDIA
Neil Trevett, NVIDIA
Nelson Kidd, Intel
Nick Haemel, AMD & NVIDIA
Nick Penwarden, Epic Games
Niklas Smedberg, Epic Games
Nizar Romdan, ARM
Oliver Wohlmuth, Fujitsu
Pat Brown, NVIDIA
Paul Ruggieri, Qualcomm
Paul Wilkinson, Broadcom
Per Wennersten, Ericsson
Petri Talalla, Symbio
Phil Huxley, ZiiLabs
Philip Hatcher, Freescale
Piers Daniell, NVIDIA
Piotr Tomaszewski, Ericsson
Piotr Uminski, Intel
Rami Mayer, Samsung
Rauli Laatikainen, RightWare
Richard Schreyer, Apple
Rob Barris, NVIDIA
Rob Simpson, Qualcomm
Robert Simpson, AMD
Roj Langhi, Vivante
Rune Holm, ARM
Sami Kyostila, Nokia
Scott Bassett, Apple
Sean Ellis, ARM
Shereef Shehata, TI
Sila Kayo, Nokia
Slawomir Grajewski, Intel
Steve Hill, STM & Broadcom
Steven Olney, DMP
Suman Sharma, Intel
Tapani Palli, Nokia
Teemu Laakso, Symbio
Tero Karras, NVIDIA
Timo Suoranta, Imagination Technologies
Tom Cooksey, ARM
Tom McReynolds, NVIDIA

OpenGL ES 3.0.3 (December 18, 2013)

E.5. CREDITS AND ACKNOWLEDGEMENTS 326

Tom Olson, TI & ARM
Tomi Aarnio, Nokia
Tommy Asano, Takumi

Wes Bang, Nokia
Yanjun Zhang, Vivante
Yuan Wang, Imagination Technologies

The OpenGL ES Working Group gratefully acknowledges administrative sup-
port by the members of Gold Standard Group, including Andrew Riegel, Elizabeth
Riegel, Glenn Fredericks, and Michelle Clark, and technical support from James
Riordon, webmaster of Khronos.org and OpenGL.org.

OpenGL ES 3.0.3 (December 18, 2013)

Appendix F

OpenGL ES 2.0 Compatibility

The OpenGL ES 3.0 API is backward compatible with OpenGL ES 2.0. It accepts
all of the same commands and their arguments, including the same token values.
This appendix describes OpenGL ES 3.0 features that were carried forward from
OpenGL ES 2.0 solely to maintain backward compatibility as well as those that
have changed in behavior relative to OpenGL ES 2.0.

F.1 Legacy Features

The following features are present to maintain backward compatibility with
OpenGL ES 2.0, but their use in not recommended as it is likely for these features
to be removed in a future version.

• Fixed-point (16.16) vertex attributes

• Application-chosen object names (those not generated via Gen* or Create*)

• Client-side vertex arrays (those not stored in buffer objects)

• Luminance, alpha, and luminance alpha formats

• Queryable shader range and precision (GetShaderPrecisionFormat)

• Old-style non-indexed extensions query

• Vector-wise uniform limits

• Default vertex array object

327

F.2. DIFFERENCES IN RUNTIME BEHAVIOR 328

F.2 Differences in Runtime Behavior

The following behaviors are different in OpenGL ES 3.0 than they were in OpenGL
ES 2.0.

• OpenGL ES 3.0 requires that all cube map filtering be seamless. OpenGL ES
2.0 specified that a single cube map face be selected and used for filtering.
See section 3.8.9.

• OpenGL ES 3.0 specifies a zero-preserving mapping when converting back
and forth between signed normalized fixed-point values and floating-point
values. OpenGL ES 2.0 specified a mapping by which zeros are not pre-
served. See section 2.1.6.

• OpenGL ES 3.0 requires that framebuffer objects not be shared between con-
texts. OpenGL ES 2.0 left it undefined whether framebuffer objects could be
shared. See appendix D.

OpenGL ES 3.0.3 (December 18, 2013)

Index

x BITS, 276

ACTIVE ATTRIBUTE MAX -
LENGTH, 55, 233, 260

ACTIVE ATTRIBUTES, 54, 55, 233,
259

ACTIVE TEXTURE, 121, 123, 225,
249

ACTIVE UNIFORM BLOCK -
MAX NAME LENGTH, 234,
261

ACTIVE UNIFORM BLOCKS, 59,
234, 261

ACTIVE UNIFORM MAX LENGTH,
61, 233, 259

ACTIVE UNIFORMS, 60, 61, 233, 259
ActiveTexture, 71, 121
ALIASED LINE WIDTH RANGE,

98, 269
ALIASED POINT SIZE RANGE, 97,

269
ALPHA, 112, 114, 126, 127, 138, 141,

148, 149, 161, 165, 166, 180,
250, 255, 276

ALPHA BITS, 215
ALREADY SIGNALED, 221
ALWAYS, 148, 162, 175, 176, 252
ANY SAMPLES PASSED, 83, 176,

177, 228
ANY SAMPLES PASSED CONSER-

VATIVE, 83, 176, 177, 228
ARRAY BUFFER, 24, 32, 41

ARRAY BUFFER BINDING, 41, 244
ATTACHED SHADERS, 233, 234, 259
AttachShader, 47

BACK, 104, 175, 183–186, 189, 190,
238, 247

BeginQuery, 83, 90, 176
BeginTransformFeedback, 86–88
BindAttribLocation, 53, 55, 56, 320
BindBuffer, 31, 32, 34, 42
BindBufferBase, 33, 34, 70, 87, 90, 231,

323
BindBufferRange, 33, 34, 70, 87, 88,

90, 320, 323
BindFramebuffer, 198–200, 212
BindRenderbuffer, 201, 202
BindSampler, 123, 124
BindTexture, 71, 121, 122
BindTransformFeedback, 85, 86
BindVertexArray, 43
BLEND, 177, 252
BLEND COLOR, 252
BLEND DST ALPHA, 252
BLEND DST RGB, 252
BLEND EQUATION ALPHA, 252
BLEND EQUATION RGB, 252
BLEND SRC ALPHA, 252
BLEND SRC RGB, 252
BlendColor, 179, 181
BlendEquation, 177, 178
BlendEquationSeparate, 177, 178
BlendFunc, 179

329

INDEX 330

BlendFuncSeparate, 179
BlitFramebuffer, 96, 189, 195, 197,

321–323
BLUE, 148, 149, 161, 165, 250, 255,

276
BLUE BITS, 215
BOOL, 62
bool, 62, 67, 89
BOOL VEC2, 62
BOOL VEC3, 62
BOOL VEC4, 62
BUFFER ACCESS FLAGS, 33, 36, 38,

39, 245
BUFFER MAP LENGTH, 33, 36, 38,

39, 245
BUFFER MAP OFFSET, 33, 36, 38,

39, 245
BUFFER MAP POINTER, 33, 36, 38,

39, 230, 245
BUFFER MAPPED, 33, 36, 38, 39, 245
BUFFER SIZE, 33, 36, 38, 245
BUFFER USAGE, 33, 36, 37, 245
BufferData, 34, 35, 40, 58, 314
BufferSubData, 36, 58, 314
bvec2, 62, 65, 89
bvec3, 62, 89
bvec4, 62, 89
BYTE, 23, 25, 110, 111, 113, 194

CCW, 104, 247
centroid in, 164
CheckFramebufferStatus, 212, 213
CLAMP TO EDGE, 149, 150, 154, 196
Clear, 95, 186–189
ClearBuffer, 188, 189
ClearBuffer*, 95
ClearBuffer{if ui}v, 187
ClearBufferfi, 188
ClearBufferfv, 188
ClearBufferiv, 188

ClearBufferuiv, 188
ClearColor, 187
ClearDepth, 323
ClearDepthf, 187
ClearStencil, 187
ClientWaitSync, 219–222, 313
COLOR, 188, 189, 217
COLOR ATTACHMENTi, 183, 184,

190, 200, 205, 211
COLOR ATTACHMENTm, 184, 190,

217
COLOR ATTACHMENTn, 200
COLOR ATTACHMENT0, 185, 190,

200
COLOR BUFFER BIT, 186, 189, 195,

196
COLOR CLEAR VALUE, 253
COLOR WRITEMASK, 253
ColorMask, 185, 186
COMPARE REF TO TEXTURE, 148,

162
COMPILE STATUS, 45, 47, 232, 258
CompileShader, 45, 46, 168
COMPRESSED R11 EAC, 145, 285,

297, 299, 300
COMPRESSED RG11 EAC, 145, 285,

300
COMPRESSED RGB8 ETC2, 145,

284–288, 291, 293–295
COMPRESSED RGB8 -

PUNCHTHROUGH AL-
PHA1 ETC2, 145, 285, 287,
304, 308, 310, 311

COMPRESSED RGBA8 ETC2 EAC,
145, 284, 287, 294, 295, 297,
299, 300

COMPRESSED SIGNED R11 EAC,
145, 285, 301, 304

COMPRESSED SIGNED RG11 EAC,
145, 285, 304

OpenGL ES 3.0.3 (December 18, 2013)

INDEX 331

COMPRESSED SRGB8 AL-
PHA8 ETC2 EAC, 145, 163,
284, 285, 287, 297

COMPRESSED SRGB8 ALPHA8 -
ETC2 EAC, 297

COMPRESSED SRGB8 ETC2, 145,
162, 284, 287, 294

COMPRESSED SRGB8 -
PUNCHTHROUGH AL-
PHA1 ETC2, 145, 163, 285,
287, 311

COMPRESSED TEXTURE FOR-
MATS, 144, 270

CompressedTexImage, 147
CompressedTexImage*, 135, 137, 213
CompressedTexImage2D, 144, 146, 285
CompressedTexImage3D, 145, 146
CompressedTexSubImage*, 147
CompressedTexSubImage2D, 146, 147,

286
CompressedTexSubImage3D, 146, 147
CONDITION SATISFIED, 221
CONSTANT ALPHA, 180
CONSTANT COLOR, 180
COPY READ BUFFER, 32, 40
COPY READ BUFFER BINDING,

277
COPY WRITE BUFFER, 32, 40
COPY WRITE BUFFER BINDING,

277
CopyBufferSubData, 40
CopyTex*, 126, 139
CopyTexImage, 139, 214
CopyTexImage*, 137, 205, 209, 210,

213
CopyTexImage2D, 138, 140, 142, 144,

156
CopyTexImage3D, 142
CopyTexSubImage, 214
CopyTexSubImage*, 205

CopyTexSubImage2D, 140, 142–144
CopyTexSubImage3D, 140, 142, 144
Create*, 327
CreateProgram, 47
CreateShader, 45
CULL FACE, 104, 247
CULL FACE MODE, 247
CullFace, 104, 107
CURRENT PROGRAM, 259
CURRENT QUERY, 228, 277
CURRENT VERTEX ATTRIB, 236,

263
CW, 104

DECR, 175
DECR WRAP, 175
DELETE STATUS, 46, 232, 233, 258,

259
DeleteBuffers, 31, 33, 40, 313
DeleteFramebuffers, 200
DeleteProgram, 52
DeleteQueries, 83, 84
DeleteRenderbuffers, 202, 213, 313
DeleteSamplers, 123, 124
DeleteShader, 46
DeleteSync, 220, 230
DeleteTextures, 122, 213, 313
DeleteTransformFeedbacks, 85, 86
DeleteVertexArrays, 43
DEPTH, 188, 189, 217, 238, 255
DEPTH24 STENCIL8, 111, 128, 132
DEPTH32F STENCIL8, 111, 128, 132
DEPTH ATTACHMENT, 200, 205,

211, 217
DEPTH BITS, 215, 276
DEPTH BUFFER BIT, 186, 189, 195–

197
DEPTH CLEAR VALUE, 253
DEPTH COMPONENT, 77, 111, 114,

126, 132, 161, 166, 191

OpenGL ES 3.0.3 (December 18, 2013)

INDEX 332

DEPTH COMPONENT16, 111, 128,
132

DEPTH COMPONENT24, 111, 128,
132

DEPTH COMPONENT32F, 111, 128,
132

DEPTH FUNC, 252
DEPTH RANGE, 246
DEPTH STENCIL, 77, 111, 114, 116,

119, 120, 126, 132, 158, 161,
166, 167, 188, 189, 191, 205,
207, 210, 217

DEPTH STENCIL ATTACHMENT,
205, 207, 217, 238, 322

DEPTH TEST, 176, 252
DEPTH WRITEMASK, 253
DepthFunc, 176
DepthMask, 185, 186
DepthRange, 323
DepthRangef, 81, 225
DetachShader, 48
dFdx, 223
dFdy, 223
Disable, 26, 95, 104, 107, 173, 174, 176,

177, 182
DisableVertexAttribArray, 25, 236
DITHER, 182, 252
DONT CARE, 223, 268
Draw*, 321
DRAW BUFFERi, 185, 188, 254
DRAW FRAMEBUFFER, 198–200,

204, 205, 213, 216, 238, 253,
322

DRAW FRAMEBUFFER BINDING,
155, 183, 184, 197, 200, 214,
215, 253

DrawArrays, 19, 20, 26, 28, 41, 43, 77,
87, 88, 214

DrawArraysInstanced, 26, 28, 30, 87,
88

DrawArraysOneInstance, 27, 28
DrawBuffers, 183, 184, 320
DrawBuffers, 186, 189
DrawElements, 26, 29–31, 42, 43, 87
DrawElementsInstanced, 26, 30, 42, 87
DrawElementsOneInstance, 29
DrawRangeElements, 26, 30, 42, 87,

270
DST ALPHA, 180
DST COLOR, 180
DYNAMIC COPY, 33, 35
DYNAMIC DRAW, 33, 35
DYNAMIC READ, 33, 35

ELEMENT ARRAY BUFFER, 32, 42
ELEMENT ARRAY BUFFER BIND-

ING, 243
Enable, 26, 95, 104, 107, 173, 174, 176,

177, 182, 225
EnableVertexAttribArray, 25, 43, 236
EndQuery, 83, 84, 176
EndTransformFeedback, 86, 90, 316
EQUAL, 148, 162, 175, 176
EXTENSIONS, 227, 228, 271

FALSE, 14, 33, 36, 40, 45, 48, 51–53,
57, 65, 78–80, 84, 161, 167,
174, 177, 225, 226, 228, 230–
233, 236, 237, 240, 243–245,
247, 248, 250, 252, 258, 259,
264, 265, 277

FASTEST, 223
FenceSync, 219, 220, 223, 315
Finish, 218, 219, 282, 315
FIXED, 23, 25
flat, 91
FLOAT, 23, 25, 31, 55, 62, 110, 111,

113, 192–194, 238, 243, 324
float, 54, 62, 67, 89

OpenGL ES 3.0.3 (December 18, 2013)

INDEX 333

FLOAT 32 UNSIGNED INT -
24 8 REV, 111–113, 115, 116,
118

FLOAT MAT2, 55, 62
FLOAT MAT2x3, 55, 62
FLOAT MAT2x4, 55, 62
FLOAT MAT3, 55, 62
FLOAT MAT3x2, 55, 62
FLOAT MAT3x4, 55, 62
FLOAT MAT4, 55, 62
FLOAT MAT4x2, 55, 62
FLOAT MAT4x3, 55, 62
FLOAT VEC2, 55, 62
FLOAT VEC3, 55, 62
FLOAT VEC4, 55, 62
Flush, 218, 222, 282
FlushMappedBufferRange, 38, 39, 314
FRAGMENT SHADER, 163, 232, 235
FRAGMENT SHADER DERIVA-

TIVE HINT, 223, 268
FRAMEBUFFER, 199, 204, 205, 213,

216, 238
FRAMEBUFFER ALPHA SIZE, 140
FRAMEBUFFER ATTACHMENT x -

SIZE, 255
FRAMEBUFFER ATTACHMENT -

ALPHA SIZE, 238
FRAMEBUFFER ATTACHMENT -

BLUE SIZE, 238
FRAMEBUFFER ATTACHMENT -

COLOR ENCODING,
138, 178, 181, 196, 239, 255,
320

FRAMEBUFFER ATTACHMENT -
COMPONENT TYPE, 238,
255, 320

FRAMEBUFFER ATTACHMENT -
DEPTH SIZE, 238

FRAMEBUFFER ATTACHMENT -
ENCODING, 140

FRAMEBUFFER ATTACHMENT -
GREEN SIZE, 238

FRAMEBUFFER ATTACH-
MENT OBJECT NAME, 204,
207, 211, 238, 239, 255

FRAMEBUFFER ATTACH-
MENT OBJECT TYPE, 204,
207, 210, 211, 215, 238, 239,
255

FRAMEBUFFER ATTACHMENT -
RED SIZE, 238

FRAMEBUFFER ATTACHMENT -
STENCIL SIZE, 238

FRAMEBUFFER ATTACHMENT -
TEXTURE -
CUBE MAP FACE, 207, 239,
255

FRAMEBUFFER ATTACHMENT -
TEXTURE LAYER, 207, 211,
216, 239, 255, 321

FRAMEBUFFER ATTACHMENT -
TEXTURE LEVEL, 155, 207,
209, 211, 239, 255, 319

FRAMEBUFFER BINDING, 200
FRAMEBUFFER BLUE SIZE, 140
FRAMEBUFFER COMPLETE, 214
FRAMEBUFFER DEFAULT, 238
FRAMEBUFFER GREEN SIZE, 140
FRAMEBUFFER INCOMPLETE AT-

TACHMENT, 212
FRAMEBUFFER INCOMPLETE DI-

MENSIONS, 212
FRAMEBUFFER INCOMPLETE -

MISSING ATTACHMENT,
212

FRAMEBUFFER INCOMPLETE -
MULTISAMPLE, 212

FRAMEBUFFER RED SIZE, 140
FRAMEBUFFER UNDEFINED, 212

OpenGL ES 3.0.3 (December 18, 2013)

INDEX 334

FRAMEBUFFER UNSUPPORTED,
212, 213

FramebufferRenderbuffer, 204, 205,
213

FramebufferTexture*, 207, 213
FramebufferTexture2D, 205–207
FramebufferTextureLayer, 206, 207
FRONT, 104, 175, 186
FRONT AND BACK, 104, 175, 186
FRONT FACE, 247
FrontFace, 103, 104, 167
FUNC ADD, 178, 179, 181, 252
FUNC REVERSE SUBTRACT, 178,

179
FUNC SUBTRACT, 178, 179
fwidth, 223

Gen*, 313, 327
GenBuffers, 31, 32
GENERATE MIPMAP HINT, 223,

268
GenerateMipmap, 157, 322
GenFramebuffers, 198, 200
GenQueries, 83, 84
GenRenderbuffers, 201, 202
GenSamplers, 123–125, 226
GenTextures, 121, 122
GenTransformFeedbacks, 85, 86
GenVertexArrays, 43
GEQUAL, 148, 162, 175, 176
Get, 82, 224, 225
GetActiveAttrib, 55, 74, 260
GetActiveUniform, 49, 58, 61–63, 66,

259
GetActiveUniformBlockiv, 59, 262
GetActiveUniformBlockName, 49, 59
GetActiveUniformsiv, 61, 63, 261, 262
GetAttachedShaders, 234, 259
GetAttribLocation, 50, 55, 56, 260

GetBooleanv, 174, 224, 225, 241, 248,
253, 265, 270

GetBufferParameteri64v, 230, 245
GetBufferParameteriv, 230, 245
GetBufferPointerv, 230, 245
GetError, 17, 277
GetFloatv, 12, 174, 224, 225, 241, 246–

248, 252, 253, 269
GetFragDataLocation, 50, 169
GetFramebufferAttachmentParameteriv,

215, 237, 238, 255, 320, 322
GetInteger64i v, 224, 231, 265, 266
GetInteger64v, 29, 221, 224, 225, 241,

269, 270
GetIntegeri v, 224, 231, 265, 266
GetIntegerv, 30, 67, 70, 96, 124, 184,

185, 190, 191, 200, 202, 224,
225, 227, 241, 243, 244, 246,
247, 249, 252–254, 257, 259,
265, 266, 268–277

GetInteger64v, 60, 274
GetInternalformativ, 203, 240
GetProgramBinary, 52, 53, 259
GetProgramInfoLog, 51, 53, 234, 259
GetProgramiv, 48, 52–55, 59, 60, 73,

74, 78, 233, 234, 259–261
GetQueryiv, 228, 277
GetQueryObjectuiv, 228, 264
GetQueryObjectuiv, 229
GetQueryObjectuiv, 264
GetRenderbufferParameteriv, 215, 240,

256
GetSamplerParameter, 226, 251
GetSamplerParameter*, 123, 226
GetSamplerParameterfv, 251
GetSamplerParameteriv, 251
GetShaderInfoLog, 46, 234, 258
GetShaderiv, 45, 46, 232, 234, 235, 258
GetShaderPrecisionFormat, 46, 235,

270, 327

OpenGL ES 3.0.3 (December 18, 2013)

INDEX 335

GetShaderSource, 235, 258
GetString, 227, 228, 271
GetStringi, 227, 271
GetSynciv, 219, 229, 267
GetTexParameter, 135, 226, 250
GetTexParameterfv, 250
GetTexParameteriv, 250
GetTransformFeedbackVarying, 73,

260
GetUniform, 259
GetUniform*, 237
GetUniformBlockIndex, 50, 59
GetUniformfv, 237
GetUniformIndices, 50, 60, 61
GetUniformiv, 237
GetUniformLocation, 50, 58, 71, 259
GetUniformuiv, 237
GetVertexAttribfv, 236, 263
GetVertexAttribIiv, 236
GetVertexAttribIuiv, 236
GetVertexAttribiv, 236, 243
GetVertexAttribPointerv, 237, 243
gl FragColor, 168, 184
gl FragCoord, 167
gl FragCoord.z, 280
gl FragData, 168, 184
gl FragData[n], 168
gl FragDepth, 168, 280
gl FrontFacing, 167
gl InstanceID, 28, 29, 54, 77
gl PointCoord, 97
gl PointSize, 78, 97
gl Position, 72, 78, 81, 283
gl VertexID, 54, 77, 323
GREATER, 148, 162, 175, 176
GREEN, 148, 149, 161, 165, 250, 255,

276
GREEN BITS, 215

HALF FLOAT, 24, 25, 110, 111, 113,
192–194

HIGH FLOAT, 235
HIGH INT, 235
highp, 88
Hint, 223

IMPLEMENTATION COLOR -
READ FORMAT, 191, 215,
276

IMPLEMENTATION COLOR -
READ TYPE, 191, 215, 276

INCR, 175
INCR WRAP, 175
INFO LOG LENGTH, 232–234, 258,

259
INT, 23, 25, 55, 62, 110, 111, 113, 139,

191, 194, 238
int, 62, 67, 89
INT 2 10 10 10 REV, 24, 27
INT SAMPLER 2D, 63
INT SAMPLER 2D ARRAY, 63
INT SAMPLER 3D, 63
INT SAMPLER CUBE, 63
INT VEC2, 55, 62
INT VEC3, 55, 62
INT VEC4, 55, 62
INTERLEAVED ATTRIBS, 72, 73, 80,

88, 233, 260
INVALID ENUM, 18, 47, 121, 124,

136, 137, 188, 190, 219, 226,
229, 239–241

INVALID FRAMEBUFFER OP-
ERATION, 18, 144, 192, 197,
214

INVALID INDEX, 59, 61
INVALID OPERATION, 18, 24, 33,

36, 38–41, 43, 44, 47, 48, 51,
52, 55, 56, 58, 66, 71, 78,
83–88, 90, 112, 115, 122–124,

OpenGL ES 3.0.3 (December 18, 2013)

INDEX 336

126, 133, 135–140, 144–147,
158, 169, 184, 189–193, 196,
197, 203–206, 217, 226, 228,
232, 237, 238, 240, 286, 320,
322

INVALID VALUE, 18, 23–26, 28, 31,
34, 36, 38, 39, 41, 44, 47, 55,
56, 59, 61, 70, 71, 73, 82, 87,
98, 108, 123, 132, 134, 135,
140, 142, 143, 145, 147, 156,
173, 184, 186, 189, 195, 203,
206, 220–222, 225, 228, 229,
232, 236, 237, 241, 320

Invalidate[Sub]Framebuffer, 322, 324
InvalidateFramebuffer, 217
InvalidateSubFramebuffer, 216, 217
INVERT, 175
isampler2D, 63
isampler2DArray, 63
isampler3D, 63
isamplerCube, 63
IsBuffer, 230
IsEnabled, 225, 241, 244, 247, 248, 252
IsFramebuffer, 237
IsProgram, 233
IsQuery, 228
IsRenderbuffer, 240
IsSampler, 123, 226
IsShader, 232
IsSync, 230
IsTexture, 226
IsTransformFeedback, 232
IsVertexArray, 231
ivec2, 62, 89
ivec3, 62, 89
ivec4, 62, 89

KEEP, 175, 176, 252

layout, 68

LEQUAL, 148, 161, 162, 175, 176, 250,
251

LESS, 148, 162, 175, 176, 252
LINE LOOP, 20
LINE STRIP, 20
LINE WIDTH, 247
LINEAR, 75, 138, 140, 148, 150, 154,

155, 157–159, 161, 196, 197,
209, 239, 250, 251, 320

LINEAR MIPMAP LINEAR, 148,
155, 157, 209

LINEAR MIPMAP NEAREST, 148,
155, 157, 209

LINES, 20, 86
LineWidth, 98
LINK STATUS, 48, 52, 53, 233, 259,

323
LinkProgram, 47–49, 51, 53, 56, 70, 71,

73, 90, 233
LOW FLOAT, 235
LOW INT, 235
lowp, 88
LUMINANCE, 112, 114, 120, 126, 127,

138, 141, 166
LUMINANCE , 141
LUMINANCE ALPHA, 112, 114, 120,

126, 127, 138, 166

MAJOR VERSION, 227, 271
MAP FLUSH EXPLICIT BIT, 38, 39
MAP INVALIDATE BUFFER BIT,

37, 39
MAP INVALIDATE RANGE BIT, 37,

39
MAP READ BIT, 37–39
MAP UNSYNCHRONIZED BIT, 38,

39
MAP WRITE BIT, 37–39
MapBufferRange, 34, 36–39, 58, 90
matC, 67, 68

OpenGL ES 3.0.3 (December 18, 2013)

INDEX 337

matCxR, 67, 68
mat2, 54, 62, 89
mat2x3, 54, 62, 89
mat2x4, 54, 62, 89
mat3, 54, 62, 89
mat3x2, 54, 62, 89
mat3x4, 54, 62, 89
mat4, 54, 62, 89
mat4x2, 54, 62, 89
mat4x3, 54, 62, 89
MAX, 178, 179
MAX 3D TEXTURE SIZE, 132, 206,

269
MAX ARRAY TEXTURE LAYERS,

133, 206, 269
MAX COLOR ATTACHMENTS, 183,

184, 190, 199, 205, 214, 217,
269

MAX COMBINED FRAGMENT -
UNIFORM COMPONENTS,
164, 274

MAX COMBINED TEXTURE -
IMAGE UNITS, 76, 121, 123,
274

MAX COMBINED UNIFORM -
BLOCKS, 67, 274

MAX COMBINED VERTEX UNI-
FORM COMPONENTS, 57,
274

MAX CUBE MAP TEXTURE SIZE,
133, 206, 269

MAX DRAW BUFFERS, 184, 189,
269

MAX ELEMENT INDEX, 29, 269
MAX ELEMENTS INDICES, 30, 270
MAX ELEMENTS VERTICES, 30,

270
MAX FRAGMENT -

INPUT COMPONENTS, 167,
273

MAX FRAGMENT UNIFORM -
BLOCKS, 67, 273

MAX FRAGMENT UNI-
FORM COMPONENTS, 164,
273

MAX FRAGMENT UNIFORM VEC-
TORS, 164, 273

MAX PROGRAM TEXEL OFFSET,
152, 273

MAX RENDERBUFFER SIZE, 203,
269

MAX SAMPLES, 204, 241, 276
MAX SERVER WAIT TIMEOUT,

221, 270
MAX TEXTURE IMAGE UNITS, 76,

167, 273
MAX TEXTURE LOD BIAS, 151,

269
MAX TEXTURE SIZE, 133, 206, 269
MAX TRANSFORM FEEDBACK -

INTERLEAVED COMPO-
NENTS, 73, 275

MAX TRANSFORM FEEDBACK -
SEPARATE ATTRIBS, 73,
87, 88, 231, 275

MAX TRANSFORM FEEDBACK -
SEPARATE COMPONENTS,
73, 275

MAX UNIFORM BLOCK SIZE, 60,
274

MAX UNIFORM BUFFER BIND-
INGS, 70, 231, 274

MAX VARYING COMPONENTS, 72,
274

MAX VARYING VECTORS, 72, 274
MAX VERTEX ATTRIBS, 22, 23, 25,

26, 31, 54, 56, 236, 237, 272
MAX VERTEX OUTPUT COMPO-

NENTS, 72, 167, 272

OpenGL ES 3.0.3 (December 18, 2013)

INDEX 338

MAX VERTEX TEXTURE IMAGE -
UNITS, 76, 272

MAX VERTEX UNIFORM -
BLOCKS, 67, 272

MAX VERTEX UNIFORM COMPO-
NENTS, 57, 272

MAX VERTEX UNIFORM VEC-
TORS, 57, 272

MAX VIEWPORT DIMS, 269
MEDIUM FLOAT, 235
MEDIUM INT, 235
mediump, 88
MIN, 178, 179
MIN PROGRAM TEXEL OFFSET,

152, 273
MINOR VERSION, 227, 271
MIRRORED REPEAT, 149, 154

NEAREST, 75, 148, 150, 153, 155,
157–159, 162, 196, 209

NEAREST MIPMAP -
LINEAR, 148, 155, 157, 161,
209

NEAREST MIPMAP NEAREST, 148,
155, 157, 159, 162, 209

NEVER, 148, 162, 175, 176
NICEST, 223
NO ERROR, 17
NONE, 77, 144, 148, 159, 161, 162,

166, 173, 183–185, 189–192,
207, 210, 211, 238, 250, 251,
255, 320, 322

NOTEQUAL, 148, 162, 175, 176
NULL, 24, 31, 33, 34, 36, 38, 41, 42, 45,

52, 55, 59, 61, 73, 134, 142,
146, 229, 230, 234, 235, 243,
245, 323

NUM COMPRESSED TEXTURE -
FORMATS, 144, 270

NUM EXTENSIONS, 228, 271

NUM PROGRAM BINARY FOR-
MATS, 53, 270

NUM SAMPLE COUNTS, 241
NUM SHADER BINARY FOR-

MATS, 44, 47, 270

OBJECT TYPE, 220, 229, 267
OES compressed ETC1 RGB8 tex-

ture, 284
ONE, 148, 149, 165, 179–181, 252
ONE MINUS CONSTANT ALPHA,

180
ONE MINUS CONSTANT COLOR,

180
ONE MINUS DST ALPHA, 180
ONE MINUS DST COLOR, 180
ONE MINUS SRC ALPHA, 180
ONE MINUS SRC COLOR, 180
OUT OF MEMORY, 18, 36, 39, 135,

203

PACK ALIGNMENT, 191, 257
PACK IMAGE HEIGHT, 322
PACK ROW LENGTH, 191, 257
PACK SKIP IMAGES, 322
PACK SKIP PIXELS, 191, 257
PACK SKIP ROWS, 191, 257
PauseTransformFeedback, 87
PIXEL PACK BUFFER, 32, 108, 190
PIXEL PACK BUFFER BINDING,

193, 257
PIXEL UNPACK BUFFER, 32, 108
PIXEL UNPACK BUFFER BIND-

ING, 112, 145, 257
PixelStorei, 108, 191, 197
POINTS, 20, 86
POLYGON OFFSET FACTOR, 247
POLYGON OFFSET FILL, 107, 247
POLYGON OFFSET UNITS, 247
PolygonOffset, 106

OpenGL ES 3.0.3 (December 18, 2013)

INDEX 339

PRIMITIVE RESTART FIXED IN-
DEX, 244

PRIMITIVE RESTART FIXED IN-
DEX, 26

PROGRAM BINARY FORMATS, 53,
270

PROGRAM BINARY LENGTH, 52,
53, 259

PROGRAM BINARY RETRIEV-
ABLE HINT, 53, 234, 259

ProgramBinary, 51–53, 90, 233
ProgramParameteri, 51, 53

QUERY RESULT, 228, 229, 264
QUERY RESULT AVAILABLE, 228,

229, 264

R11F G11F B10F, 110, 128, 130
R16F, 111, 128, 130
R16I, 111, 128, 130
R16UI, 111, 128, 130
R32F, 111, 128, 130
R32I, 111, 128, 130
R32UI, 111, 128, 130
R8, 111, 128, 129, 141
R8 SNORM, 111, 128, 129
R8I, 111, 128, 130
R8UI, 111, 128, 130
RASTERIZER DISCARD, 95, 214,

247
READ BUFFER, 144, 190–192, 254
READ FRAMEBUFFER, 198–200,

204, 205, 213, 216, 238, 253,
322

READ FRAMEBUFFER BINDING,
144, 191, 192, 197, 200, 215,
253

ReadBuffer, 183, 189, 197
ReadPixels, 90, 107, 108, 116, 138, 139,

189–193, 214

RED, 111, 114, 126, 129, 130, 145, 148,
149, 161, 165, 166, 192, 195,
250, 255, 276

RED BITS, 215
RED INTEGER, 111, 114
ReleaseShaderCompiler, 46
RENDERBUFFER, 201–204, 215,

238–241, 253
RENDERBUFFER ALPHA SIZE,

240, 256
RENDERBUFFER BINDING, 202,

253
RENDERBUFFER BLUE SIZE, 240,

256
RENDERBUFFER DEPTH SIZE,

240, 256
RENDERBUFFER GREEN SIZE,

240, 256
RENDERBUFFER HEIGHT, 203, 240,

256
RENDERBUFFER INTERNAL FOR-

MAT, 203, 240, 256
RENDERBUFFER RED SIZE, 240,

256
RENDERBUFFER SAMPLES, 203,

212, 214, 240, 256
RENDERBUFFER STENCIL SIZE,

240, 256
RENDERBUFFER WIDTH, 203, 240,

256
RenderbufferStorage, 203
RenderbufferStorageMultisample, 202,

203
RenderbufferStorage*, 213
RENDERER, 227, 271
REPEAT, 149, 154, 161
REPLACE, 175
ResumeTransformFeedback, 86, 87, 90
RG, 111, 114, 126, 129, 130, 145, 166,

192, 195

OpenGL ES 3.0.3 (December 18, 2013)

INDEX 340

RG16F, 111, 128, 130
RG16I, 111, 128, 130
RG16UI, 111, 128, 130
RG32F, 111, 128, 130
RG32I, 111, 128, 130
RG32UI, 111, 128, 130
RG8, 111, 128, 129, 141
RG8 SNORM, 111, 128, 129
RG8I, 111, 128, 130
RG8UI, 111, 128, 130
RG INTEGER, 111, 114
RGB, 110, 112, 114, 116, 119, 126, 127,

129–131, 138, 141, 145, 166,
180, 192, 193, 195, 210

RGB10 A2, 110, 127, 130, 192
RGB10 A2UI, 110, 127, 130
RGB16F, 110, 128, 130
RGB16I, 110, 128, 130
RGB16UI, 110, 128, 130
RGB32F, 110, 128, 130
RGB32I, 111, 128, 130
RGB32UI, 111, 128, 131
RGB565, 110, 127, 129, 141
RGB5 A1, 110, 127, 130, 141
RGB8, 110, 127, 129, 141
RGB8 SNORM, 110, 128, 129
RGB8I, 110, 128, 130
RGB8UI, 110, 128, 130
RGB9 E5, 110, 128, 130, 144, 163, 323
RGB INTEGER, 110, 111, 114
RGBA, 110, 112, 114, 116, 119, 126,

127, 129–131, 138, 139, 141,
145, 161, 166, 191, 192, 210

RGBA10 A2, 141
RGBA16F, 110, 128, 130
RGBA16I, 110, 127, 131
RGBA16UI, 110, 127, 131
RGBA32F, 110, 128, 130
RGBA32I, 110, 127, 131
RGBA32UI, 110, 127, 131

RGBA4, 110, 127, 129, 141, 256
RGBA8, 110, 127, 130, 141
RGBA8 ETC2 EAC, 297
RGBA8 SNORM, 110, 128, 130
RGBA8I, 110, 127, 131
RGBA8UI, 110, 127, 131
RGBA INTEGER, 110, 114, 116, 139,

191

SAMPLE ALPHA TO COVERAGE,
173, 248

SAMPLE BUFFERS, 96–98, 102, 107,
144, 173, 182, 186, 192, 197,
214, 276, 320, 321

SAMPLE COVERAGE, 173, 174, 248
SAMPLE COVERAGE INVERT, 173,

174, 248
SAMPLE COVERAGE VALUE, 173,

174, 248
SampleCoverage, 174
sampler*Shadow, 77, 166
sampler2D, 63, 71
sampler2DArray, 63
sampler2DArrayShadow, 63
sampler2DShadow, 63
sampler3D, 63
SAMPLER 2D, 63
SAMPLER 2D ARRAY, 63
SAMPLER 2D ARRAY SHADOW,

63
SAMPLER 2D SHADOW, 63
SAMPLER 3D, 63
SAMPLER BINDING, 124, 249
SAMPLER CUBE, 63
SAMPLER CUBE SHADOW, 63
samplerCube, 63
samplerCubeShadow, 63
SamplerParameter, 124
SamplerParameter*, 123, 124, 226
SAMPLES, 96, 97, 214, 241, 276, 320

OpenGL ES 3.0.3 (December 18, 2013)

INDEX 341

Scissor, 172
SCISSOR BOX, 252
SCISSOR TEST, 173, 252
SEPARATE ATTRIBS, 72, 73, 88, 233
SHADER BINARY FORMATS, 47,

270
SHADER COMPILER, 44, 270
SHADER SOURCE LENGTH, 232,

235, 258
SHADER TYPE, 79, 232, 258
ShaderBinary, 46, 47
ShaderSource, 45, 235
SHADING LANGUAGE VERSION,

227, 271
shared, 50, 57, 320
SHORT, 23, 25, 110, 111, 113, 194
SIGNALED, 219, 229
SIGNED NORMALIZED, 238
SRC ALPHA, 180
SRC ALPHA SATURATE, 180
SRC COLOR, 180
SRGB, 138, 140, 178, 181, 196, 239
SRGB8, 110, 128, 130, 162
SRGB8 ALPHA8, 110, 127, 130, 162
SRGB ALPHA8, 141
STATIC COPY, 33, 35
STATIC DRAW, 33, 35, 245
STATIC READ, 33, 35
std140, 50, 57, 60, 68, 320
STENCIL, 188, 189, 217, 238, 255
STENCIL ATTACHMENT, 200, 205,

211, 217
STENCIL BACK FAIL, 252
STENCIL BACK FUNC, 252
STENCIL BACK PASS DEPTH -

FAIL, 252
STENCIL BACK PASS DEPTH -

PASS, 252
STENCIL BACK REF, 252
STENCIL BACK VALUE MASK, 252

STENCIL BACK WRITEMASK, 253
STENCIL BITS, 215, 276
STENCIL BUFFER BIT, 186, 189,

195–197
STENCIL CLEAR VALUE, 253
STENCIL FAIL, 252
STENCIL FUNC, 252
STENCIL INDEX8, 204, 210
STENCIL PASS DEPTH FAIL, 252
STENCIL PASS DEPTH PASS, 252
STENCIL REF, 252
STENCIL TEST, 174, 252
STENCIL VALUE MASK, 252
STENCIL WRITEMASK, 253
StencilFunc, 174–176, 282
StencilFuncSeparate, 174, 175
StencilMask, 185, 186, 282
StencilMaskSeparate, 185, 186
StencilOp, 174, 175
StencilOpSeparate, 174, 175
STREAM COPY, 33, 35
STREAM DRAW, 33, 35
STREAM READ, 33, 35
SUBPIXEL BITS, 269
SYNC CONDITION, 220, 229, 267
SYNC FENCE, 220, 229, 267
SYNC FLAGS, 220, 229, 267
SYNC FLUSH COMMANDS BIT,

221, 222
SYNC GPU COMMANDS COM-

PLETE, 219, 220, 229, 267
SYNC STATUS, 219, 220, 229, 267

TexImage, 121, 142
TexImage*, 116, 135, 137, 140, 213,

314, 323
TexImage*D, 107, 108
TexImage2D, 108, 131, 133, 134, 138,

139, 142, 145, 146, 156, 285

OpenGL ES 3.0.3 (December 18, 2013)

INDEX 342

TexImage3D, 108, 125, 131–134, 142,
145, 146, 156

TexParameter, 121, 124, 148, 314
TexParameter*, 124
TexParameter[if], 151, 156
TexStorage*, 137, 156, 213
TexStorage2D, 136
TexStorage3D, 136
TexSubImage, 142
TexSubImage*, 314, 323
TexSubImage*D, 108
TexSubImage2D, 108, 140, 142, 143,

146
TexSubImage3D, 108, 140, 142, 146
TEXTURE, 207, 211, 238, 239
TEXTUREi, 121
TEXTURE0, 121, 249
TEXTURE xD, 249
TEXTURE 2D, 71, 121, 126, 133, 136,

138, 142, 148, 158, 206, 226
TEXTURE 2D ARRAY, 121, 125, 126,

137, 142, 146–148, 158, 226,
249

TEXTURE 3D, 121, 125, 137, 142,
148, 158, 226

TEXTURE BASE LEVEL, 148, 149,
156, 160, 161, 209, 211, 250

TEXTURE BINDING xD, 249
TEXTURE BINDING 2D ARRAY,

249
TEXTURE BINDING CUBE MAP,

249
TEXTURE COMPARE FUNC, 124,

148, 161, 250, 251
TEXTURE COMPARE MODE, 77,

124, 148, 159, 161, 162, 166,
250, 251

TEXTURE CUBE MAP, 121,
126, 133, 136, 148, 158, 226,
249

TEXTURE CUBE MAP *, 133
TEXTURE CUBE MAP NEG-

ATIVE X, 133, 138, 142, 150,
206

TEXTURE CUBE MAP NEG-
ATIVE Y, 133, 138, 142, 150,
206

TEXTURE CUBE MAP NEG-
ATIVE Z, 133, 138, 142, 150,
206

TEXTURE CUBE MAP POS-
ITIVE X, 133, 138, 142, 150,
206

TEXTURE CUBE MAP POS-
ITIVE Y, 133, 138, 142, 150,
206

TEXTURE CUBE MAP POS-
ITIVE Z, 133, 138, 142, 150,
206

TEXTURE IMMUTABLE FORMAT,
135, 161, 226, 250, 319

TEXTURE IMMUTABLE LEVELS,
135, 161, 226, 250, 319

TEXTURE MAG FILTER, 124, 148,
158, 161, 162, 250, 251

TEXTURE MAX LEVEL, 148, 149,
156, 160, 161, 209, 250

TEXTURE MAX LOD, 124, 148, 149,
151, 161, 250, 251

TEXTURE MIN FILTER, 124, 148,
153–155, 158, 160–162, 209,
250, 251

TEXTURE MIN LOD, 124, 148, 149,
151, 161, 250, 251

TEXTURE SWIZZLE A, 149, 161,
165, 250

TEXTURE SWIZZLE B, 148, 161,
165, 250

TEXTURE SWIZZLE G, 148, 161,
165, 250

OpenGL ES 3.0.3 (December 18, 2013)

INDEX 343

TEXTURE SWIZZLE R, 148, 161,
165, 250

TEXTURE WRAP R, 124, 149, 154,
250, 251

TEXTURE WRAP S, 124, 149, 154,
250, 251

TEXTURE WRAP T, 124, 149, 154,
250, 251

TIMEOUT EXPIRED, 221
TIMEOUT IGNORED, 221, 222
TRANSFORM FEEDBACK, 85
TRANSFORM FEEDBACK ACTIVE,

265
TRANSFORM FEEDBACK BIND-

ING, 246
TRANSFORM FEEDBACK -

BUFFER, 32, 33, 87, 90
TRANSFORM FEEDBACK -

BUFFER BINDING, 231, 265
TRANSFORM FEEDBACK -

BUFFER MODE, 233, 260
TRANSFORM FEEDBACK -

BUFFER SIZE, 231, 265
TRANSFORM FEEDBACK -

BUFFER START, 231, 265
TRANSFORM FEEDBACK -

PAUSED, 265
TRANSFORM FEEDBACK -

PRIMITIVES WRITTEN, 82,
90, 228

TRANSFORM FEEDBACK VARY-
ING MAX LENGTH, 74,
233, 260

TRANSFORM -
FEEDBACK VARYINGS, 73,
233, 260

TransformFeedbackVaryings, 72, 73, 88
TRIANGLE FAN, 21, 22
TRIANGLE STRIP, 21, 22
TRIANGLES, 22, 86

TRUE, 14, 25, 33, 38, 40, 44, 45, 47, 48,
53, 65, 78, 135, 167, 174, 177,
185, 225, 226, 228–233, 236,
237, 240, 252, 253, 270

uint, 62, 67, 89
Uniform, 13, 64
Uniform*, 58, 65, 66, 71
Uniform*f{v}, 65
Uniform*i{v}, 65
Uniform*ui{v}, 65
Uniform1f, 13
Uniform1i, 13
Uniform1i{v}, 65, 71
Uniform1iv, 66
Uniform2{if ui}*, 65
Uniform2f, 13
Uniform2i, 13
Uniform3f, 13
Uniform3i, 13
Uniform4f, 12, 13
Uniform4f{v}, 66
Uniform4i, 13
Uniform4i{v}, 66
UNIFORM ARRAY STRIDE, 64, 68,

262
UNIFORM BLOCK ACTIVE UNI-

FORM INDICES, 60, 262
UNIFORM BLOCK ACTIVE UNI-

FORMS, 60, 262
UNIFORM BLOCK BINDING, 59,

262
UNIFORM BLOCK DATA SIZE, 60,

70, 262
UNIFORM BLOCK INDEX, 64, 261
UNIFORM BLOCK NAME -

LENGTH, 60, 262
UNIFORM BLOCK REFERENCED -

BY FRAGMENT SHADER,
60, 262

OpenGL ES 3.0.3 (December 18, 2013)

INDEX 344

UNIFORM BLOCK REFERENCED -
BY VERTEX SHADER, 60,
262

UNIFORM BUFFER, 32, 33, 70
UNIFORM BUFFER BINDING, 231,

266
UNIFORM BUFFER OFFSET -

ALIGNMENT, 70, 274
UNIFORM BUFFER SIZE, 231, 266
UNIFORM BUFFER START, 231, 266
UNIFORM IS ROW MAJOR, 64, 262
UNIFORM MATRIX STRIDE, 64, 68,

262
UNIFORM NAME LENGTH, 63, 261
UNIFORM OFFSET, 64, 261
UNIFORM SIZE, 63, 261
UNIFORM TYPE, 63, 261
Uniform{1234}ui, 64
Uniform{1234}uiv, 65
UniformBlockBinding, 70
UniformMatrix2x4fv, 65
UniformMatrix3fv, 66
UniformMatrix{234}fv, 65
UniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3}fv,

65
UnmapBuffer, 32, 35, 38–40, 58, 314
UNPACK ALIGNMENT, 108, 115,

125, 257
UNPACK IMAGE HEIGHT, 108, 125,

257
UNPACK ROW LENGTH, 108, 115,

125, 257
UNPACK SKIP IMAGES, 108, 125,

133, 257
UNPACK SKIP PIXELS, 108, 115,

257
UNPACK SKIP ROWS, 108, 115, 257
UNSIGNALED, 220, 229, 267
UNSIGNED BYTE, 24–26, 29, 110–

113, 127, 139, 191, 194

UNSIGNED INT, 24–26, 29, 55, 62,
110, 111, 113, 139, 191, 194,
238

UNSIGNED INT 10F -
11F 11F REV, 110, 113, 116,
118, 119, 192–194

UNSIGNED INT 24 8, 111, 113, 116,
118

UNSIGNED INT -
2 10 10 10 REV, 24, 27, 110,
113, 116, 118, 139, 192, 194

UNSIGNED INT 5 9 -
9 9 REV, 110, 113, 116, 118,
119, 129

UNSIGNED INT SAMPLER 2D, 63
UNSIGNED INT SAMPLER 2D AR-

RAY, 63
UNSIGNED INT SAMPLER 3D, 63
UNSIGNED INT SAMPLER CUBE,

63
UNSIGNED INT VEC2, 55, 62
UNSIGNED INT VEC3, 55, 62
UNSIGNED INT VEC4, 55, 62
UNSIGNED NORMALIZED, 238
UNSIGNED SHORT, 24–26, 29, 110,

111, 113, 194
UNSIGNED SHORT 4 4 4 4,

110, 112, 113, 116, 117, 127,
194

UNSIGNED SHORT 5 5 5 1,
110, 112, 113, 116, 117, 127,
194

UNSIGNED SHORT 5 6 5, 110, 112,
113, 116, 117, 127, 194

usampler2D, 63
usampler2DArray, 63
usampler3D, 63
usamplerCube, 63
UseProgram, 51, 74, 90
uvec2, 62, 89

OpenGL ES 3.0.3 (December 18, 2013)

INDEX 345

uvec3, 62, 89
uvec4, 62, 89

VALIDATE STATUS, 78, 233, 259
ValidateProgram, 78, 233, 320
vec2, 54, 62, 89
vec3, 54, 62, 89
vec4, 54, 62, 66, 89
VENDOR, 227, 271
VERSION, 227, 271
VERTEX ARRAY BINDING, 225,

236, 244
VERTEX ATTRIB ARRAY -

BUFFER BINDING, 41, 236,
243

VERTEX ATTRIB ARRAY DIVI-
SOR, 236, 243

VERTEX ATTRIB ARRAY EN-
ABLED, 236, 243

VERTEX ATTRIB ARRAY INTE-
GER, 236, 243

VERTEX ATTRIB ARRAY NOR-
MALIZED, 236, 243

VERTEX ATTRIB ARRAY -
POINTER, 237, 243

VERTEX ATTRIB ARRAY SIZE,
236, 243

VERTEX ATTRIB ARRAY STRIDE,
236, 243

VERTEX ATTRIB ARRAY TYPE,
236, 243

VERTEX SHADER, 45, 232, 235
VertexAttrib*, 22, 23, 54
VertexAttrib1*, 22
VertexAttrib2*, 22
VertexAttrib3*, 22
VertexAttrib4*, 22
VertexAttribDivisor, 26, 28, 29
VertexAttribI4, 23
VertexAttribIPointer, 23–25, 236

VertexAttribPointer, 23–25, 41, 43, 236
VIEWPORT, 246
Viewport, 82

WAIT FAILED, 221
WaitSync, 219–222, 230, 270, 313, 315

ZERO, 148, 149, 165, 175, 179–181,
252

OpenGL ES 3.0.3 (December 18, 2013)

	1 Introduction
	1.1 What is the OpenGL ES Graphics System?
	1.2 Programmer's View of OpenGL ES
	1.3 Implementor's View of OpenGL ES
	1.4 Our View
	1.5 Companion Documents
	1.5.1 OpenGL ES Shading Language
	1.5.2 Window System Bindings

	2 OpenGL ES Operation
	2.1 OpenGL ES Fundamentals
	2.1.1 Floating-Point Computation
	2.1.2 16-Bit Floating-Point Numbers
	2.1.3 Unsigned 11-Bit Floating-Point Numbers
	2.1.4 Unsigned 10-Bit Floating-Point Numbers
	2.1.5 Fixed-Point Computation
	2.1.6 Fixed-Point Data Conversions

	2.2 GL State
	2.2.1 Shared Object State

	2.3 GL Command Syntax
	2.3.1 Data Conversion For State-Setting Commands

	2.4 Basic GL Operation
	2.5 GL Errors
	2.6 Primitives and Vertices
	2.6.1 Primitive Types

	2.7 Vertex Specification
	2.8 Vertex Arrays
	2.8.1 Transferring Array Elements
	2.8.2 Packed Vertex Data Formats
	2.8.3 Drawing Commands

	2.9 Buffer Objects
	2.9.1 Creating and Binding Buffer Objects
	2.9.2 Creating Buffer Object Data Stores
	2.9.3 Mapping and Unmapping Buffer Data
	2.9.4 Effects of Accessing Outside Buffer Bounds
	2.9.5 Copying Between Buffers
	2.9.6 Vertex Arrays in Buffer Objects
	2.9.7 Array Indices in Buffer Objects
	2.9.8 Buffer Object State

	2.10 Vertex Array Objects
	2.11 Vertex Shaders
	2.11.1 Shader Objects
	2.11.2 Loading Shader Binaries
	2.11.3 Program Objects
	2.11.4 Program Binaries
	2.11.5 Vertex Attributes
	2.11.6 Uniform Variables
	2.11.7 Samplers
	2.11.8 Output Variables
	2.11.9 Shader Execution
	2.11.10 Required State

	2.12 Coordinate Transformations
	2.12.1 Controlling the Viewport

	2.13 Asynchronous Queries
	2.14 Transform Feedback
	2.14.1 Transform Feedback Objects
	2.14.2 Transform Feedback Primitive Capture

	2.15 Primitive Queries
	2.16 Flatshading
	2.17 Primitive Clipping
	2.17.1 Clipping Shader Outputs

	3 Rasterization
	3.1 Discarding Primitives Before Rasterization
	3.2 Invariance
	3.3 Multisampling
	3.4 Points
	3.4.1 Basic Point Rasterization
	3.4.2 Point Multisample Rasterization

	3.5 Line Segments
	3.5.1 Basic Line Segment Rasterization
	3.5.2 Other Line Segment Features
	3.5.3 Line Rasterization State
	3.5.4 Line Multisample Rasterization

	3.6 Polygons
	3.6.1 Basic Polygon Rasterization
	3.6.2 Depth Offset
	3.6.3 Polygon Multisample Rasterization
	3.6.4 Polygon Rasterization State

	3.7 Pixel Rectangles
	3.7.1 Pixel Storage Modes and Pixel Buffer Objects
	3.7.2 Transfer of Pixel Rectangles

	3.8 Texturing
	3.8.1 Texture Objects
	3.8.2 Sampler Objects
	3.8.3 Texture Image Specification
	3.8.4 Immutable-Format Texture Images
	3.8.5 Alternate Texture Image Specification Commands
	3.8.6 Compressed Texture Images
	3.8.7 Texture Parameters
	3.8.8 Depth Component Textures
	3.8.9 Cube Map Texture Selection
	3.8.10 Texture Minification
	3.8.11 Texture Magnification
	3.8.12 Combined Depth/Stencil Textures
	3.8.13 Texture Completeness
	3.8.14 Texture State
	3.8.15 Texture Comparison Modes
	3.8.16 sRGB Texture Color Conversion
	3.8.17 Shared Exponent Texture Color Conversion

	3.9 Fragment Shaders
	3.9.1 Shader Variables
	3.9.2 Shader Execution

	4 Per-Fragment Operations and the Framebuffer
	4.1 Per-Fragment Operations
	4.1.1 Pixel Ownership Test
	4.1.2 Scissor Test
	4.1.3 Multisample Fragment Operations
	4.1.4 Stencil Test
	4.1.5 Depth Test
	4.1.6 Occlusion Queries
	4.1.7 Blending
	4.1.8 sRGB Conversion
	4.1.9 Dithering
	4.1.10 Additional Multisample Fragment Operations

	4.2 Whole Framebuffer Operations
	4.2.1 Selecting Buffers for Writing
	4.2.2 Fine Control of Buffer Updates
	4.2.3 Clearing the Buffers

	4.3 Reading and Copying Pixels
	4.3.1 Selecting Buffers for Reading
	4.3.2 Reading Pixels
	4.3.3 Copying Pixels
	4.3.4 Pixel Draw/Read State

	4.4 Framebuffer Objects
	4.4.1 Binding and Managing Framebuffer Objects
	4.4.2 Attaching Images to Framebuffer Objects
	4.4.3 Feedback Loops Between Textures and the Framebuffer
	4.4.4 Framebuffer Completeness
	4.4.5 Effects of Framebuffer State on Framebuffer Dependent Values
	4.4.6 Mapping between Pixel and Element in Attached Image

	4.5 Invalidating Framebuffer Contents

	5 Special Functions
	5.1 Flush and Finish
	5.2 Sync Objects and Fences
	5.2.1 Waiting for Sync Objects
	5.2.2 Signalling

	5.3 Hints

	6 State and State Requests
	6.1 Querying GL State
	6.1.1 Simple Queries
	6.1.2 Data Conversions
	6.1.3 Enumerated Queries
	6.1.4 Texture Queries
	6.1.5 Sampler Queries
	6.1.6 String Queries
	6.1.7 Asynchronous Queries
	6.1.8 Sync Object Queries
	6.1.9 Buffer Object Queries
	6.1.10 Vertex Array Object Queries
	6.1.11 Transform Feedback Queries
	6.1.12 Shader and Program Queries
	6.1.13 Framebuffer Object Queries
	6.1.14 Renderbuffer Object Queries
	6.1.15 Internal Format Queries

	6.2 State Tables
	6.2 Vertex Array Object State
	6.3 Vertex Array Data (not in vertex array objects)
	6.4 Buffer Object State
	6.5 Transformation State
	6.6 Rasterization
	6.7 Multisampling
	6.8 Textures (selector, state per texture unit)
	6.9 Textures (state per texture object)
	6.10 Textures (state per sampler object)
	6.11 Pixel Operations
	6.12 Framebuffer Control
	6.13 Framebuffer (state per framebuffer object)
	6.14 Framebuffer (state per attachment point)
	6.15 Renderbuffer (state per renderbuffer object)
	6.16 Pixels
	6.17 Shader Object State
	6.18 Program Object State
	6.19 Program Object State (cont.)
	6.20 Program Object State (cont.)
	6.21 Program Object State (cont.)
	6.22 Vertex Shader State (not part of program objects)
	6.23 Query Object State
	6.24 Transform Feedback State
	6.25 Uniform Buffer Binding State
	6.26 Sync (state per sync object)
	6.27 Hints
	6.28 Implementation Dependent Values
	6.29 Implementation Dependent Values (cont.)
	6.30 Implementation Dependent Version and Extension Support
	6.31 Implementation Dependent Vertex Shader Limits
	6.32 Implementation Dependent Fragment Shader Limits
	6.33 Implementation Dependent Aggregate Shader Limits
	6.34 Implementation Dependent Transform Feedback Limits
	6.35 Framebuffer Dependent Values
	6.36 Miscellaneous

	A Invariance
	A.1 Repeatability
	A.2 Multi-pass Algorithms
	A.3 Invariance Rules
	A.4 What All This Means

	B Corollaries
	C Compressed Texture Image Formats
	C.1 ETC Compressed Texture Image Formats
	C.1.1 Format COMPRESSED_RGB8_ETC2
	C.1.2 Format COMPRESSED_SRGB8_ETC2
	C.1.3 Format COMPRESSED_RGBA8_ETC2_EAC
	C.1.4 Format COMPRESSED_SRGB8_ALPHA8_ETC2_EAC
	C.1.5 Format COMPRESSED_R11_EAC
	C.1.6 Format COMPRESSED_RG11_EAC
	C.1.7 Format COMPRESSED_SIGNED_R11_EAC
	C.1.8 Format COMPRESSED_SIGNED_RG11_EAC
	C.1.9 Format COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2
	C.1.10 Format COMPRESSED_SRGB8_PUNCHTHROUGH_ALPHA1_ETC2

	D Shared Objects and Multiple Contexts
	D.1 Object Deletion Behavior
	D.1.1 Side Effects of Shared Context Destruction
	D.1.2 Automatic Unbinding of Deleted Objects
	D.1.3 Deleted Object and Object Name Lifetimes

	D.2 Sync Objects and Multiple Contexts
	D.3 Propagating Changes to Objects
	D.3.1 Determining Completion of Changes to an object
	D.3.2 Definitions
	D.3.3 Rules

	E Version 3.0 and Before
	E.1 New Features
	E.2 Change Log for 3.0.3
	E.3 Change Log for 3.0.2
	E.4 Change Log for 3.0.1
	E.5 Credits and Acknowledgements

	F OpenGL ES 2.0 Compatibility
	F.1 Legacy Features
	F.2 Differences in Runtime Behavior

