

DU-06817-001_v01 | October 2018

Getting Started Guide

GRID SERVER CONFIGURATION

GRID Server Configuration | 2

Chapter 1. GRID SERVER USE CASES

There are two basic use cases for NVIDIA GRID servers.

 Bare metal:

This consists of a single OS which can be either Linux or Windows. The OS owns

and manages all the GPUs and one or more applications simultaneously.

 Xen/NMOS:

There is one OS that typically manages all Virtual Machines running in that server

configuration. Each VM runs an OS which manages one single GPU at a time.

Both use case scenarios are dramatically different from each other and serve different

purposes. A third use case involves a mix of the two and takes methods from the bare

metal and Xen/NMOS use cases.

In all cases, the NVIDIA Capture SDK is used to fully accelerate pixel capture and

compression for streaming while requiring very low overhead to accomplish this.

This document focuses on the bare metal use case.

GRID SERVER USE CASES

GRID Server Configuration DU-06817-001_v01 | 3

1.1 BARE METAL

The bare-metal setup is best suited for running several applications per GPU

simultaneously. The advantage of this approach is that it adds very little overhead to

the game, as the OS is required to manage all the CPU and GPU resources. To use this

approach, a software framework needs to be developed to be able to share the GPU

resource among all applications. Proper sandboxing is required such that each game

instance will not interfere with other game instances.

 n apps, m GPUs, n streams, 1 OS instance

Multiple DX/OpenGL Contexts

Windows

GPU GPU GPU GPU

With only one OS, several "full-screen" applications cannot run concurrently because of

inherent restrictions placed on applications running under Windows OS. Fortunately, it

is possible to have multiple "non full-screen exclusive" applications run concurrently.

These applications are run within a sandbox and shimmed at the DirectX layer , s o that

instead of rendering to full screen, it is rendered in a window. By adhering to this

model, more than one application can run per GPU, and each application is able to take

full advantage of GPU acceleration for all GPUs.

More than one graphics application can run on a single GPU, provided enough

resources (memory) and visual computing power is available for each GPU. The SHIM

redirects the graphics rendering calls from the application to the SHIM. For device

creation, the SHIM chooses a specific GPU. For Direct3D handling, the full-screen

exclusive control mode desktop application is created as a windowed non-exclusive

mode Direct3D mode. This allows several windows and games to run on a single GPU,

or multiple GPUs, and also enables capturing the rendered frames and compressing

them using functions from the NVIDIA Video SDK.

GRID SERVER USE CASES

GRID Server Configuration DU-06817-001_v01 | 4

1.2 XEN/NMOS

The Xen/NMOS setup is better suited for running one full screen application for each OS

and GPU.

 m Full-screen apps, m GPUs, m streams, m OS instances

Windows Linux Windows

Architectures: XEN NMOS

The platform is virtualized, not the GPUs

Windows

GPU GPU GPU GPU

XEN

VM VM VM VM

Because exactly one OS manages only one GPU at a time, a single applicat ion can take

over full-screen and render freely. For this scenario, a shim layer is not needed. The

asynchronous "full-screen" grabbing feature of the NvFBC functions can be used for this

case.

GRID Server Configuration | 5

Chapter 2. SETTING UP GRID SERVER
ON BARE METAL

2.1 SETTING UP GRID SERVER ON WINDOWS 8 /
WINDOWS 2012

1. Install GRID PCI-e boards for a server system with 4 PCI-e slots.

Up to 4 GRID PCI-e boards can be installed.

2. Boot up the machine into the system BIOS and configure IPMI (Intelligent Platform

Management Interface).

IPMI is a standard computer system level interface used by system administrators

for remote management of data centers.

a) Configure IPMI settings with a static IP address (xxx.yyy.zzz.aaa).

b) Verify Connectivity by using http://www.yyy.zzz.aaa

User: ADMIN / Password: ADMIN

3. Install Windows 8 or Windows Server 2012 on the GRID server.

Network drivers are automatically included and installed automatically.

4. Assign a static IP address for the GRID server (remember this IP address).

5. Reboot and verify that networking is working.

6. Install VNC for remote desktop, then set up the VNC server password.

a) Click the checkbox to start VNC service on system boot.

b) Verify VNC is working.

7. Go into the Control Panel and Power Options, change the setting for “Put the

computer to sleep:” to Never.

http://www.yyy.zzz.aaa/

Setting Up GRID Server on Bare Metal

GRID Server Configuration DU-06817-001_v01 | 6

8. Install the NVIDIA GRID Drivers (now 12 GPU for 3 GRID K340) devices and verify

success through the Windows Device Manager.

The onboard VGA is also active.

9. Set Primary to one of the GRID K340 boards, and disable virtual monitor on the

onboard VGA.

10. Boot up the system.

You can now run DirectX or OpenGL accelerated games.

Note: For DirectX9 Games, up to 12 GPUs can be used, but for Direct3D10 and
Direct3D11 does not have this limitation. Now jump to section 2.3 to continue.

Setting Up GRID Server on Bare Metal

GRID Server Configuration DU-06817-001_v01 | 7

2.2 SETTING UP GRID SERVER ON WINDOWS 7 /
WINDOWS 2008R2

1. Make sure the onboard VGA controller is enabled.

This is accomplished by installing jumper JPG1 in the enabled position, which is

typically the default position.

Refer to the server motherboard manual for the location of jumper JPG1.

2. Install the GRID PCI-e boards into the server system.

For a server system with four PCI-e slots, first install only three GRID boards.

3. Install Windows 7 (64-bit) or Windows Server 2008 R2.

The network driver either be found from this FTP location:

ftp://ftp.supermicro.com/CDR-X9-UP_1.22_for_Intel_X9_UP_platform/Intel/LAN/

4. Assign a static IP address for the GRID server (remember this IP address).

5. Reboot and verify that networking is working.

6. Install VNC for remote desktop, and set up the VNC server password.

a) Click the checkbox to start VNC service on system boot.

b) Verify VNC is working.

7. Go into the Control Panel and Power Options, change the setting for “Put the

computer to sleep:” to Never.

ftp://ftp.supermicro.com/CDR-X9-UP_1.22_for_Intel_X9_UP_platform/Intel/LAN/

Setting Up GRID Server on Bare Metal

GRID Server Configuration DU-06817-001_v01 | 8

8. Shut down the system.

9. Move jumper JPG1 in the back of the system to the Disabled position. This will

disable the onboard VGA, so no display can be driven through the VGA port.

10. Power on the system.

11. From another PC, connect to the server via VNC.

12. Install the NVIDIA GRID Drivers.

Now you should see 12 GPU devices installed in the Windows Device Manager.

13. Boot up the system.

It will be running in headless mode, and you can now run DirectX or OpenGL

accelerated games.

Note: Do not use Microsoft Remote Desktop Protocol (RDP) to connect to the
server. Running a RDP session will cause the NVIDIA drivers to be unloaded and use
non-accelerated GDI for rendering, effectively disabling the NVIDIA driver. Go to
Section 2.3 to continue installation.

Setting Up GRID Server on Bare Metal

GRID Server Configuration DU-06817-001_v01 | 9

2.3 CONFIGURING BOARDS FOR WINDOWS

Connection via VNC will show a desktop with all resolutions as well as the NVIDIA

Control Panel. In order to access all of the extra GPUs, it is necessary to extend the

desktop to enable assigning GPUs to an extended desktop. This configuration allows

GPU accelerated applications to run for each desktop and enables the application to take

full advantage of the multiple GPUs by using the GPUs as DirectX devices.

Figure 1. Example System with Two GRID K520 Boards Showing Four GPUs

For information on how to enable this automatically, refer to the NVIDIA Capture SDK

example at

"\NVIDIA Corporation\Capture SDK\docs\Displayless Multi-GPU on

Windows 7.pdf".

To do enable this manually, perform the following steps.

1. Right click the desktop, then select Personalize-> Display->Adjust resolution.

Setting Up GRID Server on Bare Metal

GRID Server Configuration DU-06817-001_v01 | 10

2. Select each of these "displays", then select "Try to connect anyway on: VGA", and

then click "Apply". Repeat for each GPU.

At this point, all GPUs have been "connected" to GDI, and DxDiag.exe (from the

Microsoft DirectX SDK) will report as shown here:

Setting Up GRID Server on Bare Metal

GRID Server Configuration DU-06817-001_v01 | 11

The most basic DirectX SDK sample will report only one usable GPU:

By extending the desktop to the "connected" GPU, we end up with fully addressable

DirectX renderers.

Here is a screenshot of DxDiag.exe

Setting Up GRID Server on Bare Metal

GRID Server Configuration DU-06817-001_v01 | 12

And from the Microsoft Text3D.exe SDK sample.

Each DirectX renderer can now be accessed by creating a device with the right "DX

Ordinal".

m_pIDirect3D9->CreateDevice(dwDXOrdinal, DeviceType, hFocusWindow...

Once this device has been created, it is best to hide the window that uses the DX device

to ensure the GDI won't trigger any cross adapter blits as this will hurt overall

performance.

Reminder: The location of a window does not determine which GPU

renders it in DirectX; it is set one time at CreateDevice() time.

Setting Up GRID Server on Bare Metal

GRID Server Configuration DU-06817-001_v01 | 13

2.4 OTHER WINDOWS OS BARE-METAL USE
CASES

This section describes a method to address DirectX adapters where one applicat ion has

access and visibility to all GPUs available in the system.

 1 application or game, m GPUs, n streams, 1 instance of OS

This configuration type enables new game server and engine architectures. Application

developers would directly manage multiple-GPUs. This may include added

performance available for photo realistic rendering, which can include several GPUs

working in parallel in the same rendering. Or it could be a single shared-world with

multi-viewports for each user in the game world.

2.5 LINUX BARE METAL

Linux can be installed. The main difference compared to section 2.1 is that this

installation does not allow applications to access each GPU independently. The

advantage with this approach is that any OpenGL program can utilize all GPUs in the

system at the same time, as has been described for the use case in section 2.2.

www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER

DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO

WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR
A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no

responsibility for the consequences of use of such information or for any infr ingement of patents or other
r ights of third parties that may result from its use. No license is granted by implication of otherwise under

any patent r ights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change

without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA
Corporation products are not authorized as cr itical components in life support devices or systems without
express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, and CUDA are trademarks and/or registered trademarks of NVIDIA Corporation in the

U.S. and other countr ies. Other company and product names may be trademarks of the respective companies
with which they are associated.

Copyright

© 2011-2016, 2018 NVIDIA Corporation. All r ights reserved.

