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Deepwave Digital: AI Enabled GPU Receiver for a Critical 5G Sensor 

 

John D. Ferguson, Peter Witkowski, William Kirschner, Daniel Bryant 

 

Deepwave Digital has leveraged the Artificial Intelligence Radio Transceiver (AIR-T) to create the 
first deep learning sensor for a 5G network. This network, the Citizens Broadband Radio Service 
(CBRS), will be the first spectrum sharing service provided by the telecommunications industry 
that leverages real time RF sensing. Critical to the operation of CBRS is the ability to determine 
if priority users are active on specific frequency channels. When no priority users are present, the 
spectrum may be reallocated for commercial networks to provide new enterprise services or 
additional bandwidth to existing services. 

The AIR-T is a unique platform that combines radio frequency (RF) hardware with an embedded 
NVIDIA Jetson module for high throughput Digital Signal Processing (DSP). For CBRS, the 
Deepwave team has implemented a deep neural network (DNN) on the AIR-T that is capable of 
detecting, classifying, and reporting the presence of priority users with extreme accuracy. This 
work demonstrates that the GPU is a viable computational solution for both signal processing 
applications and real time deep learning inference.  

This post begins by introducing dynamic spectrum allocation in telecommunications and then 
discusses the technology created by Deepwave Digital to incorporate deep learning into the field 
of signal processing. Additionally, real time GPU processing is discussed in terms of both 
traditional DSP approaches as well as deep learning methods. Finally, CBRS sensor, that 
leverages each of these technologies is discussed in detail. 

 

1 DYNAMIC SPECTRUM ALLOCATION 

 

 

Figure 1: CBRS Network Operation 

https://deepwavedigital.com/
https://deepwavedigital.com/sdr/
https://developer.nvidia.com/deep-learning
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
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Communications systems function by transmitting and receiving radio signals between various 
nodes. These radio signals carry data content such as video, audio, or internet traffic. The recent 
explosion of IoT devices and LTE/5G enabled cell phones, spectrum congestion can degrade network 

performance and reliability. Historically, the spectrum has been managed by forcing each 
communication system to operate in a specific pre-defined, fixed frequency range.  This system 
allows spectrum management to be simple but may result in large amounts of underutilized 
spectrum. For example, a block of frequencies may be allocated to a group of users who rarely 
utilize the spectrum, while another group of users may be stuck with less bandwidth than they 
require. It is often difficult to plan ahead and prioritize such use cases. A more advanced approach 
is to allow for dynamic spectrum allocation to maximize utilization and prioritize usage. This 
approach is typically referred to as spectrum sharing. While fully autonomous spectrum sharing 
is still a research topic, demonstrations involving the DARPA Spectrum Collaboration Challenge 
(SC2) have shown promising results. 

In parallel to these research efforts, the first shared spectrum network will begin operation in 2020 
as part of the United States’ 5G rollout. This CBRS network will dynamically reallocate 100 MHz 
of spectrum in the 3.5 GHz band currently used for maritime radar and other purposes, but only 
at certain times and in certain locations.  

As illustrated in Figure 1, the CBRS spectrum sharing process begins with an Environmental 
Sensing Capability (ESC) network monitoring a Dynamic Protection Area (DPA). The ESC 
determines if a priority user is operating (i.e., users such as radar who previously had sole 
authority to transmit on these frequencies nationwide). It then passes this determination to the 
Spectrum Access Server (SAS) which uses this information to repurpose the unused portions of 
the CBRS spectrum for commercial services like LTE. Any channels that the ESC determines are 
actively used by a priority user are blocked from any other usage during that time. While this 
spectrum sharing methodology may not be as sophisticated as some of the aforementioned 
research efforts, it is the first shared spectrum network that is viable for both commercial 
enterprises and government regulators and will pave the way for more advanced technologies 
and architectures to be fielded in the future. Moreover, such a design demonstrates what can be 
achieved with current radio and network technology and will serve as a model of how spectrum 
sharing can be done effectively. 

This sensing capability, to determine if a priority user is active at a particular location, is the piece 
of new technology that is key to the CBRS network performing correctly. Not detecting a priority 
user’s transmissions can result in significant degradation in the priority user’s ability to properly 
function due to commercial interference. Conversely, falsely detecting transmissions (or 
misclassifying commercial users as priority users) will restrict other users and cause the spectrum 
to be underutilized.  

In recent years, technologies have been developed to detect and classify features in images, 
signals, and other kinds of data. One such promising technology is the deep neural network. DNN 
classification algorithms have shown significant capability to process audio signals of similar 
structure with high accuracy for applications as varied as music recognition, speaker identification, 
earthquake detection, and gunfire localization. While DNNs are just beginning to be applied to 
radio frequency signals, the signal detection and classification problem posed by the CBRS 
network proved to be a prime candidate for this technology   [1]. 

 

https://www.technologyreview.com/s/614627/5g-ai-darpa-next-generation-of-wireless-devices/
https://www.technologyreview.com/s/614627/5g-ai-darpa-next-generation-of-wireless-devices/
https://paperpile.com/c/doMaKA/cfBy


 

   

 

4 

2 DEEPWAVE DIGITAL TECHNOLOGY 

One of the common themes in modern RF systems is the tight coupling between the hardware 
that generates and receives radio signals and the software that controls this hardware and 
processes these signals. This is driven by the desire to minimize the time when the radio is not 
being used, miniaturize the system both in physical size and power required to operate it, and 
increase the rate that data can be received and sent. Realizing this, Deepwave has created an 
integrated hardware and software product to enable deep learning applications in RF systems: 
the Artificial Intelligence Radio Transceiver. Shown in Figure 2, the AIR-T is the first Software 
Defined Radio (SDR) designed specifically for deploying deep learning and GPU accelerated 
algorithms where the signal is found: at the edge. By embedding the processing necessary for 
DSP in the RF sensor, the AIR-T eliminates the usual headache of figuring out how to transfer 
large amounts of high bandwidth signal data back to a server. 

 

Figure 2: Artificial Intelligence Radio Transceiver (AIR-T) 

 

Historically, the hardware of choice for DSP applications has been the Field Programmable Gate 
Array (FPGA) due to the need for high throughput and low latency. Unfortunately, this high 
performance comes at the expense of long development times due to the specialized nature of 
the hardware. Software support is also often lacking and developers spend more time tinkering 
with the hardware and drivers than they do focusing on the actual algorithm. As CPUs became 
more capable, the SDR began to emerge, providing greater flexibility and ease of programming. 
In SDR, the mechanical components in traditional radio systems, such as filters and amplifiers, 
are replaced by software components in order to provide greater flexibility and reduced 
development time. This flexibility comes at the expense of reduced performance (increased 
latency and reduced throughput). Meanwhile, the trend with RF hardware (i.e, transceiver ASICs) 
has been greatly increased capability in terms of instantaneous bandwidth and the number of 
channels (for MIMO applications). In order to truly leverage these capabilities, modern RF 
engineers require a DSP system that can process the massive amount of data generated by new 
RF ASICs,with the agility and ease of use provided by the SDR. 

In parallel to the advancements in SDR, there has been a trend to use Graphics Processing Units 
(GPUs) for general computing tasks. The GPU lends itself well to many DSP algorithms due to 

https://deepwavedigital.com/sdr/


 

   

 

5 

the parallel nature of the underlying mathematical operations. However, not all operations are 
particularly well suited for GPU processing, and so a system using a traditional GPU may be 
forced to choose between either using the GPU inefficiently or copying data to and from the GPU 
multiple times, which also significantly limits the performance of the system. However, on the 
NVIDIA Jetson family of devices, the need for this operation is removed since the CPU and GPU 
share a pool of physical memory on the module itself. With this architecture, developers of DSP 
algorithms can treat buffers of signal data read from the RF frontend as GPU buffers and run their 
algorithms accordingly. This allows RF engineers to effectively use the processing power and 
flexibility that the GPU can provide while using the SDR programming model that they are already 
accustomed to. Furthermore, now that these signals exist in GPU memory, implementing a DNN 
to classify them is possible using existing frameworks and methods and without performance 
penalty. This design allows for the AIR-T to transmit and receive signals while simultaneously 
executing GPU accelerated signal processing and deep learning inference on a single, unified, 
platform. 

Deepwave’s AIR-T is equipped with an integrated software suite: AirStack. AirStack extends 
NVIDIA’s Jetpack SDK with drivers, libraries, and applications that fully integrate the RF 
transceiver into the development environment and support any DSP application. Developers 
already familiar with the NVIDIA environment may leverage familiar libraries, APIs, and developer 
tools as they are included with AirStack. 

3 DEEP LEARNING AS AN CBRS SIGNAL CLASSIFIER 

A critical component of the CBRS network infrastructure is the ESC sensor network. Deepwave 
Digital has developed a DNN algorithm, as part of the ESC sensor, that has completed certification 
for deployment [2]. This sensor will be a key component of the service provided by Deepwave’s 
strategic partner, Key Bridge Wireless. By leveraging the AIR-T and its AirStack development 
environment, Deepwave was able to implement a system capable of ingesting 125 MHz of 
bandwidth (4 Gbps) and determining whether or not a signal of interest is present. All the software 
necessary to receive, detect, classify, and make decisions about signals in the environment runs 
on a single NVIDIA Jetson TX2. 

3.1 SIGNAL PROCESSING ON GPUS 

At GTC DC 2019, Deepwave’s presentation outlined the various methods for performing DSP on 
an NVIDIA GPU and, in particular, the AIR-T. A key component of the AIR-T is the onboard Jetson 
TX2, which provides an ARM CPU and a Pascal GPU as computational resources. This section 
will go into depth on how to best leverage both these resources. 

One of the most widely used SDR toolkits is GNU Radio. Like the majority of SDR applications, 
most functions in GNU Radio rely on a CPU or (with the addition of RFNoC) FPGA processing. 
Since many DSP engineers are already familiar with GNU Radio, Deepwave created two free and 
open source modules for leveraging GPU acceleration from within GNU Radio. The first one, GR-
CUDA, provides a detailed tutorial on how to incorporate a CUDA kernel into GNU Radio. The 
second, GR-Wavelearner, is a framework for running both GPU-based FFTs and inference 
operations inside a GNU Radio application via cuFFT and TensorRT, respectively. 

From a technical perspective, GNU Radio must make some assumptions about scheduling and 
memory management that may limit the application’s performance. As a result, some DSP 
developers (including Deepwave) find that, for certain applications, it makes sense to work with 
the software libraries that support GPUs natively (as shown in Figure 3). Most of these libraries 

https://developer.nvidia.com/embedded/jetpack
https://paperpile.com/c/doMaKA/cLI9
https://keybridgewireless.com/
https://developer.nvidia.com/embedded/jetson-tx2
https://deepwavedigital.com/blog/deepwaves-presentation-at-gtc-dc-2019/
https://www.gnuradio.org/
https://github.com/deepwavedigital/gr-cuda
https://github.com/deepwavedigital/gr-cuda
https://github.com/deepwavedigital/gr-wavelearner
https://developer.nvidia.com/cufft
https://developer.nvidia.com/tensorrt
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can be leveraged using Python with acceptable performance. For those wanting every last bit of 
performance, C++ interfaces are also provided.  

In addition to the libraries provided by AirStack, NVIDIA has recently released an open source 
DSP toolbox, called cuSignal, as part of the RAPIDS accelerated data science project. cuSignal, 
by GPU accelerating the popular SciPy Signal library,  demonstrates the capability for Python 
programmers to easily write GPU accelerated signal processing applications, making it even 
easier for DSP engineers to leverage the GPU. Deepwave is currently evaluating cuSignal for 
inclusion in future releases of AirStack and comparing it against our traditional workflow of using 
CUDA, cuFFT, and other software libraries directly. 

 

Figure 3: Python Software Suite for DSP on the AIR-T 

3.2 DEEP LEARNING WORKFLOW WITH THE AIR-T 

The Artificial Intelligence (AI) training process for RF signals has similarities to more traditional AI 
application spaces, specifically both image processing and speech recognition. One major 
difference, however, is that RF signals are typically stored as a series of complex numbers (i.e., 
data with both a real and imaginary component) since this is a particularly convenient form for 
signal processing. While common in DSP, this data type is not natively supported by any deep 
learning framework. One method to work around this limitation is to perform a pre-processing step 
to transform the complex signal into a real-valued representation such as a spectrogram. 
Alternatively, the complex valued data stream may be treated as two real values. For this to work 
properly, the relationship between the real and complex number needs to be interpreted and 
learned during the training process. Either of these methods can be viable depending on the 
specific deep learning application.  

Once a viable DNN model has been created (which can be done using any industry-standard 
machine learning framework), it may be deployed for inference using TensorRT. TensorRT is 
NVIDIA's DNN optimization and inference toolkit. The toolkit will optimize the model and produce 
a platform-specific frozen binary representation of the model. This optimization runs directly on 
the deployment hardware, e.g., the AIR-T. This full process is outlined in Figure 4. 

 

https://medium.com/rapids-ai/gpu-accelerated-signal-processing-with-cusignal-689062a6af8
https://developer.nvidia.com/rapids
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Figure 4: DNN deployment workflow. 

4 CREATING AN ESC SENSOR 

Deepwave worked with Key Bridge Wireless, a CBRS spectrum administrator, to develop a set of 
training data consisting of tens of thousands of radar signals spanning the entire CBRS parameter 
space, including various radar system designs, fluctuating power levels, and real-world over the 
air effects. The Deepwave CBRS signal classifier was trained on these data resulting in an 
enterprise-level signal classification solution that combines traditional DSP techniques (which are 
GPU accelerated) with advanced deep learning methods.  

Referring to Figure 5, the AIR-T’s receiver is tuned to the 3.5 GHz band and the signal stream is 
digitized in the receiver. This occurs using SoapyAIRT, an AIR-T specific plug-in for the open-
source SoapySDR framework. The raw, complex-valued, digital signal is then transferred to the 
Jetson TX2, where 100% of the associated DSP processing occurs on the GPU. A key enabler 
here is the fact that the buffer used to read signal data from the RF frontend is already GPU 
addressable. Said differently, once the data arrives, no additional copy is required to get the data 
onto the GPU for further processing. 

The first processing step takes the signal and separates it into a set of frequency channels so that 
they can be managed individually as part of the overall CBRS network design. This process, 
called channelization, is implemented on the Jetson’s GPU as a series of CUDA kernels and 
creates the set of signals that will be fed to the classification algorithm. 

Following channelization, a GPU-based detection algorithm (a CUDA kernel) is used to remove 
time periods where no signals exist that are strong enough to require protection, based on the 
CBRS specification. The remaining data is transferred (via a zero copy interface) to the DNN 
classification algorithm to determine if the detected signal is one of the protected transmissions 
from a priority user. If the classifier determines that the channel must be protected, then the AIR-
T communicates this information back to the CBRS network management infrastructure. 

https://github.com/pothosware/SoapySDR/wiki
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Figure 5: CBRS Signal Classifier 

The Deepwave CBRS ESC network sensor provides a prime example of how enterprise-level 
solutions may be created, tested, and deployed on the Jetson product line and the AIR-T. This 
use case shows how traditional DSP can be combined with advanced deep learning algorithms 
to implement critical technology for next-generation telecommunications as well as many other 
industries that depend on signal processing. What’s more, all the necessary software runs on a 
single Jetson TX2 and, by leveraging the onboard GPU, the resulting throughput is more than 
sufficient to process the required RF bandwidth. 

Deployment for the Key Bridge Wireless ESC network, powered by the Deepwave Digital AIR-T 
and DNN, will be rolled out in 2020 and begin to offer service to enterprise customers. The network 
will be deployed along the coastline of the continental United States, Alaska, Puerto Rico, Guam, 
and Hawaii. 

Please contact Deepwave Digital for inquiries and questions here. 

Learn more about NVIDIA’s developer resources for telecommunications here. 
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