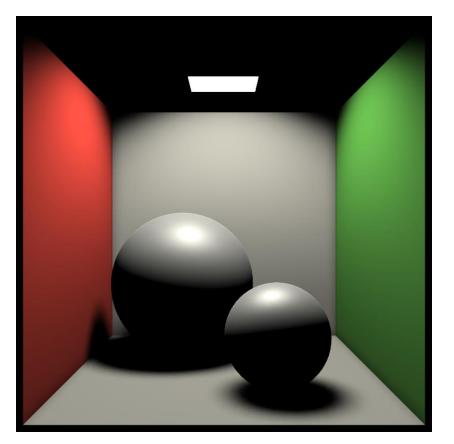
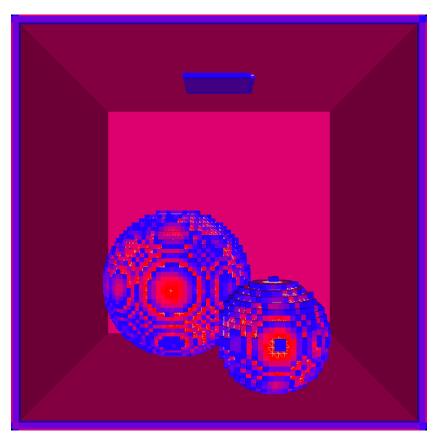
Advances in Real-Time Voxel-Based GI

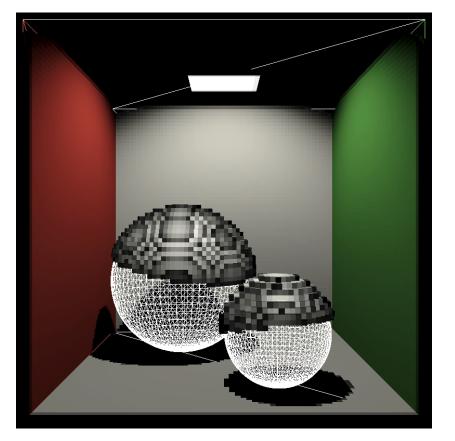
Alexey Panteleev, Senior Developer Technology Engineer Rahul Sathe, Senior Developer Technology Engineer March 21, 2018

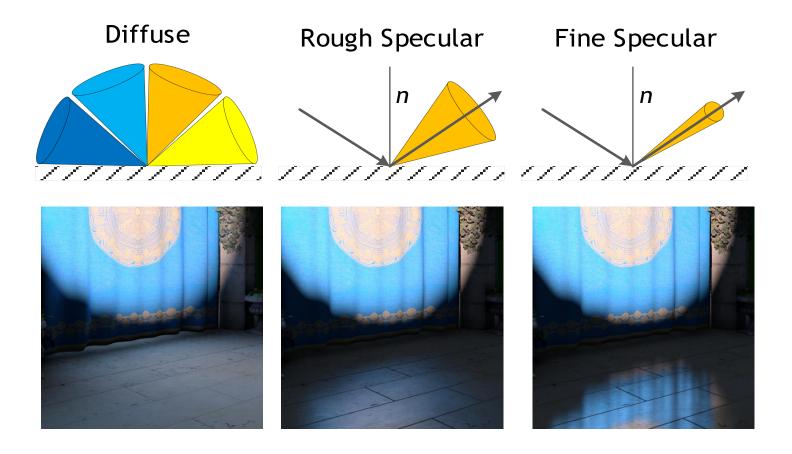

OVIDIA.

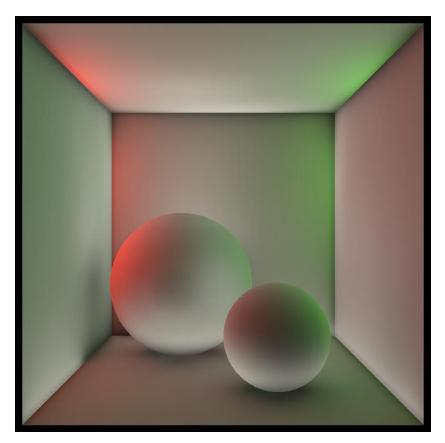
Booth #223 - South Hall www.nvidia.com/GDC

Recap on VXGI

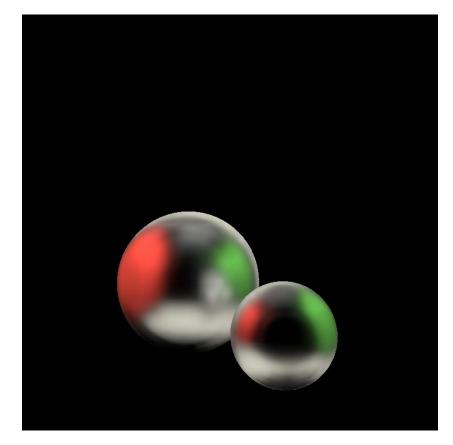

- Voxel Global Illumination
 - Inspired by Sparse Voxel Octree Global Illumination (SVOGI)
 - Clip-map used instead of octree
- Fully dynamic scene support
 - Voxelizing a game-like scene from scratch takes only a few ms
 - Supports multi-bounce GI through a temporal feedback loop on irradiance


Cornell Box Scene

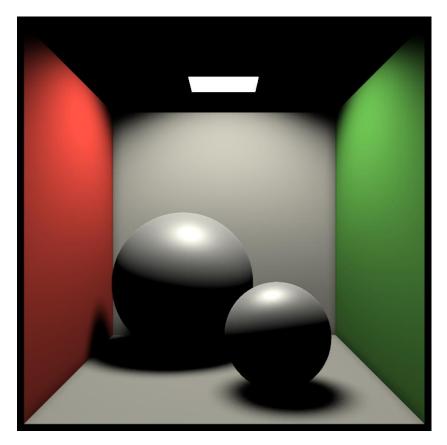

VXGI Algorithm: Voxelization

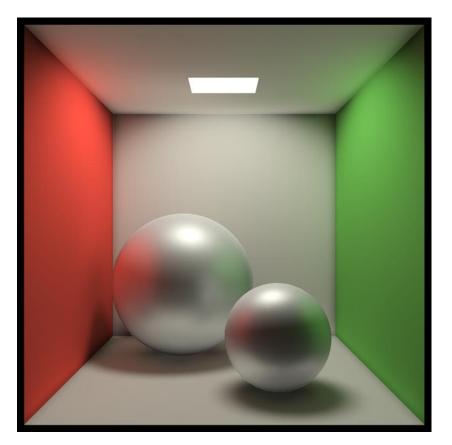


Emittance / Light


VXGI Algorithm: Tracing

Results of Cone Tracing

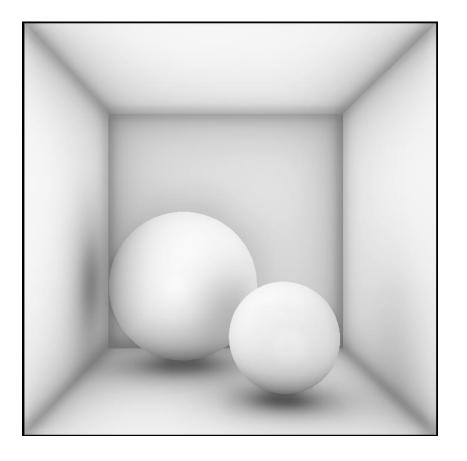




Indirect Specular

Final Result

Direct Lighting Only



Direct and Indirect

Voxel Ambient Occlusion

VXAO

- Easier to compute than full global illumination
 - No light processing, only opacity
- Easier to integrate into engines
 - No materials or lights during voxelization
- Looks better than screen-space techniques
 - World-space, not screen-space
 - Best if combined with small-scale SSAO

Area Lights with VXGI

Better Area Lights with VXGI 2.0

• A hot topic of interest in the industry and academia

- A hot topic of interest in the industry and academia
- Linearly Transformed Cosines
 - A new technique invented in 2016

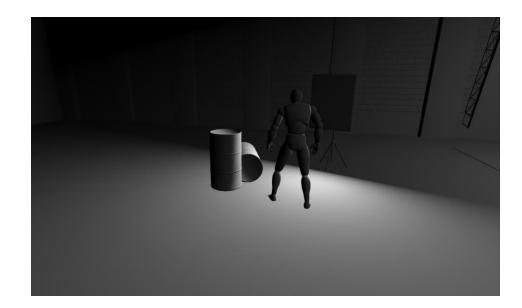
- A hot topic of interest in the industry and academia
- Linearly Transformed Cosines
 - A new technique invented in 2016
 - Impressive lighting for area lights
 - Complexity is O(n)
 - n is # of edges

https://eheitzresearch.wordpress.com/415-2/

- A hot topic of interest in the industry and academia
- Linearly Transformed Cosines
 - A new technique invented in 2016
 - Impressive lighting for area lights
 - Complexity is O(n)
 - n is # of edges
- But the occlusion is missing

15

VXAL


- VXAL
- Distribute cones over the area light

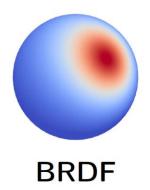
Area Light
Diffuse Indirect

- VXAL
- Distribute cones over the area light
- Occlusion
 - Large Scale: Cone tracing similar to VXAO
 - Small Scale: Screen space shadows

- VXAL
- Distribute cones over the area light
- Occlusion
 - Large Scale: Cone tracing similar to VXAO
 - Small Scale: Screen space shadows
- Irradiance
 - Diffuse and Specular
 - Linearly Transformed Cosines

- VXAL
- Distribute cones over the area light
- Occlusion
 - Large Scale: Cone tracing similar to VXAO
 - Small Scale: Screen space shadows
- Irradiance
 - Diffuse and Specular
 - Linearly Transformed Cosines
- Modulate irradiance with occlusion

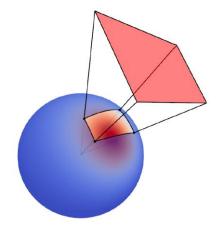
- VXAL
- Distribute cones over the area light
- Occlusion
 - Large Scale: Cone tracing similar to VXAO
 - Small Scale: Screen space shadows
- Irradiance
 - Diffuse and Specular
 - Linearly Transformed Cosines
- Modulate irradiance with occlusion
- Apply material parameters like albedo, composite into the final view



Area Lights

- Multiple area lights supported
 - Rectangular in shape
 - Textured or Solid color
 - Each light has some rendering cost
 - Dynamic textures are not free

- Wide range of quality settings
 - Tracing resolution: half-res to quarter-res
 - Occlusion quality: use more or fewer cones per unit angle
 - Actual number of cones is adaptive and varies per pixel

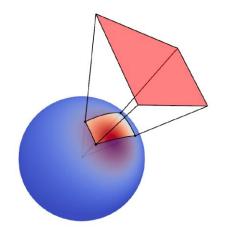

- BRDF
 - How much light transfers from incoming directions to outgoing directions

https://eheitzresearch.wordpress.com/415-2/

BRDF

- How much light transfers from incoming directions to outgoing directions
- Shading:
 - Integrate BRDF over the light's spherical projection

Polygon P

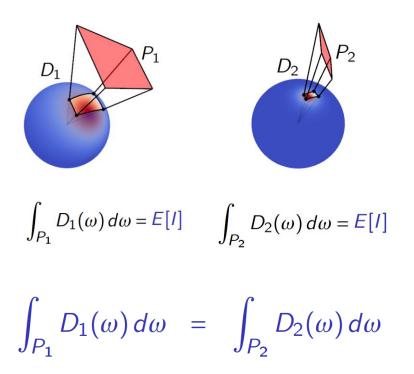

$$\int_P D(\omega) \, d\omega = ?$$

https://eheitzresearch.wordpress.com/415-2/

BRDF

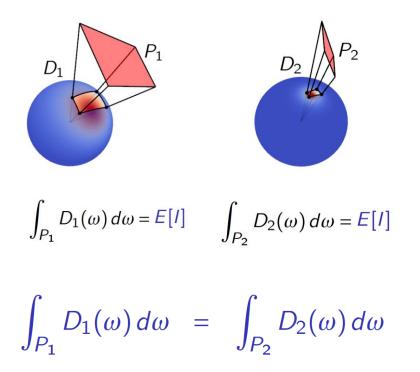
- How much light transfers from incoming directions to outgoing directions
- Shading:
 - Integrate BRDF over the light's spherical projection
- Analytic solutions exist, but only for simple BRDFs
 - o e.g. Phong, but very expensive

https://eheitzresearch.wordpress.com/415-2/

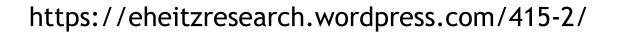


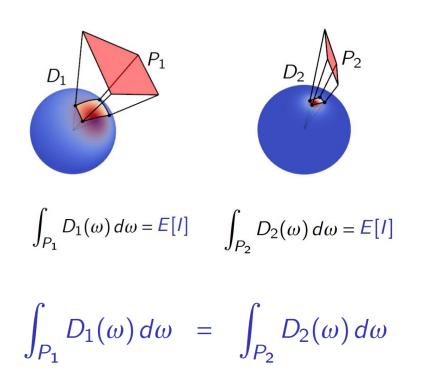
Distribution D

Polygon P


$$\int_P D(\omega) \, d\omega = ?$$

- Integrals invariant under linear transformations
 - Transform to the distribution
 - Transform to the polygon
 - o Results are same


https://eheitzresearch.wordpress.com/415-2/


- Integrals invariant under linear transformations
 - Transform to the distribution
 - Transform to the polygon
 - Results are same
- Parameterized linear transforms
 - View Angle & Roughness
 - Pre-computed and stored in textures

https://eheitzresearch.wordpress.com/415-2/

- Integrals invariant under linear transformations
 - Transform to the distribution
 - Transform to the polygon
 - Results are same
- Parameterized linear transforms
 - View Angle & Roughness
 - Pre-computed and stored in textures
- Prefiltered textures for textured lights

- Set the area lights
 - Position, orientation, size, color, texture, etc.

- Set the area lights
 - Position, orientation, size, color, texture, etc.
- Set the area lights tracing parameters
 - Occlusion quality, screen-space shadows, temporal filtering, etc.

- Set the area lights
 - Position, orientation, size, color, texture, etc.
- Set the area lights tracing parameters
 - Occlusion quality, screen-space shadows, temporal filtering, etc.
- Set the view information
 - Projection matrices, viewports, etc.
 - Provide G-buffer channels

- Set the area lights
 - Position, orientation, size, color, texture, etc.
- Set the area lights tracing parameters
 - Occlusion quality, screen-space shadows, temporal filtering, etc.
- Set the view information
 - Projection matrices, viewports, etc.
 - Provide G-buffer channels
- Returns
 - Diffuse Irradiance channel
 - Specular Irradiance channel

Future Work

- Support other types of area lights
 - Maybe disk or line lights
- Improve image quality
 - Near-field occlusion
 - Flickering in low-res modes

References

 "Realtime polygonal-light shading with linearly transformed cosines" by Heitz, E., Dupuy, J., Hill, S., and Neubelt, D. 2016, Transactions on Graphics 35

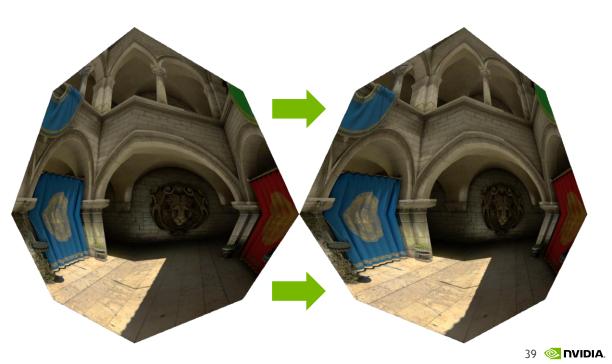
VXAL DEMO

CO. NVIDIA

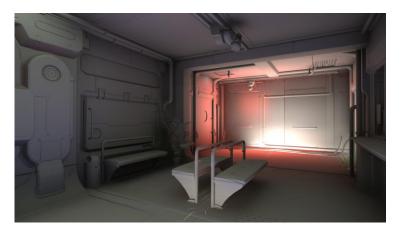
VXGI 2.0 New Features (besides VXAL)

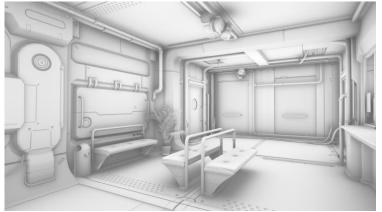
One-Pass Voxelization

- VXGI 1.0:
 - Separate voxelization passes for opacity and emittance
 - Twice the CPU cost, almost twice the GPU cost on top of other rendering passes
- VXGI 2.0:
 - Can do everything in one pass
 - Or multiple, up to the application
 - Each pass adds some opacity and emittance to the voxel volume


Custom G-Buffer Layouts

- VXGI 1.0 requires a specific data layout and projection
 - Hardware depth, linear normals, roughness in normal.w
 - Planar projection only
- VXGI 2.0 takes HLSL code to load geometry info for a pixel
 - Anything that resolves to a position and normal will do
 - VRWorks MRS and LMS projections, or anything else
 - Many tracing settings can vary per-pixel


View Reprojection


- VXGI 1.0 supports reusing lighting information from the previous frame
 - Temporal reprojection or temporal filtering
- VXGI 2.0 adds reuse between views in the same frame
 - Compute lighting for the left eye
 - Reproject matching surfaces to the right eye
 - Fill the holes
 - No limits on the number of views

Simultaneous VXGI, VXAO, and VXAL

- VXGI 1.0 had two modes
 - AO mode: ambient occlusion channel is produced
 - GI mode: diffuse channel is produced with ambient lighting added
- VXGI 2.0 changes how the GI mode behaves
 - Diffuse channel has AO in the alpha component
 - Can compose as necessary on the application side
- VXAL is independent
 - Separate API
 - Same behavior in GI and AO modes

Other Improvements

Simpler Voxel Formats

- 3D or 6D opacity replaced by scalar
 - Same quality, better performance
 - Can do fractional opacity materials now
- Multiple emittance formats replaced by single FLOAT16
 - With a functional detour for GPUs which do not support FP16 atomics
 - Occlusion-only mode with no emittance can still be enabled

Simpler and More Flexible Materials

- Fewer controls from the CPU side
 - Most of MaterialInfo members removed
 - Only Adaptive Material Sampling Rate is still there
- More powerful on the shader side
 - Fractional opacity, variable per-voxel
 - Two-sided materials with different reflected colors

Adjusting plant opacity (animated)

Simpler Tracing Controls

- VXGI 1.0:
 - o numCones, coneAngle, normalGroupingFactor, ..., ...
- VXGI 2.0:
 - o quality, softness, directionalSamplingRate, ...
 - Adjust Quality and Softness to get an acceptable look
 - Then adjust the sampling rate and temporal filtering to get a usable noise level

▲ VXGI Diffuse	
🖌 Enable Diffuse Tracing	P S
🖌 Indirect Lighting Intensity	1.0
🖌 Tracing Resolution	Quarter-Res 🔻
🖌 Light Leaking	Moderate 👻 🦻
🖌 Quality	0.5
🖌 Sampling Rate	1.0
🖌 Softness	0.5
🖌 Tracing Step	0.5
🖌 Opacity Correction Factor	1.0
🖌 Initial Offset Bias	2.0
🖌 Initial Offset Distance Factor	1.0
🖌 Use Temporal Filtering	P
🖌 Temporal Filter Previous Fran	0.9
	7

There's More...

- Separate SSAO pass
- Support for pre-view translation
- Improved upscaling and temporal filters
- Non-cubic voxel volumes
- Reduced light leaking
- Fine control over D3D extensions
- Improved NVRHI

Summary

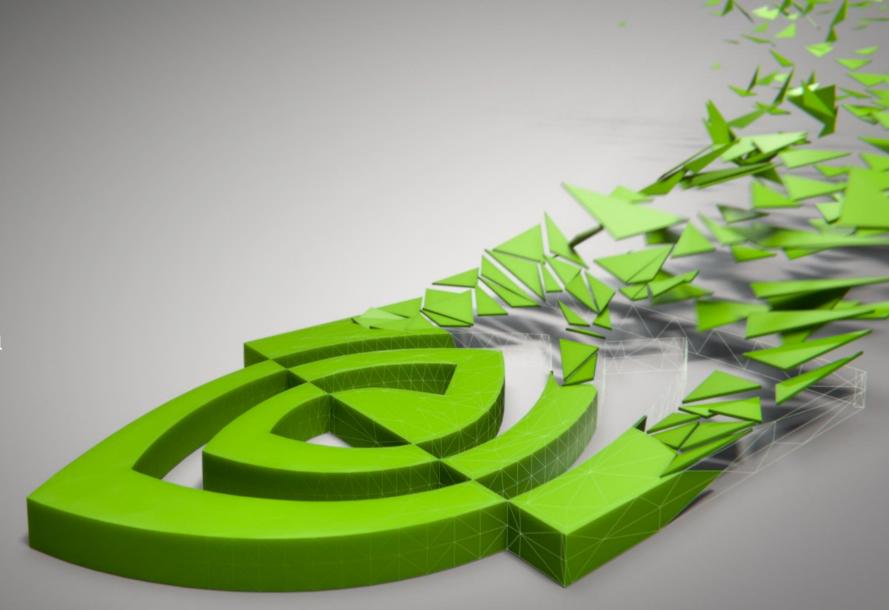
Summary

• New version: VXGI 2.0

- VXAL: High-quality area lighting with shadows
- Lots of smaller new features
- Better performance than VXGI 1.0

VXGI 2.0 Now with VXAL

- Available soon
 - o Mid-April 2018
 - SDK and Unreal Engine 4 integration


Thank you!

• Questions?

- Contact us:
 - o <u>alpanteleev@nvidia.com</u>
 - o <u>rsathe@nvidia.com</u>

Booth #223 - South Hall www.nvidia.com/GDC

